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Abstract

We show that the minimum number of vertices of a simplicial complex with fundamental
group Z" is at most O(n) and at least Q(n/*). For the upper bound, we use a result on
orthogonal 1-factorizations of K5,. For the lower bound, we use a fractional Sylvester—
Gallai result. This application of extremal results in discrete geometry seems to be new. We
also prove that any group presentation (S|R) = Z" whose relations are of the form g®h?i¢
for g, h,i € S has at least Q(n?/?) generators.
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1 Introduction

Given a space X, a vertex-minimal triangulation of X is a simplicial complex homeomorphic
to X using as few vertices as possible. Such triangulations are known for only a few
manifolds [8, 16, 18], and upper and lower bounds differ significantly for many others,
despite recent improvements such as [|]. For example, the n-dimensional torus can be
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triangulated on 27+ _ 1 vertices [17], but the best known lower bounds are quadratic in n;
see [5].

The number of faces of a simplicial complex X can be bounded in terms of the Betti
numbers of X [7] or in terms of the minimal number of generators of 7y (X) [22]. The effect
of relations of 71 (X') on vertex numbers has been studied for cyclic torsion groups [15, 23]
and for triangulations of manifolds with non-free fundamental group [25]. In this paper,
we consider the minimal number of vertices of a simplicial complex with fundamental
group Z":

Theorem 1.1. We have the following asymptotic results for vertex numbers of simplicial
complexes with fundamental group 7' :

(a) There is a simplicial complex X,, with 71(X,,) = Z™ on O(n) vertices.
(b) Every simplicial complex X, with 711 (X,,) = Z™ has Q(n3/*) vertices.

These results appear separately as Theorems 2.8 and 3.21; our precise upper bound
depends on parity, but is asymptotically 4n in both cases:

Theorem 2.8. Forn € N withn # 2,3, there exists:
* A simplicial complex Xa,, with 8n — 1 vertices, m1(Xa,,) = Z*".
* A simplicial complex X2, _1 with 8n — 3 vertices, m1(Xop,_1) = Z2" 1,

To prove the O(n) upper bound, we construct a complex W,, on n? +n+ 1 vertices with
fundamental group 1 (W,,) = Z™, and then perform identifications that preserve 1 (W,,).
The latter step uses a result on orthogonal 1-factorizations of the complete graph K5,,, which
is implied by a result on Room squares; see [14, 20, 21].

To prove the Q(n3/ 4) lower bound, we relate simplicial complexes to group presentations.
Specifically, we define a 3-presentation as a group presentation (S| R) whose relations are
of the form g®h%i€ for g, h,i € S; this is a generalization of triangular presentations as
studied in [2, 3, 4]. Then we show that simplicial complexes give rise to 3-presentations.

For any group presentation (S|R) = Z", it is known that | R| > (7); this bound is sharp,
by the presentation

(g1, 9n | gigig; tg; t i <) = 2"

The bound |R| > (3) already gives a Q(n?/3) lower bound for vertex numbers in The-
orem 1.1(b). To strengthen this homological bound, we develop a novel application of
extremal results in discrete geometry (specifically, the fractional Sylvester—Gallai results in
[6, 10, 11]), to show that any 3-presentation (S|R) = Z" has |S| = Q(n3/2). This translates
to a Q(n3/*) lower bound in Theorem 1.1(b).

We pose the following questions for further research:

Question 1.2. Can we close the gap in Theorem 1.1 between the upper and lower bounds?

Question 1.3. Can we prove an analogue to Theorem 1.1 for fundamental group (Z)"
(perhaps restricting k to primes or prime powers)?

We will generally assume simplicial complexes X are connected, since if X is discon-
nected, and 71 (X, v) 2 G, then the component C' of X containing v has fewer vertices than
X, and 71 (C,v) = G. Under this assumption, 7 (X, v) is independent of v, so we will
write 71 (X) instead.
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2 Upper bound

In this section, we show that for all n € N, there exists a simplicial complex X, on O(n)
vertices with fundamental group 71 (X,,) = Z™. We start by constructing a complex W,
on n? + n + 1 vertices with fundamental group 7 (W,,) = Z", and then obtain X,, by
identifying vertices and edges. We write [n] for {1,2,...,n}.

Definition 2.1. For n € N, the simplicial complex W, is defined as follows:

* The vertex set consists of a vertex u, vertices v; ;, for i € [n], k € [2], and vertices
w; ok fori,jenl, i <j, kel2.

* The edge set includes edges {w, v; 1}, {vi1,vi 2}, {vi 2, u} foralli € [n].

e For each i,j € [n] with i < j, we include edges and triangles as in the following
diagram. (The vertices and edges on the boundary are those defined above, and each
planar region corresponds to a triangle.)

u Vi1 V;,2 u
Vj2 Wi, 5,2 Vj,2
Uj1 Wi, 4.1 Uj,1

u Vi1 Vi, 2 U

(This diagram also gives a vertex-minimal triangulation of the torus.)
Lemma 2.2. Foralln € N, we have m,(W,,) =2 Z™.

Proof. Note that W, is homeomorphic to a CW complex W, consisting of:
* A single 0-cell w.

* A l-cell e; from u to itself for each ¢ € [n], corresponding to the edges {u,v; 1},
{wi,vi2}, and {v; 2, u}.

» A 2-cell f; ; attached along e;eje; le;1 for each 4, j € [n], i < j, corresponding to
the triangles in the diagram in Definition 2.1 for ¢, j. (By e; ! we denote attaching in
the opposite direction along e;.)

This gives a group presentation 71 (W,)) = (S|R), where
S ={e;:ié€[n]}, R= {eiejeiflej*l 2i,j € [n], i <}
But (S|R) =2 Z", so my (W) = m (W),) =2 Z", as desired. O

‘We now establish the tools we need to perform identifications on W,.
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Definition 2.3. Let X be a simplicial complex with vertex u € V(X). We say that a set
S CV(X)\ {u}is aspurin (X, u) if the following properties hold:

(1) Each v € S'is adjacent to w in X.
(2) No two distinct v,v" € S are adjacent in X.
(3) No two distinct v,v" € S have a common neighbor in X other than .

Definition 2.4. Let X be a simplicial complex with vertex v € V(X). We say that two
spurs S, S” in (X, u) are compatible if S NS’ = (), and there is at most one edge {v, v} in
X withv e S,v' € 5.

Lemma 2.5. Let X be a simplicial complex with vertex w € V(X). If S is a spur in (X, u),
then we can “collapse” S to obtain a simplicial complex, which we denote X /S, as follows:

* Identify all vertices v € S to a single new vertex w.
o Identify all edges {u,v} for v € S to a single edge {u,w}.
Moreover, w1 (X/S) = m1(X).

Proof. We may perform the identifications in the category of CW complexes, but we need
to prove that the result is a simplicial complex. Since no adjacent vertices are identified,
it remains to prove that no two distinct faces f, f’ of X have the same vertex set in X/,
other than those explicitly identified.

If f, f' are distinct faces of X with the same vertex set in X /S, then there exist v, v" € S
withv € f,v' € f/.If f, f/ C {u}US, then f, " are either {v}, {v'} or {u, v}, {u,v'}, and
are explicitly identified. Hence we may assume that f, f’ both contain a vertex x & {u} U S.
But then « is a common neighbor of v,v’, a contradiction. Hence X/S is a simplicial
complex.

Now let A be the subcomplex of X with vertices u, S and edges {u, v} forallv € S, and
let B be the subcomplex of X /.S with vertices u, w and edge {u, w}. Consider the quotients
X/A, (X/S)/B in the category of CW complexes, and note that X /A = (X/S)/B. Since
A, B are contractible, we have homotopy equivalences X/A ~ X and (X/S)/B ~ X/S
(see e.g., [13, Proposition 0.17]). By transitivity, we have X ~ X/S, so my (X) = m(X/S)
as desired. O

Lemma 2.6. Let X be a simplicial complex with vertex u € V(X).
(a) If S, S’ are compatible spurs in (X, u), then S" is a spur in (X/S, u).

(b) IfS,S’, S" are pairwise compatible spurs in (X, ), then S’, S are compatible spurs
in (X/S,u).

Proof. For (a), conditions (1), (2) in Definition 2.3 hold since S, S’ are disjoint, and
condition (3) holds since S, S” have at most one edge between them.

For (b), S’, S” are spurs in (X/S, u) by (a), and compatibility follows from the fact that
collapsing S does not affect vertices or edges among S’ U S”. O

Lemma 2.7. For n € N with n # 2,3, the vertices w; j of Way, (or Wayn_1) can be
partitioned into 4n — 2 pairwise compatible spurs in (Way,, u) (or (Wap_1, u)).
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Proof. A 1-factorization of the complete graph on vertex set [2n] is a partition of its edges
into perfect matchings. An orthogonal pair of 1-factorizations is a pair of 1-factorizations,
such that no two edges appear in the same matching in both factorizations. By [21] (see
also [14, 20]), such a pair (Fy, F») exists for all n € N with n # 2, 3.

Then for each matching M € Fj,, we construct a spur Sys in (Wap,, u):

Sn = {wijr: {i,j} € M}

To see that Sy is a spur, note that the neighbors of w; ;1 in Wa,, are u, and some vertices
of the form v; 7, v, p, w; j & for k' € [2], so conditions (1) and (2) hold. Since M is a
matching, condition (3) holds.

Then the S, are disjoint, and the only edges between vertices in Sy, S for distinct
M, M" are the edges {w; ;1,w; j2}, which arise for M € Fy, M’ € F, with {i,j} €
M, {i,j} € M’'. Then the orthogonality of (Fy, F») implies that the Sy, are pairwise
compatible, and there are 2(2n — 1) = 4n — 2 such Sy;.

Viewing Wo,,_1 as an induced subcomplex of W, the S, remain pairwise compatible
spurs in (Wa,,_1, u), upon deleting the missing vertices. O

Our promised upper bound follows:
Theorem 2.8. For n € N withn # 2,3, there exists:
* A simplicial complex Xa,, with 8n — 1 vertices, m1(Xa,) = Z*".
* A simplicial complex Xo,,_1 with 8n — 3 vertices, w1 (Xop_1) = Z2" 1,

Proof. Starting with Wy,, or Wa,,_1, apply Lemma 2.7 to obtain 4n — 2 pairwise compatible
spurs. Collapse these spurs, one by one, via Lemma 2.5, to obtain Xs,, or X5, _1 with
71 (Xon) =2 722", 711 (Xon_1) = Z*"1; note that Lemma 2.6 guarantees that the remaining
spurs remain compatible. The remaining vertices are u, the v; ;, and one vertex for each
spur, so:

* The number of vertices in Xs,, is 1 + 4n + (4n — 2) = 8n — 1.
* The number of vertices in Xo,_1 is 1 +2(2n — 1) 4 (4n — 2) = 8n — 3.

This completes the proof. O

3 Lower bound

In this section, we show that a simplicial complex X with fundamental group 71 (X) & Z"
has Q(n3/ 1) vertices. We begin by relating simplicial complexes to group presentations:

Definition 3.1. Given a group G, a 3-presentation of G is a group presentation (S|R) = G
where each relation in R is one of the following:

* () (the empty word).
* g% where g € Sand a € Z.
* g®h®, where g,h € S and a,b € Z.

» g®hbi¢, where g, h,i € S and a,b,c € 7Z.
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We say such a word w is in normal form if the generators used are all distinct, and a, b, ¢ # 0.
To “write 7 € R in normal form” means to find w in normal form such that r and w are
conjugates in (S); in this case we write 7 ~> w.

For example, we describe a 3-presentation (S|R) = Z", derived from the presentation
for Z™ given in the introduction:

S={gi:ien]}U{h;:i,j€[n],i<j}
R ={gig;jhi j, 9;gihi; 11,5 € [n], i < j}
We will use the phrase, “Let ¢: (S|R) = G be a 3-presentation,” to mean, “Let
(S|R) = G be a 3-presentation, and fix an isomorphism ¢: (S|R) — G

Lemma 3.2. Let (S|R) = G be a 3-presentation. Then any relation v € R can be written
uniquely in normal form, up to the following conjugacies:

s g*h®, hbg® are conjugates in (S).
o gohbic hbicg® i°g*h® are conjugates in (S).
Proof. If r is not in normal form, we can apply one of the following steps:

 If r has a zero exponent or identical adjacent generators, rewrite r with fewer genera-
tors. (For example, g°hi becomes hi; g'g?h becomes g3h.)

o If r = g°htg®, then replace r with its conjugate g2+¢hb.

Each such step reduces k in r = Hle gi*, so this process terminates. Uniqueness follows
from considering the conjugates of reduced words w. O

Lemma 3.3. If X is a simplicial complex on k vertices with fundamental group m (X ) = G,
then there exists a 3-presentation (S|R) = G with |S| < (g) and |R| < (g)

Proof. Assume X is connected, otherwise reduce to the component of X containing the
basepoint. Then the 1-skeleton of X is a connected graph; choose a spanning tree 7" of this
graph. View X as a CW complex and T as a contractible subcomplex of X, and consider the
quotient complex X /T, which is homotopy equivalent to X (see e.g., [ 13, Proposition 0.17]),
som (X/T) = G.

Now X /T has a single O-cell, and hence can be viewed as the presentation complex of
some group presentation (S|R) = G upon choosing a direction for each 1-cell. The 1-cells
correspond bijectively to the generators, and arise from distinct edges of X, so | S| < (]2“)
The 2-cells correspond bijectively to the relations, and arise from distinct triangles of X, so
R < (5)-

Moreover, each r € R is of one of the following forms, depending on how many edges
of the corresponding triangle in X lie in 7"

* g% where g € Sanda € {£1}.
* g%h®, where g, h € S are distinct and a,b € {&1}.
* g°hbi¢, where g, h,i € S are distinct and a, b, c € {£1}.

In particular, (S|R) is a 3-presentation, which completes the proof. O
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Hence we may turn our attention to proving lower bounds on |S| and |R| for 3-
presentations (S|R) of given groups. We will use the concept of deficiency:

Definition 3.4. The deficiency of a group presentation P = (S|R) is def P = |S| — |R].
The deficiency, def G, of a group G is the maximum of def P over all finite presentations P
of G.

Then we have an inequality in group homology due to Epstein [12]:
def G < rank H(G;Z) — s(H2(G; Z)),

where s(H2(G;Z)) is the minimum number of generators of Ho(G;Z). (For a related
inequality in terms of free resolutions, see [26].) In particular, when G is Z", we obtain
def Z™" <n — (g) Thus we have several constraints on the size of a presentation of Z"; if
(S|R) = Z™, then

* |S| >n.
* IR =181 > (3) - n.
* |R| > (3) (by adding the previous two inequalities).

For the presentation of Z" described in the introduction, we have equality in all three of
these bounds. Hence def Z" = n — (3).

Lemma 3.3 allows us to translate these bounds into lower bounds for the number
of vertices in a simplicial complex X with fundamental group 71 (X) = Z". The first
inequality above gives a bound of (n'/2), and the third gives a stronger bound of Q(n?/3).
We present the latter bound in more detail:

Proposition 3.5. A simplicial complex X with fundamental group 7w1(X) = Z™ has at least
Q(n?/3) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex X,, with
fundamental group 71 (X,,) = Z™. By Lemma 3.3, for each n we obtain a 3-presentation
(SulRyn) = 2" with |R,| < (Y0). But [R,| > (2), 50 (Y0) > (%), hence f(n) =
Q(n?/3). O

Up to now, we have considered bounds on the size of arbitrary presentations of Z".
Now we turn to proving that for 3-presentations (S|R) = Z", we have a stronger bound
|S| = Q(n3/2). First we introduce a notion of dimension:

Definition 3.6. Let ¢: (S|R) = Z™ be a 3-presentation. Then the dimension of a subset
S’ C S, denoted dim 9, is

dim(span({¢(g) : g € §'})),

where we view each ¢(g) as a vector in R” D Z™.

Forr € R, letr ~ HZ gf“ by Lemma 3.2. The dimension of r is the dimension of the
subset {g;} C S. (Note that the set {g;} is independent of the choice of normal form, so
this definition is valid.)
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Note that for a relation r with 7 ~~ Hle gi*, we have Zle a;$(g;) = 0, a linear

dependence among the ¢(g;). It follows that dimr < k. In particular, all relations of a
3-presentation (S|R) = Z™ have dimension at most two.

Our next goal is to show that for 3-presentations (S|R) = Z™ with |.S| minimal, all
nonempty relations have dimension exactly two. To do this, we use Tietze transformations
([27]; see also [19]):

Remark 3.7 ([27, Tietze]). Consider a group presentation (S|R) = G. Then:
* Let r be a word over S which is the identity in (S|R). Then (S|RU {r}) = G.
* Let w be a word over S, and let g be fresh. Then (S U {g}|R U {g~'w}) = G.

We refer to the passage from one presentation to another in either of these ways, in either
direction, as a Tietze transformation.

We now establish several transformations of 3-presentations:

Lemma 3.8. Let (S|R) = Z™ be a 3-presentation, and suppose g = e (the identity) in
(S|R), where g € S. Then we obtain a 3-presentation (S'|R')Y = 7" where:

© 5 =5\ {g}

* R/ is obtained from R by removing g wherever it appears in relations r € R. (For
example, ghi € R becomes hi € R'.)

Proof. We apply Tietze transformations:
* Add the redundant relation g to R to obtain R’

* Remove g wherever it appears in relations r € R’, except in the relation g € R’. This
is valid since g = e in (S|R’) by the relation g € R’. (Each such removal is two
Tietze transformations, adding and removing a relation.)

* Remove the generator g, along with the relation g.
This gives the desired 3-presentation of Z™. O

Lemma 3.9. Let (S|R) = Z" be a 3-presentation, and suppose g*h® = e (the identity) in
(S|R), where g, h € S are distinct, a,b # 0, and a, b are relatively prime. Then we obtain
a 3-presentation (S'|R’) = Z™ where:

o 8" =SU{i}\{g,h}, whereiis a fresh generator.

* R’ is obtained from R by replacing g with i® and h with i~ wherever they appear in
relations r € R.

Proof. There exist ¢, d € Z with ac + bd = 1. We apply Tietze transformations:
* Add the relation g®h®, which is redundant by assumption.
* Add a generator 4, along with the relation i ~*g?h ¢, to obtain a new 3-presentation

¢ (S'|R) = 2",
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¢ Add the relation g’lib, which is redundant since
i = gtdp—be = glmacp—be — g(gapt)=c — g
in (S’|R’). (We use commutativity of g, h in (S’|R"), which follows from commuta-
tivity of ¢'(g), ¢'(h) in Z"™.)
 Similarly, add the relation h~1i~%, which is redundant since
im0 = gmedpac = gmadpl-bd _ prgapby=d _ py
in (S'|R).
* Replace g with i® and h with i =% wherever they appear in relations 7 € R’ (i.e. in all
relations other than the new relations g~ 4%, h=1i~®).
» Remove the generators g, h, along with the relations g~ 'i® h=1i =2,

+ Remove the relation i~ g¢h~¢, which is now i ~1i*j%¢ = ¢,

* Remove the relation g®h®, which is now (i%)?(i=%)? = e.
This gives the desired 3-presentation of Z". O

Lemma 3.10. Let ¢: (S|R) = Z™ be a 3-presentation with |S| minimal. Then for each
nonempty v € R, we have r ~ g*h’i¢, where g, h,i € S are distinct and a, b, c # 0, and
dimr = 2.

Proof. Letr ~ Hle 95" by Lemma 3.2. By Lemma 3.8, no g; = e in (S|R), which

7

implies & # 1. By Lemma 3.9, no distinct g;, g; have ¢(g;), ¢(g;) in a common one-
dimensional subspace of R"™, which implies k # 2.

Hence k = 3, so r ~» ¢®h%i¢ for g, h,i € S distinct and a,b,c # 0. Then the
considerations above imply dim{g,h} = 2, so dimr > 2. Since ¢(g), ¢(h), ¢(i) are
dependent in R™, we have dimr = 2. O

Now we turn our attention to subsets of relations of 3-presentations of Z".

Definition 3.11. Let (S|R) = Z™ be a 3-presentation, and let A C S, R’ C R. Then define
the set R'[A] C R’ as

R'[A] ={r € R’ : 7 ~ w, and w uses only generators in A}.

Note that any group presentation of a two-dimensional lattice using k generators requires
k — 1 relations, e.g., (g, h,i| ghi,ihg) = Z?. This motivates the following definition:

Definition 3.12. Let ¢: (S|R) = Z™ be a 3-presentation, and let R’ C R.
» For A C S with dim A = 2, R’ is sparse on A if |R'[A]| < |A| — 1.
* R’ is sparse if R’ is sparse on all A C S with dim A = 2.

o Aset A C Siscritical for R' if dim A = 2 and |R'[4]| = |4| — 1.
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Lemma 3.13. Let ¢: (S|R) = Z" be a 3-presentation with |\S| minimal, so that Lemma 3.10
applies. Suppose R’ C R is sparse, and A, B C S are critical for R'. If R[A] N R[B] # 0,
then AU B is also critical for R'.

Proof. Let v € R[A] N R[B], and write 7 ~» ¢g?h%¢ by Lemma 3.10. Then the set
{#(9), ¢(h), (i)} spans a 2-dimensional subspace U C R™. Since dim A = dim B = 2,
it follows that span(¢(A)) = span(¢(B)) = U. Then

U C span(¢(A N B)) C span(6(4)) = U,

so span(¢(A N B)) = U, and span(¢(AU B)) = U + U = U. In particular, we have
dim(A N B) = dim(A U B) = 2. Therefore, we have

|R'[AUB]| > |R'[A]| + |R'[B]| — |[R'[AN B]|
= (A -1+ (Bl-1) - (lAnB[-1)
> |AUB| - 1.

Since R’ is sparse, we have equality above, so A U B is critical for R’. O

Corollary 3.14. Let ¢: (S|R) = Z" be a 3-presentation with |S| minimal, so that
Lemma 3.10 applies. Suppose R’ C R is sparse. Then there exists a collection C of
certain critical sets A C S for R, such that:

(1) If B C S is critical for R/, then there exists A € C with B C A.
(2) If A,B €C, then R[A]N R[B] = .

Proof. First take the collection C = {A C S : Acritical for R'}; then (1) holds. If
A, B € C with R[A] N R[B] # 0, then by Lemma 3.13, A U B is critical for R’. Then
consider removing A, B from C, and adding A U B if it is not present.

While (2) fails, apply the step above repeatedly. Each step preserves (1) and reduces |C|,
so this process terminates with C such that (1), (2) both hold. L]

Lemma 3.15. Let ¢: (S|R) = Z" be a 3-presentation with |\S| minimal, so that Lemma 3.10
applies. Partition R as R = R; U R, U R, (mnemonic: “sparse,” “extra,” “other”), such
that R is sparse, and R. and R, are determined from Ry as follows:

s For eachr € R, withr ~ g*hi®, we have {g, h,i} C A for some critical A C S
for R;.

e Foreachr € R, withr ~ g*h%i¢, we have {g, h,i} ¢ A for all critical A C S for
R,.

Then we obtain a 3-presentation (S'|R’) = Z™ where:
» S’ includes all generators in S.
e R'includes all relations in R,,.

© R = |5 = [Rs| + | Ro| — [S].
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Proof. Obtain a collection C of critical sets for R4 via Corollary 3.14. Then for each A € C,
consider the integer span of ¢(A) in Z", that is, the set

k
A(A4) = {Zai¢(9i) tke€N, a; €Z, g € A}~

i=1

We have A(A) =2 Z? (see [9, Theorem 1.12.3]), so A(A) has a basis {z1,22}. We apply
Tietze transformations (for each A € C) to (S|R). (We will introduce some relations with
more than three generators, but we remove these later.)

For each j € [2], write x; = >, a;¢(g;) for a; € Z, g; € A. Then add a generator
h;, along with the relation hj_l [1; gi", to obtain ¢’: (S’|R') = Z". Note that

¢'(hj) = ¢ (HQ?'L> = Zai(’b(gi) = Tj.

* Foreach g € A, write ¢(g) = ), bjx; for b; € Z. Then add the relation g~ " [T, h?j,
which is redundant since

¢ g7 T]07 | = —ola) + D bie'(hy) =0,
J J

where we use ¢’(h;) = x; in the last step.
 Add a generator h., along with the relation h *hyhs.

e Add the relation h 1hohy, which is redundant since Z™ (and hence our current
(S'|R') = Z) is abelian. Note that the relation hyhoh *hy ' is now implied by the
relations h, 'hihy and b 1hoh;.

* Remove all relations r € R[A], which are now redundant. To see this, first rewrite
7 in terms of only the h;, via the relations g~ []; h;)] Then rewrite 7 as [ h;’-j
for b; € Z, via the relations h;h, hi_lhj_l. Applying ¢', we obtain }, bjz; = 0, so
b; = 0 by the lattice structure of A(A) = Z2. Hence we have rewritten r as the empty
word, so r is redundant.

¢ Remove the relations h;l 11 i g;’ * added in the first step, which are now redundant,
since we may rewrite any such relation in terms of only the h;, and then apply the
previous argument.

After applying these steps for each A € C, we call the resulting 3-presentation (S’|R'). For
each A € C, we have added three generators and a net of |A| — | R[A]| + 2 relations. By
definition of C, the sets R[A] are disjoint for distinct A € C. Also, R,[A] = 0, since A is
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critical. Therefore,

[R'| = |S'| = [R| = |S|+ Y (|A] - [R[A]| - 1)
AecC
=R =S|+ Y _ (1A = IR,[A]l = 1) = > |R.[A
Aec Aec
= [R[ = |S] = |Re]
= |Rs| + |Ro| - |S|
This completes the proof. O

We need one more transformation of presentations:

Lemma 3.16. Let ¢: (S|R) = Z™ be a 3-presentation, let S’ C S, and let d = dim 5.
Then we obtain a presentation (S"|R") = 7"~ where:

. S =8\

* R is obtained from R by adding d relations to form R/, then removing each g € S’
wherever it appears in relations r € R’

Proof. LetU = span(¢(S’)) in R™. Then UNZ" is alattice of dimension d, so we may take
abasis {z1,...,24} of U N Z", and extend to a basis {x1, ..., x, } of Z™ (see Chapter 2,
Lemma 4 of [24]). Then for each ¢ € [d], let w; be a word in (S) with ¢(w;) = x; in Z".
Let R = RU{wy,...,wq}.

We claim (S|R') = Z"~%. To prove this, we will construct an isomorphism ¢ : (S|R’) —
7" Let p: Z™ — Z"~? be the projection to the last n — d coordinates under the basis
{z1,...,z,}; more precisely,

n n
b (Zam) = Z @iYi,
i=1

i=d+1

where {yq11,...,Yn} is a basis for Z"~?. Note that p is linear. Now define 1 on S by
¥(g) = p(p(g)) for all g € S, and extend 9 to (S) by the universal property of the free
group. Then for any word w = [, ¢;" in (S), we have

w) = Z ai(gi) ZCL?Z) (9:)) = (Z a;(gi > = p(p(w)).

In particular, for r € R, we have ¢(r) = p(¢(r)) = p(0) = 0. For the w; above, we have
P(w;) = p(op(w;)) = p(x;) = 0. Therefore, 1) is well-defined on (S|R’).

To show 1 is injective, suppose ¥(w) = 0 for w € (S). Then p(p(w)) = 0, so
d(w) = Z?Zl a;z; for some a; € Z. Then ¢(w) = QS(Hf:l wit) sow = H?Zl wi’ in
(S|R) by the injectivity of ¢. Since R C R/, we have w = H?Zl wi in (S|R’) also. But
since w; € R/, this implies w = e in (S|R’).

To show 1 is surjective, it suffices to show that for each d < i < n, there exists
w € (S) with ¢(w) = y;. By the surjectivity of ¢, take w with ¢(w) = z;. Then
P(w) = p(d(w)) = p(z;) = y; as desired. Hence (S|R') = 7"~

Now all generators g € S’ have g = e in (S|R’), so repeated application of Lemma 3.8
gives the desired result. O
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Next, we need a variant of the Sylvester—Gallai-type results in [6, 10, 1 1]. We begin by
stating the relevant definition and theorem from [ 1]:
Definition 3.17 ([ |, Definition 1.7]). Given a set of points vy, ..., v, € R% a special line
is a line in R containing at least three of the points v;. We say that vy, ..., v, is a 6-SG

configuration if for each v;, ¢ € [n], at least §(n — 1) of the remaining points lie on special
lines through v;.

Theorem 3.18 ([ 1 |, Theorem 5.1]). Ifvy,...,v, is a §-SG configuration, then the affine
dimension of {v1,...,v,} is at most 12/0.

Now we give our variant; we translate the average case result in [1 1] from an affine
setting to a linear one (as in [10]), with a guarantee on |E’|:

Theorem 3.19. Let V' C R\ {0} be a finite set of points, such that no two points in'V lie in
a common 1-dimensional subspace of R%. Let E be a finite multiset of triples {u, v, w}, each
consisting of distinct points u,v,w € V lying in a common 2-dimensional subspace of R¢,
so that (V, E) forms a 3-uniform hypergraph. Suppose that for each induced subhypergraph
(V" E") of (V, E) with dim(span(V")) < 2, we have |E"| < |V"| — 1. Then for X > 0,
there exists an induced subhypergraph (V', E") of (V, E) with |E| — |E’| < AV, and

dim(span(V’)) — 1 < 12|V]|/A.

Proof. Following the proof of [6, Theorem 13], consider (V| E) as a 3-uniform hypergraph,
and repeatedly remove vertices of degree less than A. This removes less than \|V| edges, so
we obtain a sub-hypergraph (V’, E’) with |E| — |E’| < A|V| and minimum degree at least
A

Fix u € V’; the neighborhood N (u) in (V’, E’) forms a graph G(u), where we consider
two vertices v, w € N(u) adjacent if and only if {u,v,w} € E'. If v,w € N(u) are
adjacent in G(u), then w lies in span({u,v}) C RY. Therefore, if {vy,...,v;} form a
component C' of G(u), then U = {u,v1,...,v;} has dim(span(U)) < 2, so the number
of triples in E’ using only points in U is at most k. Hence the number of edges in C'is at
most k. Summing over components C, the number of neighbors of w in (V’/, E’) is at least
deg(yr pryu = A

Now choose a nonzero vector 77 € R not orthogonal to any v € V’, and define an
affine hyperplane H = {# € R% : # -7 = 1}. Then to each v € V' we associate the
unique point ¢ € span({v}) N H. Note that the ¢ are distinct, since no two points in V'
lie in a common 1-dimensional subspace of R%. Also, note that u, v, w lie in a common
two-dimensional subspace of R? if and only if i, 9, w lie on a common line in H. Then
the set V/ = {4 : v € V'} is a 6-SG configuration with § = \/|V|. By Theorem 3.18, the
affine dimension of V" is at most 12/4, so dim(span(V")) — 1 < 12|V|/A. O

Now we prove our bound on the size of 3-presentations of Z":
Theorem 3.20. If (S|R) = 7" is a 3-presentation, then |S| = Q(n?*/?).

Proof. Fix an isomorphism ¢: (S|R) — Z". Assume that |S| is minimal, and consider the
images ¢(g) for g € S. By Lemma 3.8, all ¢(g) are nonzero; by Lemma 3.9, no two ¢(g)
lie in a common 1-dimensional subspace of R™. Moreover, by Lemma 3.10, for each r € R
we have r ~» g®h%i° for g, h,i € S distinct, and dimr = 2. Let R’ be an inclusion-wise
maximal sparse subset of R.
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Now let k = | S|, let ¢ > 0 be a constant to be determined later, and apply Theorem 3.19
with V = ¢(S), E = {{¢(g), ¢(h), #(7)} : 7 ~ g*hbi¢, r € R'}, and A = ck/n, to obtain
S’ C S such that:

(1) |[R'\ R[S"]] < ck?/n.
(2) dim S’ —1 < 12|V|/A = 12n/c.

If there exists g € S\ S" with dim(S’ U {g}) = dim S’, then we may replace S’ with
S’ U {g}, preserving (1) and (2). Therefore, we may assume that for each g € S\ S’, we

have ¢(g) ¢ span(¢(5')).
Now partition R as R = R; U R, U R, where:

« R, = R'\ R[S).
* Re=(R\ R')\ R[S].
« R, = R[S].

Note that |Rs| < ck?/n by the above. Now we check the conditions of Lemma 3.15.

» The set R; is sparse, since sparseness is closed under taking subsets.

s For each 7 € R, with 7 ~» g®h’i¢, we have {g, h,i} C A for some critical A C S
for R/, sincer ¢ R’ and R’ is maximal. It suffices to show that A is also critical for R;.
Since r ¢ R[S’], we have {g,h,i} € S’; assume WLOG g ¢ S’. Then ¢(g) ¢
span(¢(S’)) by the above, so span(¢(A)) € span(4(S’)). Then R[A] N R[S'] = 0,
since any 7’ € R[A] determines the 2-dimensional subspace span(¢(A)). Therefore,
A is also critical for R,.

s Foreachr € R, withr ~ g®h%i¢, we have {g, h,i} C S’. Suppose for contradiction
that {g, h,i} C A for some critical A C S for R,. Then dim{g, h,i} = dim A =
2, so we have span(¢({g, h,i})) = span(¢(A)). Since {g,h,i} C S’, we have
span(¢(A)) C span(¢(S’)). Therefore, any x € A has ¢(x) € span(¢(S’)), so
x € S’ by our assumption above. Hence we have A C S’, so Rs[A] = (), contradicting
the assumption that A is critical for R,.

Therefore, we may apply Lemma 3.15 to (S|R), to obtain a 3-presentation (S”|R") =
Z™ with |R"| — |S”| = |Rs| + |Ro| — |S].

Finally, let d = dim S” — 1, and apply Lemma 3.16 to (S”|R") using S” C .S”, to obtain
(S"|R"") = 7"~ Then remove all relations in R arising from relations in R, = R[S'],
which are now trivial, to obtain (S”/|R"") = 7"~%. Then

|R////| _ |S///| (|R///| _ ‘ROD _ ‘SW|

(IR +d+1—I|R,|) — (IS"| = |5"])
(|R"| = 18" = |Ro|) +d+ ]S +1
(IRs| = 1S]) +d+ S| +1
=|Rs|+d—|S\S|+1

< ck®/n+d+ 1.
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But by the bound def Z™ < m — ('), we have [R""| — |S""| = Q((n — d)?). Take ¢ = 24;
then d < 12n/c = n/2,son — d > n/2. Hence |R""'| — |S”'| = Q(n?). Since d < n/2,

we have ck?/n = Q(n?). Therefore, k = Q(n>/?) as desired. O

Theorem 3.21. A simplicial complex X with fundamental group w1 (X) = 7" has at least
Q(n3/*) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex X,, with
fundamental group 7 (X,,) & Z"™. By Lemma 3.3, for each n we obtain a 3-presentation
(Su|Rn) = Z" with [S,| < (F§V). But [S,] = Q(n?/?), so (I§Y) = Q(n?/2), hence
f(n) = Qn3/*). O
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