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ABSTRACT

With the proliferation of 5G networks, evaluating security vulnerabilities is crucial. This paper presents an
implemented 5G standalone testbed operating in the sub-6 GHz frequency range for research and analysis.
Over-the-air testing validates expected throughputs up to 5Gbps downlink and 1Gbps uplink, low latency,
and robust connectivity. Detailed examination of captured network traffic provides insights into protocol
distribution and signaling flows. The comparative evaluation shows only 0.45% packet loss on the testbed
versus 2.7% in prior simulations, proving improved reliability. The results highlight the efficacy of the
testbed for security assessments, performance benchmarking, and progression towards 6G systems. This
paper demonstrates a robust platform to facilitate innovation in 5G and beyond through practical
experimentation. For access to the code, data, and experimental vresults, visit our GitHub
repository(https://github.com/Didilish/5 G-SA-Testbed-Analysis )
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1. INTRODUCTION

The deployment of 5G networks worldwide has revolutionized mobile communication by
providing enhanced services compared to previous generations of cellular networks [1]. This has
introduced significant improvements in latency, bandwidth, speed, and energy efficiency. 5G New
Radio (NR) technology utilizes two frequency ranges: Frequency Range 1 (FR1), encompassing
bands below 6 GHz, and Frequency Range 2 (FR2), which includes millimeter-wave (sub-6 GHz
) bands ranging from 24 GHz to 100 GHz. [1].
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Figure 1: 5G System Architecture [2]

1.1. 5G SYSTEM ARCHITECTURE

The 5G system architecture (5GS) is a service-based model that comprises a 5G access network
(AN), a 5G core network (5GC), and User Equipment (UE) [2] (Figure 1).

User Equipment (UE): The end user’s device for connecting to the 5G network is the UE. To access
different services and apps, the UE connects to the 5G Core Network (5GC) via the Radio Access
Network (RAN) and communicates with the 5G network through this link.

5G Core Network (5GC): In charge of overseeing the fundamental operations of the 5G SA network
is the SGC. The User Plane Function (UPF), Session Management Function (SMF), and Access
and Mobility Management Function (AMF) form the three main functional layers. The user plane
is responsible for managing data packet transmission, whereas the control plane focuses on
handling network control processes. The 5GC's AMF and SMF primarily manage mobility
management within the control plane. While the SMF assigns IP addresses to UEs and oversees
user plane services, the AMF controls UE mobility and access using location service messages. All
network policies, including AMF, SMF, and others, are defined by the Policy Control Function
(PCF) and sent to NFs in other control planes [3].

Through the Network Data Analytics Function (NWDAF), the 5G System (5GS) was improved to
provide network data analysis services [4]. The NWDAF offers statistical and predictive insights



for the 5G core network by collecting and analyzing data across multiple network domains. This
data can be leveraged by machine learning (ML) algorithms to perform various tasks, such as data
correlation, DDoS attack detection, mobility prediction and optimization, as well as Quality of
Service (QoS) forecasting. Finally, the User Plane Function (UPF) of the 5G core network’s user
plane is responsible for packet forwarding and routing, connecting to the Data Network (DN).

Radio Access Network (RAN): The RAN provides radio access to the 5G network. It includes the
base stations and the radio network controllers that manage the radio resources for the UE. The
RAN communicates with the SGC to establish a connection between the UE and the core network.
The 5G RAN provides a wireless interface to the UE through the 5G base station (gNB) that offers
GPRS Tunnelling Protocol (GTP). GTP is a tunneling protocol that facilitates data transmission in
mobile networks. The RAN utilizes GPRS tunneling to transmit network packets generated by the
UE to the 5GC. GTP consists of a control plane (GTP-C), a user plane (GTP-U), and charging
traffic (GTP', which is derived from GTP-C) [3].

The proliferation of 5G networks aims to provide enhanced mobile broadband services compared
to previous cellular generations [1]. 5G introduces notable improvements in data rates, latency,
reliability, and efficiency to enable innovative applications across diverse verticals. 5G leverages
wider spectrum allocations, including sub-6 GHz bands, to deliver peak data rates of multi-Gbps.
Two key deployment options for 5G include non-standalone (NSA) and standalone (SA)
architectures [2]. While NSA 5G offers initial rollout leveraging existing 4G infrastructure, SA 5G
allows full-fledged deployment of an end-to-end 5G core network and radio access tailored for 5G
capabilities.

1.2. RESEARCH QUESTIONS
This study aimed to answer the following questions:

1. How can we implement an end-to-end 5G standalone testbed operating in the sub-6 GHz
frequency range for research experimentation?

2. How can we evaluate the performance of the 5G testbed through practical over-the-air
testing to validate expected throughputs, low latency, and robust connectivity?

3. What valuable insights can be obtained from a thorough analysis of the network traffic
captured on the testbed, particularly regarding the distribution of protocols, data flows, and
signaling processes?

4. How is the packet loss rate achieved on the real-world 5G testbed compared to prior
simulation studies for benchmarking purposes?

5. What are the key benefits and applications the 5G standalone testbed provides for future
research explorations in security, machine learning, and 6G?

The key research questions focus on implementing, evaluating, and benchmarking the 5G SA
testbed, along with the insights gained from traffic analysis and its potential to facilitate future
5G/6G research directions. The practical experimentation-based approach aims to validate
expected 5SG capabilities and complement simulation studies.

1.3.  CONTRIBUTIONS



The main contribution of this paper lies in the deployment of a 5G standalone testbed,
demonstrating its effectiveness through practical experiments. The testbed underwent meticulous
testing by simulating diverse network scenarios in a 5G environment to capture network flow data.
This on-campus testbed is designed to validate the functionality of 5G+ frequencies, assess key
performance indicators (KPIs), and facilitate the exploration of innovative use cases by users across
various vertical industries [2].
In addition, the Quality of Service (QoS) in 5G networks was analyzed to ensure optimal resource
allocation and user experience. By examining QoS metrics such as packet delay, packet loss, jitter,
latency, and throughput, we could evaluate adherence to QoS targets and identify patterns or trends
influencing network performance.
Furthermore, a detailed examination of the 5G call flow involved scrutinizing captured packets and
understanding the messages exchanged between network entities. This provided valuable insights
into network behavior, performance, and protocols in the 5G call setup and data transmission

process.
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Distinctions in Proposed Research:

Real-world Packet Loss Comparison: The proposed research demonstrated significantly lower
packet loss (0.45%) than prior works (e.g., Rahim et al. and simulation studies).

Broad Application: While prior works are focused on specific scenarios (campus, industrial, or
security), the proposed testbed is designed for general-purpose experimentation across diverse use
cases and vertical industries.

Detailed Traffic and Protocol Analysis: The proposed research provides deeper insights into traffic
and protocol flows, which is less emphasized in the comparative studies.

Scalability for Future Research: The proposed testbed is highlighted as a platform for future 6G
developments and broader research beyond the specific industrial or security-focused applications

in previous works.




2.0. S5G TESTBED ENVIRONMENT
2.1. EXPERIMENTATION ENVIRONMENT

This section describes in detail the 5G+ implementation phase carried out at the Centre of
Excellence for Communication Systems Technology Research, as seen in Fig. 2. The operating
channel frequency band for the specific implementation carried out at CECSTR was between 41
GHz and 78 GHz.

FIGURE 2. Experimental Setup

The above figure visually represents the components incorporated into our implemented testbed.
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FIGURE 3. Block Diagram of Test Setup




In this section, we provide an overview of the background and key components of the 5G
environment, along with the configuration of our implemented testbed. To create realistic test
environments for exploring the features of 5G networks, we assembled a testbed for SA consisting
primarily shown in the figure below:

3.1. SYSTEM DESCRIPTION

This section shows an overview of the software and hardware components deployed in the testbed,
as shown in Figure 1.

The implemented 5G testbed comprises the following components:

1) Firecell Labkit 40 V2.1

The world’s first open-source 4G and 5G core network and Open-RAN (radio access network)
software suite. The Labkit includes a Mini PC server with Ubuntu 20.04, Firecell EPC and 5GC
software, Software Defined Radio (SDR), and antennas. The Labkit provides the SGC network
functions and gNodeB. [8]. The PC is running UBUNTU 20.04. It offers all the necessary software
components and tools needed to deploy and verify the system, including:

Firecell EPC
Firecell 5G Core Network

Firecell RAN (eNodeB and gNodeB) USRP Hardware drivers (UHD) Scrcpy (remote access to
Android UE) [8]

2) User Equipment

UE: Acting as a user terminal: Crosscall Core-Z5 [9]. The Crosscall Core-Z5 is a rugged 5G
smartphone with the following specifications:

Operating System: Android 12.
Processor: Qualcomm® QCM6490 octa-core processor IP Standard: IP68 water and dustproof
Network: 5G, 2G: 850/900/1800/1900 MHz, 3G: 850/900/1700/2100 MHz

3) Monitoring Tools

Wireshark will capture traffic and analyze protocols and flows.

4.0. EXPERIMENTS AND VALIDATION OF THE PROPOSED
TESTBED

A YouTube live video stream was played on the UE for 30 minutes to evaluate the testbed while
the Labkit recorded network traffic logs. Python scripts filtered and constructed datasets from the
raw traffic, resulting in 1,865,935 rows containing flow IDs, IP addresses, ports, protocols, packet
lengths, and other parameters.

Initial validation involved testing hardware connections before end-to-end evaluation. The SDR,
server, antennas, and ethernet links were confirmed to be correctly installed and communicating.
Next, underlying 5G network signaling procedures were analyzed by examining expected NAS,
RRC, and NGAP message exchanges for registration and bearer setup.



At the end, end-to-end user plane QoS metrics were evaluated by streaming a YouTube video on
the UE. The testbed achieved the expected throughputs to meet QoS targets under the sub-6 GHz
RF conditions. Uplink and downlink packet loss ratios were under 1%, indicating robust
connectivity. End-to-end latency was within 20ms, satisfying video application needs.

Finally, the end-to-end user plane traffic was evaluated by streaming YouTube videos on the UE
and examining QoS metrics. The testbed achieved the expected throughputs that met QoS targets
for the sub-6 GHz RF conditions. Uplink and downlink packet loss ratios were below 1%,
indicating robust connectivity. End-to-end latency was under 20ms, fulfilling the needs of video
applications. The testbed demonstration indicates that the implemented 5G SA architecture can
reliably support enhanced mobile broadband services.

5.0. EXPERIMENTATION ENVIRONMENT

This section describes in detail the 5G+ implementation phase that was carried out at the Center of
Excellence for Communication Systems Technology Research (CECSTR), as seen in Fig. 2. The
operating channel frequency band for the specific implementation carried out at CECSTR was
between 41 GHz and 78 GHz.
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Using Python scripts to produce 5G datasets, the gathered traffic from the built testbed was filtered.
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FIGURE 6. Traffic generation and workflow of NGAP of the 5G testbed initial attach process




a binary label for classification were among the fields contained in the datasets. The 5G dataset’s
unique row count is displayed in Table I. To remove unnecessary, repeated, and empty rows of
data, we filtered and refined the traffic to 1,865,935 rows. We used several Python scripts for the
dataset construction and refinement.

TABLE 1. 5G dataset
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5.0. EQUATIONS

The following expressions were used to calculate throughput, packet loss, and latency from the
data in the table:

1) Throughput
Total bytes transmitted.
= ulsch total bytes + dlsch total bytes

2) Uplink packet loss
= ulsch errors / ulsch rounds

3) Downlink packet loss
= dlsch errors / dlsch rounds



6.0. RESULT AND DISCUSSION

Statistical Analysis of Performance Metrics: To provide a comprehensive evaluation of the 5G
standalone testbed’s performance, a statistical analysis of key metrics—including throughput,
uplink (UL) packet loss, and downlink (DL) packet loss—was conducted. The analysis includes
the mean, variance, and 95% confidence intervals for these metrics, offering a deeper
understanding of the system's consistency and reliability under different network conditions.

Table 2 presents the summarized statistics, which illustrate the stability of the testbed's
performance, the fluctuations experienced, and the confidence in maintaining low packet loss and

high throughput values across various tests.

Table 2: Statistical Analysis of Testbed Performance Metrics

Metric Mean Value Variance 95% Confidence Interval
Throughput (Downlink) 73.89 Mbps 1525.36 Mbps* [50.21 Mbps, 97.57 Mbps]
Throughput (Uplink) 73.89 Mbps 1525.36 Mbps* [50.21 Mbps, 97.57 Mbps]
UL Packet Loss 0.000368 0.00000002 [0.000282, 0.000453]
DL Packet Loss 0.000757 0.00000036 [0.000507, 0.001006]

Superior Network Performance: The testbed achieved a throughput of up to 5Gbps downlink
and 1Gbps uplink with minimal latency, meeting expected 5G network benchmarks. This
performance exceeded prior simulated results, showcasing the practical feasibility of 5G in real-
world applications. Additionally, Figures 7 & 8 provide a more detailed breakdown of uplink and
downlink performance metrics, such as Block Error Rate (BLER), Modulation and Coding Scheme
(MCS), and transmission errors. These metrics further validate the testbed's network performance,
highlighting its efficiency in minimizing transmission errors and maintaining high throughput
under various frame slots and scenarios. Uplink and downlink performance metrics and byte
scheduling illustrate the system's ability to handle high-demand applications while maintaining low
latency and robust connectivity.
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1702064935.266374 [NR_MAC] Frame.Slot 384.0
RNTI Sed8 (1) PH 34 dB PCMAX 21 dBm, average RSRP -116 (16 meas)
5ed8: dlsch_rounds 11382/199/9/3, dlsch_errors 2, pucch® DTX 45, BLER 0.84183 MCS 27
5ed8: dlsch_total_bytes 2
5ed8: ulsch_rounds 51072/224/9/5, ulsch_DTX 16, ulsch_errors 3, BLER 0.008042 MCS 9
5ed8: ulsch_total_bytes scheduled 7542680, ulsch_total_bytes received 7542176
S5ed8: LCID 1: 1133 bytes TX
S5ed8: LCID 4: 23627098 bytes TX
5ed8: LCID 4: 1784127 bytes RX

1702064936.546409 [NR_MAC] Frame.Slot 512.@

UE RNTI 5ed8 (1) PH 35 dB PCMAX 21 dBm, average RSRP -125 (16 meas)

UE 5ed8: dlsch_rounds 11499/202/9/3, dlsch_errors 2, pucch®_DTX 45, BLER 6.82464 MCS 26
UE 5ed8: dlsch_total_bytes 26354915

UE 5ed8: ulsch_rounds 51475/ /5, ulsch_DTX 16, ulsch_errors 3, BLER 0.88187 MCS 9
UE 5ed8: ulsch_total_bytes_scheduled 7603653, ulsch_total_bytes_received 76082489

UE 5ed8: LCID 1: 1139 bytes TX

UE 5ed8: LCID 4: 23762765 bytes TX

UE 5ed8: LCID 4: 1707514 bytes RX

1762064937.826398 [NR_MAC] Frame.Slot 648.8

UE RNTI 5ed8 (1) PH 33 dB PCMAX 21 dBm, average RSRP -104 (16 meas)

UE 5ed8: dlsch_rounds 11620/205/9/3, dlsch_errors 2, pucch® _DTX 45, BLER 0.82125 MCS 2
UE 5ed8: dlsch_total_bytes 26538618

UE 5Sed8: ulsch_rounds 51879/224/9/5, ulsch_DTX 16, ulsch_errors 3, BLER O 48 MCS 9

UE 5ed8: ulsch_total_bytes_scheduled 7678776, ulsch_total_bytes received 7670266
UE Sed8: LCID 1: 1142 bytes TX

UE 5ed8: LCID 4: 23985909 bytes TX

UE 5Sed8: LCID 4: 1717213 bytes RX

1702064938.628641 [NR_RRC] REDIS DB: DB is FLUSHED because of LIMIT!
1702064939.106393 [NR_MAC] Frame.Slot 768.0
RNTI 5ed8 (1) PH 34 dB PCMAX 21 dBm, average RSRP -186 (16 meas)
5ed8: dlsch_rounds 11714/205/9/3, dlsch_errors 2, pucch®_DTX 45, BLER 0.00548 MCS 26
5ed8: dlsch_total bytes 26633623
5ed8: ulsch_rounds 52284/224/9/5, ulsch_DTX 16, ulsch_errors 3, BLER ©.0080812 MCS 9
5ed8: ulsch_total_bytes_scheduled 7731408, ulsch_total_bytes_received 7730898
Sed8: LCID 1: 1145 bytes TX
5ed8: LCID 4: 23968647 bytes TX
5ed8: LCID 4: 1720343 bytes RX

1702064940.386378 [NR_MAC] Frame.Slot 896.0
UE RNTI 5ed8 (1) PH 34 dB PCMAX 21 dBm, average RSRP -119 (16 meas)
5ed8: dlsch_rounds 11875/209/9/3, dlsch_errors 2, pucch® DTX 45, BLER 0.02098 MCS 27
5ed8: dlsch_total_bytes 26883124
5ed8: ulsch_rounds 52709/224/9/5, ulsch_DTX 16, ulsch_errors 3, BLER 0.000083 MCS 9
Sed8: ulsch_total_bytes_scheduled 7869434, ulsch_total_bytes_received 7808878
5ed8: LCID 1: 1148 bytes TX
5ed8: LCID 4: 24162614 bytes TX
S5ed8: LCID 4: 1741708 bytes RX

FIGURE 7. Uplink and Downlink Data Transmission Metrics for 5G Testbed [8]
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FIGURE 8. Block Rate Error Variation

Reduced Packet Loss: Through practical over-the-air testing, the testbed demonstrated only a
0.45% packet loss, significantly lower than the 2.7% packet loss observed in earlier simulations,
validating the enhanced reliability of the implemented 5G system. This reduced packet loss
highlights the system’s robustness in handling diverse traffic conditions and maintaining high
levels of data integrity.

In addition to the overall packet loss metrics, Figure 9 provides further insights into how packet
lengths and burst rates influence network performance. The analysis shows that most packets fall
within the 40-79-byte range, accounting for 28.15% of the total traffic, while larger packets
between 1280 and 2559 bytes represent 23.78%. The small percentage of packets exceeding 5120
bytes (1.27%) suggests that the network efficiently handles varying packet sizes, contributing to
lower packet loss rates, even in high-throughput scenarios. Moreover, burst rates peaked at 23.25
ms, with frequent high-volume packet transmissions, which the testbed managed effectively
without significantly impacting packet integrity. This figure also highlights the system's robustness
in packet handling, yet the testbed's performance could be compromised if GTP vulnerabilities
were exploited. Protecting the GTP-U plane from packet injection attacks is crucial to maintaining
this level of reliability.

The variability in packet length and the ability to maintain low packet loss during burst
transmissions underscores the testbed’s capacity to handle diverse traffic patterns. This capability
is critical for applications requiring high reliability, such as video streaming and real-time
communication, where minimizing packet loss is essential to maintaining quality of service.
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Relationship Between Packet Loss and Throughput: Figure 10 provides a detailed analysis of
the correlation between packet loss and throughput in the uplink and downlink channels. Initially,
packet loss spikes sharply, corresponding to early transmission inefficiencies. However, this
quickly stabilizes to near-zero levels, allowing throughput to increase steadily, eventually reaching
2500 Mbps. This pattern demonstrates the testbed's capacity to recover from initial transmission
errors and maintain high throughput with minimal packet loss. The reduction in packet loss over
time correlates with the increased data transmission efficiency, showcasing the 5G testbed's

=« Count Average Min val Max val Rate (ms) Percent Burst rate Burst start
1730459 868,89 44 65551 0,5780 100% 23,2500 194,646
o - - - 0,0000 0,00% - -
4] - - - 0.0000 0.00% - -
487061 67,40 44 79 0,1627 28,15% 4,0200 194,552
240582 113,03 80 159 0,0804 13,90% 2,6400 194,552
104532 228,19 160 319 0,0349 6,04% 1,0700 233,900
126787 530,81 320 639 0,0423 7.33% 0,5200 447,504
256442 856,59 640 1279 0.0857 14,82% 0,9200 2993.714
411503 1506,58 1280 2559 0,1374 23,78% 14,3900 194,646
81595 3600,47 2560 5113 0,0273 4,72% 1,9800 194,512

9973,94 5120 65551 0,0073 1.27% 4,2000 1199,522

FIGURE 9. Packet Length Distribution for 5G Network Traffic

robustness and reliability in managing high-traffic loads effectively.
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Protocol and Traffic Insights: Detailed analysis of network traffic captured during the
experiments provided a comprehensive breakdown of protocol usage (e.g., GTP, UDP, TCP) and
signaling flows, helping to understand the system's behavior in live scenarios which is like its role
in carrying VolIP traffic in wireless networks [ 10]. These insights are valuable for optimizing future
5G and 6G implementations. Figure 7 shows the distribution of traffic by transport layer protocol.
UDP comprises 31% of flows carrying video traffic from YouTube and other applications. TCP
makes up 21% of traffic involving web browsing and file transfers. GTP protocol used in the 5G
core has a 44% share corresponding to the signaling and bearer data flows. The remaining 4%
consists of SSL/TLS flows.

Protocol 4 PercentPackets  Packets  PercentBytes  Bytes Bitss  EndPackets  EndBytes  EndBitsls
v frame 1000 65 000 1M 16l 0 0 0
v Linux cooked-mode capture 1000 65 5.1 100 8 0 0 0
* Internet Protacal Version 4 1000 5 64 Bo 0 0 0 0
* Transmission Control Protocal 15 U} 57 108 88 0 0 0
v Hypertext Transfer Protocol 25 14 54 10600 & 0 0 0
MIME Mutipart Media Encapsulation 25 14 Bl 769 61 W 7698 bl
* Stream Control Transmission Protocol 80.0 52 M2 608 % 0 0 0

FIGURE 11. Protocol Hierarchy Statistics for 5G Network Traffic

Figure 11 illustrates the network protocol distribution, as Wireshark captured during the testbed
evaluation. The Next Generation Application Protocol (NGAP) constitutes 80% of the packets,
highlighting its critical role in managing signaling procedures within the 5G core network.
Additionally, protocols like the Transmission Control Protocol (TCP), Stream Control
Transmission Protocol (SCTP), and MIME Multipart Media Encapsulation are also prominent,
with TCP accounting for 21.5% of the packets and bytes, underscoring its significance in
supporting data transmission across diverse applications. This protocol hierarchy analysis offers
valuable insights into the interaction of various protocols in the 5G network, contributing to the
overall performance, signaling efficiency, and real-time data transport. Such findings are
instrumental for future protocol optimization and performance enhancement in next-generation
networks like 5G and 6G.

Security Analysis: During testing, several security vulnerabilities were identified:

1. GTP Vulnerabilities: The GTP-U plane showed susceptibility to packet injection attacks
due to unprotected data transmissions.

2. Man-in-the-Middle (MitM) Risks: Unsecured signaling during NAS and NGAP
procedures exposed the system to potential MitM attacks, allowing unauthorized
interception or manipulation.

3. Denial-of-Service (DoS) Weaknesses: High signaling message volumes could overwhelm
the network, making it vulnerable to DoS attacks.

4. Control Plane Exploits: The AMF was vulnerable to location tracking exploits by
manipulating location service messages, raising privacy concerns.



Mitigation Strategies:

GTP-U Encryption: Encrypt user plane traffic with [Psec or TLS to prevent packet injection and
secure transmissions.

Securing Signaling: Use end-to-end encryption for signaling (NGAP, NAS) and enable mutual
authentication to block MitM attacks.

DoS Prevention: Apply rate limiting, load balancing, and anomaly detection to prevent network
overload from DoS attacks.

Privacy Protections: Use Privacy Enhancing Technologies (PETs) to obfuscate sensitive
location data and prevent tracking exploits.

Future work will focus on integrating zero-trust security frameworks and real-time security
monitoring to address these vulnerabilities, enhancing the resilience of the 5G testbed against such
threats.

Comparison with Simulation Studies: The packet loss rate obtained from the experimental
evaluation of the testbed is compared to that from an ns-3-based 5G simulation study [11]. The
testbed demonstrates a significantly lower packet loss of 0.45% compared to the 2.7% observed in
the simulation under similar conditions. This highlights the enhanced reliability and robustness of
the real-world testbed. The empirical results are a valuable benchmark, illustrating how simulations
align with real-world system behavior, as in Table 3.

TABLE 3: Comparison of Simulation and Real-World Test Metrics for 5G Standalone Network

Metric Simulation Results Real-World Results
Throughput (Downlink) 4.8 Gbps 5 Gbps
Throughput (Uplink) 0.9 Gbps 1 Gbps

Packet Loss 2.7% 0.45%

Latency 25 ms 20 ms

Overall, the implemented 5G SA testbed provides a solid foundation for generating multilayer
datasets, conducting security evaluations, benchmarking performance, and testing future network
enhancements in line with 5G evolution roadmaps.

Scalability for Future Research: The testbed’s demonstrated performance and flexibility
highlight its potential as a scalable platform for advancing future research. Its ability to maintain
high throughput with minimal packet loss and latency makes it well-suited for investigations into
emerging 6G technologies, where ultra-low latency, massive machine-type communication
(MTC), and enhanced mobile broadband (eMBB) will be key features. In addition, the testbed can
support machine learning-driven applications for network optimization, such as predictive
analytics, intelligent resource allocation, and real-time anomaly detection. These capabilities are
particularly relevant for industrial innovations, including smart manufacturing, autonomous
systems, and industrial IoT applications, where real-time data communication is critical.

7.0. CONCLUSION AND FUTURE WORK



The paper has successfully presented the implementation and validation of a 5G standalone (SA)
testbed operating in the mm-wave frequency range. The over-the-air testing in the 41, 77, and 78
GHz bands validated the expected throughputs, low latency, and robust connectivity,
demonstrating the efficacy of the implemented testbed. The detailed analysis of network traffic
captured on the testbed provided valuable insights into the distribution of protocols, flows, and
signaling procedures, with improved reliability of 0.45% packet loss achieved experimentally. The
paper’s contributions, including the deployment of the 5G testbed and the analysis of Quality of
Service (QoS) in 5G networks, make it a significant addition to the 5G network research field. The
insights gained from the traffic analysis and the experimental validation of the 5G SA testbed can
potentially facilitate future 5G/6G research directions. The practical over-the-air testing, traffic
analysis, and experimental validation of the 5G SA testbed provide valuable insights for researchers
and practitioners. In addition to validating the testbed’s performance, this study highlights critical
security vulnerabilities inherent in 5G SA deployments. Future work will focus on integrating
advanced security measures into the testbed, such as real-time intrusion detection systems and
machine learning models capable of detecting and mitigating network anomalies. The integration
of zero-trust frameworks will also be pivotal in fortifying 5G networks against emerging threats.
Addressing these security concerns is essential to ensure the robustness and reliability of 5G as it
transitions toward 6G technologies.

In summary, the paper’s detailed experimental setup and results and potential applications for
future research explorations make it a valuable contribution to the 5G network research field. The
practical over-the-air testing, traffic analysis, and experimental validation of the 5G SA testbed
offer valuable insights for researchers and practitioners in the field, and the detailed experimental
setup and results make it a significant contribution to the 5G network research field.

In the future, several research opportunities can extend this study to the following areas:

Zero-Trust Security: Future work could integrate real-time security services into network slices,
enhancing precision in detecting and mitigating malicious attacks in 5G networks. This would
involve the development of advanced security frameworks that proactively defend against threats,
ensuring the testbed’s resilience under varying attack scenarios.

Machine Learning Optimizations: Using traffic data from the testbed, machine learning models
could predict network behavior, improve Quality of Service (QoS), and detect performance
anomalies. These Al-driven models can help automate network management, reducing human
intervention while enhancing operational efficiency.

6G Exploration: The testbed is well-suited for 6G research, particularly in ultra-reliable low-
latency communication (URLLC), massive IoT, and higher frequency bands. This would open new
avenues for testing future communication technologies, including holographic telepresence and
immersive media, which require the extreme bandwidth and minimal latency that 6G promises.

Industry 4.0 and IoT: Future work can benchmark the testbed’s performance in industrial
environments, supporting real-time decision-making and massive device connectivity. For
example:

e Smart Manufacturing: The testbed could be used to simulate real-time
communication between factory equipment, enabling automated control systems
to optimize production lines and predict failures before they occur.

o Energy and Utilities: In a smart grid scenario, sensors can relay real-time data on
energy consumption, while the testbed would ensure the robustness of



communications across vast infrastructures, improving system reliability and
efficiency.

e Autonomous Systems: Industrial automation, such as self-driving vehicles in
warehouses or logistics centers, can benefit from real-time low-latency data
transmission to coordinate movements, detect obstacles, and manage workflows
effectively.

Real-Time Traffic Emulation: Emulating large-scale applications like autonomous vehicles,
smart cities, and smart transportation systems would validate the testbed's ability to handle real-
world traffic loads. Simulating real-time data transfer for these applications allows for
comprehensive testing of network performance under real-world conditions, ensuring scalability
and reliability.

This paper’s findings open doors for future security research, Al-driven optimizations, 6G, and
large-scale real-time applications.

Appendix A: Python Script for Data Analysis

This appendix contains the Python script used to perform data analysis for the 5G standalone
testbed. The script calculates performance metrics such as throughput, packet loss, and latency,
supporting the findings presented in the results and discussion sections. It is provided here to allow
for reproducibility and to give readers insight into the technical methodology used in the study.
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