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The Wiman—Edge pencil is a pencil of genus 6 curves for which the generic member
has automorphism group the alternating group As. There is a unique smooth member,
the Wiman sextic, with automorphism group the symmetric group S5. Farb and Looi-
jenga proved that the monodromy of the Wiman-Edge pencil is commensurable with
the Hilbert modular group SLg2 (Z[\/g}) In this note, we give a complete description of
the monodromy by congruence conditions modulo 4 and 5. The congruence condition
modulo 4 is new, and this answers a question of Farb—Looijenga. We also show that the
smooth resolution of the Baily—Borel compactification of the locally symmetric manifold
associated with the monodromy is a projective surface of general type. Lastly, we give
new information about the image of the period map for the pencil.
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1. Introduction

The Wiman-Edge pencil is a pencil of genus six curves for which the generic member
has the alternating group As as the automorphism group. There is a unique smooth
member, the Wiman sextic, whose automorphism group is the symmetric group Ss.
In a recent series of papers, Dolgachev et al. [6] followed by Farb and Looijenga
[7, 8] studied this pencil from a modern perspective. See these papers for basic facts
about the pencil.

In [7], Farb and Looijenga proved that the monodromy of the Wiman-Edge
pencil is commensurable with the Hilbert modular group SLo(Z[v/5]). In this paper,
we give a complete description of the monodromy by congruence conditions modulo
4 and 5. The congruence condition modulo 4 is new, and this answers a question of
Farb—Looijenga [7, Question 4.4].

Before stating our main result, we need some notation. Let O be the ring of
integers in Q(v/5) and O, denote the index two subring Z[v/5]. There is a unique
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prime ideal p5 of O with residue field Fs, the field with five elements. The following
is a precise description of the Wiman-Edge monodromy.

Theorem A. Up to conjugacy by GLa(O), the monodromy group T of the Wiman—
Edge pencil has index 480 in SLy(O), and can be described equivalently in SL2(O)
and SLa(O,) by the following two properties:

(1) The reduction of T modulo p5 is unipotent.
(2) The reduction T of T' modulo 40 fits into an evact sequence

1 —Cy =T — SLy(Fo) — 1,
where Cy < sla(Fy) denotes the subgroup of matrices (ml CEZ) € sly(Fy) so that

3 T1

Trg, /r, (21 + 22 + 23) = 0, where Trg, /r, denotes the trace.

The proof of Theorem A is in Sec. 3. Other than the explicit matrix generators
for T given in [7], our proof that the monodromy has finite index in SL3(O) is
completely independent of Farb and Looijenga’s argument. We use a presentation
for SL(O) due to Yoshida [12] along with the computer algebra program Magma [4]
to describe I'. See Remark 3.4 for a precise description of the reliance on computer
calculation. It would be interesting to understand the relationship between the
condition on I' modulo 4 and the geometry of the pencil.

Question 1. Can one interpret the mod 4 condition on I' in terms of properties
of the Wiman—Edge pencil analogous to the description of the mod p5 condition
described in [7, Corollary 4.3]7

Our methods allow us to study other properties of the monodromy. In Secs. 4
and 5, we study the smooth resolution Yt of the Baily—Borel compactification of the
locally symmetric manifold Xt associated with the monodromy. This again relies
on Magma, for determining the structure of the cusps of Xr (see Proposition 4.5),
which we then resolve “by hand”. We prove the following theorem.

Theorem B. The smooth compactification Yr of Xt is a smooth projective surface
of general type with Chern numbers

c1(Yr) = 16,
CQ(F) = 56.

It has holomorphic Euler characteristic x(Oy,) = 6, irreqularity q(Yr) = 0, and
geometric genus py(Yr) = 5.

Finally, in Sec. 6, we study the period map of the monodromy, following the
suggestion of Farb—Looijenga that one should understand the image of the period
map in terms of the Klein plane [7, Sec. 5]. Briefly, the period map can be considered
as a closed embedding of P! minus five points into (h x )/ SL2(0,). If X[2] denotes
the quotient of h x b by the level two congruence subgroup of SLa(O), then there is
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an action of S3 = SLa(F3) on X[2] inducing a map from X[2] to (h x b)/SLa(O,).
Since 20 C O,, this induces a Galois cover Xr[2] of Xr with group Ss, and we will
prove the following theorem.

Theorem C. The pullback of the image of the period map of the Wiman—FEdge
pencil along the cover Xr[2] — Xr is an Ss-invariant curve of genus one with 18
punctures.

See Proposition 6.1 for the precise statement. Hirzebruch famously identified
Y'[2] with the blowup of the Clebsch cubic surface at its 10 Eckardt points (e.g.
see [11, Sec. VIIL.2]). The Klein plane is P? realizing Y[2] as the blowup of the
plane at the six points associated with an icosahedron (where the blowup at these
points is the Clebsch cubic) and a dually inscribed dodecahedron (i.e. the points
that transform to the Eckardt points on the Clebsch cubic). In particular, we see
that the image of the period map is associated with a unique Ss-invariant plane
curve of genus one, which we call the Wiman—Edge monodromy plane curve. As
noted by the referee, by construction this curve supports a moduli space of stable
genus six curves with Ay action and certain level structure; see Remark 6.3.

We end the paper by proving a number of other general properties of the mon-
odromy plane curve, in particular regarding the combinatorics of how it intersects
the classical points and lines on P? associated with the icosahedron and its dual
dodecahedron. We were not able to completely describe the curve, most critically
because we do not know if the monodromy plane curve is smooth. If it is smooth,
Proposition 6.7 proves that it must be one of two smooth plane cubic curves passing
through the unique Ss-orbit of vertices of the dodecahedron with cardinality six.
It would of course be interesting to find further conditions that would precisely
describe the monodromy plane curve, and hence completely describe the image of
the period map.

We close the introduction with a question related to a curious discovery made
while writing this paper. The Wiman curve is naturally uniformized as a quotient
of the hyperbolic plane by a subgroup of the (2,4, 6) triangle group (e.g. see [8, Sec.
4.3]). This implies that the Wiman curve is uniformized by a cocompact arithmetic
Fuchsian group with associated quaternion algebra the unique quaternion algebra A
over Q ramified at the primes {2, 3} (see [9, Sec. 13.3]). Classical embedding results
for quaternion algebras imply that A embeds as a subalgebra of My (k), since 2 and
3 are inert in k.

Specifically, there is a maximal order D of A and a subgroup A of the group
N(D?'), the normalizer in SLy(R) of the group D! of units of norm one in D, so that
Co = h/A is the Wiman curve. Let A! be the index two subgroup of A given by
intersecting A with D!. We found an embedding A < M (k) so that A' maps into
SL2(O). However, the image is not contained in SLy(0,), so this does not realize
A as a subgroup of the monodromy group I' of the Wiman—Edge pencil, only some
finite index subgroup of A. It follows that there is a finite étale cover C’ — Cy and
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a closed immersion
C" % Xr = (h x h)/T,

with the image being a totally geodesic submanifold of Xt. It would be interesting
to know if this curve C’ has any significance for the pencil or the image of the
period map.

Question 2. Let D’ C Xr be an immersed totally geodesic curve commensurable
with the Wiman curve. Does the arithmetic Fuchsian subgroup of the monodromy
T" of the Wiman—Edge pencil associated with D’ have special significance? What
about the points of intersection of D’ with the image of the period map for the
pencil?

2. Basic Facts and Notation

We follow the basic notation in [7], which we now recall and fix for the remainder
of the paper. Set k = Q(X), where X2 — X — 1 = 0. Then the ring of integers O
of k is Z[X], and the unit group O* is isomorphic to Z x Z/2 generated by X and
—1, where X! =X — 1.

In what follows F, will always denote the field with g elements. Two prime
ideals of O that will appear throughout this paper are 20, which has residue field
Fy, and p5 = (1 —2X)O, which has residue field F5. Note that (1 —2X)? = 5 which
explicitly realizes the isomorphism & = Q(+/5).

Let O, denote the additive subgroup Z[1,2X] = Z[1,v/5] and observe that
20 C O,. The isomorphism Fy 2 Fo[X] characterizes O, as the pullback of Fy C Fy
under reduction modulo 20. This interpretation will be used often in what follows.
Note moreover that O, maps onto O/ps, since it maps to a nontrivial cyclic additive
subgroup of Fs.

We now consider SLy(0,) < SL2(0), and begin by recording the following basic
lemma that follows from the above characterization of O, as a subgroup of O.

Lemma 2.1. The reduction homomorphism
ho : SLQ(O) — SL2(0/20) = SLQ(F4),

is surjective and SLo(O,) is the pullback of the subgroup SLg(F2) < SLa(F4) induced
by the field inclusion Fo — Fy.

Following Yoshida [12], we now give a presentation for PSLy(O) and use it to
derive one for SL2(O). First, consider the following matrices in SL(O):

=( ) =)
“_<)o( X0—1> "‘((1) )1(>
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Note that (o, 7) = SL2(Z). Let g denote the image in PSLs of a given g € SLy and
[, ] denote the commutator. Yoshida showed the following theorem.

Theorem 2.2 ([12, Theorem 5.1]). The group PSLy(O) is generated by &, i, T,
and 7] subject to the relations

R, =5? Ry = (57)°
Rs = (671)? Ry = [7,7]
Ry =7~ (7))~ Rg = fip" (7)™

Ry =5no (7 "0 ')~

We now use Theorem 2.2 to give a presentation for SLy(O) using the central

element
-1 0
zZ0 = .
0 -1

of order two. We then have the following corollary.

Corollary 2.3. The group SLy(O) is generated by zo, o, p, T, and n subject to the
relations

Co = 22
C1 = [20, 0] Ca = (20, p1]
Cs = [20,7] Cy = [20,7]
Ry = 0?2 Ry = (o7)3
Rz = (op)*20 Ry = [r,1]

1 1

Rs = prp~ ()~ Rg = pmu ™ (tn*)~

Lo~ i)~z

R; = ono(mn~
Proof. The relations indicating that zg defines a central Z/2 subgroup are clear.
Since we have a central extension

1= (20) 2 7Z/2 = SL2(0) = PSLy(0) — 1,

lifting each relation Ej from Theorem 2.2 to a word in o, u, 7, and 7 must give
either the identity or z9. This determines the given relation R;.

We claim that SL2(O) has no other relations. Indeed, the abstract group A with
presentation in the statement of the corollary defines a central extension of PSLy(O)
by Z/2. Since these relations also hold in SLy(0O), the projection A — PSLy(O)
defined by killing z; factors through a homomorphism onto SLy(O) defined by
setting the abstract generators equal to the given matrix. Since this kernel has
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order two, SL2(O) is isomorphic to one of A or PSLy(O), and it is definitely not
isomorphic to the latter. O

Remark 2.4. Observe that SL2(O) — PSL2(O) does not split. One way to see
this is using the well-known fact that SLa(Z) — PSLa(Z) does not split.

Let I" be the monodromy group of the Wiman-Edge pencil. We identify I" with
its image under the monodromy representation p in [7], which is a subgroup of
SL2(0,). Farb and Looijenga gave the following matrix generators.

Lemma 2.5. The Wiman—FEdge monodromy T is generated by

(1 —142X (1 0
T =19 1 T =\1_9x 1
=7 1y? = or 2ol
1+ X3 X3 1+ X3 X3
W=\ _x3 1-x3 =\ _x3 1 x-3
— 7_27’720,/[3?7727_4 — 7]727'720'/1737]72

Proof. See [7, Corollary 4.3] for the matrix representatives for the generators. One
then verifies by hand that the given words in our generators for SLy(O) multiply
out to the appropriate matrix. O

Remark 2.6. One can obtain relations for I" using a computer algebra program like
Magma [4]. We found the relations to be sufficiently complicated that their inclusion
wouldn’t add any value to one’s understanding of either I' or the geometry of any
of the objects associated with it.

3. Precise Determination of the Monodromy

The goal of this section is to give a more refined version of the following theorem
of Farb-Looijenga.

Theorem 3.1 ([7, Theorem 1.1]). The monodromy group of the Wiman—FEdge
pencil is isomorphic to a finite index subgroup of SLa(O,); in particular it is
arithmetic.

Our proof will be independent of [7] beyond our use of their matrix generators
in Lemma 2.5. Farb and Looijenga also proved that the reduction of I' modulo p5
maps onto a unipotent subgroup of SLy(F5) [7, Corollary 4.3]. They asked whether
this congruence identity completely determines I' [7, Question 4.4], and our results
answer this question in the negative. In particular, we will see that there is an
additional congruence condition modulo 40.
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Before stating our precise determination of the monodromy, we need a prelimi-
nary lemma that describes SL2(0/40) as a short exact sequence of algebraic groups
over Fy. Observe first that R4y = O/40 can be described as (Z/4)[X] and reduction
modulo 2Ry is Fo[X]| = Fy.

Lemma 3.2. Considering slo(F4) as the adjoint representation of SLa(Fy) induces
a short exact sequence

1— 5[2(F4) — SLQ(R4) — SLQ(F4) — 1,

where sla(Fy) denotes the Lie algebra of SLa(F4), considered as an additive
group. The image SL3(0,/40) of SLa(O,) in SLa(R4) is the pullback of
SLy(F2) < SLa(F4) under this sequence.

Proof. The first statement is very standard and follows from studying matrices in
SL2(R4) of the form Id +2M and noting that these are naturally represented by
M € sl3(Fy), where we consider Fy as (Z/2)[X] inside Ry =2 (Z/4)[X]. The second
statement follows from the fact that O, is the pullback of Fy C Fy. O

Remark 3.3. Since Fy4 has characteristic 2, sl3(F4) is the additive group of matri-
ces in My(Fy) of the form (7! 7?), i.e. matrices with trace zero. As a group,

T3 $1)’
5[2(F4) = (Z/2)6
We can now restate our main result.

Theorem A. The monodromy group I' of the Wiman—Edge pencil has index 480 in
SL2(0), and can be described equivalently in SLa(O) and SLa(O,) by the following

two properties:

(1) The reduction of T' modulo p5 is unipotent.
(2) The reduction T' of I' modulo 40 fits into an evact sequence

1—Cy — T — SLy(Fq) — 1,

where Cy < sl3(F4) denotes the subgroup of matrices (xl 2.) € sla(F4) so that

xr3 Ty

Trg, /r, (v1 + 22 + 23) = 0, where Trg, /r, denotes the trace.

Proof. The proofis carried out by interpreting computations done in the computer
algebra system Magma [4]. In particular, we describe how one gives arithmetic
significance to standard Magma calculations and refer the reader to [1] for code
that can be used to execute these calculations. Using the presentation for SL(O) in
Corollary 2.3 and the generators for I' from Lemma 2.5, one obtains a presentation
of T as a finite index subgroup of SLy(O) with index 480.

The fact that I" has unipotent image modulo pj is contained in [7, Corollary 4.3],
but we give an alternate argument as a warm-up for taking reductions modulo 2
and 4. One can check with Magma that there is a unique normal subgroup of
SL2(O) with quotient isomorphic to SLy(F5). Therefore this subgroup must be
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the congruence subgroup SL2(O)[ps] consisting of those matrices congruent to the
identity modulo p5. The image of I in the quotient group has order 5, which confirms
our assertion, since all subgroups of SLo(F5) isomorphic to Z/5 are unipotent.

Similarly, one sees using Magma that there are two normal subgroups of I
with quotient isomorphic to SLa(F4), where the second arises from its exceptional
isomorphism with PSLy(F5). The subgroup that does not contain SL2(O)[ps] must
be the congruence subgroup SL2(0)[2] of level 20. One checks that the image of '
in the quotient is isomorphic to PSLa(F3). Since I' < SLy(O,), this image must be
the standard SLg(FF3) in SLa(Fy).

We now study the reduction modulo 40. From Lemma 3.2, one sees that
SL2(R4) has order 3840. Magma confirms that there is a unique normal subgroup
of SLy(O) with that index, hence it must be the level 4 congruence subgroup
SL2(O)[4]. Note that sly(Fy) from Lemma 3.2 is the image of SL2(O)[2] under
reduction modulo 40.

One can then compute the intersection of sly(F4) with the image T of I', and
one obtains an index two subgroup of sly(F4). Note that the group C4 from the
statement of the theorem is also an index two subgroup, since it is defined by a
linear equation over Z/2, again considering Fy as (Z/2)[X]. One does not need
Magma, to see that p? reduces modulo 40 to an element of sly (F4) not in Cy, hence
it represents the nontrivial coset representative for Cy in sla(F4). One then checks
in Magma that the image of u? in sly(F,) is also not in sly(F4) N T, and it follows
that sly(F4) NT = Oy, as desired.

The above verifies that I" satisfies the congruence conditions given in the state-
ment of the theorem. We must check that the above conditions completely describe
I as a subgroup of SLa(O). This is equivalent to showing that T contains the con-
gruence subgroup SLy(O)[4ps]. Magma can easily check this by showing that T’
contains the intersection of SLy(O)[ps] and SLa(O)[4]. This completes our descrip-
tion of how one verifies the theorem in Magma. |

Remark 3.4. We briefly comment on our reliance on the computer. We used
Magma to find the reductions of I' modulo ps and 20, though one can check these
fairly easily by hand using generators. One could perhaps also compute the reduc-
tion modulo 40 by hand, though this would be much more complicated. Where we
rely most heavily on Magma is in the final assertion, that SLy(O)[4ps] < T', which
means that the congruence conditions modulo ps and 40O are the only congruence
conditions.

4. The Action on h X b

Let b be the upper-half plane. We now study the action of I" on h x h and the
geometry of the quotient space Xr = (h x h)/I". Note that it is PSLy(O) that acts
faithfully on b x b, so it will be convenient to replace I' with its image in PSL2(O).
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Recall that SLa(k) acts on b x b by

g (z1,22) = (11(9)71, v2(9)72),

where v1, 5 are extend the two real embeddings v1,v5 : K — R to embeddings of
SLa(k) into SLa(R) and SLo(R) acts on each factor by Mobius transformations.

We first note that Xt is a manifold, by which we mean as a Riemannian orbifold
modeled on h x h, not in the weaker sense of the analytic quasi-projective variety
underlying Xr being nonsingular. This is well known to follow immediately from
the following lemma.

Lemma 4.1. The monodromy group I is torsion-free.

Proof. Suppose v € SLo(O) has finite order. Then v has characteristic polynomial
t2 — tr(y)t + 1 and some root of unity ¢ is a root of this polynomial. This implies
that k(¢) is at most a quadratic extension of k. This reduces us to

ne{2,3,4,5,6,10}.

An element of order 4 must have square zp, and zg ¢ T', so we can eliminate that
case.
Now note that the characteristic polynomial p, (t) over k for an element of order
n is
(t+1)2 n=2
t?+t4+1 n=3
pu(t) =42+ Xt+1 n=5
t?—t4+1 n==6
?—Xt+1 n=10

(For n = 5, and n = 10 there is technically also the Galois conjugate polynomial
t2 + (1 — X)t + 1.) Since the reduction of I modulo 1 — 2X is unipotent, we must
have that the reduction of p,(t) modulo 1 —2X factors as (t —1)2. This reduces us
immediately to the case n = 5.

Then, ps(t) does not factor over Fy = Fo(X). This implies that the congruence
subgroup of level 2 in SLy(O) contains no 5-torsion. Thus if I" were to contain an
element of order five, then its reduction modulo 2 would be a nontrivial element of
SL2(F4) of order five. However, the reduction of I" is SLa(IF3) has order six, so it
contains no element of order five. This proves that I is torsion-free. O

Remark 4.2. Eduard Looijenga also described a nice independent proof of
Lemma 4.1 using the geometry of the Wiman—Edge pencil. Briefly, the Torelli theo-
rem implies that torsion in I" would define a curve in the pencil with an exceptional
automorphism centralizing the action of As, but there is no such curve.
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We also have the following standard calculation.

Lemma 4.3. The space Xt has topological Euler number e(Xr) = 16.

Proof. Let I be the image of I' in PSL(O). Since PSLy(0) acts faithfully on b x b,
we have

e(Xr) = [PSLy(0) : T]e((h x h)/ PSL2(0)),

where e((h x )/ PSL2(0O)) denotes the Euler-Poincaré characteristic. However, it
is a classical fact that
1

e((h % )/ PSLa(0)) = 26u(~1) = 1.

where (i denotes the Dedekind zeta function; e.g. see [11, Theorem IV.1.1]. Then T’
has index 480 in SL2(O) by Theorem A and intersects the center of SLa(O) trivially

(e.g. by Lemma 4.1), hence [PSL2(O) : T'] = 240 and the lemma follows. m|

Let A < SL2(O) be the subgroup of upper-triangular matrices and A denote the
image of A in PSL3(0O). Since k has class number one, it follows that (hx )/ SL2(O)
has one cusp, i.e. A determines the unique conjugacy class of parabolic subgroups
of SLy(O) [11, Proposition I.1.1].

Before counting the cusps of Xr, we prove an easy lemma on the structure of
A. The result is very well known in much greater generality (e.g. see [11, Sec. II.1]),
but we will need some calculations related to the proof later so we include it for
the reader’s convenience.

Lemma 4.4. There is a natural isomorphism A = A x 7/2, where the 7/2
factor is generated by the center (z9) of SL2(O). The group A is generated by
1, 7,7 € PSL2(O) and has presentation on these generators with relations:

SO = [?a ﬁ]

S = ) 5, = (7

Proof. We start by presenting A. Note that §0,§1,§2 are just the relations
1§4,f{5,1’?{6 from Theorem 2.2. It is also clear from the semi-direct product struc-
ture on the upper-triangular subgroup of PSLa(R) that we obtain a split short exact
sequence:

1= (7,0 222 - A= (7,70) % (u) > Z— 1. (1)
In particular, one must only understand the conjugation action of i on 7 and 7
to obtain a presentation for A. This is precisely what is described by the relations

§1 and §2. Finally, one checks that lifting to u, 7,0 € A splits the central exact
sequence

1o (20) 272 A= A1,
which proves that A = A x Z/2. O



Geometry of the Wiman—Edge monodromy 825

We now determine the cusps of Xt and identify the associated cusp subgroups
of T" as subgroups of A.

Proposition 4.5. The space Xt has six cusps. The associated conjugacy classes
Ay, ..., Ag of parabolic subgroups of T' are conjugate in SLa(O) to the following
subgroups of A:

A1, Ay~ Ag = (u™ 2, 0%, %)

w2 0% n'0)

Ag ~ Niog = (b, '8, n*°)

(
A3NA24—<M6,T TT]>
Ay, As ~ Ago = (

(

Here ~ denotes conjugacy in SL2(O) and [A : A;] = j. Specifically, we have

Ay = (orp®)  Ag(oTp?) As = (totop ) Ag(torop™")
As = (o7) " Ags(oT) Ay = (on) " Ago(on)
As = (potp) ' Ao(poTp) Ag = Ao

Proof. Again, we explain how one deduces the result using Magma. At the risk of
some confusion, we work in PSLy(O) instead of SLy(Q) but discard the § notation
in favor of just g for readability. For an ideal J of O, let

X[J]= (b xb)/ PSL2(0)[T],

denote the quotient of h x b by the principal congruence subgroup of PSLy(O) of
level J.

It is an easy consequence of the orbit-stabilizer theorem that X[J] has
[PSL2(O/J) : 77(A)] cusps, where

Ty PSLQ(O) — PSLQ(O/j),

is the reduction homomorphism. For J = 4p5 this index is 240. One can then count
cusps by identifying them with right coset representatives of r7(A) in PSLy(O/ 7).
Then I' acts on these cosets through r7, and we can identify cusps of Xr with
I'-orbits under this action.

Specifically, if we write

240

PSLy(0/J) = Hrj e,

let [¢;] be the cusp associated with €;. Then h € rz(I') acts on the right by
l6j] - h = [en(y], where e;h = 6(h, j)ep(;) for 0(h,j) € rz(A). The stabilizer in
PSLy(0/J) of [¢;] is €;
as €;, if and only if there is some h € r7(I") so that ejlhejgl € r7(A). A simple for

loop finds that there are six orbits, hence Xt has six cusps.

r7(A)e;, and it follows that ¢;, is in the same r 7 (I")-orbit
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Using an abstract presentation for A derived from taking the quotient of the
presentation in Lemma 4.4 by the central Z/2, one finds subgroups Ay;y of A for
which some conjugate of Ay ;) in A is the pullback to A of

ei(e;'rg (A Nrg(I))e; (2)

The groups in Eq. (2) are the images under r7 of Ag, 771 As7, Aoy, Ao, = Agop
and A1g9. Taking a representative e; € SLy(O) for €;, we see that (ejg) ™  Ag(;)(e;9)
is a subgroup of I' representing the cusp associated with ¢;. Finding generators for
each A; in a standard way completes the proof. O

5. The Cusp Resolutions

We retain the notation of Sec. 4, and now compute the standard smooth compact-
ification Yr of Xr. We refer the reader to [11, Chap. II] for more details of the
construction of the compactification. We briefly sketch some general facts before
moving on to describing each cusp resolution for Xr in detail. We work in PSL2(0),
but discard the ~ notation for readability. At the conclusion of this section, we will
prove the following theorem.

Theorem B. The smooth compactification Yr of Xr is a smooth projective surface
of general type with Chern numbers

2 (Yr) = 16,
CQ(F) = 56.

It has holomorphic Euler characteristic x(Oy;) = 6, irregularity ¢(Yr) = 0, and
geometric genus py(Yr) = 5.

Recall that we have the subgroup A = (u, 7,m) of PSLy(O). If A < A is a finite
index subgroup, then we can use the exact sequence in Eq. (1) to see that

bl b2 C1 ,,C2 >
)

A= (uy, 0%, %

for a,b1,ba,c1,c2 € Z, some y € (1,n), and a # 0. Moreover, we can choose these
generators so that A has index |a(bico — bacr)| in A. This implies that

Tp = (r" %, 7%°2) = A0 (r,1),

is the kernel of the map from A to Z induced by Eq. (1). Note that the generators for
each A; in the statement of Proposition 4.5 are chosen to satisfy these properties.

We now describe how to resolve a cusp associated with A as above. Consider the
standard embedding of k into R? using its two archimedean places, which induces
a discrete embedding of T < Z[X] into R2. Let TXL be the elements of T lying in
the first quadrant of R? and C, be the convex hull of T}y.

Then p*y acts on T by conjugation and preserves TA+ , hence it acts on Cy.
The action on the boundary Bj of Cp determines a combinatorial n-gon, where we
associate edges of the n-gon with (u®y)-orbits of vertices of B and vertices of the
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Fig. 1. Compactification by a square of rational curves.

n-gon with edges of By. See Fig. 1 for a general picture. Each edge of this n-gon
represents a smooth rational curve in the compactification.

It remains to determine the self-intersection of the rational curve F, associated
with a vertex v on By. The two adjacent vertices v1,v_1 of By have the property
that, as elements of Z[X], v1 + v_1 = bv for some integer b > 1, and we have
E? = —b. See [11, Sec. 11.2].

Finally, we note that how one resolves a cusp associated with some A < A is
independent of its conjugacy class in A. In particular, to resolve the cusps of Xr,
it suffices to study the groups A; in Proposition 4.5. The remainder of this section
studies these resolutions, and Mathematica code to assist the reader in verifying
assertions about various convex hulls is available on the author’s webpage [2].

5.1. Degree eight cusps

Here, we study the resolution of a cusp associated with the group
Ag = (u™n, 0%, 7%).
In the above notation, T = (7%, 72) = 20 and p~27n has matrix
5 —3
(57

for its action on Tx. The convex hull of TXL is pictured in Fig. 2. Since 2 is
mapped to 4 — 6X under ¢, the cusp resolution is by a bigon of rational curves.
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Fig. 2. Resolving the index eight cusps by two —3 curves.

Then
(10-6X)+2=3(4—-2X)
(4-2X)+ (2+2X)=3(2)

which implies that both rational curves in the compactification have self-
intersection —3.

5.2. Degree 24 cusp
We now study the resolution of a cusp associated with the group
Aoy = (b, 7%, m1%).
In the above notation, T = (72,7n%) and 1% has matrix
17 36
- (144 305)’

for its action on Tj. The convex hull of TA+ is pictured in Fig. 3. Then ¢ sends
26 — 16X to 10 + 16X, which implies that the compactification is by a 16-gon
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(2+43j) —2jX j=0,...,8

(2+5)+2iX j=0,....8

Fig. 3. Resolving the index 24 cusp by 16 curves.

of rational curves. For any adjacent vertices of the boundary of the convex hull
of TX that lie on a straight line, the associated curve has self-intersection —2,
since

C+j—-14+20-1D)X)+2+j+1+2(j+1)X)
2+3-1D—-20-DX)+2+3(+1)—-2(+1)X)

2(2+j +2jX)
2(2 + 35 — 25 X).

There are 14 such curves.
It remains to compute the self-intersections of the curves associated with 2 and
10 4+ 16X. In these cases,

(342X)+ (5 —2X) = 4(2)
(94 14X) + (31 +50X)4(10 + 16 X)
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36 — 22X

14 4 22X

Fig. 4. Resolving the index 40 cusps by two —3 curves.

which implies that the remaining two curves have self-intersection —4. In summary,
the cusp associated with Agg is compactified by a 16-gon of rational curves for
which one pair of opposite sides determine curves with self-intersection —4 and the
remaining curves have self-intersection —2.

5.3. Degree 40 cusps

We assume the reader is becoming familiar with the nature of these calculations
and start to skip some details. Considering the convex hull in Fig. 4, for A4 we
have that p?7=2n~1 sends 6 — 2X to 6 + 8X. One then calculates that our cusp is
compactified by a bigon of —3 curves.

5.4. Degree 120 cusp

This case is completely analogous to the Asy case, and the cusp is compactified by
a 16-gon consisting of two —4 curves and 14 —2 curves. Again, the —4 curves are
on opposite sides of the 16-gon. The boundary of the convex hull of TXL is given by
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the points

(6+4)+(@8-2j)X 0<j<8
(64 11j) + (8 +185)X 0<;<8

The lists overlap at j = 0, and the point 648X represents one of the curves of self-
intersection —4. At j = 8, we have X!2(14 — 8X) = 94 + 152X, which implies that
18 identifies these two points; this represents the other curve of self-intersection
—4. The picture of the convex hull is exactly as in Fig. 3, appropriately relabeled.

5.5. Proof of Theorem B

The computation of the Chern numbers of Yr follows from our above calculations
of the cusp resolutions, Lemma 4.3, and the formulas on [11, p. 63]. It is well known
that ¢(Yr) = 0 for any compactification of a quotient of i x b by an irreducible lattice
(e.g. see [11, Lemma 1.6.3]). We then compute the remaining numerical invariants
by

1

X(Oy;) = P (3 (Y1) + c2(Y7))

=1- q(YF) +pg(YF).

Since Yr is smooth and projective, it remains to show that Yt is of general type. If it
is minimal, this is clear from the possibilities for ¢? and ¢ in the Enriques-Kodaira
classification [3, Chap. VI]. However, performing a sequence of blowdowns on Yr
only increases ¢?, and a minimal surface with ¢? > 16 must be of general type. This
completes the proof. O

6. Image of the Period Map

In this section, we study the image of the period map. Let B° be the base of the
smooth locus of the pencil. Following Farb and Looijenga [7, Sec. 5.1], we consider
the period map II° as a map from B° to

X° = (b xb)/SLz(0,),

through the orbifold covering Xt — X°. It is known that II° is a closed embedding
by [7, Proposition 5.1].
As described in [7], it is natural to consider X° as the quotient of

X[2] = (b x b)/SL2(0)[2],

by an action of SLa(FF3), where SLy(O)[2] denotes the level two congruence subgroup
of SLy(O). We use the classical connection between X[2] and the Clebsch cubic
surface to study the image of the period map. In other words, we will study the
diagram of maps in Fig. 5, where Xr[2] denotes the minimal common covering of
Xp and X[2] and B° is the induced covering of B°.
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Xr [2] <---->3°

Fig. 5. Diagram of coverings for the period map.

6.1. The curve on X|[2]

Our first goal is to show that the image of the period map is associated with a
(possibly singular) curve on X|[2] with genus one and 18 punctures. We will then
use the famous realization of a smooth compactification of X[2] as a blowup of P?
to show that the image of the period map is determined by a plane curve of genus
one that is invariant under an action of the symmetric group Ss. The following
result immediately implies Theorem C.

Proposition 6.1. With notation as in Fig. 5, Xr[2] is a Galois cover of Xr with
group SLy(Fy). The cover B° — B° is also Galois with group SLy(F3), and B°
has genus one with 18 punctures. The diagram of maps in Fig. 5 induces a closed
embedding T1° : B° — X[2].

Proof. The cover X[2] — X° is Galois with group SLz(Fz) since SL2(O,) is the
pull-back of SLa(F2) to SL2(O) under reduction modulo 20. By Theorem A, the
monodromy I' also has image SLo(F2) under reduction modulo 20. Elementary
covering space theory then implies that the minimal common cover Xr[2] is a
Galois cover of X1 with group SLa(F2) that makes the left-most square in Fig. 5
into a commutative square of covers.

The map 71 (B°) — T is onto, hence the cover B° of B° induced by Xp[2] is
connected with group SLa(F2). Since II° is a closed embedding, we see that the
induced map II° from B° to X [2] must also be a closed embedding. It remains to
show that B° is genus one with 18 punctures.

Using the generators for 71 (5°) in Lemma 2.5 and defining reduction of I' mod-
ulo 20 as a homomorphism to SLa(FF3), the number of lifts of each puncture of B°
to B° is the index in SL, (F2) of the subgroup generated by the image of an element
associated with a loop around that puncture. The images of v, Yo/, 78, 78 all have
order 2, so each associated puncture has three lifts. The element v,v37va7s is the
identity modulo 20, so the associated puncture has six lifts. We then have that Be
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has Euler characteristic —18 and 18 punctures, so it has genus one. This completes
the proof. O

6.2. The Clebsch cubic and the Klein plane

We now describe the smooth compactification Y [2] of X[2] and its relationship to
P2, See [11, Sec. VIIL.2] for details. The space Y[2] is the blowup of the famous
Clebsch cubic surface at its 10 Eckardt points, and the map

o:Y[2] = P?

can be described as blowing up P? at the vertices of an icosahedron and its dually
inscribed dodecahedron. Farb and Looijenga call the image P? the Klein plane.
In the remainder of this section, we identify a number of the beautiful geometric
features of this construction that we will use in studying the image of the period
map.

6.2.1. Icosahedron vertices and Eckardt points

Blowing up P? at the six points associated with the vertices of the icosahedron gives
the Clebsch surface. The 10 points associated with vertices of the dodecahedron lift
to the Eckardt points on the Clebsch surface. On P2, we denote the six icosahe-
dral vertex points as v1, ..., v and the dodecahedral vertex points associated with
Eckardt points as e, ..., e1q. See Figs. 6 and 7 for coordinates.

As a Hilbert modular surface, the exceptional curves on Y[2] arising from the
Eckardt points are the compactifications of the 10 lifts of h/ PSLy(Z) to X[2]. Note
that each lift is the thrice-punctured sphere arising from the quotient of h by the
level 2 congruence subgroup of PSLy(Z).

6.2.2. The compactification curves

Recall that the cusps of X|[2] are in one-to-one correspondence with elements of
the projective line P*(F,) over Fy, or equivalently with the SLy(O)[2]-orbits of lifts
of these lines to P1(k). Each of the five cusps of X[2] is compactified by a triangle of
lines, where each line has self-intersection —3. Each line is the proper transform of

X 1

vp= |1 v3= |0 vs = | X
L |1 L0

[0 [— X [ 1
Vo = 1 Vg4 = 0 Vg = -X
|—X | 1 | 0

Fig. 6. Vertices of the icosahedron.
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1 1 X -1 0 X
€1 = 1 €3 = -1 €5 = 0 €7 = X €9 = X -1
11 | 1] | X ] | X —1] | 0 ]
-1 [—1] [1— X7 [ 0 [ X ]
€y = 1 €4 = -1 € = 0 €g = X €10 = 1-X
! | 1] | X ] 11— X| . 0 |

Fig. 7. Vertices of the dodecahedron.

b= {rei +sej [j € ]P’l}

{i,5}y € {{1,5}, {1, 7}, {1,9}, {2,6}, {2,7}, {2,10},
{3,5},{3,8}, {3,10}, {4,6}, {4,8}, {4,9},
{5,6}, {7,8}, {9,10}}

Fig. 8. Edges of the dodecahedron.

V2,5 € 415 v3, V6 € {17 v1,v4 € 419
V2,6 € la6 v4,v5 € Loy v1,v3 € £210
v1,V6 € U35 U3, U5 € U338 V2, V4 € U310
V1,05 € ly6 V4,06 € la8 V2,3 € ly9
V3,4 € U5 6 V1,2 € {78 vs5, V6 € £9.10

Fig. 9. Vertices of the icosahedron on the edge £; ;.

the line of P2 associated with a pair of opposite edges of the icosahedron (or, dually,
the dodecahedron). In particular, the image on P? of each cusp line on Y[2] meets
exactly two of the six icosahedral vertices and exactly two of the dodecahedral
vertices. We denote the line through e; and e; by ¢; ;. See Fig. 8 for an explicit
parametrization of each line ¢; ; and Fig. 9 for which vy, lies on each ¢; ;.

6.2.3. The PSLy(F2) action

The automorphism group of the Clebsch surface is the symmetric group S5, and the
induced action on Y[2] restricts to the automorphism group of X[2]. This connects
to the action of PSLy(F4) on X|[2] through its isomorphism with the alternating
group As. (The remaining order 2 automorphism of X[2] needed to generate Ss is
induced by the “swap map” exchanging the two factors of h x h.) The inclusion of
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X _1 X-1
1.0 0 2 2 2
or=110 —-10 09 = 7% _X2—1 fg
0 01 X1 X 1
2 2 2
rx 1 1=X
2 2 2
T = 112X X —50 03 = TO1 = 010201
2 2 2
X1 _X _1
L2 2 2

Fig. 10. The S3 action.

o1 {Ulav2}a{U37U4},{U5}7{U6}7
{e1,ea}, {e2, es}t, {es, e}, {er, est, {eo}, {e10}
o2 {vi},{v2,v6},{v3,vs}, {va},
{ei}, {e2,e6}, {e3,es}, {eq, e10}, {es, €7}, {eo}
o3 {vi,ve}, {va}, {va}, {va, vs},
{er, e}, {e2, e7}, {es, es}, {ea}, {es, es}, {eo}
T {v1,v2}, {va,v6}, {vs, v5},

{ela 647610}7 {62,65,63}, {e3a 67766}a {69}

Fig. 11. Vertex orbits under S3.

PSLy(F3) into PSLa(FF4) is then realized as an inclusion of S3 in As. See Fig. 10 for
matrices generating the S3 action and Figs. 11 and 12 for vertex and edge orbits

under this action.
The six icosahedron vertex points {v;} are partitioned into two S3 orbits with

three elements
P1 = {v1,v2,v6},
Py = {v3,v4,05}.
The dodecahedron vertex points {e;} are partitioned as follows:
Q1 = {e1, eq, €10},
Qs = {ea, €3,¢5,¢€6,¢€7,68},
Q3 = {eo}.

Recall that the lines on P2 associated with the edges of the icosahedron and dodec-
ahedron are the lines arising from the smooth compactification of X[2]. These are
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o1 Al laeh {7, las}, {019, e}, {la6, 035},
{27,038}, {02,10, 3,10}, {456}, {78}, {lo.10}

o2 {5,075, {l o}, {las}, (€27, 056}, {€2,10, la6 ),
{ls5,078},{ls.8}, {310, Cas}, {la,9,09.10}

o3 {15, 0310}, {l1,7,42,10}, {€1,9: Y910}, { €26, 7.8},
{la7}, {035}, {038,056}, {€a6,lag) {lao}

T {lis,las, o0}, {017,046, 03,10}, {41,9, 09,4910},

{l26, L35, Cr 8}, {l2,7,l56, 3,8}

Fig. 12. (Color online) Edge orbits under S3. Blue indicates nontrivial Z/2 action and Red indicates
trivial action.

naturally partitioned into two orbits of triangles, one of size three and one of size
two. If ¢; ; is the line containing e; and e;, we have orbits

L1 ={l15,01,7,0210,03,10, 4,6, a8},
Lo = {l1,9,019,0910},
L3 = {la,035, (78},
Ly={la7,035,l56}

This allows us to visualize each S3 orbit of triangles as in Figs. 13 and 14.

Ly L3

P

Po

@ L L Lo
/ 9 Py Qs \

Fig. 13. The cusp triangle orbit of size three.
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Ll El

o)) 9

Po

e e N\
VAR

Fig. 14. The cusp triangle orbit of size two.

6.3. The monodromy plane curve

Since PSLy(F2) preserves the image of the lifted period map H° we conclude that
II°(B°) is an Ss-invariant curve of genus one on X [2] with 18 punctures. Consider
the completion

II:8—Y[2

and let C = (0 o IT)(B) be the image curve on P2. We call C the (Wiman—Edge)
monodromy plane curve. Given the maps and group actions described above, to
completely determine the image in X° of the period map for the Wiman—Edge
monodromy, it suffices to describe the monodromy plane curve. Proposition 6.1
implies the following.

Corollary 6.2. The monodromy plane curve C is a (possibly singular) plane curve
of genus one.

Remark 6.3. As noted by the referee, by construction of B° as a PSLy(F3) cover
of B°, it supports a moduli space of stable genus six curves with As action and
certain level structure. Then II is the extension B — Y'[2] of the period map in the
sense of Namikawa [10, Theorem 9.30(iv)] for in the case of irreducible degenerate
curve and more generally Caporaso—Viviani [5]. It is possible that this point of view
could be used to prove smoothness of C, but it was not clear to us that existing
results in the literature suffice to imply this conclusion.
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6.3.1. Intersection of the monodromy plane curve with {; ;

We now study the intersections of C with each line /; ;. Since C is S3-invariant, this
only depends on how C meets a representative for each orbit. Note that points on
CNY¥; ; associated with a vertex of the icosahedron or dodecahedron lift to points on
ﬁo(go), not punctures. Conversely, points on CN¥; ; that are not a vertex of either
the icosahedron or the dodecahedron lift to the cusp divisor for Y[2], hence they
are associated with the punctures of ﬁo(go); we call these puncture points on ¢; ;.
The following should be compared with the description in [7, Sec. 5.2] of where
the punctures of B° go in X°.

Lemma 6.4. (1) There are either one or two puncture points on each ¥; ; € L.

(2) Each line in Lo contains exactly three or four puncture points.

(3) Puncture points on lines in L3 or L4 are fized points for the Z/2 action on
the line, where Z/2 is the stabilizer in Ss of the relevant triangle of lines as in
Fig. 13. In particular, there are at most two puncture points on any such line.

The number of puncture points on any line £; ; is an invariant of its Ss-orbit.

Proof. The last statement in the lemma is obvious.

The orbit of £; is associated with the cusp of (h x )/ SLa(O,) denoted cox in
[7, Sec. 3.3]. Indeed, this is the orbit consisting of exactly two triangles of lines on
Y[2]. In terms of the action of I' on P!(k), cox is associated with the lines [X : 1]
and [1 : X] in P!(k), which represent distinct cusps of SLz(O)[2] but the same
cusp of SLa(0,). Since YaYsYarvp: stabilizes [X : 1], we see that the six relevant
punctures of ﬁo(go) are given by intersections of C with the lines in £;.

Similarly, the orbits Lo, L3, and L4 are associated with the cusp called ooy in
[7, Sec. 3.3], which is the orbit consisting of exactly three triangles of lines on Y[2].
With respect to the action of I' on P!(k), this cusp is associated with the lines
[0:1],[1:0],[1:1], and [-1 : 1] in P}(k), which all represent distinct cusps of
SL2(0)[2] but the same cusp of SLa(O,). Since 7, fixes [1 : 0], vo fixes [0 : 1],
and 7, g both fix [—1 : 1], the 12 relevant punctures of II°(B°) are given by
intersections of C with the lines in Lo, L3, and L4.

Returning to £1, the nature of the S5 action implies that each of the two trian-
gles of lines represented by Fig. 14 determines exactly three punctures of I (go)
Invariance under the Z/3 action on each individual triangle implies that there are
two possibilities: either each line contains a unique puncture point, and that point
lies on no other line in the triangle, or the puncture points on the triangle are
the three intersection points between the lines, hence each line contains exactly
two puncture points. This proves that C meets each ¢; ; € £; as claimed in the
statement of the lemma.

Now, consider the triangle associated with lines in L5, L3, £4. There are exactly
four points in the intersection of C with the triangle that are associated with punc-
tures, and these four points are fixed points for the action of Z/2. Since Z/2 acts



Geometry of the Wiman—Edge monodromy 839

trivially on the lines in Lo and as —1 on the curves in L3 and £4 (under the appro-
priate identification with P!), puncture points must arise from points on the line
in the orbit Lo along with possibly the point at the intersection of the lines in L3
and L4. This leaves only the possibilities in the statement of the lemma. O

Lemma 6.5. The monodromy plane curve C meets one of the S3 orbits Q; asso-
ciated with the Eckardt points of the Clebsch cubic.

Proof. This follows from the description in [7, Sec. 5.2] of the involution ¢,
which implies that C must meet one of the lifts of h/SLs(Z) to X[2]. As men-
tioned above, these lifts map precisely to the points on P2 in the orbits Q; for each
i=1,2,3. 0

6.3.2. Smooth monodromy plane curve

In this section, we study the possibility that the monodromy plane curve is smooth.
Mathematica code to assist the reader in verifying various assertions that follow is
available from author’s webpage [2]. Since C is smooth of genus one, it is a cubic
plane curve by the genus-degree formula. We first use Ss3-invariance to restrict the
possibilities for the equation of the curve.

Lemma 6.6. Suppose that C is a smooth plane cubic curve that is invariant under
the action of Sz described in Sec. 6.2.3 with coordinates [z1 : 2 : 23] on P2. Then C
s the vanishing set of the homogeneous cubic

F([z1: 22 : 23])) = a125 + azzs + CL32’22’§
+((2X —2)a1 — Xas — (X — 1)az)27 20
+((2—X)a1 +as + (X —1)az)z 23
+((3X —5)ay + (X + ag + (2 — X)az)z1 23,
for some [a : a : az] € P2,
Proof. Using invariance of F' under o1, we see that either F o 03 = F and every

term of F' of the form z{1z§2 25;3 has j1 + jo even, or F ooy = —F and every term of

F of the form z{1z§2 zgg has j; + j2 odd. In the first case, one can use a computer
algebra program like Mathematica to see that invariance of F' under oo implies that
F is the singular homogeneous cubic

23((X —2)27 + 22120 — (X +1)235 + 23).

Under similar analysis in the second case, one sees that F ooy = —F (since o7 and
o9 are conjugate in S3) and furthermore that any such F' invariant under oy and
o9 must then be of the form given in the statement of the lemma. Since o1 and o5
generate S3, this proves the lemma. O
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Note that some of the homogeneous cubics of the form given in the statement of
Lemma 6.6 are singular. We will not need the finer distinction of which coeflicients
give a smooth cubic curve.

Bezout’s theorem implies that C meets every /; ; in two or three points, where
the case of two intersection points occurs if and only if ¢; ; is tangent to C. We
begin by completely determining C in the case where no ¢; ; is tangent to C.

Proposition 6.7. Suppose that the monodromy plane curve C is smooth. Then C
is the plane cubic curve with one of the following equations:

23+ (13 —-8X)z5 + (3 — X)2P20 + (18 — 11X) 223
+(3X —5)z125 + (X — 2)z022,
23+ (5-3X)2s + Xzlzo + (4 —5X)z122
+(3X — 5)z123 — 2923,
Equivalently, C is either

(1) The unique Ss-invariant smooth plane cubic tangent to the lines in Ly at the
points in Qs, or

(2) The unique Ss-invariant smooth plane cubic containing the orbit Qs (and no
other P; or Q;) and the intersection points between pairs of lines in the orbit
L1 represented by the vertices of the triangle in Fig. 14.

Proof. Invariance under S3 implies that C meets one vertex of the triangle in
Fig. 14 if and only if it meets all the vertices. We break the proof into two cases,
accordingly.

Case 1. No vertex in the triangle from Fig. 14 is on C.

Lemma 6.4 then implies that each line in £; contains exactly one puncture
point on C. We first assume that C intersects each line in £ transversally, hence in
exactly three points by Bezout’s theorem. Then C meets exactly two of the orbits
P1, P2, @1, Q2. However, C cannot simultaneously meet P; and Qs or P2 and Qa,
since otherwise it would meet lines in L3 or L4 in four points, respectively. This
leaves four cases.

Case 1(a). PLUP, CC.

Since C does not contain Q; or Qs, Lemma 6.5 implies that Q3 C C. One checks
with a computer algebra program like Mathematica that there is no cubic curve
with the form given in Lemma 6.6 containing all of P; U Py U Q3. Thus this case is
impossible.

Case 1(b). P, UQ; CC.
The only cubic as in Lemma 6.6 vanishing on P; U Q; is

22— 2 (X + D2z + (X —2)2125 — (X +1)2125 + (2 — X) 2923,
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However, this cubic also vanishes at Pq, contradicting our observation that C meets
exactly two of the orbits Py, P2, Q1, Q2. This case is therefore eliminated.

Case 1(c). PoU Q; CC.
The only possibility in this case is the cubic considered in Case 1(b), which
eliminates this case as well.

Case 1(d). Q1 U Qs CC.
Now, a computer algebra computation shows that the only possibility is the
cubic:

I+ X)2d + 254+ (1+3X)2ize + (1 — 2X)z125 + (X — 2)2125 — (24 3X) 2223,

We rule this case out using the triangle of curves in Fig. 13. The associated puncture
points on the cubic curve are at the intersection of the lines in £3 and £4 and two
points on the line in L5 that do not lie on the other two lines. This implies that the
triangle only determines three puncture points, but it must determine four. Indeed,
the three triangles making up this S3-orbit of must account for the 12 punctures
associated with va, v8, Yar, and vg (cf. the proof of Lemma 6.4). This contradiction
eliminates this case.

We now consider the possibility that C is tangent to a line in £;. Here C meets
each line in £ in exactly two points, hence C meets exactly one of the orbits Py,

P2, Q1, Q.

Case 1(e). The lines in £, are tangent to C at either Py, Pa, or Q.

For each of these three possibilities, there is no Ss-invariant cubic passing
through the relevant orbit that is tangent to £1 at the specified points. Therefore,
this case is not possible.

Case 1(f). The lines in £; are tangent to C at Qs.

The only possibility is the first cubic in the statement of the proposition. Then
C meets the triangle in Fig. 13 in four puncture points, namely, at the intersection
of the lines in £3 and L4 along with three points on the line in L. Therefore this
case is a possibility.

Case 1(g). The lines in £; are tangent to C at a puncture point.

The cubic must also meet £ in exactly one of P; or Q; (i = 1,2). For P; and
P, the cubic must also meet Q3 by Lemma 6.5. For ¢ = 1,2, the unique cubics
through P; and Q3 are

2127+ (2X —2)2120 + (2 — X)23 + (3X —5)22),
20(25 + (X +1)22 —2X 2120 — (3X + 2)23).

These are singular, which rules these cases out.

For Q;, there are cubics that satisfy the required properties with respect to the
triangle of lines in £1. However, these cubics all would give seven puncture points
on the triangle of lines in Fig. 13. This contradicts Lemma 6.4, and hence rules out
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this case. There is no cubic with the required form that meets Qs and is tangent
to the lines in £ in a point not in Q5. This completes the analysis of this case.
The final remaining option for Case 1 is as follows.

Case 1(h). The lines in £q meet C in a triple point.

The triple point must be a puncture point of C, so C does not meet Py, Ps, 91,
or Qs. Lemma 6.5 implies that C meets Q3. One checks that there is no cubic of the
appropriate form that meets each line in £ in a triple point, and this completes
the analysis of Case 1.

Case 2. Each vertex in the triangle from Fig. 14 is on C.

Note that a vertex cannot be an intersection point with multiplicity three.
Indeed, then each line in £ would meet C in two points, one having multiplic-
ity three, and this contradicts Bezout’s theorem. We continue as in the first case
by first assuming that no line in £; is tangent to C. A line in £, then contains two
puncture points, hence C meets exactly one of the orbits Py, Ps, O, or Qs.

Case 2(a). P, CC,i=1or 2.
Lemma 6.5 implies that C also meets Q3. One checks that there is no such cubic
with the form in Lemma 6.6, hence this case is impossible.

Case 2(b). Q; CC.
This case implies that the cubic is

224 (14 X)zs + Xzfzg — X225 4+ (3X — 12125 — (1 +4X) 2023

This cubic curve meets the triangle in Fig. 14 in what would be seven puncture
points. In particular, it meets the triangle at the intersection of the lines in L3
and L4, two additional points on each of those lines, and two points on the line
in Lo (neither of which is eg € Qg). This contradicts the fact that this triangle
must determine exactly four puncture points, as we saw in Case 1(d). This case is
therefore eliminated.

Case 2(c). Q2 C C.

The only possibility here is the second cubic given in the statement of the
proposition. As in Case 1(h), C then meets the triangle in Fig. 13 in four puncture
points, namely, at the intersection of the lines in £3 and £4 along with three points
on the line in Ls. Therefore this case is a possibility.

Case 2(d). The lines in £ are tangent to C.

In this case, Bezout’s theorem implies that C meets the triangle of lines in £; in
only the three vertex points. Specifically, it suffices to study plane cubics passing
through £1 5 N {45 that are tangent to either ¢ 5 or {4 5. These are

2 (X =128+ X222+ (X —2)z128 + (X — 1)z125 + (1 — 2X) 2923,
B (1= X))+ X222+ (2— X)z125 + (X — 3)2125 + 2023,

Neither cubic can vanish at any other point on the triangle, hence it cannot vanish
on the orbits Q; or Qs. Lemma 6.5 then implies that it must vanish on Q3 = {eg}.
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Neither cubic is zero at this point, hence we have eliminated the possibility that
C is tangent to a line in £;. This completes the analysis of Case 2, and hence the
proof of the proposition. O
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