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ARTICLE

A NEW SPECIES OF THE RAY-FINNED FISH SAURICHTHYS (ACTINOPTERYGII) FROM THE
DOCKUM GROUP OF TEXAS (UPPER TRIASSIC, NORIAN) HIGHLIGHTS THE LATE
APPEARANCE OF ELONGATE JAWS IN NEOPTERYGIANS
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“Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, 2125 Derring Hall, Blacksburg, VA 24061, U.S.A.

ABSTRACT —The Triassic fossil record (252-201 Ma) preserves shifts in ray-finned fish (Actinopterygii) assemblages from
stem-group “palaeoniscoids” to primarily neopterygians, which comprise half of extant vertebrate species. Upper Triassic
deposits in the western U.S.A. show the history of the transition in ray-finned fish assemblages in fluvio-lacustrine
ecosystems. We describe isolated teeth and rostra of a new species of “palaeoniscoid” ray-finned fish, {Saurichthys justitias
sp. nov., from the Upper Triassic (early ?Norian) Boren Ranch beds of Texas, U.S.A. We demonstrate that 1S. justitias sp.
nov. possesses a fused, elongate rostropremaxillary element that is unique to tSaurichthys among ray-finned fishes. The
Dockum species is distinct from tSaurichthys from the Upper Triassic (Norian) Chinle Formation of Arizona in lacking
dorsal-ventral ridges along the oral margin of the rostropremaxilla. The replacement teeth in the rostropremaxilla of
1S. justitias grow intraosseously and dorsomedial to the erupted teeth, as indicated by micro-computed tomographic data.
The fSaurichthys in the Dockum and Chinle expand the taxon’s range outside of the marine Tethys in the Norian.
tSaurichthys justitias was likely a jaw closing velocity-specialized predator like other contemporary marine species of
tSaurichthys. The persistence of tSaurichthys in Norian freshwater and marine assemblages indicates that stem-group
actinopterygians occupied jaw closing velocity-specialized predatory roles even as neopterygians diversified into jaw
closing force-specialized roles. Therefore, this new fSaurichthys highlights the disjunct timing of the appearance of force-
and velocity-specialized jaws in neopterygians, suggesting that different types of mechanically specialized jaws in ray-
finned fishes evolved at different rates across deep time.
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INTRODUCTION

The tendency of morphology to converge under shared selec-
tion pressures is a common pattern across animal groups
(McGhee, 2011). The mechanical relationship between the mor-
phology of lower oral jaws in ray-finned fishes (Actinopterygii)
and the transmission of force and motion in biting provides an
explanation for similar jaw forms in disparate lineages of acti-
nopterygians (Westneat, 1994, 2003, 2004). Mechanical models
of jaw closing as a lever system indicate that there is a tradeoff
between closing force and tip velocity as influenced by opposite
ratios of the length (= outlever) and ~depth (= closing inlever) of
the lower jaw (Barel, 1982; Westneat, 1994, 2003, 2004). There-
fore, jaw morphology can maximize jaw closing velocity or
force, but not at the same time (Wainwright & Bellwood, 2002;
Westneat, 1994). For instance, the elongate lower jaws of actinop-
terygians such as needlefishes (i.e., Belonidae), gar (i.e., Lepisos-
teidae), and moray eels (i.e., Muraenidae) maximize jaw closing
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velocity at the expense of bite force (Near & Thacker, 2024;
Westneat, 2004). Conversely, antero-posteriorly short but dorso-
ventrally deep jaws in ray-finned fishes such as piranhas (Serra-
salmidae) and sheepshead (Archosargus probatocephalus,
Sparidae) maximize bite force at the expense of jaw tip closing
velocity (Fernandez & Motta, 1997; Grubich et al., 2012; Wain-
wright & Bellwood, 2002; Westneat, 2004). The presence of
similar jaw morphologies in extinct ray-finned fishes indicates
convergence on shared function for jaw closing velocity or
force and are an opportunity to study the evolution of specialized
feeding morphotypes in deep time.

The fSaurichthyidae were a widespread and speciose clade of
ray-finned fishes that arose in the upper Permian (Changhsin-
gian) and persisted into the Middle Jurassic (Beltan & Tintori,
1980; Liu & Wei, 1988; Maxwell, 2016; Maxwell & Stumpf,
2017; Romano et al., 2012). Saurichthyids have elongate jaws,
slender and fusiform bodies, posteriorly placed median fins,
and a symmetrical caudal fin, similar to the body plan of extant
needlefishes, which engage in fast acceleration ram predation
relying on rapid jaw closure (Collette, 2016; Kogan et al., 2015;
Kogan et al.,, 2020; Porter & Motta, 2004). Although saur-
ichthyids historically have been classified as close relatives of
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Acipenseriformes, which include extant sturgeon and paddlefish
(Berg, 1947; Stensio, 1925, 1932), recent phylogenetic analyses
coupled with detailed study of the endocranial anatomy of {Saur-
ichthys strongly indicate their placement along the actinoptery-
gian stem (Argyriou et al., 2018). Therefore, the similarities
between saurichthyids and neopterygian ram-biting predators
evolved independently.

tSaurichthys is one of the most speciose and widespread
genera of ray-finned fishes in the Early and Middle Triassic,
with over 40 species described from marine, freshwater, and
brackish deposits in present-day North America, Europe,
Africa (including Madagascar), Asia, and Australia (Beltan &
Tintori, 1980; Griffith, 1978; Kogan & Romano, 2016; Kogan
et al., 2009; Mutter et al., 2008; Rieppel, 1985; Romano et al.,
2012; Schaeffer & Mangus, 1976). However, by the Late Triassic,
tSaurichthys was largely absent from freshwater environments,
instead occupying the role of a large piscivore in the marine
northwestern Tethys (Lombardo & Tintori, 2005; Romano
et al., 2012, 2016; Tintori, 1998). Exceptions to this trend were,
until recently, fragmentary occurrences referable to {Saurichthys
in Upper Triassic freshwater deposits in East Greenland and
northern China (Chou & Liu, 1957; Fang & Wu, 2019; Jenkins,
1994). An additional possible exception is tSaurichthys calcara-
tus from the Late Triassic (Carnian) Polzberg biota of Austria,
which is found within brackish/freshwater-influenced horizons
of an otherwise marine assemblage (Griffith, 1977; Lukeneder
& Lukeneder, 2021; Tintori & Lombardo, 2018). The recent dis-
covery of {Saurichthys sui from the continental Baijiantan For-
mation (Upper Triassic, Carnian—-Rhaetian) of Xinjiang, China
clearly demonstrates that {Saurichthys persisted in Late Triassic
freshwater environments (Fang & Wu, 2019). Further, the occur-
rence of TSaurichthys from a microvertebrate assemblage in the
‘coprolite layer’ of the upper Blue Mesa Member of the Chinle
Formation of Arizona expanded the Norian range of the taxon
into Upper Triassic fluvio-lacustrine deposits from the southwes-
tern U.S.A. (Kligman et al., 2017). That finding indicated that the
sparseness of tSaurichthys from Late Triassic fluviolacustrine
assemblages may partially be the consequence of their occur-
rence as disarticulated microvertebrate remains, which are
often challenging to recognize and make reliable, repeatable
taxonomic assignments from.

We describe a series of rostral fragments and isolated teeth of
tSaurichthys from the freshwater Upper Triassic Dockum Group
(latest Carnian—earliest Norian) of Texas. These specimens of
tSaurichthys are part of two novel microvertebrate assemblages
collected from the Boren Ranch beds near Justiceburg in
southern Garza County, western Texas (Martz, 2008). We docu-
ment the morphology of the new tSaurichthys to place the
finding into the biogeographic context of {Saurichthys in the
Late Triassic and the temporal context of specialized jaw evol-
ution in ray-finned fishes. We find that the internal anatomy of
the rostral fragments is well preserved, allowing us to document
the mechanism of tooth replacement in fSaurichthys for the first
time. Our results also provide insight into actinopterygian evol-
ution in the Triassic and the deep-time evolution of specialized
jaw morphologies in ray-finned fishes.

MATERIALS AND METHODS
Collection and Preparation Methods

All referred specimens were found through screenwashing fos-
siliferous matrix collected from the MOTT VPL 3939-3 and
MOTT VPL 3867-6 localities near Justiceburg, Garza County,
Texas (Martz, 2008). Matrix was disaggregated in water and
washed through TWP Inc. 35 Mesh T316 Stainless .011” Wire
Dia wire mesh screens (minimum screen opening of ~0.5 mm,
no. 35 mesh) to divide the fossiliferous matrix into size-sorted

concentrate, which we picked under a dissecting microscope to
isolate {Saurichthys specimens. One fSaurichthys rostrum
(TTU P-24824) was broken into two pieces and re-associated
by adhering the matching surfaces with Paraloid B-72.

Total Length Estimation

We estimated the total length (the straight-line distance
between the anterior most part of the premaxilla and the most
posterior parts of the caudal fin) of the novel fSaurichthys
material with body size proportions from 1S. madagascariensis,
which has well-described body dimensions (Kogan & Romano,
2016). We assumed that the length of the skull (straight line
between the anterior tip of the rostropremaxilla to the posterior
most part of the cleithrum) is ~27% of the total length of the
animal (Kogan & Romano 2016). Based on the estimate of the
proportion of the preorbital length relative to the skull length
in 8. madagascariensis, we estimate that the rostropremaxilla
constitutes ~56% of skull length. Because S. madagascariensis
is an Early Triassic form and the postorbital size of the skull
has been shown to decrease in Late Triassic saurichthyids, our
calculations may slightly overestimate total length (Romano
et al.,, 2012). Further, the rostropremaxillae from MOTT VPL
3939-3 (specimens TTU P-24824, TTU P-24825, TTU P-24826)
show no separation at the midline or possess articulation surfaces
with the frontals (see Kogan & Romano, 2016), indicating that
they are the anterior part of the rostropremaxilla. The specimens
of 1S. madagascariensis figured by Kogan & Romano (2016)
show that the anterior part of the rostropremaxilla without pos-
terior and dorsal connection to the frontals is ~1/3 of the total
length of the element. Further, TTU P-24824, TTU P-24825,
and TTU P-24826 are broken both anteriorly and posteriorly,
representing perhaps 90% of that 1/3. We base our calculation
of the size of the rostropremaxilla, and subsequently total
length, on the most complete specimen TTU P-24824.

We measured the length of TTU P-24824 as 20 mm. Assuming
that this specimen is 90% complete, we estimate the length of the
rostropremaxilla at ~22 mm. If we assume that the anterior part
of the rostropremacxilla is ~22 mm long and ~1/3 the length of the
whole rostropremaxilla, then the whole rostropremaxilla would
be ~67 mm long. If the rostropremaxilla is ~67 mm long and is
~56% of the length of the skull, then the skull is ~120 mm
long. Finally, if the skull is ~120 mm long and 27% of the total
length, then the total length of the animal is ~444 mm or ~44
cm. Repeating the process for the other two rostropremaxillae
(TTU P-24825 and TTU P-24826), which are approximately the
same size but less complete (15 mm and 19 mm, respectively),
we estimate those individuals at ~34 cm and ~42 cm in total
length. We should note that, given a series of approximations,
these measurements should be taken as rough estimates of
total length. A series of assumptions had to be made to arrive
at the total length, and a slight deviation (particularly at the
beginning of the calculations) would change the estimation con-
siderably. We should also note our assumption that these speci-
mens are from adult individuals is critical, as there is evidence
for negative allometry of the skull relative to the rest of the
body in fSaurichthys (Maxwell et al., 2018). Therefore, our esti-
mate would overestimate body size if the specimens were from
juveniles.

Specimen Illustration

We photographed each specimen with an Olympus E-MS
Mark 2 digital camera and a M. Zuiko ED 60 mm F2.8 macro
lens to compile image stacks to show all areas of the specimens
in focus. Specimens were illustrated in Adobe Photoshop 24.7.0
by tracing features in the image stacks, with tracing decisions
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based on direct observation of the specimens under an Amscope
brand dissecting stereomicroscope.

Computed Tomographic Methods

We uCT scanned three rostropremaxillae (TTU P-24824, TTU
P-24825, TTU P-24826) with a Nikon XTH 225 ST high-resol-
ution X-ray computed tomographic scanner in the Shared
Materials Instrumentation Facility (SMiF) at Duke University.
The scan parameters include source voltage =220 kV, source
current =49 uA, and resolution (X, y, and z) =11.16 um. Scan
data were processed using Materialise Mimics Research v. 20.0
to create cross-sectional images and 3D objects. We converted
the tiff image stack from the pCT scan into LDA format and seg-
mented/imaged the internal and external anatomy of specimens
in Avizolite version 2020.3.1. The volumetric image series (.tiff
stack) used to generate the images of the internal anatomy of
the new Saurichthys rostra in this study is available on Morpho-
source.org (ID # 000671406). URL: https://www.morphosource.
org/projects/000668516?1ocale=en.

Terminology

In our descriptions, length refers to the anterior-posterior
dimension of the body, depth or height refers to the dorsal-
ventral dimension of the body, and width refers to the medio-
lateral dimension of the body. We use Mickle (2015) as a
source for definitions of cranial bones of the snout in early acti-
nopterygians. We adopt the phylogenetic classification of Near &
Thacker (2024) for the clade names of ray-finned fishes where
possible, use an obelus symbol { to denote extinct taxa, and
use the pan prefix to denote total groups. We use the term cap
to refer to the acrodin cap of actinopterygian teeth and the
term shaft to refer to the part of the tooth connecting the
acrodin cap to the rostropremaxilla.

Institutional Abbreviations—AMNH, American Museum of
Natural History, New York, New York, U.S.A.; BSPG, Bayer-
ische Staatssammlung fiir Paldontologie und Geologie, Munich,
Germany; MCSNB, Museo di Scienze Naturali de Bergamo,
Bergamo, Italy; MNHN, Muséum National d’Histoire Naturelle,
Paris, France; MOTT VPL Museum of Texas Tech University
Vertebrate Paleontology Locality, Lubbock, Texas, U.S.A;
NMMNH, New Mexico Museum of Natural History and
Science, Albuquerque, New Mexico, US.A.; PEFO, Petrified
Forest National Park, Arizona, US.A.; SMUSMP, Southern
Methodist University Shuler Museum of Paleontology, Dallas,
Texas, US.A.; TTU P, Texas Tech University, Paleontology Col-
lections, Lubbock, Texas, U.S.A.

GEOLOGICAL SETTING

The specimens examined for this project were collected by a
joint Virginia Tech Paleobiology and Texas Tech team from
two localities (MOTT VPL 3939-3 and MOTT 3867-6) near Jus-
ticeburg, southern Garza County, west Texas (Fig. 1). Both
localities are within the Boren Ranch beds of the Dockum
Group, which underly the Cooper Canyon Formation (Martz,
2008). We correlate the assemblage from MOTT VPL 3867-6
and MOTT VPL 3939-3 to the Otischalkian (Late Triassic,
?Norian) teilzone based on the occurrence of the archosauriform
tDoswellia (TTU P-25076, TTU P-25075) and the phytosaur
tAngistorhinus (TTU P-25077; Martz, 2008). Further evidence
that the assemblage from MOTT VPL 3867 is Otischalkian in
age is the occurrence of the non-phytosaurid phytosaur 1 Parasu-
chus (= fPaleorhinus, TTU P-11706; Martz, 2008; Kammerer
et al., 2016). Finallyy, MOTT VPL 3867-6 stratigraphically
underlies the Boren Quarry locality (MOTT VPL 3869, also
called the Neyland site or Neyland Quarry), from near

Justiceburg, Garza County, Texas, where 1 Parasuchus (= 1 Paleor-
hinus, TTU P-9423) has been recorded (Lehman & Chatterjee,
2005; Martz, 2008).

Our work expands on a diverse assemblage of non-tetrapod
vertebrates from the Dockum Group, which includes lungfish,
coelacanths, chondrichthyans, and actinopterygians (Brownstein,
2023; Gibson, 2018; Lucas et al., 1993; Martz, 2008; Murry, 1982,
1989a; Schaeffer, 1967, Warthin Jr., 1928). Although ray-finned
fish remains are historically rarely found in southern Garza
County, abundant actinopterygians have been collected from
the Schaeffer Fish Quarry (NMMNH locality number L-3099),
an ephemeral pond deposit in the Colorado City Formation of
Howard County, Texas (Gibson, 2018; Lucas et al., 1993; Schaef-
fer, 1967). Additionally, a variety of isolated teeth and scales
assignable to total-group Actinopterygii or Osteichthyes have
been reported from the Dockum Group, including from the
Lower Kalgary locality (NMMNH locality 1312) of the correla-
tive Tecovas Formation of Crosby County, Texas (Heckert, 2004).

Bony fishes previously reported from southern Garza County,
though rare, are primarily only assignable to total-group Acti-
nopterygii or Osteichthyes currently (Martz, 2008). The excep-
tion is one specimen attributed to the “palaeoniscoid”
actinopterygian {Turseodus dolorensis (TTU P-10361) from
locality MOTT VPL 3792, which is most likely within the
Boren Ranch beds or the lowermost Cooper Canyon Formation
(Martz, 2008; Schaeffer, 1967). However, the scales of TTU P-
10361 are smooth, lacking the low, sub-parallel ridges that are
characteristic of {Turseodus dolorensis (Schaeffer, 1967).
Although identifying an isolated patch of scales to genus is diffi-
cult at best, we think that TTU P-10361 is more likely from the
smooth-scaled  redfieldiid actinopterygian  {Lasalichthys
(Gibson, 2018).

SYSTEMATIC PALEONTOLOGY

PAN-ACTINOPTERYGII Moore & Near, 2020
+SAURICHTHYIDAE Owen, 1960 sensu Stensio, 1925
tSAURICHTHYS Agassiz, 1834
tSAURICHTHYS JUSTITIAS, sp. nov.

(Figs. 2-5)

Holotype—TTU P-24824, partial tooth-bearing rostrum
formed from the rostropremaxilla and vomer.

Etymology—Species epithet from the Latin term iustitia
meaning justice, named for the town of Justiceburg, Texas, near
the fossil locality.

Referred Specimens—MOTT VPL 3939-3: TTU P-24824,
TTU P-24825, TTU P-24826 (rostropremaxilla). MOTT VPL
3867-6: TTU P-25072 (rostropremaxilla); TTU P-24827, TTU
P-24828, TTU P-24829, TTU P-24830, TTU P-24831, TTU P-
24832 (isolated teeth amongst hundreds from MOTT VPL
3867-6).

Diagnosis—Elongate, toothed rostropremaxilla (formed from
the fusion of the rostral and premaxillac) bearing circular to
elliptical pores along the lateral oral margin; lateral ornament
of rostropremaxilla consisting of extremely fine (~0.1 mm)
ridges oriented parallel along the long axis (anterior-posterior)
of the element; rostropremaxillary teeth conical with striated
shafts and smooth caps; replacement teeth grow intraosseously
and dorsomedial to the functional teeth. Estimated total length
of tSaurichthys justitias is between ~34 and 44 cm based on com-
parisons to the full body reconstruction of {Saurichthys madagas-
cariensis (Kogan & Romano, 2016).

Comparison to Similar Species— {Saurichthys justitias is distin-
guished from {Saurichthys from the Blue Mesa Member of the
Chinle Formation (Upper Triassic, Norian) of Petrified Forest
National Park (Arizona, U.S.A.) by the ornament of the
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Norian stage, (210 Ma), map from Scotese (2021). C, location of Texas within the U.S.A. D, relative locations of the major localities with fish, modified
from Martz et al. (2012:fig. 1) and Lehman (1994:fig. 1).
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rostropremaxillae; 1S. justitias lacks the anteriorly curved, per-
pendicular to the long axis of the jaw ganoine ridges that line
the oral margin of the rostropremaxilla in the Chinle Formation
occurrence of fSaurichthys (Kligman et al., 2017). Saurichthys
justitias can also be distinguished from TS. taotie from the
Xiaowa Formation (Upper Triassic, Carnian) of Longbozi
(Yunnan Province, China) by the ornament of the rostropremax-
illa (Fang et al., 2019). Specifically, the dorsal part of the rostro-
premaxilla of 1S. taotie is ornamented with thick, anterior-
posterior ridges that are absent in fSaurichthys justitias (Fang
et al., 2023). Further, tS. taotie is an estimated 60 cm in standard
length, relatively larger than our estimated total length of
1S. justitias (between 34 and 44 cm; Fang et al., 2023). Character
not preserved in 1S. sui, because the type (IVPP V 31230) does
not preserve the rostropremaxillae (Fang & Wu, 2019). We can
only compare our estimated total length of TS. justitias
(between 34 and 44 cm) and that of 1S. sui (40 cm), indicating
that these species were similar in length (Fang & Wu, 2019). Simi-
larly, the type of 1S. calcaratus from the Late Triassic (Carnian)
Polzberg biota of Austria is missing the anterior part of the ros-
tropremaxilla (Griffith, 1977). Additionally, the standard length
for 1S. calcaratus is 40 cm, also within the size range we estimated
for 8. justitias. Comparison of {S. justitias to species of tSaur-
ichthys from the Zorzino Fauna of Italy and Austria is difficult
because the morphology of the rostropremaxilla is rarely
figured (Tintori, 1990). We can compare fSaurichthys justitias
to the description of a well-preserved specimen (BSPG 1910/1/
8) of f{Saurichthys deperditus (= “tS. krambergeri”) from
Adnet, Austria, which possesses parallel ridges on the rostropre-
maxilla running perpendicular to the long axis of the jaw, which
are absent in tSaurichthys justitias (Griffith, 1962). Further, the
teeth of BSPG 1910/1/8 bear coarse ridges on their apical caps,
which are absent in the teeth of 1S. justitias (Griffith, 1962). We
can also compare 1S. justitias to a specimen (MCSNB 3319) of
tSaurichthys “species A” figured by Gozzi (2004), which has a
similar lateral ornament of the rostropremaxilla except for a
lack of tubercles. Additionally, “species A” (Tintori, 1990) and
the other Zorzino Fauna fSaurichthys examined by Gozzi
(2004) have a median total length between 0.5 and 1 m, exceed-
ing the estimated size range for 1S. justitias. We can distinguish
the teeth of 1S. justitias from those of {Birgeria based on the
smooth acrodin caps and the lack of a ridge between the
acrodin cap and striated base of the teeth (Diependaal &
Reumer, 2021; Fang et al., 2024).

It is difficult to make taxonomic assignments for novel disarti-
culated remains that correct for intraspecific variation in osteol-
ogy. The literature for actinopterygians is filled with research on
disarticulated, and often isolated, elements where cranial and
scale ornament is a common criterion for distinguishing genera
and species (Schultze et al., 2021). The present work is no excep-
tion, as we distinguish 1S. justitias from the Chinle Formation
occurrence of tSaurichthys based on cranial ornament. The orna-
mentation of the dermal bones in actinopterygians, including
presence/absence, form (ridges, tubercles, denticles), and
density (light versus heavy) can vary by cranial element and in
skeletal ontogeny within a single species (Schultze et al., 2021).
An excellent example of this phenomenon is in {Saurichthys, in
which the form and presence/absence of dermal ornament
varies across cranial elements (Kogan & Romano, 2016;
Maxwell et al., 2018). Therefore, our taxonomic assignment of
TS. justitias as a distinct species from the Chinle Formation {Saur-
ichthys is only made possible by the inferred homology of the ros-
tropremaxilla. By comparing homologous elements, we control
for the potential confounding variable of intracranial ornament
variation.

Locality and Age—Locality MOTT VPL 3867-6 and MOTT
VPL 3939-3, Boren Ranch beds of the Dockum Group near Jus-
ticeburg, southern Garza County, Texas, U.S.A. We infer that the

fossil assemblages from these localities belong to the Otischalk-
ian (Late Triassic, ?Norian) teilzone based on the presence of
the archosauriform tDoswellia (TTU P-25076, TTU P-25075),
and the phytosaurs tAngistorhinus (TTU P-25077) and 1 Parasu-
chus (= tPaleorhinus, TTU P-11706; and Martz, 2008).

DESCRIPTION
Rostral Elements

We document four isolated rostra from MOTT VPL 3867-6
(TTU P-25072) and MOTT VPL 3939-3 (TTU P-24824, TTU
P-24825, TTU P-24826; Fig. 2). We measured the length of
TTU P-24824, TTU P-24825, and TTU P-24826 at 20 mm, 15
mm, and 19 mm, respectively. We also measured the width of
TTU P-24824, TTU P-24825, and TTU P-24826 at 5 mm, 4
mm, and 6 mm, respectively. The ventral part of the rostropre-
maxillae bear a paired set of large teeth (= laniaries) interspersed
with smaller teeth set directly posterior to each laniary. The
larger teeth vary in labiolingual width from 1.7 mm to 1.2 mm,
whereas the smaller teeth range from 1 mm to 0.7 mm. Although
most of the rostropremaxillary teeth are broken off near their
bases, the few that are complete bear acrodin caps, a synapomor-
phy of the actinopterygian total group (Friedman & Brazeau,
2010). The division of teeth in the Dockum rostra into two dis-
tinct size classes corresponds to other species of {Saurichthys,
such as the fSaurichthys from the Chinle Formation of Arizona
(Kligman et al., 2017) and ftSaurichthys madagascariensis
(Kogan & Romano, 2016; Stensio, 1925). A ventrally flat,
medial ossification bearing small, round teeth and empty
sockets with irregular width (between 0.2 mm and 0.8 mm) is
visible in ventral view in each isolated rostrum (Fig. 2). The
medial position of a pavement-like, toothed ossification
between the rostropremaxillae is a character state of the vomer
of tSaurichthys (Argyriou et al., 2018; Stensio, 1925).

In dorsal view, the rostra are dorsally convex and anteriorly
narrow. The dorsal and lateral surfaces bear fine, regular,
anterior-posteriorly aligned grooves and, in the most anterior
portion, irregular, ovoid tubercles. The lateral ornament on the
rostropremaxilla is less pronounced than in the Chinle occur-
rence of fSaurichthys, lacking the prominent, dorsoventral
ganoine ridges along the lateral surface of the oral margin
(Kligman et al., 2017). There are shallow pits tracing the oral
margin in lateral view ranging from 0.2 mm to 0.6 mm in
height and 0.3 mm to 0.9 mm in length. These openings vary in
shape from circular to elliptical (with the long axis anterior-pos-
terior) and do not form a straight line. Rather, where best pre-
served (TTU P-24824), an irregular path of lateral pits extends
nearly to the anteriormost part of the rostropremaxilla. We inter-
pret these as pores for the lateral line system because they are
shallow depressions in the bone surface and not breakages, con-
sistent with pores for canal neuromasts of the lateral line
observed in extant ray-finned fishes (Webb, 2014). Specifically,
we interpret the lateral line openings as the ethmoid commissure
because of their position along the oral surface, whereas the man-
dibular canal in the dentary of {Saurichthys is more ventral
(Kogan & Romano, 2016; Mickle, 2015). The combination of
teeth and the ethmoid commissure, character states of both the
premaxillae and rostral, respectively, indicates that the rostral
elements are fusions of the rostral and premaxillae (Mickle,
2015). The plesiomorphic condition for ray-finned fishes is a
median rostral bearing the ethmoid commissure canal and
paired, toothed premaxillae (Cloutier & Arratia, 2004; Gardiner
& Schaeffer, 1989; Mickle, 2015). A median rostral and paired
premaxillae are retained in Polypteridae, whereas a median
rostral is absent or reduced in neopterygians and premaxillae
are absent in Acipenseriformes (Claeson et al., 2007; Gardiner
& Schaeffer, 1989; Grande, 2010; Hilton et al., 2011).
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FIGURE 2. Rostropremacxilla of the holotype of {Saurichthys justitias, TTU P-24824, anterior on the right-hand side. A-C, photographs of TTU P-
24824 in lateral, ventral, and dorsal view, respectively. D-F, line drawings of TTU P-24824 in lateral, ventral, and dorsal view, respectively. Slanted,
parallel lines indicate broken surfaces and dotted lines show inferred boundaries between elements. Gray infill shows areas where bone is absent.
Arrow indicates anterior direction. Abbreviations: gt, ganoine tubercle; It, large teeth (= laniary); sp, lateral line sensory pore; st, small size class

tooth; vo, vomer.

MCT scanning of the rostra yielded an unexpected wealth of
data on the internal anatomy of these structures (Figs. 3, 4).
tSaurichthys justitias provides the first look at the internal
anatomy of the anterior part of the rostropremaxilla of tSaur-
ichthys given that other tSaurichthys (from Europe, Greenland,
and Spitsbergen; Argyriou et al., 2018, Stensio, 1925) investi-
gated with uCT lack the anterior part of the rostrum. The rostro-
premaxillae of {S. justitias are traversed by three anterior-
posterior canals. The largest of the three follows the medial
axis of the rostropremaxilla in TTU P-24824, TTU P-24825,
and TTU P-24826. The median canal is oriented parallel to the
anterior-posterior axis of the rostropremaxilla and narrows ante-
riorly. There are also paired canals lateral to the median canal in
TTU P-24824, which also trace the entire preserved length of the
rostropremaxilla. There are 15 lateral extensions on each lateral
canal that are placed irregularly and asymmetrically along the
anterior-posterior extension of the element. These lateral exten-
sions vary in both length and width relative to each other. The
lateral canals themselves show consistent width throughout the
length of the rostropremaxilla. The lateral canals are ovoid in
coronal view, whereas the median canal is rounded but broader
dorsally and tapering ventrally.

Our identifications of the internal canals of the rostropremax-
illa are preliminary, as the connections of these canals to the rest
of the endocranial anatomy is not preserved. The internal
anatomy of the rostropremaxilla is unfortunately not preserved
in the specimen of fSaurichthys (NHM 157546 A) from the
Early Triassic (Induan) of Greenland that Argyriou et al.
(2018) use to describe the internal cranial anatomy of the
genus. The most informative specimen for our identifications is

MNHN F 1980-5 of S. nepalensis, which preserves the internal
cranial anatomy of the region immediately posterior to the
anterior part of the rostropremaxilla (Argyriou et al., 2018).
MNHN F 1980-5 shows paired nasobasal canals extending ante-
riorly into the rostropremaxilla which correspond in position to
the paired canals in TTU P-24824. The nasobasal canals are
thought to have carried the superficial ophthalmic nerve in
tSaurichthys, a branch of the trigeminal nerve (Argyriou et al.,
2018). Alternatively, the lateral canals may represent the internal
part of the lateral line sensory system, with the lateral extensions
connecting the internal canal to the external openings. The
material figured by Argyriou et al. (2018) does not show a
median canal, meaning that this structure is restricted to the
anterior-most part of the rostropremaxilla in fSaurichthys or
the median canal is not present or preserved in the species of
tSaurichthys examined by Argyriou et al. (2018). In either
case, we are not able to provide a firm identification of this struc-
ture with the information available in the Dockum material.
Therefore, we leave the identification at median canal, and
hope that future studies on {Saurichthys can clarify its identity.

Teeth

We describe isolated teeth (Fig. 5) from a sample of hun-
dreds from MOTT VPL 3867-6, found in association with an
isolated rostropremaxilla (TTU P-25072). Each tooth has a
shaft ornamented with thin, closely packed, longitudinal stria-
tions and a smooth, white cap that can be translucent at the
edges. This combination of traits are character states of tSaur-
ichthys, which has teeth with a shaft formed from plicidentine
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FIGURE 3. Internal anatomy of the rostropremaxilla of {Saurichthys justitias (TTU P-24824) from uCT data. A-E, coronal cross sections. F, sagittal
cross section. Bottom right panel indicates location of cross sections on specimen photograph. Abbreviations: It, large tooth; mel, median canal; nbc,
nasobasal canal; rt, replacement tooth; st, small tooth; vo, vomer.

and a smoother acrodin cap (Romano et al., 2012; Stensio,
1925). Plicidentine is found in a variety of actinopterygians
and is therefore not unique to fSaurichthys (Btazejowski
et al., 2013; Germain & Meunier, 2019; Grande, 2010;
Meunier et al., 2018; Viviani et al., 2022). However, the combi-
nation of striated shafts and translucent caps in the MOTT
VPL 3867-6 isolated teeth and the close match to the teeth
in the rostropremaxillae from MPL 3939-3 indicate that they
likely belong to TS. justitias. The MOTT VPL 3867-6 teeth
(TTU P-24827, TTU P-24828, TTU P-24829, TTU P-24830,
TTU P-24831, TTU P-24832) vary considerably in height
(between ~1 mm and ~5 mm) and therefore have a larger
size range than the Chinle occurrence of fSaurichthys, where
the tallest teeth are ~1 mm (Kligman et al., 2017). Additionally,
the shape of the teeth varies between elongate, narrow teeth
with sharp points, broad, triangular teeth, and conical teeth
with blunt points (Fig. 4). Taller teeth show an increase in
the height of the tooth shaft rather than the cap, which has a
much more consistent size range throughout the teeth.

Teeth are present dorsal and medial to the external teeth in
TTU P-24824, TTU P-24825, TTU P-24826 as shown in uCT
cross sections (Fig. 3). These are replacement teeth, as is
evident by their position within the bone, anterior-posterior
orientation, and forming a 90° angle with the functional teeth
that are visible in external view. Continuous tooth replacement
is the standard in non-mammalian vertebrates, meaning that
the presence of replacement teeth in 1S. justitias is not indica-
tive of the specimens being from an early stage in skeletal
ontogeny (Huysseune & Witten, 2024). Tooth replacement pat-
terns in actinopterygians are myriad and not necessarily regular
even within the same species or different types of teeth within

an individual (Bemis et al., 2019; Huysseune & Witten, 2024).
However, the replacement teeth in S. justitias are dorsal and
medial relative to the externally visible teeth and were
forming within the rostropremaxilla (Fig. 3D, F). Therefore,
TS. justitias has intraosseous, dorsomedially placed tooth repla-
cement of at least the larger size tooth class. Critically, intraoss-
eous tooth replacement is not the norm in osteichthyans
(extraosseous replacement is far more common) but is
thought to have evolved independently in four extant clades
of teleost actinopterygians (Acanthopterygii, Characiformes,
Elopiformes, and Scombriformes) (Bemis et al., 2019; Berko-
vitz & Shellis, 2023; Trapani, 2001). Examples of similar tooth
replacement in extant actinopterygians include the dentary
teeth of the mottled conger moray (Enchelycore nigricans)
and the premaxillary fangs of the Atlantic cutlassfish (77i-
chiurus lepturus), in which replacement teeth form within the
bone at a 90° angle to the functional teeth and rotate into func-
tional position (Bemis et al., 2019; Trapani, 2001). The replace-
ment teeth in 1S. justitias likely would have had a similar
rotation in the process of becoming functional.

DISCUSSION

Tooth Replacement in {Saurichthys and Convergence with
Predatory Teleosts

Extant teleosts that engage in fast-acceleration ram-predation
show considerable convergence on the body shape, skull mor-
phology, and hydrodynamic profile of fSaurichthys (Collette,
2016; Kogan et al., 2015, 2020; Porter & Motta, 2004). Our
finding of horizontally oriented intraosseous replacement teeth
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2.5 mm

FIGURE 4. 3D reconstruction of the rostropremaxilla of Saurichthys justitias (TTU P-24824) from pCT data. A, 3D model in lateral view, arrow
indicates anterior direction. B, 3D model in ventral view (teeth removed). C, 3D model in dorsal view (teeth and vomer removed). D, 3D model

in anterior view (teeth removed). E, 3D model in posterior view (teeth removed). A-C and D-E are scaled to each other, respectively. Abbreviations:
It, large tooth; mel, median canal; nbe, nasobasal canal; sp, lateral line sensory pore; vo, vomer.



Stack et al. —New Dockum Group Saurichthys species (€2470026-9)

1 mm

1 mm

B C D
ac ac ac
sb sb sb ac
sb
1 mm 1 mm

E

1 mm

FIGURE 5. Isolated teeth referable to TSaurichthys justitias showing range of morphologies. A, TTU P-24832. B, TTU P-24831. C, TTU P-24829. D,
TTU P-24830. E, TTU P-24828. Abbreviations: ac, acrodin cap; sb, striated base.

in fSaurichthys justitias suggests even deeper convergence
between f{Saurichthys and extant predatory teleosts. For
example, intraosseous, horizontally oriented tooth replacement
is present in the premaxillary fangs of cutlassfishes (Trichiuri-
dae), a clade of pelagic ambush predators that use their teeth
to capture other fishes and cephalopods (Bemis et al., 2019;
Martins et al., 2005; Morgan, 1977). Similar tooth replacement
mechanisms have evolved independently in other predatory
biting teleosts, such as the mottled conger moray (Enchelycore
nigricans) and dogtooth characins (Cynodontidae; Bemis et al.,
2019; Trapani, 2001). A potential explanation for the convergent
evolution of intraosseous tooth replacement is the observation
that replacement teeth in fishes are fragile prior to mineralization
and are therefore vulnerable in taxa that use their toothed jaws
to capture prey (Shellis, 1978; Shellis & Berkovitz, 1976;
Trapani, 2001). The intraosseous development with horizontal
replacement in the larger size class of teeth in {S. justitias, most
likely a biting, ram-feeding predator akin to other species of
tSaurichthys, may have also protected teeth during development.
There is also the possibility that intraosseous development is an
adaptation to provide more room for functional teeth in the jaw
(Trapani, 2001). These possibilities are not mutually exclusive,
and we are not able to parse between them with the information
available for this extinct species. However, the novel observation
of intraosseous tooth replacement in 1S. justitias indicates that
morphological convergence between fSaurichthys and extant
predatory biting teleosts includes the mechanism of tooth
replacement.

tSaurichthys within the Actinopterygian Assemblage of the
Dockum Group

Both occurrences of tSaurichthys from the early Norian of the
western U.S.A. were collected from concentrated assemblages of
microvertebrate fossils within the Chinle Formation and
Dockum Group (Kligman et al., 2017). Paleoichthyological
work on the Chinle Formation and Dockum Group shows a
bountiful assemblage of both microfossils and macrofossils
(Brownstein, 2023; Gibson, 2018; Heckert, 2004; Huber et al.,
1993; Jacobs & Murry, 1980; Lucas et al., 1993; Martz, 2008;
Murry, 1982, 1987, 1989a, 1989b; Schaeffer, 1967, Warthin Jr.,
1928). Despite over 40 years of the application of modern micro-
vertebrate collection techniques within the Chinle Formation
and Dockum Group, and careful study of actinopterygian micro-
fossils by several previous workers (Heckert, 2004; Huber et al.,

1993; Murry, 1982), no remains of tSaurichthys were recognized
until Kligman et al. (2017) and the present work. However, the
tooth morphology we observe in fSaurichthys justitias corre-
sponds to the ichthyolith “Morphotype A” described by Murry
(1982) from a series of SMUSP specimens (67772, 6777, 67782,
67783, 67797-6780, 67892, 67894, 67895, 67897, 67899, 67903,
67906, 67907, 67912, 67914, 67930, 67937, 67944) from “the
Otis Chalk Locality” of the lower portion of the Dockum
Group in Howard County, Texas. The written description and
accompanying figure depict a relatively large enameloid cap
extending over half of the length of the tooth, and a “corrugate”
texture of the shaft (Murry, 1982). Murry compared “Morpho-
type A” to that of semionotid neopterygians and the enigmatic
“palaeoniscoid” {Birgeria (Stensio, 1932). However, our
finding of this tooth morphotype within fused rostropremaxillae
strongly indicates that the ichthyolith ‘Morphotype A’ of Murry
(1982) belongs to tS. justitias. We also found that two teeth
(NMMNH P-41426 and P-34040) illustrated by Heckert (2004)
from the Colorado City Formation of the f7rilophosaurus
Quarry (NMMNH locality 860=TMM 31025 =0tis Chalk
Quarry 1) of the Dockum Group of west Texas share the large
acrodin cap, conical shape, and corrugate shaft of the teeth.
One other tooth (NMMNH P-31628) figured by Heckert
(2004), and dozens of other specimens, from the Ojo Huelos
Member of the San Pedro Arroyo Formation of central New
Mexico (Chinle Group) also possess the traits associated with
the teeth of 1S. justitias (Nesbitt, pers. observ.). Like Murry
(1982), Heckert (2004) identified those specimens as actinopter-
ygian teeth but was unable to make a more specific identification
because of their isolation. Therefore, the work of Kligman et al.
(2017) and our study are not the first findings of fSaurichthys in
the Dockum Group or Chinle Formation, but are the first time
this taxon has been found from complete enough material to pre-
serve multiple recognizable character states of {Saurichthys.
The actinopterygian assemblage from the Otischalkian part of
the Dockum Group is composed primarily of the redfieldiids
(pan-Neopterygii) tCionichthys and +tLasalichthys (tLasa-
lichthys being synonymous with tSynorichthys Schaeffer 1967)
and an isolated premaxilla assigned to the dapediid (pan-Holos-
tei) tHemicalypterus (Rotten Hill Locality, Potter County, Texas)
(Gibson, 2018; Heckert, 2004; Murry, 1982; Near & Thacker,
2024; Schaeffer, 1967). Histological study of isolated elements
referred to as tooth plates from fColobodus and fPerleidus
(Huber et al., 1993; Murry, 1982) are not identifiable to either
of these taxa (Mutter & Heckert, 2006). Notably, Saurichthys
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has not been recorded from the younger parts of the Dockum
Group or Chinle Formation, or from the Newark Supergroup
of the east coast of the US.A. (Heckert, 2004; Olsen et al.,
1982). Therefore, the Dockum and Chinle occurrences may be
the youngest representatives of the taxon from North America.
The Chinle tSaurichthys and 1S. justitias as the youngest occur-
rences of the taxon from continental deposits in North
America lends partial support to the hypothesis of Romano
et al. (2016) that Late Triassic freshwater faunas acted as
refugia for taxa with ‘archaic bauplans’ (Romano et al., 2017).
However, the presence of a dapediid and the earliest redfieldiids
from North America clearly demonstrates that the Dockum
assemblage contains groups that survived and were diverse
well into the Jurassic in North America. Our finding of
+S. justitias contributes to a reconstruction of the Dockum
hosting a diverse assemblage of neopterygian and non-neoptery-
gian actinopterygians, with a relatively low abundance of neop-
terygians compared with contemporaneous marine assemblages
such as the Zorzino Limestone (Lombardo & Tintori, 2005;
Tintori, 1998). Further, our work mirrors a slew of recent tetra-
pod microvertebrate discoveries from the Chinle Formation
that highlight the enormous potential of concentrated work on
Triassic microvertebrates (Kligman et al., 2020, 2023; Marsh &
Parker, 2020; Marsh et al., 2020; Stocker et al., 2019). We
predict that continued study of microvertebrate fish fossils
from both the Chinle Formation and Dockum Group will show
a more diverse actinopterygian fauna akin to discoveries in the
tetrapod realm, where newly discovered specimens can be used
to 1identify the numerous indeterminate actinopterygian
remains collected in the past.

tSaurichthys justitias and the Triassic Biogeography of
tSaurichthys

Prior to the last decade, Late Triassic occurrences of {Saur-
ichthys outside of the marine Paleotethys were questionable in
some aspects (Romano et al., 2012). For example, {Saurichthys
orientalis from the Madygen Formation (Ladinian—Carnian, Kyr-
gyzstan) has a possible age range extending from the Middle
Triassic into the Late Triassic (Jenkins, 1994; Kogan et al.,
2009). Additionally, the occurrence of fSaurichthys from the
Norian Fleming Fjord Formation of east Greenland is question-
able in that the authors noted the presence of teeth and jaws that
are likely referable to tSaurichthys, but no other details or figures
were provided (Jenkins, 1994). fSaurichthys huanshenensis from
the Ordos Basin of Shaanxi (China) was originally reported as
Late Triassic but is now thought of as being uncertain in age
and is therefore not considered further (Chou & Liu, 1957,
Fang et al., 2023; Romano et al., 2012).

The Late Triassic distribution of {Saurichthys has broadened
outside of the marine Paleotethys over the last decade, with
new findings in the Chinle Formation and Dockum Group
showing that fSaurichthys was present in the fluviolacustrine
Upper Triassic systems of North America (Kligman et al., 2017;
this study; Fig. 6). Further, the discovery of {Saurichthys sui
from the continental Baijiantan Formation (Upper Triassic,
Carnian—Rhaetian) of Xinjiang, China and S. taotei from the
marine Guanling Biota (Late Triassic, Carnian) of China show
that {Saurichthys was also present in the marine eastern Paleo-
Tethys and fluviolacustrine systems in present-day northwestern
China in the Late Triassic. Taken together, we see that {Saur-
ichthys had a considerably broader Late Triassic distribution

FIGURE 6. Paleobiogeography of tSaurichthys in the Late Triassic (late Norian, 210 Ma), map from Scotese (2021), where yellow stars are continen-
tal occurrences and red circles are marine occurrences. A, 1S. justitias, Dockum Group, Texas, U.S.A. (this paper). B, tSaurichthys sp., Chinle For-
mation, Arizona, U.S.A. (Kligman et al., 2017). C, {Saurichthys sp., Fleming Fjord Formation, Greenland (Jenkins et al., 1994). D, 1S. deperditus,
8. seefeldensis, and tSaurichthys sp., Lombardy, Italy (Norian: Tintori, 1990; Tintori & Lombardo, 2018). E, 1S. seefeldensis and 1S. deperditus,
Friuli-Venezia Giulia, Italy/Salzburg, Austria (Griffith, 1962; Hornung et al., 2019; Zittel, 1887-1890). F, 1S. deperditus, Campania, Italy (Tintori
et al., 2020). G, tSaurichthys sui, Baijiantan Formation, China (Carnian—Rhaetian, Fang & Wu, 2019).
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than was previously thought (Romano et al., 2012) and was not
restricted to the northwestern Tethys.

We need to briefly review the biogeography of tSaurichthys in
North America to put the Late Triassic occurrences of this genus
in the US.A. into context. fSaurichthys has been recorded in
North America since the Early Triassic, in marine deposits in
the Early Triassic Boreal Sea and East Panthalassa (Romano
et al., 2012). The oldest occurrence of Saurichthys from North
America, tSaurichthys aff. dayi, is from the Lower Triassic
(Griesbachian) Wordie Creek Formation of Hold Within Hope,
Greenland (Kogan, 2011; Nielsen, 1936; Romano et al., 2012).
Other Early Triassic occurrences of {Saurichthys from North
America that are not assignable to a more specific stage are
from various sites in Canada, including 1S. dayi from the Banff
Massive of Alberta, {S. toxolepis and other material not assigned
more specifically than {Saurichthys from the Sulphur Mountain
Formation, Wapiti Lake, British Columbia, and finally material
not assigned more specifically than {Saurichthys from the Blind
Fiord Formation of Blind Fiord, Ellesmere Island, Nunavut
(Embry, 1986; Mutter et al., 2008; Raymond, 1925; Schaeffer &
Mangus, 1976). $Saurichthys also occurs in the East Panthalassa
in the Early Triassic, based on the occurrence of {Saurichthys cf.
elongatus from the Smithian Thaynes Formation of Bear Lake
County, Idaho, US.A., and fSaurichthys, not assigned more
specifically than the genus, from the Spathian Thaynes Group
of Elko County, Nevada, U.S.A., (Romano et al., 2012, 2017).
There is also a record of tSaurichthys, not assigned more specifi-
cally than the genus, from the marine Middle Triassic (Anisian)
Favret Formation of the Augusta Mountains of Nevada, U.S.A.
(Rieppel et al., 1996; Sander et al., 1994; Silberling & Nichols,
1982). Therefore, there is a considerable gap in time, ~20
million years, between the Anisian (~246.7-241.46 Ma) occur-
rence and the continental Norian occurrences from Petrified
Forest National Park (Adamanian, ~225-219 Ma) and the
older Dockum occurrences (Otischalkian) (Martz & Parker,
2017; Ramezani et al., 2014). Given the fragmentary preservation
of the Chinle Formation and Dockum Group fSaurichthys, we
cannot determine if these species are derived from Middle Trias-
sic occurrences of the genus in East Panthalassa or Late Triassic
occurrences from the Boreal Sea (Romano et al., 2012).
However, given that the Dockum Group and Chinle Formation
are parts of a massive fluviolacustrine system that connected
with the Panthalassic Ocean in the west (Blakey et al., 1989;
Riggs et al., 1996), we hypothesize that S. justitias and the
Chinle occurrence are derived from Panthalassa.

The Uneven Appearance of Jaw Closing Force and Velocity
Specialized Morphologies in Neopterygians

Cranial elongation is widespread in extant ray-finned fishes
and has a deep history in the group, with the oldest example
being the Late Devonian (Famennian) t7egeolepis clarki, pre-
ceding the oldest documented members of fSaurichthyidae in
the latest Permian (Changhsingian) of China (Dunkle & Schaef-
fer, 1973; Liu & Wei, 1988). Late Paleozoic “palaeoniscoids”
exhibiting cranial elongation were primarily brackish/freshwater
taxa, including the Late Pennsylvanian (Missourian) f7anyrhi-
nichthys mcallisteri, an unnamed taxon from the Upper Pennsyl-
vanian of Indiana (U.S.A.), and {Phanerorhynchus armatus from
the Upper Pennsylvanian of the U.K. (Gill, 1923; Gottfried, 1987,
Poplin, 1978; Stack et al., 2021). Stack et al. (2021) documented
that cranial elongation in these taxa is associated with elements
in the skull roof, rather than the jaws (as in fSaurichthys),
suggesting a benthic-associated feeding mode analogous to
extant sturgeons rather than jaw closing velocity-specialized
feeding as had been previously hypothesized for f7anyrhi-
nichthys (Stack et al., 2021). Therefore, saurichthyids hold the
distinction of the first documented ray-finned fishes with

extreme elongation of the jaws, convergent with extant jaw
closing velocity-specialized predatory actinopterygians (Kogan
et al., 2015). There are a variety of neopterygian ray-finned
fishes with pronounced, extremely elongate upper and lower
jaws superficially like those of fSaurichthys that evolved inde-
pendently, most notably needlefishes and gar (Grande, 2010;
Gregory, 1933). However, the fusion of the rostral and premaxil-
lae into a single, elongate element is almost unique to {Saur-
ichthys amongst ray-finned fishes, with the lone exception being
the neopterygian fLuganoia from the Middle Triassic of Italy,
Switzerland, Spain, and China (Brough, 1939; Biirgin, 1992;
Xu, 2020). However, the rostropremaxilla of {Luganoia has a
narrow contribution to the oral surface and an elongate nasal
process articulating with the frontals (Xu, 2020). The rostropre-
maxilla in {Luganoia is therefore distinct in form from that of
tSaurichthys, in which the rostropremaxilla forms most of the
oral surface of the upper jaw (Romano et al., 2012). Therefore,
the elongate, tapering rostropremaxilla of fSaurichthys is apo-
morphic despite its superficial resemblance to longirostrine
neopterygians.

Elongate and deepened jaws in ray-finned fishes are opposite
ends of a biting mechanical spectrum, where morphology reflects
tradeoffs for closing velocity or force, respectively (Westneat,
1994, 2004). The jaw closing velocity-specialized morphotype
was occupied by fSaurichthyidae starting in the latest Permian
and throughout the Triassic in both freshwater and marine
environments, persisting in marine environments into the late
Middle Jurassic (Aalenian) of Europe (Maxwell, 2016; Romano
et al., 2012; Thies, 1985). Neopterygians convergently evolved
similar jaw closing velocity-specialized morphotypes in the
Middle Jurassic and beyond, the most {Saurichthys-like being
some members of extinct pan-teleost T Aspidorhynchidae (Belo-
nostomus) and pan-aulopiformes (Teleostei) fDercetidae
(Rhynchodercetis) and the extant needlefish and gar (Brito,
1997; Gallo et al., 2005; Grande, 2010; Gregory, 1933). Jaw
closing force-specialized morphologies have also evolved conver-
gently in multiple lineages of neopterygians, with some examples
being the extinct Pycnodontiformes and Dapediidae, extant
members of Balistidae (Balistes), Diodontidae (porcupinefishes),
Labridae (parrotfishes, hogfish), Serrasalmidae (pacus and piran-
has), and Sparidae (Archosargus probatocephalus) (Fernandez &
Motta, 1997; Gregory, 1933; Grubich et al., 2012; Huber et al.,
2008; Poyato-Ariza, 2015; Thies & Waschkewitz, 2016; Westneat,
2004).

tSaurichthys justitias highlights a temporal gap in the appear-
ances of specialized jaw morphologies in neopterygians. The
marine assemblage of the Norian Zorzino Limestone includes
a variety of neopterygians with anterior-posteriorly short, dorso-
ventrally deep lower jaws, including semionotids (1 Paralepido-
tus), pycnodonts, tSargodon, and macrosemiids (Lombardo &
Tintori, 2005; Tintori, 1998). Those taxa are convergent on
extant teleosts that bite prey items that are firmly attached to
reef surfaces, with chisel-like teeth and powerful, force-special-
ized jaws (Bellwood, 2003; Corn et al., 2022). In contrast, the pre-
sumably piscivorous fSaurichthys alone occupied the jaw closing
velocity-specialized morphotype in the Zorzino Limestone
assemblage (Beltan & Tintori, 1980; Tintori, 1998). The Norian
freshwater actinopterygian assemblages of the western U.S.A.
do not show nearly as much neopterygian diversity as contem-
porary marine assemblages (Schaeffer, 1967). However, a
similar pattern is present in the coprolite layer of the Blue
Mesa Member of the Chinle Formation and in the Dockum
Group, where the neopterygian tHemicalypterus shows a jaw
closing force-specialized jaw morphology (Fig. 7A) and fSaur-
ichthys (Fig. 7B) alone had a velocity-specialized jaw mor-
phology (Gibson, 2016; Kligman, 2023; Kligman et al., 2017).
Neopterygians did not exhibit extreme jaw closing velocity-
specialized morphologies until the appearance of the
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Jaw closing force-specialized

B

FIGURE 7. Convergence in force and velocity specialized cranial morphologies in ray-finned fishes. A, Hemicalypterus weiri, modified from Gibson
(2016:fig. 2). B, Archosargus probatocephalus, modified from Gregory (1933:fig. 123A). C, Saurichthys madagascariensis, modified from Kogan &
Romano (2016:fig. 11). C, D, Tylosurus marinus, modified from Gregory (1933:fig. 99A). Abbreviations: dn, dentary; mx, maxilla; pmx, premaxilla;

rpm, rostropremacxilla. Not to scale.

aspidorhynchid pan-teleosts (such as fBelonostomus kochii) in
the Middle Jurassic (Brito, 1997). Living actinopterygians with
elongate jaws, such as the needlefish Tylosurus marinus (Fig.
7D) typically engage in ram-biting behavior, a relatively uncom-
mon mode of feeding in which the animal propels its body and
jaws at a prey item (Corn et al., 2022; Ferry et al., 2015; Porter
& Motta, 2004). The fossil record therefore indicates that the
Late Triassic ecological diversification of neopterygians included
jaw closing force-specialized species, but not jaw closing velocity-
specialized forms. The broader implication is that the transition
in Triassic ray-finned fish assemblages from being primarily
stem-group actinopterygians to neopterygians did not include
ram-feeding, jaw closing velocity specialized species, roles
which continued to be occupied by {Saurichthys in marine and
continental environments in North America, Europe, and
China into the Late Triassic.

CONCLUSIONS

We describe a new species of ray-finned fish, tSaurichthys justi-
tias, from isolated teeth and rostra collected from novel microver-
tebrate assemblages in the Upper Triassic (Otischalkian, early ?
Norian) Boren Ranch beds of the Dockum Group near Justice-
burg, Texas. We found that {S. justitias has intraosseous replace-
ment teeth oriented horizontal to the functional teeth, indicating
that {Saurichthys had a tooth replacement mechanism like
extant predatory biting teleosts. The stem-group actinopterygians
+S. justitias and near contemporaneous tSaurichthys in the fresh-
water Chinle Formation (Arizona, US.A.) and the marine
Zorzino Limestone (Italy and Austria) highlight the absence of

neopterygians with elongate, closing velocity-specialized jaws in
the Triassic. Therefore, the Triassic transition in ray-finned fish
assemblages towards being composed of neopterygians did not
include jaw closing velocity-specialized species, roles which were
still occupied by fSaurichthys in marine and freshwater assem-
blages in China, Europe, and North America in the Late Triassic.
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