
Journal of Topology and Analysis
Vol. 15, No. 3 (2023) 815–843
© World Scientific Publishing Company
DOI: 10.1142/S1793525321500503

Geometry of the Wiman–Edge monodromy

Matthew Stover

Department of Mathematics, Temple University

1805 N. Broad St., Philadelphia, PA 19122, USA

mstover@temple.edu

Received 13 January 2021
Revised 22 June 2021
Accepted 9 July 2021

Published 17 September 2021

The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member
has automorphism group the alternating group A5. There is a unique smooth member,
the Wiman sextic, with automorphism group the symmetric group S5. Farb and Looi-
jenga proved that the monodromy of the Wiman–Edge pencil is commensurable with
the Hilbert modular group SL2(Z[

√

5]). In this note, we give a complete description of
the monodromy by congruence conditions modulo 4 and 5. The congruence condition
modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the
smooth resolution of the Baily–Borel compactification of the locally symmetric manifold
associated with the monodromy is a projective surface of general type. Lastly, we give
new information about the image of the period map for the pencil.
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1. Introduction

TheWiman–Edge pencil is a pencil of genus six curves for which the generic member

has the alternating group A5 as the automorphism group. There is a unique smooth

member, the Wiman sextic, whose automorphism group is the symmetric group S5.

In a recent series of papers, Dolgachev et al. [6] followed by Farb and Looijenga

[7, 8] studied this pencil from a modern perspective. See these papers for basic facts

about the pencil.

In [7], Farb and Looijenga proved that the monodromy of the Wiman–Edge

pencil is commensurable with the Hilbert modular group SL2(Z[
√
5]). In this paper,

we give a complete description of the monodromy by congruence conditions modulo

4 and 5. The congruence condition modulo 4 is new, and this answers a question of

Farb–Looijenga [7, Question 4.4].

Before stating our main result, we need some notation. Let O be the ring of

integers in Q(
√
5) and Oo denote the index two subring Z[

√
5]. There is a unique
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prime ideal p5 of O with residue field F5, the field with five elements. The following

is a precise description of the Wiman–Edge monodromy.

Theorem A. Up to conjugacy by GL2(O), the monodromy group Γ of the Wiman–

Edge pencil has index 480 in SL2(O), and can be described equivalently in SL2(O)

and SL2(Oo) by the following two properties :

(1) The reduction of Γ modulo p5 is unipotent.

(2) The reduction Γ of Γ modulo 4O fits into an exact sequence

1 → C4 → Γ → SL2(F2) → 1,

where C4 < sl2(F4) denotes the subgroup of matrices
(
x1 x2

x3 x1

)

∈ sl2(F4) so that

TrF4/F2
(x1 + x2 + x3) = 0, where TrF4/F2

denotes the trace.

The proof of Theorem A is in Sec. 3. Other than the explicit matrix generators

for Γ given in [7], our proof that the monodromy has finite index in SL2(O) is

completely independent of Farb and Looijenga’s argument. We use a presentation

for SL2(O) due to Yoshida [12] along with the computer algebra programMagma [4]

to describe Γ. See Remark 3.4 for a precise description of the reliance on computer

calculation. It would be interesting to understand the relationship between the

condition on Γ modulo 4 and the geometry of the pencil.

Question 1. Can one interpret the mod 4 condition on Γ in terms of properties

of the Wiman–Edge pencil analogous to the description of the mod p5 condition

described in [7, Corollary 4.3]?

Our methods allow us to study other properties of the monodromy. In Secs. 4

and 5, we study the smooth resolution YΓ of the Baily–Borel compactification of the

locally symmetric manifold XΓ associated with the monodromy. This again relies

on Magma, for determining the structure of the cusps of XΓ (see Proposition 4.5),

which we then resolve “by hand”. We prove the following theorem.

Theorem B. The smooth compactification YΓ of XΓ is a smooth projective surface

of general type with Chern numbers

c21(YΓ) = 16,

c2(Γ) = 56.

It has holomorphic Euler characteristic χ(OYΓ
) = 6, irregularity q(YΓ) = 0, and

geometric genus pg(YΓ) = 5.

Finally, in Sec. 6, we study the period map of the monodromy, following the

suggestion of Farb–Looijenga that one should understand the image of the period

map in terms of the Klein plane [7, Sec. 5]. Briefly, the period map can be considered

as a closed embedding of P1 minus five points into (h×h)/ SL2(Oo). If X [2] denotes

the quotient of h×h by the level two congruence subgroup of SL2(O), then there is
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an action of S3 = SL2(F2) on X [2] inducing a map from X [2] to (h× h)/ SL2(Oo).

Since 2O ⊂ Oo, this induces a Galois cover XΓ[2] of XΓ with group S3, and we will

prove the following theorem.

Theorem C. The pullback of the image of the period map of the Wiman–Edge

pencil along the cover XΓ[2] → XΓ is an S3-invariant curve of genus one with 18

punctures.

See Proposition 6.1 for the precise statement. Hirzebruch famously identified

Y [2] with the blowup of the Clebsch cubic surface at its 10 Eckardt points (e.g.

see [11, Sec. VIII.2]). The Klein plane is P2 realizing Y [2] as the blowup of the

plane at the six points associated with an icosahedron (where the blowup at these

points is the Clebsch cubic) and a dually inscribed dodecahedron (i.e. the points

that transform to the Eckardt points on the Clebsch cubic). In particular, we see

that the image of the period map is associated with a unique S3-invariant plane

curve of genus one, which we call the Wiman–Edge monodromy plane curve. As

noted by the referee, by construction this curve supports a moduli space of stable

genus six curves with A5 action and certain level structure; see Remark 6.3.

We end the paper by proving a number of other general properties of the mon-

odromy plane curve, in particular regarding the combinatorics of how it intersects

the classical points and lines on P2 associated with the icosahedron and its dual

dodecahedron. We were not able to completely describe the curve, most critically

because we do not know if the monodromy plane curve is smooth. If it is smooth,

Proposition 6.7 proves that it must be one of two smooth plane cubic curves passing

through the unique S3-orbit of vertices of the dodecahedron with cardinality six.

It would of course be interesting to find further conditions that would precisely

describe the monodromy plane curve, and hence completely describe the image of

the period map.

We close the introduction with a question related to a curious discovery made

while writing this paper. The Wiman curve is naturally uniformized as a quotient

of the hyperbolic plane by a subgroup of the (2, 4, 6) triangle group (e.g. see [8, Sec.

4.3]). This implies that the Wiman curve is uniformized by a cocompact arithmetic

Fuchsian group with associated quaternion algebra the unique quaternion algebra A

over Q ramified at the primes {2, 3} (see [9, Sec. 13.3]). Classical embedding results

for quaternion algebras imply that A embeds as a subalgebra of M2(k), since 2 and

3 are inert in k.

Specifically, there is a maximal order D of A and a subgroup Λ of the group

N(D1), the normalizer in SL2(R) of the group D1 of units of norm one in D, so that

C0 = h/Λ is the Wiman curve. Let Λ1 be the index two subgroup of Λ given by

intersecting Λ with D1. We found an embedding A ↪→ M2(k) so that Λ1 maps into

SL2(O). However, the image is not contained in SL2(Oo), so this does not realize

Λ as a subgroup of the monodromy group Γ of the Wiman–Edge pencil, only some

finite index subgroup of Λ. It follows that there is a finite étale cover C′ → C0 and
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a closed immersion

C′
� XΓ = (h× h)/Γ,

with the image being a totally geodesic submanifold of XΓ. It would be interesting

to know if this curve C′ has any significance for the pencil or the image of the

period map.

Question 2. Let D′ ⊂ XΓ be an immersed totally geodesic curve commensurable

with the Wiman curve. Does the arithmetic Fuchsian subgroup of the monodromy

Γ of the Wiman–Edge pencil associated with D′ have special significance? What

about the points of intersection of D′ with the image of the period map for the

pencil?

2. Basic Facts and Notation

We follow the basic notation in [7], which we now recall and fix for the remainder

of the paper. Set k = Q(X), where X2 −X − 1 = 0. Then the ring of integers O
of k is Z[X ], and the unit group O∗ is isomorphic to Z× Z/2 generated by X and

−1, where X−1 = X − 1.

In what follows Fq will always denote the field with q elements. Two prime

ideals of O that will appear throughout this paper are 2O, which has residue field

F4, and p5 = (1− 2X)O, which has residue field F5. Note that (1− 2X)2 = 5 which

explicitly realizes the isomorphism k ∼= Q(
√
5).

Let Oo denote the additive subgroup Z[1, 2X ] = Z[1,
√
5] and observe that

2O ⊂ Oo. The isomorphism F4
∼= F2[X ] characterizesOo as the pullback of F2 ⊂ F4

under reduction modulo 2O. This interpretation will be used often in what follows.

Note moreover that Oo maps onto O/p5, since it maps to a nontrivial cyclic additive

subgroup of F5.

We now consider SL2(Oo) < SL2(O), and begin by recording the following basic

lemma that follows from the above characterization of Oo as a subgroup of O.

Lemma 2.1. The reduction homomorphism

h2 : SL2(O) → SL2(O/2O) ∼= SL2(F4),

is surjective and SL2(Oo) is the pullback of the subgroup SL2(F2) < SL2(F4) induced

by the field inclusion F2 ↪→ F4.

Following Yoshida [12], we now give a presentation for PSL2(O) and use it to

derive one for SL2(O). First, consider the following matrices in SL2(O):

Ã =

(
0 1

−1 0

)
Ä =

(
1 1

0 1

)

μ =

(
X 0

0 X − 1

)
η =

(
1 X

0 1

)
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Note that 〈Ã, Ä〉 = SL2(Z). Let ĝ denote the image in PSL2 of a given g ∈ SL2 and

[ , ] denote the commutator. Yoshida showed the following theorem.

Theorem 2.2 ([12, Theorem 5.1]). The group PSL2(O) is generated by Ã̂, μ̂, Ä̂ ,

and η̂ subject to the relations

R̂1 = Ã̂2 R̂2 = (Ã̂Ä̂ )3

R̂3 = (Ã̂μ̂)2 R̂4 = [Ä̂ , η̂]

R̂5 = μ̂Ä̂ μ̂−1(Ä̂ η̂)−1 R̂6 = μ̂η̂μ̂−1(Ä̂ η̂2)−1

R̂7 = Ã̂η̂Ã̂(Ä̂ η̂−1Ã̂η̂−1μ̂)−1

We now use Theorem 2.2 to give a presentation for SL2(O) using the central

element

z0 =

(
−1 0

0 −1

)
.

of order two. We then have the following corollary.

Corollary 2.3. The group SL2(O) is generated by z0, Ã, μ, Ä, and η subject to the

relations

C0 = z20

C1 = [z0, Ã] C2 = [z0, μ]

C3 = [z0, Ä ] C4 = [z0, η]

R1 = Ã2z0 R2 = (ÃÄ)3

R3 = (Ãμ)2z0 R4 = [Ä, η]

R5 = μÄμ−1(Äη)−1 R6 = μημ−1(Äη2)−1

R7 = ÃηÃ(Äη−1Ãη−1μ)−1z0

Proof. The relations indicating that z0 defines a central Z/2 subgroup are clear.

Since we have a central extension

1 → 〈z0〉 ∼= Z/2 → SL2(O) → PSL2(O) → 1,

lifting each relation R̂j from Theorem 2.2 to a word in Ã, μ, Ä , and η must give

either the identity or z0. This determines the given relation Rj .

We claim that SL2(O) has no other relations. Indeed, the abstract group Λ with

presentation in the statement of the corollary defines a central extension of PSL2(O)

by Z/2. Since these relations also hold in SL2(O), the projection Λ → PSL2(O)

defined by killing z0 factors through a homomorphism onto SL2(O) defined by

setting the abstract generators equal to the given matrix. Since this kernel has
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order two, SL2(O) is isomorphic to one of Λ or PSL2(O), and it is definitely not

isomorphic to the latter.

Remark 2.4. Observe that SL2(O) → PSL2(O) does not split. One way to see

this is using the well-known fact that SL2(Z) → PSL2(Z) does not split.

Let Γ be the monodromy group of the Wiman–Edge pencil. We identify Γ with

its image under the monodromy representation ρ in [7], which is a subgroup of

SL2(Oo). Farb and Looijenga gave the following matrix generators.

Lemma 2.5. The Wiman–Edge monodromy Γ is generated by

γα =

(
1 −1 + 2X

0 1

)
γα′ =

(
1 0

1− 2X 1

)

= Ä−1η2 = ÃÄ−1η2Ã−1

γβ =

(
1 +X3 X3

−X3 1−X3

)
γβ′ =

(
1 +X−3 X−3

−X−3 1−X−3

)

= Ä2η−2Ãμ3η−2Ä4 = η−2Ä−2Ãμ−3η−2

Proof. See [7, Corollary 4.3] for the matrix representatives for the generators. One

then verifies by hand that the given words in our generators for SL2(O) multiply

out to the appropriate matrix.

Remark 2.6. One can obtain relations for Γ using a computer algebra program like

Magma [4]. We found the relations to be sufficiently complicated that their inclusion

wouldn’t add any value to one’s understanding of either Γ or the geometry of any

of the objects associated with it.

3. Precise Determination of the Monodromy

The goal of this section is to give a more refined version of the following theorem

of Farb–Looijenga.

Theorem 3.1 ([7, Theorem 1.1]). The monodromy group of the Wiman–Edge

pencil is isomorphic to a finite index subgroup of SL2(Oo); in particular it is

arithmetic.

Our proof will be independent of [7] beyond our use of their matrix generators

in Lemma 2.5. Farb and Looijenga also proved that the reduction of Γ modulo p5

maps onto a unipotent subgroup of SL2(F5) [7, Corollary 4.3]. They asked whether

this congruence identity completely determines Γ [7, Question 4.4], and our results

answer this question in the negative. In particular, we will see that there is an

additional congruence condition modulo 4O.
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Before stating our precise determination of the monodromy, we need a prelimi-

nary lemma that describes SL2(O/4O) as a short exact sequence of algebraic groups

over F4. Observe first that R4 = O/4O can be described as (Z/4)[X ] and reduction

modulo 2R4 is F2[X ] ∼= F4.

Lemma 3.2. Considering sl2(F4) as the adjoint representation of SL2(F4) induces

a short exact sequence

1 → sl2(F4) → SL2(R4) → SL2(F4) → 1,

where sl2(F4) denotes the Lie algebra of SL2(F4), considered as an additive

group. The image SL2(Oo/4O) of SL2(Oo) in SL2(R4) is the pullback of

SL2(F2) < SL2(F4) under this sequence.

Proof. The first statement is very standard and follows from studying matrices in

SL2(R4) of the form Id+2M and noting that these are naturally represented by

M ∈ sl2(F4), where we consider F4 as (Z/2)[X ] inside R4
∼= (Z/4)[X ]. The second

statement follows from the fact that Oo is the pullback of F2 ⊂ F4.

Remark 3.3. Since F4 has characteristic 2, sl2(F4) is the additive group of matri-

ces in M2(F4) of the form
(x1 x2

x3 x1

)

, i.e. matrices with trace zero. As a group,

sl2(F4) ∼= (Z/2)6.

We can now restate our main result.

Theorem A. The monodromy group Γ of the Wiman–Edge pencil has index 480 in

SL2(O), and can be described equivalently in SL2(O) and SL2(Oo) by the following

two properties :

(1) The reduction of Γ modulo p5 is unipotent.

(2) The reduction Γ of Γ modulo 4O fits into an exact sequence

1 → C4 → Γ → SL2(F2) → 1,

where C4 < sl2(F4) denotes the subgroup of matrices
(
x1 x2

x3 x1

)

∈ sl2(F4) so that

TrF4/F2
(x1 + x2 + x3) = 0, where TrF4/F2

denotes the trace.

Proof. The proof is carried out by interpreting computations done in the computer

algebra system Magma [4]. In particular, we describe how one gives arithmetic

significance to standard Magma calculations and refer the reader to [1] for code

that can be used to execute these calculations. Using the presentation for SL2(O) in

Corollary 2.3 and the generators for Γ from Lemma 2.5, one obtains a presentation

of Γ as a finite index subgroup of SL2(O) with index 480.

The fact that Γ has unipotent image modulo p5 is contained in [7, Corollary 4.3],

but we give an alternate argument as a warm-up for taking reductions modulo 2

and 4. One can check with Magma that there is a unique normal subgroup of

SL2(O) with quotient isomorphic to SL2(F5). Therefore this subgroup must be
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the congruence subgroup SL2(O)[p5] consisting of those matrices congruent to the

identity modulo p5. The image of Γ in the quotient group has order 5, which confirms

our assertion, since all subgroups of SL2(F5) isomorphic to Z/5 are unipotent.

Similarly, one sees using Magma that there are two normal subgroups of Γ

with quotient isomorphic to SL2(F4), where the second arises from its exceptional

isomorphism with PSL2(F5). The subgroup that does not contain SL2(O)[p5] must

be the congruence subgroup SL2(O)[2] of level 2O. One checks that the image of Γ

in the quotient is isomorphic to PSL2(F2). Since Γ ≤ SL2(Oo), this image must be

the standard SL2(F2) in SL2(F4).

We now study the reduction modulo 4O. From Lemma 3.2, one sees that

SL2(R4) has order 3840. Magma confirms that there is a unique normal subgroup

of SL2(O) with that index, hence it must be the level 4 congruence subgroup

SL2(O)[4]. Note that sl2(F4) from Lemma 3.2 is the image of SL2(O)[2] under

reduction modulo 4O.

One can then compute the intersection of sl2(F4) with the image Γ of Γ, and

one obtains an index two subgroup of sl2(F4). Note that the group C4 from the

statement of the theorem is also an index two subgroup, since it is defined by a

linear equation over Z/2, again considering F4 as (Z/2)[X ]. One does not need

Magma to see that μ3 reduces modulo 4O to an element of sl2(F4) not in C4, hence

it represents the nontrivial coset representative for C4 in sl2(F4). One then checks

in Magma that the image of μ3 in sl2(F4) is also not in sl2(F4) ∩ Γ, and it follows

that sl2(F4) ∩ Γ = C4, as desired.

The above verifies that Γ satisfies the congruence conditions given in the state-

ment of the theorem. We must check that the above conditions completely describe

Γ as a subgroup of SL2(O). This is equivalent to showing that Γ contains the con-

gruence subgroup SL2(O)[4p5]. Magma can easily check this by showing that Γ

contains the intersection of SL2(O)[p5] and SL2(O)[4]. This completes our descrip-

tion of how one verifies the theorem in Magma.

Remark 3.4. We briefly comment on our reliance on the computer. We used

Magma to find the reductions of Γ modulo p5 and 2O, though one can check these

fairly easily by hand using generators. One could perhaps also compute the reduc-

tion modulo 4O by hand, though this would be much more complicated. Where we

rely most heavily on Magma is in the final assertion, that SL2(O)[4p5] ≤ Γ, which

means that the congruence conditions modulo p5 and 4O are the only congruence

conditions.

4. The Action on h × h

Let h be the upper-half plane. We now study the action of Γ on h × h and the

geometry of the quotient space XΓ = (h× h)/Γ. Note that it is PSL2(O) that acts

faithfully on h× h, so it will be convenient to replace Γ with its image in PSL2(O).
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Recall that SL2(k) acts on h× h by

g · (x1, x2) = (ν1(g)x1, ν2(g)x2),

where ν1, ν2 are extend the two real embeddings ν1, ν2 : k → R to embeddings of

SL2(k) into SL2(R) and SL2(R) acts on each factor by Möbius transformations.

We first note that XΓ is a manifold, by which we mean as a Riemannian orbifold

modeled on h × h, not in the weaker sense of the analytic quasi-projective variety

underlying XΓ being nonsingular. This is well known to follow immediately from

the following lemma.

Lemma 4.1. The monodromy group Γ is torsion-free.

Proof. Suppose γ ∈ SL2(O) has finite order. Then γ has characteristic polynomial

t2 − tr(γ)t + 1 and some root of unity ζ is a root of this polynomial. This implies

that k(ζ) is at most a quadratic extension of k. This reduces us to

n ∈ {2, 3, 4, 5, 6, 10}.

An element of order 4 must have square z0, and z0 /∈ Γ, so we can eliminate that

case.

Now note that the characteristic polynomial pn(t) over k for an element of order

n is

pn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

(t+ 1)2 n = 2

t2 + t+ 1 n = 3

t2 +Xt+ 1 n = 5

t2 − t+ 1 n = 6

t2 −Xt+ 1 n = 10

(For n = 5, and n = 10 there is technically also the Galois conjugate polynomial

t2 ± (1 −X)t+ 1.) Since the reduction of Γ modulo 1− 2X is unipotent, we must

have that the reduction of pn(t) modulo 1− 2X factors as (t− 1)2. This reduces us

immediately to the case n = 5.

Then, p5(t) does not factor over F4 = F2(X). This implies that the congruence

subgroup of level 2 in SL2(O) contains no 5-torsion. Thus if Γ were to contain an

element of order five, then its reduction modulo 2 would be a nontrivial element of

SL2(F4) of order five. However, the reduction of Γ is SL2(F2) has order six, so it

contains no element of order five. This proves that Γ is torsion-free.

Remark 4.2. Eduard Looijenga also described a nice independent proof of

Lemma 4.1 using the geometry of the Wiman–Edge pencil. Briefly, the Torelli theo-

rem implies that torsion in Γ would define a curve in the pencil with an exceptional

automorphism centralizing the action of A5, but there is no such curve.
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We also have the following standard calculation.

Lemma 4.3. The space XΓ has topological Euler number e(XΓ) = 16.

Proof. Let Γ be the image of Γ in PSL2(O). Since PSL2(O) acts faithfully on h×h,

we have

e(XΓ) = [PSL2(O) : Γ] e((h× h)/PSL2(O)),

where e((h × h)/PSL2(O)) denotes the Euler–Poincaré characteristic. However, it

is a classical fact that

e((h× h)/PSL2(O)) = 2ζk(−1) =
1

15
,

where ζk denotes the Dedekind zeta function; e.g. see [11, Theorem IV.1.1]. Then Γ

has index 480 in SL2(O) by Theorem A and intersects the center of SL2(O) trivially

(e.g. by Lemma 4.1), hence [PSL2(O) : Γ] = 240 and the lemma follows.

Let ∆ < SL2(O) be the subgroup of upper-triangular matrices and ∆̂ denote the

image of ∆ in PSL2(O). Since k has class number one, it follows that (h×h)/ SL2(O)

has one cusp, i.e. ∆ determines the unique conjugacy class of parabolic subgroups

of SL2(O) [11, Proposition I.1.1].

Before counting the cusps of XΓ, we prove an easy lemma on the structure of

∆. The result is very well known in much greater generality (e.g. see [11, Sec. II.1]),

but we will need some calculations related to the proof later so we include it for

the reader’s convenience.

Lemma 4.4. There is a natural isomorphism ∆ ∼= ∆̂ × Z/2, where the Z/2

factor is generated by the center 〈z0〉 of SL2(O). The group ∆̂ is generated by

μ̂, Ä̂ , η̂ ∈ PSL2(O) and has presentation on these generators with relations:

Ŝ0 = [Ä̂ , η̂]

Ŝ1 = μ̂Ä̂ μ̂−1(Ä̂ η̂)−1 Ŝ2 = μ̂η̂μ̂−1(Ä̂ η̂2)−1

Proof. We start by presenting ∆̂. Note that Ŝ0, Ŝ1, Ŝ2 are just the relations

R̂4, R̂5, R̂6 from Theorem 2.2. It is also clear from the semi-direct product struc-

ture on the upper-triangular subgroup of PSL2(R) that we obtain a split short exact

sequence:

1 → 〈Ä̂ , η̂〉 ∼= Z2 → ∆̂ ∼= 〈Ä̂ , η̂〉� 〈μ〉 → Z → 1. (1)

In particular, one must only understand the conjugation action of μ̂ on Ä̂ and η̂

to obtain a presentation for ∆̂. This is precisely what is described by the relations

Ŝ1 and Ŝ2. Finally, one checks that lifting to μ, Ä, Ã ∈ ∆ splits the central exact

sequence

1 → 〈z0〉 ∼= Z/2 → ∆ → ∆̂ → 1,

which proves that ∆ ∼= ∆̂× Z/2.
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We now determine the cusps of XΓ and identify the associated cusp subgroups

of Γ as subgroups of ∆.

Proposition 4.5. The space XΓ has six cusps. The associated conjugacy classes

∆1, . . . ,∆6 of parabolic subgroups of Γ are conjugate in SL2(O) to the following

subgroups of ∆:

∆1,∆2 ∼ Λ8 = 〈μ−2η, η2, Ä2〉
∆3 ∼ Λ24 = 〈μ6, Ä2, Äη2〉

∆4,∆5 ∼ Λ40 = 〈μ2Ä−2η−1, Ä2η6, η10〉
∆6 ∼ Λ120 = 〈μ6, Äη18, η20〉

Here ∼ denotes conjugacy in SL2(O) and [∆ : Λj ] = j. Specifically, we have

∆1 = (ÃÄμ2)−1Λ8(ÃÄμ
2) ∆2 = (ÄÃÄÃμ−1)Λ8(ÄÃÄÃμ

−1)

∆3 = (ÃÄ)−1Λ24(ÃÄ) ∆4 = (Ãη)−1Λ40(Ãη)

∆5 = (μÃÄμ)−1Λ40(μÃÄμ) ∆6 = Λ120

Proof. Again, we explain how one deduces the result using Magma. At the risk of

some confusion, we work in PSL2(O) instead of SL2(O) but discard the ĝ notation

in favor of just g for readability. For an ideal J of O, let

X [J ] = (h× h)/PSL2(O)[J ],

denote the quotient of h × h by the principal congruence subgroup of PSL2(O) of

level J .

It is an easy consequence of the orbit-stabilizer theorem that X [J ] has

[PSL2(O/J ) : rJ (∆)] cusps, where

rJ : PSL2(O) → PSL2(O/J ),

is the reduction homomorphism. For J = 4p5 this index is 240. One can then count

cusps by identifying them with right coset representatives of rJ (∆) in PSL2(O/J ).

Then Γ acts on these cosets through rJ , and we can identify cusps of XΓ with

Γ-orbits under this action.

Specifically, if we write

PSL2(O/J ) =

240∐

j=1

rJ (∆)εj ,

let [εj ] be the cusp associated with εj. Then h ∈ rJ (Γ) acts on the right by

[εj ] · h = [εh(j)], where εjh = δ(h, j)εh(j) for δ(h, j) ∈ rJ (∆). The stabilizer in

PSL2(O/J ) of [εj ] is ε
−1
j rJ (∆)εj , and it follows that εj1 is in the same rJ (Γ)-orbit

as εj2 if and only if there is some h ∈ rJ (Γ) so that εj1hε
−1
j2

∈ rJ (∆). A simple for

loop finds that there are six orbits, hence XΓ has six cusps.
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Using an abstract presentation for ∆ derived from taking the quotient of the

presentation in Lemma 4.4 by the central Z/2, one finds subgroups Λk(j) of ∆ for

which some conjugate of Λk(j) in ∆ is the pullback to ∆ of

εj(ε
−1
j rJ (∆)εj ∩ rJ (Γ))ε−1

j . (2)

The groups in Eq. (2) are the images under rJ of Λ8, Ä
−1Λ8Ä , Λ24, Λ40, μ

−1Λ40μ

and Λ120. Taking a representative ej ∈ SL2(O) for εj , we see that (ejg)
−1Λk(j)(ejg)

is a subgroup of Γ representing the cusp associated with εj . Finding generators for

each Λj in a standard way completes the proof.

5. The Cusp Resolutions

We retain the notation of Sec. 4, and now compute the standard smooth compact-

ification YΓ of XΓ. We refer the reader to [11, Chap. II] for more details of the

construction of the compactification. We briefly sketch some general facts before

moving on to describing each cusp resolution for XΓ in detail. We work in PSL2(O),

but discard the ̂ notation for readability. At the conclusion of this section, we will

prove the following theorem.

Theorem B. The smooth compactification YΓ of XΓ is a smooth projective surface

of general type with Chern numbers

c21(YΓ) = 16,

c2(Γ) = 56.

It has holomorphic Euler characteristic χ(OYΓ
) = 6, irregularity q(YΓ) = 0, and

geometric genus pg(YΓ) = 5.

Recall that we have the subgroup ∆ = 〈μ, Ä, η〉 of PSL2(O). If Λ ≤ ∆ is a finite

index subgroup, then we can use the exact sequence in Eq. (1) to see that

Λ = 〈μay, Äb1ηb2 , Äc1ηc2〉,

for a, b1, b2, c1, c2 ∈ Z, some y ∈ 〈Ä, η〉, and a �= 0. Moreover, we can choose these

generators so that Λ has index |a(b1c2 − b2c1)| in ∆. This implies that

TΛ = 〈Äb1ηb2 , Äc1ηc2〉 = Λ ∩ 〈Ä, η〉,

is the kernel of the map from Λ to Z induced by Eq. (1). Note that the generators for

each Λj in the statement of Proposition 4.5 are chosen to satisfy these properties.

We now describe how to resolve a cusp associated with Λ as above. Consider the

standard embedding of k into R2 using its two archimedean places, which induces

a discrete embedding of TΛ ≤ Z[X ] into R2. Let T+
Λ be the elements of TΛ lying in

the first quadrant of R2 and CΛ be the convex hull of TΛ.

Then μay acts on TΛ by conjugation and preserves T+
Λ , hence it acts on CΛ.

The action on the boundary BΛ of CΛ determines a combinatorial n-gon, where we

associate edges of the n-gon with (μay)-orbits of vertices of BΛ and vertices of the
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μaz

Fig. 1. Compactification by a square of rational curves.

n-gon with edges of BΛ. See Fig. 1 for a general picture. Each edge of this n-gon

represents a smooth rational curve in the compactification.

It remains to determine the self-intersection of the rational curve Ev associated

with a vertex v on BΛ. The two adjacent vertices v1, v−1 of BΛ have the property

that, as elements of Z[X ], v1 + v−1 = bv for some integer b > 1, and we have

E2
v = −b. See [11, Sec. II.2].

Finally, we note that how one resolves a cusp associated with some Λ ≤ ∆ is

independent of its conjugacy class in ∆. In particular, to resolve the cusps of XΓ,

it suffices to study the groups Λj in Proposition 4.5. The remainder of this section

studies these resolutions, and Mathematica code to assist the reader in verifying

assertions about various convex hulls is available on the author’s webpage [2].

5.1. Degree eight cusps

Here, we study the resolution of a cusp associated with the group

Λ8 = 〈μ−2η, η2, Ä2〉.

In the above notation, TΛ = 〈η2, Ä2〉 = 2O and μ−2η has matrix

ϕ =

(
5 −3

−3 2

)
,

for its action on TΛ. The convex hull of T+
Λ is pictured in Fig. 2. Since 2 is

mapped to 4 − 6X under ϕ, the cusp resolution is by a bigon of rational curves.
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2

4− 2X

2 + 2X

10− 6X

4 + 6X

26− 16X

10 + 16X

Fig. 2. Resolving the index eight cusps by two −3 curves.

Then

(10− 6X) + 2 = 3(4− 2X)

(4 − 2X) + (2 + 2X) = 3(2)

which implies that both rational curves in the compactification have self-

intersection −3.

5.2. Degree 24 cusp

We now study the resolution of a cusp associated with the group

Λ24 = 〈μ6, Ä2, Äη2〉.
In the above notation, TΛ = 〈Ä2, Äη2〉 and μ6 has matrix

ϕ =

(
17 36

144 305

)
,

for its action on TΛ. The convex hull of T+
Λ is pictured in Fig. 3. Then ϕ sends

26 − 16X to 10 + 16X , which implies that the compactification is by a 16-gon
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(2 + j) + 2jX j = 0, . . . , 8

(2 + 3j)− 2jX j = 0, . . . , 8

Fig. 3. Resolving the index 24 cusp by 16 curves.

of rational curves. For any adjacent vertices of the boundary of the convex hull

of T+
Λ that lie on a straight line, the associated curve has self-intersection −2,

since

(2 + j − 1 + 2(j − 1)X) + (2 + j + 1 + 2(j + 1)X) = 2(2 + j + 2jX)

(2 + 3(j − 1)− 2(j − 1)X) + (2 + 3(j + 1)− 2(j + 1)X) = 2(2 + 3j − 2jX).

There are 14 such curves.

It remains to compute the self-intersections of the curves associated with 2 and

10 + 16X . In these cases,

(3 + 2X) + (5 − 2X) = 4(2)

(9 + 14X) + (31 + 50X)4(10 + 16X)
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14 + 22X6 + 8X4 + 2X

6− 2X

14− 8X

36− 22X

Fig. 4. Resolving the index 40 cusps by two −3 curves.

which implies that the remaining two curves have self-intersection −4. In summary,

the cusp associated with Λ24 is compactified by a 16-gon of rational curves for

which one pair of opposite sides determine curves with self-intersection −4 and the

remaining curves have self-intersection −2.

5.3. Degree 40 cusps

We assume the reader is becoming familiar with the nature of these calculations

and start to skip some details. Considering the convex hull in Fig. 4, for Λ40 we

have that μ2Ä−2η−1 sends 6− 2X to 6 + 8X . One then calculates that our cusp is

compactified by a bigon of −3 curves.

5.4. Degree 120 cusp

This case is completely analogous to the Λ24 case, and the cusp is compactified by

a 16-gon consisting of two −4 curves and 14 −2 curves. Again, the −4 curves are

on opposite sides of the 16-gon. The boundary of the convex hull of T+
Λ is given by



Geometry of the Wiman–Edge monodromy 831

the points

(6 + j) + (8− 2j)X 0 ≤ j ≤ 8

(6 + 11j) + (8 + 18j)X 0 ≤ j ≤ 8

The lists overlap at j = 0, and the point 6+8X represents one of the curves of self-

intersection −4. At j = 8, we have X12(14− 8X) = 94+ 152X , which implies that

μ6 identifies these two points; this represents the other curve of self-intersection

−4. The picture of the convex hull is exactly as in Fig. 3, appropriately relabeled.

5.5. Proof of Theorem B

The computation of the Chern numbers of YΓ follows from our above calculations

of the cusp resolutions, Lemma 4.3, and the formulas on [11, p. 63]. It is well known

that q(YΓ) = 0 for any compactification of a quotient of h×h by an irreducible lattice

(e.g. see [11, Lemma I.6.3]). We then compute the remaining numerical invariants

by

χ(OYΓ
) =

1

12

(
c21(YΓ) + c2(YΓ)

)

= 1− q(YΓ) + pg(YΓ).

Since YΓ is smooth and projective, it remains to show that YΓ is of general type. If it

is minimal, this is clear from the possibilities for c21 and c2 in the Enriques–Kodaira

classification [3, Chap. VI]. However, performing a sequence of blowdowns on YΓ

only increases c21, and a minimal surface with c21 ≥ 16 must be of general type. This

completes the proof.

6. Image of the Period Map

In this section, we study the image of the period map. Let B◦ be the base of the

smooth locus of the pencil. Following Farb and Looijenga [7, Sec. 5.1], we consider

the period map Π◦ as a map from B◦ to

X◦ = (h× h)/ SL2(Oo),

through the orbifold covering XΓ → X◦. It is known that Π◦ is a closed embedding

by [7, Proposition 5.1].

As described in [7], it is natural to consider X◦ as the quotient of

X [2] = (h× h)/ SL2(O)[2],

by an action of SL2(F2), where SL2(O)[2] denotes the level two congruence subgroup

of SL2(O). We use the classical connection between X [2] and the Clebsch cubic

surface to study the image of the period map. In other words, we will study the

diagram of maps in Fig. 5, where XΓ[2] denotes the minimal common covering of

XΓ and X [2] and B̃◦ is the induced covering of B◦.
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X◦

XΓ B◦

X [2]

XΓ[2] B̃◦

Π◦

Fig. 5. Diagram of coverings for the period map.

6.1. The curve on X[2]

Our first goal is to show that the image of the period map is associated with a

(possibly singular) curve on X [2] with genus one and 18 punctures. We will then

use the famous realization of a smooth compactification of X [2] as a blowup of P2

to show that the image of the period map is determined by a plane curve of genus

one that is invariant under an action of the symmetric group S3. The following

result immediately implies Theorem C.

Proposition 6.1. With notation as in Fig. 5, XΓ[2] is a Galois cover of XΓ with

group SL2(F2). The cover B̃◦ → B◦ is also Galois with group SL2(F2), and B̃◦

has genus one with 18 punctures. The diagram of maps in Fig. 5 induces a closed

embedding Π̃◦ : B̃◦ → X [2].

Proof. The cover X [2] → X◦ is Galois with group SL2(F2) since SL2(Oo) is the

pull-back of SL2(F2) to SL2(O) under reduction modulo 2O. By Theorem A, the

monodromy Γ also has image SL2(F2) under reduction modulo 2O. Elementary

covering space theory then implies that the minimal common cover XΓ[2] is a

Galois cover of XΓ with group SL2(F2) that makes the left-most square in Fig. 5

into a commutative square of covers.

The map π1(B◦) → Γ is onto, hence the cover B̃◦ of B◦ induced by XΓ[2] is

connected with group SL2(F2). Since Π◦ is a closed embedding, we see that the

induced map Π̃◦ from B̃◦ to X [2] must also be a closed embedding. It remains to

show that B̃◦ is genus one with 18 punctures.

Using the generators for π1(B◦) in Lemma 2.5 and defining reduction of Γ mod-

ulo 2O as a homomorphism to SL2(F2), the number of lifts of each puncture of B◦

to B̃◦ is the index in SL2(F2) of the subgroup generated by the image of an element

associated with a loop around that puncture. The images of γα, γα′ , γβ , γβ′ all have

order 2, so each associated puncture has three lifts. The element γαγβγα′γβ′ is the

identity modulo 2O, so the associated puncture has six lifts. We then have that B̃◦



Geometry of the Wiman–Edge monodromy 833

has Euler characteristic −18 and 18 punctures, so it has genus one. This completes

the proof.

6.2. The Clebsch cubic and the Klein plane

We now describe the smooth compactification Y [2] of X [2] and its relationship to

P2. See [11, Sec. VIII.2] for details. The space Y [2] is the blowup of the famous

Clebsch cubic surface at its 10 Eckardt points, and the map

Ã : Y [2] → P2

can be described as blowing up P2 at the vertices of an icosahedron and its dually

inscribed dodecahedron. Farb and Looijenga call the image P2 the Klein plane.

In the remainder of this section, we identify a number of the beautiful geometric

features of this construction that we will use in studying the image of the period

map.

6.2.1. Icosahedron vertices and Eckardt points

Blowing up P2 at the six points associated with the vertices of the icosahedron gives

the Clebsch surface. The 10 points associated with vertices of the dodecahedron lift

to the Eckardt points on the Clebsch surface. On P2, we denote the six icosahe-

dral vertex points as v1, . . . , v6 and the dodecahedral vertex points associated with

Eckardt points as e1, . . . , e10. See Figs. 6 and 7 for coordinates.

As a Hilbert modular surface, the exceptional curves on Y [2] arising from the

Eckardt points are the compactifications of the 10 lifts of h/PSL2(Z) to X [2]. Note

that each lift is the thrice-punctured sphere arising from the quotient of h by the

level 2 congruence subgroup of PSL2(Z).

6.2.2. The compactification curves

Recall that the cusps of X [2] are in one-to-one correspondence with elements of

the projective line P1(F4) over F4, or equivalently with the SL2(O)[2]-orbits of lifts

of these lines to P1(k). Each of the five cusps of X [2] is compactified by a triangle of

lines, where each line has self-intersection −3. Each line is the proper transform of

v1 =

⎡
£
0

1

X

¤
⎦ v3 =

⎡
£
X

0

1

¤
⎦ v5 =

⎡
£
1

X

0

¤
⎦

v2 =

⎡
£

0

1

−X

¤
⎦ v4 =

⎡
£
−X

0

1

¤
⎦ v6 =

⎡
£

1

−X

0

¤
⎦

Fig. 6. Vertices of the icosahedron.
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e1 =

⎡
£
1

1

1

¤
⎦ e3 =

⎡
£

1

−1

1

¤
⎦ e5 =

⎡
£
X − 1

0

X

¤
⎦ e7 =

⎡
£

0

X

X − 1

¤
⎦ e9 =

⎡
£

X

X − 1

0

¤
⎦

e2 =

⎡
£
−1

1

1

¤
⎦ e4 =

⎡
£
−1

−1

1

¤
⎦ e6 =

⎡
£
1−X

0

X

¤
⎦ e8 =

⎡
£

0

X

1−X

¤
⎦ e10 =

⎡
£

X

1−X

0

¤
⎦

Fig. 7. Vertices of the dodecahedron.

�i,j =

{
rei + sej :

[
r

s

]
∈ P1

}

{i, j} ∈
{
{1, 5} , {1, 7} , {1, 9} , {2, 6} , {2, 7} , {2, 10} ,
{3, 5} , {3, 8} , {3, 10} , {4, 6} , {4, 8} , {4, 9} ,
{5, 6} , {7, 8} , {9, 10}

}

Fig. 8. Edges of the dodecahedron.

v2, v5 ∈ �1,5 v3, v6 ∈ �1,7 v1, v4 ∈ �1,9

v2, v6 ∈ �2,6 v4, v5 ∈ �2,7 v1, v3 ∈ �2,10

v1, v6 ∈ �3,5 v3, v5 ∈ �3,8 v2, v4 ∈ �3,10

v1, v5 ∈ �4,6 v4, v6 ∈ �4,8 v2, v3 ∈ �4,9

v3, v4 ∈ �5,6 v1, v2 ∈ �7,8 v5, v6 ∈ �9,10

Fig. 9. Vertices of the icosahedron on the edge �i,j .

the line of P2 associated with a pair of opposite edges of the icosahedron (or, dually,

the dodecahedron). In particular, the image on P2 of each cusp line on Y [2] meets

exactly two of the six icosahedral vertices and exactly two of the dodecahedral

vertices. We denote the line through ei and ej by �i,j. See Fig. 8 for an explicit

parametrization of each line �i,j and Fig. 9 for which vm lies on each �i,j.

6.2.3. The PSL2(F2) action

The automorphism group of the Clebsch surface is the symmetric group S5, and the

induced action on Y [2] restricts to the automorphism group of X [2]. This connects

to the action of PSL2(F4) on X [2] through its isomorphism with the alternating

group A5. (The remaining order 2 automorphism of X [2] needed to generate S5 is

induced by the “swap map” exchanging the two factors of h× h.) The inclusion of
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Ã1 =

⎡
£
−1 0 0

0 −1 0

0 0 1

¤
⎦ Ã2 =

⎡
⎢⎢£

−X
2 − 1

2
X−1
2

− 1
2

X−1
2 −X

2

X−1
2 −X

2 − 1
2

¤
⎥⎥⎦

Ä =

⎡
⎢⎢£

X
2

1
2

1−X
2

1
2

1−X
2

X
2

X−1
2 −X

2 − 1
2

¤
⎥⎥⎦ = Ã1Ã2 Ã3 = ÄÃ1 = Ã1Ã2Ã1

S3 =
〈
Ã1, Ã2, Ä | Ã2

1 , Ã
2
2 , Ä

3, Ä = Ã1Ã2

〉

Fig. 10. The S3 action.

Ã1 {v1, v2}, {v3, v4}, {v5}, {v6},
{e1, e4}, {e2, e3}, {e5, e6}, {e7, e8}, {e9}, {e10}

Ã2 {v1}, {v2, v6}, {v3, v5}, {v4},
{e1}, {e2, e6}, {e3, e8}, {e4, e10}, {e5, e7}, {e9}

Ã3 {v1, v6}, {v2}, {v3}, {v4, v5},
{e1, e10}, {e2, e7}, {e3, e5}, {e4}, {e6, e8}, {e9}

Ä {v1, v2}, {v2, v6}, {v3, v5},
{e1, e4, e10}, {e2, e5, e8}, {e3, e7, e6}, {e9}

Fig. 11. Vertex orbits under S3.

PSL2(F2) into PSL2(F4) is then realized as an inclusion of S3 in A5. See Fig. 10 for

matrices generating the S3 action and Figs. 11 and 12 for vertex and edge orbits

under this action.

The six icosahedron vertex points {vi} are partitioned into two S3 orbits with

three elements

P1 = {v1, v2, v6},

P2 = {v3, v4, v5}.
The dodecahedron vertex points {ei} are partitioned as follows:

Q1 = {e1, e4, e10},

Q2 = {e2, e3, e5, e6, e7, e8},

Q3 = {e9}.
Recall that the lines on P2 associated with the edges of the icosahedron and dodec-

ahedron are the lines arising from the smooth compactification of X [2]. These are
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Ã1 {�1,5, �4,6}, {�1,7, �4,8}, {�1,9, �4,9}, {�2,6, �3,5},
{�2,7, �3,8}, {�2,10, �3,10}, {�5,6}, {�7,8}, {�9,10}

Ã2 {�1,5, �1,7}, {�1,9}, {�2,6}, {�2,7, �5,6}, {�2,10, �4,6},
{�3,5, �7,8}, {�3,8}, {�3,10, �4,8}, {�4,9, �9,10}

Ã3 {�1,5, �3,10}, {�1,7, �2,10}, {�1,9, �9,10}, {�2,6, �7,8},
{�2,7}, {�3,5}, {�3,8, �5,6}, {�4,6, �4,8}, {�4,9}

Ä {�1,5, �4,8, �2,10}, {�1,7, �4,6, �3,10}, {�1,9, �4,9, �9,10},
{�2,6, �3,5, �7,8}, {�2,7, �5,6, �3,8}

Fig. 12. (Color online) Edge orbits under S3. Blue indicates nontrivial Z/2 action and Red indicates
trivial action.

naturally partitioned into two orbits of triangles, one of size three and one of size

two. If �i,j is the line containing ei and ej, we have orbits

L1 = {�1,5, �1,7, �2,10, �3,10, �4,6, �4,8},

L2 = {�1,9, �4,9, �9,10},

L3 = {�2,6, �3,5, �7,8},

L4 = {�2,7, �3,8, �5,6}.

This allows us to visualize each S3 orbit of triangles as in Figs. 13 and 14.

L2

L3L4

Q1 P1 P2 Q3

Q2

P1

Q2

P1

Q2

P2

Q2

P2

Fig. 13. The cusp triangle orbit of size three.
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L1

L1L1

Q1 P1 Q2 P2

P2

Q1

P1

Q2

P1

Q2

P2

Q1

Fig. 14. The cusp triangle orbit of size two.

6.3. The monodromy plane curve

Since PSL2(F2) preserves the image of the lifted period map Π̃◦, we conclude that

Π̃◦(B̃◦) is an S3-invariant curve of genus one on X [2] with 18 punctures. Consider

the completion

Π̃ : B̃ → Y [2]

and let C = (Ã ◦ Π̃)(B̃) be the image curve on P2. We call C the (Wiman–Edge)

monodromy plane curve. Given the maps and group actions described above, to

completely determine the image in X◦ of the period map for the Wiman–Edge

monodromy, it suffices to describe the monodromy plane curve. Proposition 6.1

implies the following.

Corollary 6.2. The monodromy plane curve C is a (possibly singular) plane curve

of genus one.

Remark 6.3. As noted by the referee, by construction of B̃◦ as a PSL2(F2) cover

of B◦, it supports a moduli space of stable genus six curves with A5 action and

certain level structure. Then Π̃ is the extension B̃ → Y [2] of the period map in the

sense of Namikawa [10, Theorem 9.30(iv)] for in the case of irreducible degenerate

curve and more generally Caporaso–Viviani [5]. It is possible that this point of view

could be used to prove smoothness of C, but it was not clear to us that existing

results in the literature suffice to imply this conclusion.
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6.3.1. Intersection of the monodromy plane curve with �i,j

We now study the intersections of C with each line �i,j . Since C is S3-invariant, this

only depends on how C meets a representative for each orbit. Note that points on

C∩�i,j associated with a vertex of the icosahedron or dodecahedron lift to points on

Π̃◦(B̃◦), not punctures. Conversely, points on C ∩ �i,j that are not a vertex of either

the icosahedron or the dodecahedron lift to the cusp divisor for Y [2], hence they

are associated with the punctures of Π̃◦(B̃◦); we call these puncture points on �i,j .

The following should be compared with the description in [7, Sec. 5.2] of where

the punctures of B◦ go in X◦.

Lemma 6.4. (1) There are either one or two puncture points on each �i,j ∈ L1.

(2) Each line in L2 contains exactly three or four puncture points.

(3) Puncture points on lines in L3 or L4 are fixed points for the Z/2 action on

the line, where Z/2 is the stabilizer in S3 of the relevant triangle of lines as in

Fig. 13. In particular, there are at most two puncture points on any such line.

The number of puncture points on any line �i,j is an invariant of its S3-orbit.

Proof. The last statement in the lemma is obvious.

The orbit of L1 is associated with the cusp of (h× h)/ SL2(Oo) denoted ∞X in

[7, Sec. 3.3]. Indeed, this is the orbit consisting of exactly two triangles of lines on

Y [2]. In terms of the action of Γ on P1(k), ∞X is associated with the lines [X : 1]

and [1 : X ] in P1(k), which represent distinct cusps of SL2(O)[2] but the same

cusp of SL2(Oo). Since γαγβγα′γβ′ stabilizes [X : 1], we see that the six relevant

punctures of Π̃◦(B̃◦) are given by intersections of C with the lines in L1.

Similarly, the orbits L2, L3, and L4 are associated with the cusp called ∞0 in

[7, Sec. 3.3], which is the orbit consisting of exactly three triangles of lines on Y [2].

With respect to the action of Γ on P1(k), this cusp is associated with the lines

[0 : 1], [1 : 0], [1 : 1], and [−1 : 1] in P1(k), which all represent distinct cusps of

SL2(O)[2] but the same cusp of SL2(Oo). Since γα fixes [1 : 0], γα′ fixes [0 : 1],

and γβ , γβ′ both fix [−1 : 1], the 12 relevant punctures of Π̃◦(B̃◦) are given by

intersections of C with the lines in L2, L3, and L4.

Returning to L1, the nature of the S3 action implies that each of the two trian-

gles of lines represented by Fig. 14 determines exactly three punctures of Π̃◦(B̃◦).

Invariance under the Z/3 action on each individual triangle implies that there are

two possibilities: either each line contains a unique puncture point, and that point

lies on no other line in the triangle, or the puncture points on the triangle are

the three intersection points between the lines, hence each line contains exactly

two puncture points. This proves that C meets each �i,j ∈ L1 as claimed in the

statement of the lemma.

Now, consider the triangle associated with lines in L2,L3,L4. There are exactly

four points in the intersection of C with the triangle that are associated with punc-

tures, and these four points are fixed points for the action of Z/2. Since Z/2 acts
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trivially on the lines in L2 and as −1 on the curves in L3 and L4 (under the appro-

priate identification with P1), puncture points must arise from points on the line

in the orbit L2 along with possibly the point at the intersection of the lines in L3

and L4. This leaves only the possibilities in the statement of the lemma.

Lemma 6.5. The monodromy plane curve C meets one of the S3 orbits Qj asso-

ciated with the Eckardt points of the Clebsch cubic.

Proof. This follows from the description in [7, Sec. 5.2] of the involution ι,

which implies that C must meet one of the lifts of h/ SL2(Z) to X [2]. As men-

tioned above, these lifts map precisely to the points on P2 in the orbits Qi for each

i = 1, 2, 3.

6.3.2. Smooth monodromy plane curve

In this section, we study the possibility that the monodromy plane curve is smooth.

Mathematica code to assist the reader in verifying various assertions that follow is

available from author’s webpage [2]. Since C is smooth of genus one, it is a cubic

plane curve by the genus-degree formula. We first use S3-invariance to restrict the

possibilities for the equation of the curve.

Lemma 6.6. Suppose that C is a smooth plane cubic curve that is invariant under

the action of S3 described in Sec. 6.2.3 with coordinates [z1 : z2 : z3] on P2. Then C
is the vanishing set of the homogeneous cubic

F ([z1 : z2 : z3]) = a1z
3
1 + a2z

3
2 + a3z2z

2
3

+((2X − 2)a1 −Xa2 − (X − 1)a3)z
2
1z2

+((2−X)a1 + a2 + (X − 1)a3)z1z
2
2

+((3X − 5)a1 + (X + 1)a2 + (2−X)a3)z1z
2
3 ,

for some [a1 : a2 : a3] ∈ P2.

Proof. Using invariance of F under Ã1, we see that either F ◦ Ã1 = F and every

term of F of the form zj11 zj22 zj33 has j1 + j2 even, or F ◦ Ã1 = −F and every term of

F of the form zj11 zj22 zj33 has j1 + j2 odd. In the first case, one can use a computer

algebra program like Mathematica to see that invariance of F under Ã2 implies that

F is the singular homogeneous cubic

z3((X − 2)z21 + 2z1z2 − (X + 1)z22 + z23).

Under similar analysis in the second case, one sees that F ◦ Ã2 = −F (since Ã1 and

Ã2 are conjugate in S3) and furthermore that any such F invariant under Ã1 and

Ã2 must then be of the form given in the statement of the lemma. Since Ã1 and Ã2

generate S3, this proves the lemma.
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Note that some of the homogeneous cubics of the form given in the statement of

Lemma 6.6 are singular. We will not need the finer distinction of which coefficients

give a smooth cubic curve.

Bezout’s theorem implies that C meets every �i,j in two or three points, where

the case of two intersection points occurs if and only if �i,j is tangent to C. We

begin by completely determining C in the case where no �i,j is tangent to C.

Proposition 6.7. Suppose that the monodromy plane curve C is smooth. Then C
is the plane cubic curve with one of the following equations :

z31 + (13− 8X)z32 + (3−X)z21z2 + (18− 11X)z1z
2
2

+(3X − 5)z1z
2
3 + (X − 2)z2z

2
3 ,

z31 + (5 − 3X)z32 +Xz21z2 + (4− 5X)z1z
2
2

+(3X − 5)z1z
2
3 − z2z

2
3 .

Equivalently, C is either

(1) The unique S3-invariant smooth plane cubic tangent to the lines in L1 at the

points in Q2, or

(2) The unique S3-invariant smooth plane cubic containing the orbit Q2 (and no

other Pi or Qi) and the intersection points between pairs of lines in the orbit

L1 represented by the vertices of the triangle in Fig. 14.

Proof. Invariance under S3 implies that C meets one vertex of the triangle in

Fig. 14 if and only if it meets all the vertices. We break the proof into two cases,

accordingly.

Case 1. No vertex in the triangle from Fig. 14 is on C.
Lemma 6.4 then implies that each line in L1 contains exactly one puncture

point on C. We first assume that C intersects each line in L1 transversally, hence in

exactly three points by Bezout’s theorem. Then C meets exactly two of the orbits

P1, P2, Q1, Q2. However, C cannot simultaneously meet P1 and Q2 or P2 and Q2,

since otherwise it would meet lines in L3 or L4 in four points, respectively. This

leaves four cases.

Case 1(a). P1 ∪ P2 ⊂ C.
Since C does not contain Q1 or Q2, Lemma 6.5 implies that Q3 ⊂ C. One checks

with a computer algebra program like Mathematica that there is no cubic curve

with the form given in Lemma 6.6 containing all of P1 ∪P2 ∪Q3. Thus this case is

impossible.

Case 1(b). P1 ∪ Q1 ⊂ C.
The only cubic as in Lemma 6.6 vanishing on P1 ∪ Q1 is

z31 − z32 + (X + 1)z21z2 + (X − 2)z1z
2
2 − (X + 1)z1z

2
3 + (2 −X)z2z

2
3 .
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However, this cubic also vanishes at P2, contradicting our observation that C meets

exactly two of the orbits P1, P2, Q1, Q2. This case is therefore eliminated.

Case 1(c). P2 ∪ Q1 ⊂ C.
The only possibility in this case is the cubic considered in Case 1(b), which

eliminates this case as well.

Case 1(d). Q1 ∪ Q2 ⊂ C.
Now, a computer algebra computation shows that the only possibility is the

cubic:

(1 +X)z31 + z22 + (1 + 3X)z21z2 + (1− 2X)z1z
2
2 + (X − 2)z1z

2
3 − (2 + 3X)z2z

2
3 .

We rule this case out using the triangle of curves in Fig. 13. The associated puncture

points on the cubic curve are at the intersection of the lines in L3 and L4 and two

points on the line in L2 that do not lie on the other two lines. This implies that the

triangle only determines three puncture points, but it must determine four. Indeed,

the three triangles making up this S3-orbit of must account for the 12 punctures

associated with γα, γβ , γα′ , and γβ′ (cf. the proof of Lemma 6.4). This contradiction

eliminates this case.

We now consider the possibility that C is tangent to a line in L1. Here C meets

each line in L1 in exactly two points, hence C meets exactly one of the orbits P1,

P2, Q1, Q2.

Case 1(e). The lines in L1 are tangent to C at either P1, P2, or Q1.

For each of these three possibilities, there is no S3-invariant cubic passing

through the relevant orbit that is tangent to L1 at the specified points. Therefore,

this case is not possible.

Case 1(f). The lines in L1 are tangent to C at Q2.

The only possibility is the first cubic in the statement of the proposition. Then

C meets the triangle in Fig. 13 in four puncture points, namely, at the intersection

of the lines in L3 and L4 along with three points on the line in L2. Therefore this

case is a possibility.

Case 1(g). The lines in L1 are tangent to C at a puncture point.

The cubic must also meet L1 in exactly one of Pi or Qi (i = 1, 2). For P1 and

P2, the cubic must also meet Q3 by Lemma 6.5. For i = 1, 2, the unique cubics

through Pi and Q3 are

z1(z
2
1 + (2X − 2)z1z2 + (2 −X)z22 + (3X − 5)z23),

z2(z
2
2 + (X + 1)z21 − 2Xz1z2 − (3X + 2)z23).

These are singular, which rules these cases out.

For Q1, there are cubics that satisfy the required properties with respect to the

triangle of lines in L1. However, these cubics all would give seven puncture points

on the triangle of lines in Fig. 13. This contradicts Lemma 6.4, and hence rules out
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this case. There is no cubic with the required form that meets Q2 and is tangent

to the lines in L1 in a point not in Q2. This completes the analysis of this case.

The final remaining option for Case 1 is as follows.

Case 1(h). The lines in L1 meet C in a triple point.

The triple point must be a puncture point of C, so C does not meet P1, P2, Q1,

or Q2. Lemma 6.5 implies that C meets Q3. One checks that there is no cubic of the

appropriate form that meets each line in L1 in a triple point, and this completes

the analysis of Case 1.

Case 2. Each vertex in the triangle from Fig. 14 is on C.
Note that a vertex cannot be an intersection point with multiplicity three.

Indeed, then each line in L1 would meet C in two points, one having multiplic-

ity three, and this contradicts Bezout’s theorem. We continue as in the first case

by first assuming that no line in L1 is tangent to C. A line in L1 then contains two

puncture points, hence C meets exactly one of the orbits P1, P2, Q1, or Q2.

Case 2(a). Pi ⊂ C, i = 1 or 2.

Lemma 6.5 implies that C also meets Q3. One checks that there is no such cubic

with the form in Lemma 6.6, hence this case is impossible.

Case 2(b). Q1 ⊂ C.
This case implies that the cubic is

z31 + (1 +X)z32 +Xz21z2 −Xz1z
2
2 + (3X − 1)z1z

2
3 − (1 + 4X)z2z

2
3 .

This cubic curve meets the triangle in Fig. 14 in what would be seven puncture

points. In particular, it meets the triangle at the intersection of the lines in L3

and L4, two additional points on each of those lines, and two points on the line

in L2 (neither of which is e9 ∈ Q3). This contradicts the fact that this triangle

must determine exactly four puncture points, as we saw in Case 1(d). This case is

therefore eliminated.

Case 2(c). Q2 ⊂ C.
The only possibility here is the second cubic given in the statement of the

proposition. As in Case 1(h), C then meets the triangle in Fig. 13 in four puncture

points, namely, at the intersection of the lines in L3 and L4 along with three points

on the line in L2. Therefore this case is a possibility.

Case 2(d). The lines in L1 are tangent to C.
In this case, Bezout’s theorem implies that C meets the triangle of lines in L1 in

only the three vertex points. Specifically, it suffices to study plane cubics passing

through �1,5 ∩ �4,8 that are tangent to either �1,5 or �4,8. These are

z31 + (X − 1)z32 +Xz21z2 + (X − 2)z1z
2
2 + (X − 1)z1z

2
3 + (1 − 2X)z2z

2
3 ,

z31 + (1−X)z32 +Xz21z2 + (2−X)z1z
2
2 + (X − 3)z1z

2
3 + z2z

2
3 .

Neither cubic can vanish at any other point on the triangle, hence it cannot vanish

on the orbits Q1 or Q2. Lemma 6.5 then implies that it must vanish on Q3 = {e9}.
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Neither cubic is zero at this point, hence we have eliminated the possibility that

C is tangent to a line in L1. This completes the analysis of Case 2, and hence the

proof of the proposition.
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