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Abstract

We show that the minimum number of vertices of a simplicial complex with fundamental
group Zn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on
orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–
Gallai result. This application of extremal results in discrete geometry seems to be new. We
also prove that any group presentation ïS|Rð ∼= Zn whose relations are of the form gahbic

for g, h, i ∈ S has at least Ω(n3/2) generators.
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1 Introduction

Given a spaceX , a vertex-minimal triangulation ofX is a simplicial complex homeomorphic
to X using as few vertices as possible. Such triangulations are known for only a few
manifolds [8, 16, 18], and upper and lower bounds differ significantly for many others,
despite recent improvements such as [1]. For example, the n-dimensional torus can be
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triangulated on 2n+1 − 1 vertices [17], but the best known lower bounds are quadratic in n;
see [5].

The number of faces of a simplicial complex X can be bounded in terms of the Betti
numbers ofX [7] or in terms of the minimal number of generators of Ã1(X) [22]. The effect
of relations of Ã1(X) on vertex numbers has been studied for cyclic torsion groups [15, 23]
and for triangulations of manifolds with non-free fundamental group [25]. In this paper,
we consider the minimal number of vertices of a simplicial complex with fundamental
group Zn:

Theorem 1.1. We have the following asymptotic results for vertex numbers of simplicial

complexes with fundamental group Zn:

(a) There is a simplicial complex Xn with Ã1(Xn) ∼= Zn on O(n) vertices.

(b) Every simplicial complex Xn with Ã1(Xn) ∼= Zn has Ω(n3/4) vertices.

These results appear separately as Theorems 2.8 and 3.21; our precise upper bound
depends on parity, but is asymptotically 4n in both cases:

Theorem 2.8. For n ∈ N with n ̸= 2, 3, there exists:

• A simplicial complex X2n with 8n− 1 vertices, Ã1(X2n) ∼= Z2n.

• A simplicial complex X2n−1 with 8n− 3 vertices, Ã1(X2n−1) ∼= Z2n−1.

To prove theO(n) upper bound, we construct a complex Wn on n2+n+1 vertices with
fundamental group Ã1(Wn) ∼= Zn, and then perform identifications that preserve Ã1(Wn).
The latter step uses a result on orthogonal 1-factorizations of the complete graphK2n, which
is implied by a result on Room squares; see [14, 20, 21].

To prove the Ω(n3/4) lower bound, we relate simplicial complexes to group presentations.
Specifically, we define a 3 -presentation as a group presentation ïS|Rð whose relations are
of the form gahbic for g, h, i ∈ S; this is a generalization of triangular presentations as
studied in [2, 3, 4]. Then we show that simplicial complexes give rise to 3-presentations.

For any group presentation ïS|Rð ∼= Zn, it is known that |R| g
(

n
2

)

; this bound is sharp,
by the presentation

ïg1, . . . , gn | gigjg
−1
i g−1

j , i < jð ∼= Zn.

The bound |R| g
(

n
2

)

already gives a Ω(n2/3) lower bound for vertex numbers in The-
orem 1.1(b). To strengthen this homological bound, we develop a novel application of
extremal results in discrete geometry (specifically, the fractional Sylvester–Gallai results in
[6, 10, 11]), to show that any 3-presentation ïS|Rð ∼= Zn has |S| = Ω(n3/2). This translates
to a Ω(n3/4) lower bound in Theorem 1.1(b).

We pose the following questions for further research:

Question 1.2. Can we close the gap in Theorem 1.1 between the upper and lower bounds?

Question 1.3. Can we prove an analogue to Theorem 1.1 for fundamental group (Zk)
n

(perhaps restricting k to primes or prime powers)?

We will generally assume simplicial complexes X are connected, since if X is discon-
nected, and Ã1(X, v) ∼= G, then the component C of X containing v has fewer vertices than
X , and Ã1(C, v) ∼= G. Under this assumption, Ã1(X, v) is independent of v, so we will
write Ã1(X) instead.
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2 Upper bound

In this section, we show that for all n ∈ N, there exists a simplicial complex Xn on O(n)
vertices with fundamental group Ã1(Xn) ∼= Zn. We start by constructing a complex Wn

on n2 + n + 1 vertices with fundamental group Ã1(Wn) ∼= Zn, and then obtain Xn by
identifying vertices and edges. We write [n] for {1, 2, . . . , n}.

Definition 2.1. For n ∈ N, the simplicial complex Wn is defined as follows:

• The vertex set consists of a vertex u, vertices vi,k for i ∈ [n], k ∈ [2], and vertices
wi,j,k for i, j ∈ [n], i < j, k ∈ [2].

• The edge set includes edges {u, vi,1}, {vi,1, vi,2}, {vi,2, u} for all i ∈ [n].

• For each i, j ∈ [n] with i < j, we include edges and triangles as in the following
diagram. (The vertices and edges on the boundary are those defined above, and each
planar region corresponds to a triangle.)

u

u

u

u

vj,1

vj,2

vj,1

vj,2

vi,1 vi,2

vi,1 vi,2

wi,j,1

wi,j,2

(This diagram also gives a vertex-minimal triangulation of the torus.)

Lemma 2.2. For all n ∈ N, we have Ã1(Wn) ∼= Zn.

Proof. Note that Wn is homeomorphic to a CW complex W ′
n consisting of:

• A single 0-cell u.

• A 1-cell ei from u to itself for each i ∈ [n], corresponding to the edges {u, vi,1},
{vi,1, vi,2}, and {vi,2, u}.

• A 2-cell fi,j attached along eieje
−1
i e−1

j for each i, j ∈ [n], i < j, corresponding to

the triangles in the diagram in Definition 2.1 for i, j. (By e−1
i we denote attaching in

the opposite direction along ei.)

This gives a group presentation Ã1(W ′
n)

∼= ïS|Rð, where

S = {ei : i ∈ [n]}, R = {eieje
−1
i e−1

j : i, j ∈ [n], i < j}.

But ïS|Rð ∼= Zn, so Ã1(Wn) ∼= Ã1(W
′
n)

∼= Zn, as desired.

We now establish the tools we need to perform identifications on Wn.
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Definition 2.3. Let X be a simplicial complex with vertex u ∈ V (X). We say that a set
S ¦ V (X) \ {u} is a spur in (X,u) if the following properties hold:

(1) Each v ∈ S is adjacent to u in X .

(2) No two distinct v, v′ ∈ S are adjacent in X .

(3) No two distinct v, v′ ∈ S have a common neighbor in X other than u.

Definition 2.4. Let X be a simplicial complex with vertex u ∈ V (X). We say that two
spurs S, S′ in (X,u) are compatible if S ∩ S′ = ∅, and there is at most one edge {v, v′} in
X with v ∈ S, v′ ∈ S′.

Lemma 2.5. Let X be a simplicial complex with vertex u ∈ V (X). If S is a spur in (X,u),
then we can “collapse” S to obtain a simplicial complex, which we denote X/S, as follows:

• Identify all vertices v ∈ S to a single new vertex w.

• Identify all edges {u, v} for v ∈ S to a single edge {u,w}.

Moreover, Ã1(X/S) ∼= Ã1(X).

Proof. We may perform the identifications in the category of CW complexes, but we need
to prove that the result is a simplicial complex. Since no adjacent vertices are identified,
it remains to prove that no two distinct faces f, f ′ of X have the same vertex set in X/S,
other than those explicitly identified.

If f, f ′ are distinct faces ofX with the same vertex set inX/S, then there exist v, v′ ∈ S
with v ∈ f , v′ ∈ f ′. If f, f ′ ¦ {u}∪S, then f, f ′ are either {v}, {v′} or {u, v}, {u, v′}, and
are explicitly identified. Hence we may assume that f, f ′ both contain a vertex x ̸∈ {u}∪S.
But then x is a common neighbor of v, v′, a contradiction. Hence X/S is a simplicial
complex.

Now letA be the subcomplex ofX with vertices u, S and edges {u, v} for all v ∈ S, and
let B be the subcomplex of X/S with vertices u,w and edge {u,w}. Consider the quotients
X/A, (X/S)/B in the category of CW complexes, and note that X/A ∼= (X/S)/B. Since
A,B are contractible, we have homotopy equivalences X/A ≃ X and (X/S)/B ≃ X/S
(see e.g., [13, Proposition 0.17]). By transitivity, we have X ≃ X/S, so Ã1(X) ∼= Ã1(X/S)
as desired.

Lemma 2.6. Let X be a simplicial complex with vertex u ∈ V (X).

(a) If S, S′ are compatible spurs in (X,u), then S′ is a spur in (X/S, u).

(b) If S, S′, S′′ are pairwise compatible spurs in (X,u), then S′, S′′ are compatible spurs

in (X/S, u).

Proof. For (a), conditions (1), (2) in Definition 2.3 hold since S, S′ are disjoint, and
condition (3) holds since S, S′ have at most one edge between them.

For (b), S′, S′′ are spurs in (X/S, u) by (a), and compatibility follows from the fact that
collapsing S does not affect vertices or edges among S′ ∪ S′′.

Lemma 2.7. For n ∈ N with n ̸= 2, 3, the vertices wi,j,k of W2n (or W2n−1) can be

partitioned into 4n− 2 pairwise compatible spurs in (W2n, u) (or (W2n−1, u)).
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Proof. A 1 -factorization of the complete graph on vertex set [2n] is a partition of its edges
into perfect matchings. An orthogonal pair of 1-factorizations is a pair of 1-factorizations,
such that no two edges appear in the same matching in both factorizations. By [21] (see
also [14, 20]), such a pair (F1, F2) exists for all n ∈ N with n ̸= 2, 3.

Then for each matching M ∈ Fk, we construct a spur SM in (W2n, u):

SM = {wi,j,k : {i, j} ∈M}

To see that SM is a spur, note that the neighbors of wi,j,k in W2n are u, and some vertices
of the form vi,k′ , vj,k′ , wi,j,k′ for k′ ∈ [2], so conditions (1) and (2) hold. Since M is a
matching, condition (3) holds.

Then the SM are disjoint, and the only edges between vertices in SM , SM ′ for distinct
M,M ′ are the edges {wi,j,1, wi,j,2}, which arise for M ∈ F1, M ′ ∈ F2 with {i, j} ∈
M , {i, j} ∈ M ′. Then the orthogonality of (F1, F2) implies that the SM are pairwise
compatible, and there are 2(2n− 1) = 4n− 2 such SM .

Viewing W2n−1 as an induced subcomplex of W2n, the SM remain pairwise compatible
spurs in (W2n−1, u), upon deleting the missing vertices.

Our promised upper bound follows:

Theorem 2.8. For n ∈ N with n ̸= 2, 3, there exists:

• A simplicial complex X2n with 8n− 1 vertices, Ã1(X2n) ∼= Z2n.

• A simplicial complex X2n−1 with 8n− 3 vertices, Ã1(X2n−1) ∼= Z2n−1.

Proof. Starting withW2n orW2n−1, apply Lemma 2.7 to obtain 4n−2 pairwise compatible
spurs. Collapse these spurs, one by one, via Lemma 2.5, to obtain X2n or X2n−1 with
Ã1(X2n) ∼= Z2n, Ã1(X2n−1) ∼= Z2n−1; note that Lemma 2.6 guarantees that the remaining
spurs remain compatible. The remaining vertices are u, the vi,k, and one vertex for each
spur, so:

• The number of vertices in X2n is 1 + 4n+ (4n− 2) = 8n− 1.

• The number of vertices in X2n−1 is 1 + 2(2n− 1) + (4n− 2) = 8n− 3.

This completes the proof.

3 Lower bound

In this section, we show that a simplicial complex X with fundamental group Ã1(X) ∼= Zn

has Ω(n3/4) vertices. We begin by relating simplicial complexes to group presentations:

Definition 3.1. Given a group G, a 3 -presentation of G is a group presentation ïS|Rð ∼= G
where each relation in R is one of the following:

• ïð (the empty word).

• ga, where g ∈ S and a ∈ Z.

• gahb, where g, h ∈ S and a, b ∈ Z.

• gahbic, where g, h, i ∈ S and a, b, c ∈ Z.
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We say such a word w is in normal form if the generators used are all distinct, and a, b, c ̸= 0.
To “write r ∈ R in normal form” means to find w in normal form such that r and w are
conjugates in ïSð; in this case we write r ⇝ w.

For example, we describe a 3-presentation ïS|Rð ∼= Zn, derived from the presentation
for Zn given in the introduction:

S = {gi : i ∈ [n]} ∪ {hi,j : i, j ∈ [n], i < j}

R = {gigjhi,j , gjgihi,j : i, j ∈ [n], i < j}

We will use the phrase, “Let ϕ : ïS|Rð ∼= G be a 3-presentation,” to mean, “Let
ïS|Rð ∼= G be a 3-presentation, and fix an isomorphism ϕ : ïS|Rð → G.”

Lemma 3.2. Let ïS|Rð ∼= G be a 3-presentation. Then any relation r ∈ R can be written

uniquely in normal form, up to the following conjugacies:

• gahb, hbga are conjugates in ïSð.

• gahbic, hbicga, icgahb are conjugates in ïSð.

Proof. If r is not in normal form, we can apply one of the following steps:

• If r has a zero exponent or identical adjacent generators, rewrite r with fewer genera-
tors. (For example, g0hi becomes hi; g1g2h becomes g3h.)

• If r = gahbgc, then replace r with its conjugate ga+chb.

Each such step reduces k in r =
∏k

i=1 g
ai

i , so this process terminates. Uniqueness follows
from considering the conjugates of reduced words w.

Lemma 3.3. IfX is a simplicial complex on k vertices with fundamental group Ã1(X) ∼= G,

then there exists a 3-presentation ïS|Rð ∼= G with |S| f
(

k
2

)

and |R| f
(

k
3

)

.

Proof. Assume X is connected, otherwise reduce to the component of X containing the
basepoint. Then the 1-skeleton of X is a connected graph; choose a spanning tree T of this
graph. ViewX as a CW complex and T as a contractible subcomplex of X , and consider the
quotient complexX/T , which is homotopy equivalent toX (see e.g., [13, Proposition 0.17]),
so Ã1(X/T ) ∼= G.

Now X/T has a single 0-cell, and hence can be viewed as the presentation complex of
some group presentation ïS|Rð ∼= G upon choosing a direction for each 1-cell. The 1-cells
correspond bijectively to the generators, and arise from distinct edges of X , so |S| f

(

k
2

)

.
The 2-cells correspond bijectively to the relations, and arise from distinct triangles of X , so
|R| f

(

k
3

)

.
Moreover, each r ∈ R is of one of the following forms, depending on how many edges

of the corresponding triangle in X lie in T :

• ga, where g ∈ S and a ∈ {±1}.

• gahb, where g, h ∈ S are distinct and a, b ∈ {±1}.

• gahbic, where g, h, i ∈ S are distinct and a, b, c ∈ {±1}.

In particular, ïS|Rð is a 3-presentation, which completes the proof.
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Hence we may turn our attention to proving lower bounds on |S| and |R| for 3-
presentations ïS|Rð of given groups. We will use the concept of deficiency:

Definition 3.4. The deficiency of a group presentation P = ïS|Rð is def P = |S| − |R|.
The deficiency, def G, of a group G is the maximum of def P over all finite presentations P
of G.

Then we have an inequality in group homology due to Epstein [12]:

def G f rank H1(G;Z)− s(H2(G;Z)),

where s(H2(G;Z)) is the minimum number of generators of H2(G;Z). (For a related
inequality in terms of free resolutions, see [26].) In particular, when G is Zn, we obtain
def Zn f n−

(

n
2

)

. Thus we have several constraints on the size of a presentation of Zn; if
ïS|Rð ∼= Zn, then

• |S| g n.

• |R| − |S| g
(

n
2

)

− n.

• |R| g
(

n
2

)

(by adding the previous two inequalities).

For the presentation of Zn described in the introduction, we have equality in all three of
these bounds. Hence def Zn = n−

(

n
2

)

.
Lemma 3.3 allows us to translate these bounds into lower bounds for the number

of vertices in a simplicial complex X with fundamental group Ã1(X) ∼= Zn. The first
inequality above gives a bound of Ω(n1/2), and the third gives a stronger bound of Ω(n2/3).
We present the latter bound in more detail:

Proposition 3.5. A simplicial complex X with fundamental group Ã1(X) ∼= Zn has at least

Ω(n2/3) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex Xn with
fundamental group Ã1(Xn) ∼= Zn. By Lemma 3.3, for each n we obtain a 3-presentation

ïSn|Rnð ∼= Zn with |Rn| f
(

f(n)
3

)

. But |Rn| g
(

n
2

)

, so
(

f(n)
3

)

g
(

n
2

)

, hence f(n) =

Ω(n2/3).

Up to now, we have considered bounds on the size of arbitrary presentations of Zn.
Now we turn to proving that for 3-presentations ïS|Rð ∼= Zn, we have a stronger bound
|S| = Ω(n3/2). First we introduce a notion of dimension:

Definition 3.6. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation. Then the dimension of a subset
S′ ¦ S, denoted dimS′, is

dim(span({ϕ(g) : g ∈ S′})),

where we view each ϕ(g) as a vector in Rn § Zn.
For r ∈ R, let r ⇝

∏

i g
ai

i by Lemma 3.2. The dimension of r is the dimension of the
subset {gi} ¦ S. (Note that the set {gi} is independent of the choice of normal form, so
this definition is valid.)
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Note that for a relation r with r ⇝
∏k

i=1 g
ai

i , we have
∑k

i=1 aiϕ(gi) = 0, a linear
dependence among the ϕ(gi). It follows that dim r < k. In particular, all relations of a
3-presentation ïS|Rð ∼= Zn have dimension at most two.

Our next goal is to show that for 3-presentations ïS|Rð ∼= Zn with |S| minimal, all
nonempty relations have dimension exactly two. To do this, we use Tietze transformations
([27]; see also [19]):

Remark 3.7 ([27, Tietze]). Consider a group presentation ïS|Rð ∼= G. Then:

• Let r be a word over S which is the identity in ïS|Rð. Then ïS|R ∪ {r}ð ∼= G.

• Let w be a word over S, and let g be fresh. Then ïS ∪ {g}|R ∪ {g−1w}ð ∼= G.

We refer to the passage from one presentation to another in either of these ways, in either
direction, as a Tietze transformation.

We now establish several transformations of 3-presentations:

Lemma 3.8. Let ïS|Rð ∼= Zn be a 3-presentation, and suppose g = e (the identity) in

ïS|Rð, where g ∈ S. Then we obtain a 3-presentation ïS′|R′ð ∼= Zn where:

• S′ = S \ {g}.

• R′ is obtained from R by removing g wherever it appears in relations r ∈ R. (For

example, ghi ∈ R becomes hi ∈ R′.)

Proof. We apply Tietze transformations:

• Add the redundant relation g to R to obtain R′.

• Remove g wherever it appears in relations r ∈ R′, except in the relation g ∈ R′. This
is valid since g = e in ïS|R′ð by the relation g ∈ R′. (Each such removal is two
Tietze transformations, adding and removing a relation.)

• Remove the generator g, along with the relation g.

This gives the desired 3-presentation of Zn.

Lemma 3.9. Let ïS|Rð ∼= Zn be a 3-presentation, and suppose gahb = e (the identity) in

ïS|Rð, where g, h ∈ S are distinct, a, b ̸= 0, and a, b are relatively prime. Then we obtain

a 3-presentation ïS′|R′ð ∼= Zn where:

• S′ = S ∪ {i} \ {g, h}, where i is a fresh generator.

• R′ is obtained from R by replacing g with ib and h with i−a wherever they appear in

relations r ∈ R.

Proof. There exist c, d ∈ Z with ac+ bd = 1. We apply Tietze transformations:

• Add the relation gahb, which is redundant by assumption.

• Add a generator i, along with the relation i−1gdh−c, to obtain a new 3-presentation

ϕ′ : ïS′|R′ð ∼= Zn.
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• Add the relation g−1ib, which is redundant since

ib = gbdh−bc = g1−ach−bc = g(gahb)−c = g

in ïS′|R′ð. (We use commutativity of g, h in ïS′|R′ð, which follows from commuta-
tivity of ϕ′(g), ϕ′(h) in Zn.)

• Similarly, add the relation h−1i−a, which is redundant since

i−a = g−adhac = g−adh1−bd = h(gahb)−d = h

in ïS′|R′ð.

• Replace g with ib and h with i−a wherever they appear in relations r ∈ R′ (i.e. in all
relations other than the new relations g−1ib, h−1i−a).

• Remove the generators g, h, along with the relations g−1ib, h−1i−a.

• Remove the relation i−1gdh−c, which is now i−1ibdiac = e.

• Remove the relation gahb, which is now (ib)a(i−a)b = e.

This gives the desired 3-presentation of Zn.

Lemma 3.10. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation with |S| minimal. Then for each

nonempty r ∈ R, we have r ⇝ gahbic, where g, h, i ∈ S are distinct and a, b, c ̸= 0, and

dim r = 2.

Proof. Let r ⇝
∏k

i=1 g
ai

i by Lemma 3.2. By Lemma 3.8, no gi = e in ïS|Rð, which
implies k ̸= 1. By Lemma 3.9, no distinct gi, gj have ϕ(gi), ϕ(gj) in a common one-
dimensional subspace of Rn, which implies k ̸= 2.

Hence k = 3, so r ⇝ gahbic for g, h, i ∈ S distinct and a, b, c ̸= 0. Then the
considerations above imply dim{g, h} = 2, so dim r g 2. Since ϕ(g), ϕ(h), ϕ(i) are
dependent in Rn, we have dim r = 2.

Now we turn our attention to subsets of relations of 3-presentations of Zn.

Definition 3.11. Let ïS|Rð ∼= Zn be a 3-presentation, and let A ¦ S, R′ ¦ R. Then define
the set R′[A] ¦ R′ as

R′[A] = {r ∈ R′ : r ⇝ w, and w uses only generators in A}.

Note that any group presentation of a two-dimensional lattice using k generators requires
k − 1 relations, e.g., ïg, h, i | ghi, ihgð ∼= Z2. This motivates the following definition:

Definition 3.12. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation, and let R′ ¦ R.

• For A ¦ S with dimA = 2, R′ is sparse on A if |R′[A]| f |A| − 1.

• R′ is sparse if R′ is sparse on all A ¦ S with dimA = 2.

• A set A ¦ S is critical for R′ if dimA = 2 and |R′[A]| = |A| − 1.
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Lemma 3.13. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation with |S| minimal, so that Lemma 3.10
applies. Suppose R′ ¦ R is sparse, and A,B ¦ S are critical for R′. If R[A] ∩R[B] ̸= ∅,

then A ∪B is also critical for R′.

Proof. Let r ∈ R[A] ∩ R[B], and write r ⇝ gahbic by Lemma 3.10. Then the set
{ϕ(g), ϕ(h), ϕ(i)} spans a 2-dimensional subspace U ¦ Rn. Since dimA = dimB = 2,
it follows that span(ϕ(A)) = span(ϕ(B)) = U . Then

U ¦ span(ϕ(A ∩B)) ¦ span(ϕ(A)) = U,

so span(ϕ(A ∩ B)) = U , and span(ϕ(A ∪ B)) = U + U = U . In particular, we have
dim(A ∩B) = dim(A ∪B) = 2. Therefore, we have

|R′[A ∪B]| g |R′[A]|+ |R′[B]| − |R′[A ∩B]|

g (|A| − 1) + (|B| − 1)− (|A ∩B| − 1)

g |A ∪B| − 1.

Since R′ is sparse, we have equality above, so A ∪B is critical for R′.

Corollary 3.14. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation with |S| minimal, so that

Lemma 3.10 applies. Suppose R′ ¦ R is sparse. Then there exists a collection C of

certain critical sets A ¦ S for R′, such that:

(1) If B ¦ S is critical for R′, then there exists A ∈ C with B ¦ A.

(2) If A,B ∈ C, then R[A] ∩R[B] = ∅.

Proof. First take the collection C = {A ¦ S : A critical for R′}; then (1) holds. If
A,B ∈ C with R[A] ∩R[B] ̸= ∅, then by Lemma 3.13, A ∪ B is critical for R′. Then
consider removing A,B from C, and adding A ∪B if it is not present.

While (2) fails, apply the step above repeatedly. Each step preserves (1) and reduces |C|,
so this process terminates with C such that (1), (2) both hold.

Lemma 3.15. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation with |S| minimal, so that Lemma 3.10
applies. Partition R as R = Rs ⊔Re ⊔Ro (mnemonic: “sparse,” “extra,” “other”), such

that Rs is sparse, and Re and Ro are determined from Rs as follows:

• For each r ∈ Re with r ⇝ gahbic, we have {g, h, i} ¦ A for some critical A ¦ S
for Rs.

• For each r ∈ Ro with r ⇝ gahbic, we have {g, h, i} ̸¦ A for all critical A ¦ S for

Rs.

Then we obtain a 3-presentation ïS′|R′ð ∼= Zn where:

• S′ includes all generators in S.

• R′ includes all relations in Ro.

• |R′| − |S′| = |Rs|+ |Ro| − |S|.
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Proof. Obtain a collection C of critical sets for Rs via Corollary 3.14. Then for each A ∈ C,
consider the integer span of ϕ(A) in Zn, that is, the set

Λ(A) =

{

k
∑

i=1

aiϕ(gi) : k ∈ N, ai ∈ Z, gi ∈ A

}

.

We have Λ(A) ∼= Z2 (see [9, Theorem 1.12.3]), so Λ(A) has a basis {x1, x2}. We apply
Tietze transformations (for each A ∈ C) to ïS|Rð. (We will introduce some relations with
more than three generators, but we remove these later.)

• For each j ∈ [2], write xj =
∑

i aiϕ(gi) for ai ∈ Z, gi ∈ A. Then add a generator
hj , along with the relation h−1

j

∏

i g
ai

i , to obtain ϕ′ : ïS′|R′ð ∼= Zn. Note that

ϕ′(hj) = ϕ

(

∏

i

gai

i

)

=
∑

i

aiϕ(gi) = xj .

• For each g ∈ A, write ϕ(g) =
∑

j bjxj for bj ∈ Z. Then add the relation g−1
∏

j h
bj
j ,

which is redundant since

ϕ′



g−1
∏

j

h
bj
j



 = −ϕ(g) +
∑

j

bjϕ
′(hj) = 0,

where we use ϕ′(hj) = xj in the last step.

• Add a generator h∗, along with the relation h−1
∗ h1h2.

• Add the relation h−1
∗ h2h1, which is redundant since Zn (and hence our current

ïS′|R′ð ∼= Zn) is abelian. Note that the relation h1h2h
−1
1 h−1

2 is now implied by the
relations h−1

∗ h1h2 and h−1
∗ h2h1.

• Remove all relations r ∈ R[A], which are now redundant. To see this, first rewrite

r in terms of only the hj , via the relations g−1
∏

j h
bj
j . Then rewrite r as

∏

j h
bj
j

for bj ∈ Z, via the relations hihjh
−1
i h−1

j . Applying ϕ′, we obtain
∑

j bjxj = 0, so

bj = 0 by the lattice structure of Λ(A) ∼= Z2. Hence we have rewritten r as the empty
word, so r is redundant.

• Remove the relations h−1
j

∏

i g
bi
i added in the first step, which are now redundant,

since we may rewrite any such relation in terms of only the hj , and then apply the
previous argument.

After applying these steps for each A ∈ C, we call the resulting 3-presentation ïS′|R′ð. For
each A ∈ C, we have added three generators and a net of |A| − |R[A]| + 2 relations. By
definition of C, the sets R[A] are disjoint for distinct A ∈ C. Also, Ro[A] = ∅, since A is
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critical. Therefore,

|R′| − |S′| = |R| − |S|+
∑

A∈C

(|A| − |R[A]| − 1)

= |R| − |S|+
∑

A∈C

(|A| − |Rs[A]| − 1)−
∑

A∈C

|Re[A]|

= |R| − |S| − |Re|

= |Rs|+ |Ro| − |S|.

This completes the proof.

We need one more transformation of presentations:

Lemma 3.16. Let ϕ : ïS|Rð ∼= Zn be a 3-presentation, let S′ ¦ S, and let d = dimS′.

Then we obtain a presentation ïS′′|R′′ð ∼= Zn−d where:

• S′′ = S \ S′.

• R′′ is obtained from R by adding d relations to form R′, then removing each g ∈ S′

wherever it appears in relations r ∈ R′.

Proof. Let U = span(ϕ(S′)) in Rn. Then U∩Zn is a lattice of dimension d, so we may take
a basis {x1, . . . , xd} of U ∩ Zn, and extend to a basis {x1, . . . , xn} of Zn (see Chapter 2,
Lemma 4 of [24]). Then for each i ∈ [d], let wi be a word in ïSð with ϕ(wi) = xi in Zn.
Let R′ = R ∪ {w1, . . . , wd}.

We claim ïS|R′ð ∼= Zn−d. To prove this, we will construct an isomorphismÈ : ïS|R′ð →
Zn−d. Let p : Zn → Zn−d be the projection to the last n− d coordinates under the basis
{x1, . . . , xn}; more precisely,

p

(

n
∑

i=1

aixi

)

=

n
∑

i=d+1

aiyi,

where {yd+1, . . . , yn} is a basis for Zn−d. Note that p is linear. Now define È on S by
È(g) = p(ϕ(g)) for all g ∈ S, and extend È to ïSð by the universal property of the free
group. Then for any word w =

∏

i g
ai

i in ïSð, we have

È(w) =
∑

i

aiÈ(gi) =
∑

i

aip(ϕ(gi)) = p

(

∑

i

aiϕ(gi)

)

= p(ϕ(w)).

In particular, for r ∈ R, we have È(r) = p(ϕ(r)) = p(0) = 0. For the wi above, we have
È(wi) = p(ϕ(wi)) = p(xi) = 0. Therefore, È is well-defined on ïS|R′ð.

To show È is injective, suppose È(w) = 0 for w ∈ ïSð. Then p(ϕ(w)) = 0, so

ϕ(w) =
∑d

i=1 aixi for some ai ∈ Z. Then ϕ(w) = ϕ(
∏d

i=1 w
ai

i ) so w =
∏d

i=1 w
ai

i in

ïS|Rð by the injectivity of ϕ. Since R ¦ R′, we have w =
∏d

i=1 w
ai

i in ïS|R′ð also. But
since wi ∈ R′, this implies w = e in ïS|R′ð.

To show È is surjective, it suffices to show that for each d < i f n, there exists
w ∈ ïSð with È(w) = yi. By the surjectivity of ϕ, take w with ϕ(w) = xi. Then
È(w) = p(ϕ(w)) = p(xi) = yi as desired. Hence ïS|R′ð ∼= Zn−d.

Now all generators g ∈ S′ have g = e in ïS|R′ð, so repeated application of Lemma 3.8
gives the desired result.
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Next, we need a variant of the Sylvester–Gallai-type results in [6, 10, 11]. We begin by
stating the relevant definition and theorem from [11]:

Definition 3.17 ([11, Definition 1.7]). Given a set of points v1, . . . , vn ∈ Rd, a special line

is a line in Rd containing at least three of the points vi. We say that v1, . . . , vn is a ¶-SG

configuration if for each vi, i ∈ [n], at least ¶(n− 1) of the remaining points lie on special
lines through vi.

Theorem 3.18 ([11, Theorem 5.1]). If v1, . . . , vn is a ¶-SG configuration, then the affine

dimension of {v1, . . . , vn} is at most 12/¶.

Now we give our variant; we translate the average case result in [11] from an affine
setting to a linear one (as in [10]), with a guarantee on |E′|:

Theorem 3.19. Let V ¦ Rd \{0} be a finite set of points, such that no two points in V lie in

a common 1-dimensional subspace of Rd. LetE be a finite multiset of triples {u, v, w}, each

consisting of distinct points u, v, w ∈ V lying in a common 2-dimensional subspace of Rd,

so that (V,E) forms a 3-uniform hypergraph. Suppose that for each induced subhypergraph

(V ′′, E′′) of (V,E) with dim(span(V ′′)) f 2, we have |E′′| f |V ′′| − 1. Then for ¼ > 0,

there exists an induced subhypergraph (V ′, E′) of (V,E) with |E| − |E′| < ¼|V |, and

dim(span(V ′))− 1 f 12|V |/¼.

Proof. Following the proof of [6, Theorem 13], consider (V,E) as a 3-uniform hypergraph,
and repeatedly remove vertices of degree less than ¼. This removes less than ¼|V | edges, so
we obtain a sub-hypergraph (V ′, E′) with |E| − |E′| < ¼|V | and minimum degree at least
¼.

Fix u ∈ V ′; the neighborhood N(u) in (V ′, E′) forms a graph G(u), where we consider
two vertices v, w ∈ N(u) adjacent if and only if {u, v, w} ∈ E′. If v, w ∈ N(u) are
adjacent in G(u), then w lies in span({u, v}) ¦ Rd. Therefore, if {v1, . . . , vk} form a
component C of G(u), then U = {u, v1, . . . , vk} has dim(span(U)) f 2, so the number
of triples in E′ using only points in U is at most k. Hence the number of edges in C is at
most k. Summing over components C, the number of neighbors of u in (V ′, E′) is at least
deg(V ′,E′) u g ¼.

Now choose a nonzero vector n⃗ ∈ Rd not orthogonal to any v ∈ V ′, and define an
affine hyperplane H = {x⃗ ∈ Rd : x⃗ · n⃗ = 1}. Then to each v ∈ V ′ we associate the
unique point ṽ ∈ span({v}) ∩ H . Note that the ṽ are distinct, since no two points in V
lie in a common 1-dimensional subspace of Rd. Also, note that u, v, w lie in a common
two-dimensional subspace of Rd if and only if ũ, ṽ, w̃ lie on a common line in H . Then
the set Ṽ ′ = {ṽ : v ∈ V ′} is a ¶-SG configuration with ¶ = ¼/|V |. By Theorem 3.18, the
affine dimension of Ṽ ′ is at most 12/¶, so dim(span(V ′))− 1 f 12|V |/¼.

Now we prove our bound on the size of 3-presentations of Zn:

Theorem 3.20. If ïS|Rð ∼= Zn is a 3-presentation, then |S| = Ω(n3/2).

Proof. Fix an isomorphism ϕ : ïS|Rð → Zn. Assume that |S| is minimal, and consider the
images ϕ(g) for g ∈ S. By Lemma 3.8, all ϕ(g) are nonzero; by Lemma 3.9, no two ϕ(g)
lie in a common 1-dimensional subspace of Rn. Moreover, by Lemma 3.10, for each r ∈ R
we have r ⇝ gahbic for g, h, i ∈ S distinct, and dim r = 2. Let R′ be an inclusion-wise
maximal sparse subset of R.
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Now let k = |S|, let c > 0 be a constant to be determined later, and apply Theorem 3.19
with V = ϕ(S), E = {{ϕ(g), ϕ(h), ϕ(i)} : r ⇝ gahbic, r ∈ R′}, and ¼ = ck/n, to obtain
S′ ¦ S such that:

(1) |R′ \R[S′]| f ck2/n.

(2) dimS′ − 1 f 12|V |/¼ = 12n/c.

If there exists g ∈ S \ S′ with dim(S′ ∪ {g}) = dimS′, then we may replace S′ with
S′ ∪ {g}, preserving (1) and (2). Therefore, we may assume that for each g ∈ S \ S′, we
have ϕ(g) ̸∈ span(ϕ(S′)).

Now partition R as R = Rs ⊔Re ⊔Ro, where:

• Rs = R′ \R[S′].

• Re = (R \R′) \R[S′].

• Ro = R[S′].

Note that |Rs| f ck2/n by the above. Now we check the conditions of Lemma 3.15.

• The set Rs is sparse, since sparseness is closed under taking subsets.

• For each r ∈ Re with r ⇝ gahbic, we have {g, h, i} ¦ A for some critical A ¦ S
forR′, since r ̸∈ R′ andR′ is maximal. It suffices to show thatA is also critical forRs.
Since r ̸∈ R[S′], we have {g, h, i} ̸¦ S′; assume WLOG g ̸∈ S′. Then ϕ(g) ̸∈
span(ϕ(S′)) by the above, so span(ϕ(A)) ̸¦ span(ϕ(S′)). Then R[A] ∩ R[S′] = ∅,
since any r′ ∈ R[A] determines the 2-dimensional subspace span(ϕ(A)). Therefore,
A is also critical for Rs.

• For each r ∈ Ro with r ⇝ gahbic, we have {g, h, i} ¦ S′. Suppose for contradiction
that {g, h, i} ¦ A for some critical A ¦ S for Rs. Then dim{g, h, i} = dimA =
2, so we have span(ϕ({g, h, i})) = span(ϕ(A)). Since {g, h, i} ¦ S′, we have
span(ϕ(A)) ¦ span(ϕ(S′)). Therefore, any x ∈ A has ϕ(x) ∈ span(ϕ(S′)), so
x ∈ S′ by our assumption above. Hence we haveA ¦ S′, soRs[A] = ∅, contradicting
the assumption that A is critical for Rs.

Therefore, we may apply Lemma 3.15 to ïS|Rð, to obtain a 3-presentation ïS′′|R′′ð ∼=
Zn with |R′′| − |S′′| = |Rs|+ |Ro| − |S|.

Finally, let d = dimS′−1, and apply Lemma 3.16 to ïS′′|R′′ð using S′ ¦ S′′, to obtain
ïS′′′|R′′′ð ∼= Zn−d. Then remove all relations in R′′′ arising from relations in Ro = R[S′],
which are now trivial, to obtain ïS′′′|R′′′′ð ∼= Zn−d. Then

|R′′′′| − |S′′′| = (|R′′′| − |Ro|)− |S′′′|

= (|R′′|+ d+ 1− |Ro|)− (|S′′| − |S′|)

= (|R′′| − |S′′| − |Ro|) + d+ |S′|+ 1

= (|Rs| − |S|) + d+ |S′|+ 1

= |Rs|+ d− |S \ S′|+ 1

f ck2/n+ d+ 1.
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But by the bound def Zm f m−
(

m
2

)

, we have |R′′′′| − |S′′′| = Ω((n− d)2). Take c = 24;
then d f 12n/c = n/2, so n− d g n/2. Hence |R′′′′| − |S′′′| = Ω(n2). Since d f n/2,
we have ck2/n = Ω(n2). Therefore, k = Ω(n3/2) as desired.

Theorem 3.21. A simplicial complex X with fundamental group Ã1(X) ∼= Zn has at least

Ω(n3/4) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex Xn with
fundamental group Ã1(Xn) ∼= Zn. By Lemma 3.3, for each n we obtain a 3-presentation

ïSn|Rnð ∼= Zn with |Sn| f
(

f(n)
2

)

. But |Sn| = Ω(n3/2), so
(

f(n)
2

)

= Ω(n3/2), hence

f(n) = Ω(n3/4).
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