2406.09769v3 [quant-ph] 22 Dec 2024

arxiv

Approximate contraction of arbitrary tensor networks with
a flexible and efficient density matrix algorithm

Linjian Ma!, Matthew T. Fishman?, E. M. Stoudenmire?, and Edgar Solomonik!

!Department of Computer Science, University of lllinois Urbana-Champaign, Urbana, IL 61801, USA
2Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

Tensor network contractions are widely used in statistical physics, quantum com-
puting, and computer science. We introduce a method to efficiently approximate tensor
network contractions using low-rank approximations, where each intermediate tensor
generated during the contractions is approximated as a low-rank binary tree tensor net-
work. The proposed algorithm has the flexibility to incorporate a large portion of the
environment when performing low-rank approximations, which can lead to high accu-
racy for a given rank. Here, the environment refers to the remaining set of tensors in the
network, and low-rank approximations with larger environments can generally provide
higher accuracy. For contracting tensor networks defined on lattices, the proposed al-
gorithm can be viewed as a generalization of the standard boundary-based algorithms.
In addition, the algorithm includes a cost-efficient density matrix algorithm for approx-
imating a tensor network with a general graph structure into a tree structure, whose
computational cost is asymptotically upper-bounded by that of the standard algorithm
that uses canonicalization. Experimental results indicate that the proposed technique
outperforms previously proposed approximate tensor network contraction algorithms
for multiple problems in terms of both accuracy and efficiency.

1 Introduction

A tensor network [58, 80] uses a set of (small) tensors, where some or all of their modes are
contracted according to some pattern, to implicitly represent the structure of high-dimensional
tensors that are expensive to form explicitly. Tensor network techniques have been widely used
in computational quantum physics [80, 78, 81, 79, 70, 68], where low-rank tensor networks can be
used to both represent Hamiltonians and quantum states. These techniques are also applied in
multiple other applications, including quantum circuit simulation [61, 29, 62, 49, 83], data mining
via tensor methods [37, 15], machine learning [73, 65, 42], and so on.

The tensor network contraction operation explicitly evaluates the single tensor represented by
a given tensor network, and it has multiple applications. In quantum computing, each quantum
circuit execution can be viewed as a tensor network contraction, making this method a useful tool
for simulating quantum computers [49, 83, 62, 61]. In statistical physics, tensor network contraction
has been used to evaluate the classical partition function of physical models defined on specific
graphs [40]. Tensor network contraction has also been used for counting satisfying assignments
of constraint satisfaction problems (#CSPs) [38]. In this approach, an arbitrary #CSP formula
is transformed into a tensor network, where its full contraction yields the number of satisfying

Linjian Ma: Ima16G@illinois.edu

Matthew T. Fishman: mfishman®©flatironinstitute.org
E. M. Stoudenmire: mstoudenmire@flatironinstitute.org
Edgar Solomonik: solomon2@illinois.edu

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 1

assignments of that formula. Tensor network contraction is typically achieved through a sequence
of pairwise tensor contractions. This sequence, known as the contraction path, is determined by
a topological sort of the underlying contraction tree. The contraction tree is a rooted binary tree
that depicts the complete contraction of the tensor network. In this tree, the leaves correspond to
the tensors in the network, and each internal vertex represents the tensor contraction of its two
children.

In the general case, contracting tensor networks with arbitrary structure is #P-hard because
of the potential production of intermediate tensors with high orders or large modes, leading to
significant computational costs for accurate contraction [16, 56, 8]. Nonetheless, in some applica-
tions such as many-body physics, it has been observed that tensor networks built on top of specific
models can often be approximately contracted with satisfactory accuracy, without incurring large
computational costs [57].

PR

(a) MPS (b) Binary tree tensor network (¢c) TTNS

Figure 1: lllustration of the matrix product state (MPS), the (full) binary tree tensor network, and the tree tensor
network state (TTNS). MPS is a maximally-unbalanced binary tree tensor network if contracting the tensor at
one end with its neighbor. Both MPS and the binary tree tensor network are special cases of TTNS, where each
tensor has an order of at most 3.

A common approach to approximately contract a tensor network is to approximate large inter-
mediate tensors as (low-rank) tensor networks, which reduces the memory usage and computational
overhead for subsequent contractions. Widely used tensor networks for approximation including the
matrix product state (MPS [78], also called tensor train [59]), the binary tree tensor network [70],
and the tree tensor network state (TTNS) [55, 54, 22], which are visualized in Fig. 1. For tensor net-
work contractions defined on regular structures, such as projected entangled pair states (PEPS)
with 2D lattice structures [79, 78], many efficient approximate contraction algorithms based on
MPS approximations [46, 45] have been proposed. However, many of these methods have not been
extended to other general tensor network structures.

R

Figure 2: lllustration of the approximate contraction technique used in [35, 61, 14]. Each intermediate is
approximated as an MPS, which has an unbalanced binary tree structure. The left diagram is the tensor diagram
of the input tensor network. Each dashed box denotes the part of the tensor network that is approximated as an
MPS.

Recent works have proposed automated approximation algorithms for contracting tensor net-
works with more general graph structures [35, 61, 14, 26, 66, 2], and many of these methods employ
low-rank approximation/truncation techniques. In [35, 61, 14], each intermediate tensor produced
during the contraction is approximated as a binary tree tensor network, and we illustrate this ap-
proach in Fig. 2. In particular, [35] approximates each intermediate tensor as a general binary tree

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 2

tensor network, while the algorithm proposed in [61] called “contracting arbitrary tensor network”
(CATN) approximates each intermediate tensor as an MPS. When contracting two MPSs, CATN
swaps/permutes the modes that connect both MPSs to the boundaries. Then, it contracts these
modes to obtain the output MPS. The adjacent mode swaps are the bottleneck for complexity in
CATN. In another algorithm proposed in [14] called “SweepContractor”, each intermediate tensor
is also approximated as an MPS, and the algorithm leverages an embedding of the tensor network
graph into 2D space to find an effective contraction path.

Several factors can significantly impact the efficiency and accuracy of the approximate tensor
network contraction process. To begin with, the choice of contraction path plays a crucial role.
Ref. [26] demonstrates that selecting different contraction paths using various heuristics can lead
to substantial variations in both runtime and accuracy for different problems. Additionally, for
both CATN [61] and SweepContractor [14], it is essential to carefully select the binary tree/MPS
structures and permutations (i.e., a mapping from tensor modes onto binary tree vertices) [41].
These choices should yield accurate low-rank approximations while enabling efficient subsequent
contractions. However, previous works such as [35, 61, 14] have not systematically explored these
parts of the design space.

The low-rank truncation algorithm used to reduce the tensor size in approximate contraction
is another important factor. Let M represent the part of the network that requires approxima-
tion, and let E denote the remaining set of tensors in the network, which is commonly referred
to as the environment. The optimal way to truncate is to minimize the global error by solving
minx ||[EX — EM]||r with the constraint that X has a specific low-rank tensor network structure,
where |[|-|| 7 denotes the Frobenius norm. Two standard algorithms for solving the low-rank approx-
imation problem are the canonicalization-based algorithm and the density matrix algorithm. In
the canonicalization-based algorithm, one first performs a QR decomposition on E, Q,R + QR(E),
then updates X based on the low-rank approximation of QM. In the density matrix algorithm,
the leading eigenvectors of the density matrix (also called the Gram matrix/normal equations),
MTETEM, is computed, and X is computed by projecting M to the subspace spanned by the
leading eigenvectors. Both algorithms have the same output but can have different computational
costs.

If the environment tensor network E contains a large number of tensors, minimizing the global
error could be computationally expensive. In such cases, one typically resorts to minimizing the
local error by solving minx [|X — M||p, or by replacing E with a smaller environment E so the
optimization problem is easier to solve.

Achieving a balance between accuracy and efficiency requires favoring different structures and
sizes of the environment E for different problems. Hence, it becomes crucial to provide an auto-
mated tensor network contraction algorithm with the necessary flexibility to accommodate different
environments. This flexibility enables the algorithm to adapt and optimize the contraction process
according to the specific requirements of each problem.

In previous studies [61, 14], the selection of environments was implicitly determined by the
algorithm. For instance, in the CATN algorithm [61], truncation takes place during adjacent swaps
of MPS modes, with the environment consisting of all tensors in the target MPS. Similarly, the
SweepContractor algorithm [14] performs truncation while contracting an input MPS with a single
tensor, incorporating both the MPS and the tensor into the environment. The method proposed in
[26] introduces user-specified environment sizes, and utilizes tree-structured environments E that
are constructed by including a spanning tree of tensors around the pair of tensors to be truncated.
Ref. [26] demonstrates that including a larger environment leads to more accurate contraction
results for multiple problems. In this work, we generalize the strategies presented in the previous
works and propose a tensor network contraction algorithm that allows more flexible environment
incorporation. For contracting tensor networks defined on lattices, the proposed strategy can be
viewed as a generalization of the standard boundary-based algorithms [79].

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 3

1.1 Our contributions

We propose a new approach, partitoned_contract, for performing approximate contractions of
arbitrary tensor networks. We illustrate the approach in Fig. 4. This approach follows the technique
used in [35, 61, 14], where each intermediate tensor produced during the contraction is approxi-
mated as a binary tree tensor network. Moreover, our approach is composed of the following two
novel components.

’~ ’\ ’N ’\ m

a) Complete contraction tree (b) Contraction tree on the partitioned network

Figure 3: lllustration of different contraction trees. Each blue vertex denotes a tensor, and the green lines and
dots denote the binary contraction tree. The contraction tree visualization has been adapted from [26].
(b), each dotted box denotes a partition of the tensor network. The partial contraction sequence shown in (b)
corresponds to a standard left-to-right boundary MPS contraction [79].

First, unlike prior works [35, 61, 14, 26] that contract the tensor network based on a complete
contraction tree with each leaf corresponding to a tensor in the network, our technique relies on
a contraction tree of parts of the tensor network, which is a partial contraction tree and each
leaf vertex corresponds to a partition. We illustrate complete and partial contraction trees in
Fig. 3. In the algorithm, each low-rank approximation considers all tensors in the input partitions
as the environment, thus utilizing a larger partition means using a larger environment and can
potentially lower the truncation error. In practical applications, one has the option of either
utilizing automated graph partitioning libraries like KaHyPar [67] and Metis [36] for partitioning
the tensor network, or manually selecting suitable partitions for specific problems. In Section 3.2.2,
we will demonstrate how the utilization of the partial contraction tree abstraction enables the
straightforward extension of various contraction algorithms designed for 2D grids with different
environments, including those that have not been automated in the prior work [35, 61, 14, 26].

Second, we provide a new approach to approximate a given tensor network into a binary
tree structure, as depicted in Fig. 4b. This approach is composed of the following three novel
components.

e It encompasses a new heuristic for generating binary tree structures and permutations (i.e.,
a mapping from tensor modes onto binary tree vertices [41]) of intermediate tensor networks.
The binary tree structure is also called the embedding tree in Fig. 4b and throughout the
paper. Unlike previous studies that relied on arbitrary choices for such structures and permu-
tations, our approach takes into consideration the efficiency of subsequent contractions. This
is achieved by ensuring that the embedding tree aligns with a contraction path-generated
tree, which imposes constraints on the adjacency relations of binary tree modes. Moreover,
we ensure that the selected structure is similar to the given sub-tensor network by solving
a graph embedding problem that minimizes the congestion [33, 9, 52, 7, 51], allowing for an
accurate approximation with low ranks in the resulting tree tensor network. The details of
the algorithm can be found in Section 5

e It includes a density matrix algorithm to approximate a given tensor network into the target
embedding tree. The algorithm uses a sequence of density matrix algorithms for low-rank
approximation to output the embedding tree tensor network, and includes all tensors in the

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 4

S =

) Iustration of the partitoned_contract algorithm

Tensor network Embedding tree _a
— €2
€1 €1 ,' — el
e . .
2 Density matrix e
() es Tree embeddlng algorithm g
_— es
es leg €4 e4
es es /. ,65 es
€6
€6 ° 8\

€6

(b) Mlustration of the process to approximate the contraction of two partitions into a binary tree tensor network

Figure 4: (a) lllustration of the partitoned_contract algorithm. The algorithm takes as inputs a tensor network,
a partitioning of that tensor network, and a partial contraction tree. The algorithm proceeds by traversing the
partial contraction tree and approximately contracting a pair of tensor network partitions into a binary tree tensor
network. (b) Illustration of the process to approximate the input tensor network (left diagram) into a binary
tree tensor network (right diagram). The embedding tree is a rooted binary tree that represents the output tree
structure. The tree embedding step maps a partition of the input tensor network to each non-leaf (orange) vertex
in the embedding tree. Finally, the density matrix algorithm (or the canonicalization-base algorithm) approximates
the embedded tensor network into a binary tree tensor network. Each black dot in the diagrams represents an
identity matrix.

input tensor network as the environment. When compared to the canonicalization-based
algorithm that employs the same environment, the density matrix algorithm exhibits the
same or lower asymptotic cost, making it more efficient. In particular, the density matrix
algorithm exhibits the potential to significantly reduce the asymptotic cost when dealing with
large environment sizes. The detail of the algorithm can be found in Section 6.

The tensor network contraction framework proposed in [26] also offers the capability to
handle large environments. However, the framework in [26] approximates the environments
as trees from the outset by cutting certain bonds in the environment, which ignores certain
loop correlations in the environment. In contrast, our density matrix algorithm directly
works with the full environment including loops and then approximates the result of the
contraction as a tree, which for a given environment should be more accurate but potentially
more computationally expensive.

e In scenarios where the mode ordering of the selected tree structure intended for efficient
later contractions does not align with the input structure, our approach employs a hybrid
algorithm that integrates the density matrix algorithm and a swap-based algorithm to per-
form the tree approximation. Swap-based algorithms, extensively utilized in MPS-based
tensor network contraction algorithms such as when applying long-range gates [72] and in
other general approximate contraction algorithms like CATN and SweepContractor, use a se-
quence of adjacent swaps of MPS modes to permute the ordering of the MPS tensors. Within
our algorithm, a sequence of local swap operations are performed using the density matrix
algorithm, each time progressively modifying the structure by a small amount to ensure that

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 5

the overall cost remains manageable. The detail of the algorithm can be found in Section 7.

In Section 8, we assess the performance of the proposed algorithm. Regarding the sub-problem
of approximating a general tensor network into a tree tensor network, our experimental results
show the superior efficiency of the density matrix algorithm compared to the canonicalization-
based algorithm when applied to multiple input tensor network structures. These empirical findings
consistently align with our theoretical analysis.

To evaluate the efficacy of our contraction algorithm, we conduct experiments on various ten-
sor network structures. The results demonstrate that by leveraging environments and employing
the density matrix algorithm, we achieve significant reductions in overall execution time and im-
provements in accuracy when dealing with tensor networks defined on lattices and random regular
graphs. Notably, our algorithm outperforms both the CATN algorithm proposed in [61] and the
SweepContractor proposed in [14] when considering tensor networks defined on lattices represent-
ing the classical Ising model. Specifically, our approach achieves an order of magnitude speed-up in
execution time while maintaining the same level of accuracy. This improvement in speed demon-
strates the efficiency of our approach.

1.2 Organization

This paper is organized as follows. In Sections 2 and 3, we introduce the definitions, the compu-
tational cost model, and background for the proposed algorithm. Section 4 provides an overview
of the proposed approximate tensor network contraction algorithm, with detailed components dis-
cussed in Sections 5 to 7. In Section 8, we present the results of a series of experiments to evaluate
the performance of the proposed algorithm.

2 Definitions and the computational cost model

2.1 Tensor network definitions

We introduce the tensor network notation here. The structure of a tensor network can be described
by an undirected graph G = (V, E), where each tensor of the tensor network is associated with a
vertex in V' and each mode of the tensors is associated with an edge in . We refer to edges with
a dangling end (one end not adjacent to any vertex) as uncontracted edges, and those without
dangling ends as contracted edges. We use w to denote an edge weight function such that for each
edge e € E, w(e) = log(s) is the natural logarithm of the mode size s associated with an edge e.
For an edge set E, we use w(E) = Y ..y w(e) to denote the weighted sum of the edge set. The
weight w(F) is related to the cost of contracting neighboring tensors along the modes associated
with the edge set F, which will be discussed in more detail in the next section.

2.2 The computational cost model

We summarize the computational cost model used throughout the paper. We assume that all
tensors in the tensor network are dense. The contraction of two general dense tensors A and B,
represented as vertices v, and v, in G = (V, E), can be cast as a matrix multiplication, and the
overall asymptotic cost is

O (exp (w(E(va)) + w(E(v)) — w(E(va; v3)))) (1)

where F(vg), E(vp) denotes the edges adjacent to v,, vp, respectively, and FE(vg,vp) denotes the
edge connecting v, and v,. Above we assume the classical matrix multiplication algorithm is used
rather than fast algorithms such as Strassen’s algorithm [74].

To canonicalize the tree tensor network, a series of QR factorizations is employed. Given a
matrix A € R™*" performing the QR factorization incurs an asymptotic cost of ©(mn-min(m,n)).
In order to reduce the bond size or rank within the tensor network, we utilize low-rank factorization.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 6

Given a matrix A € R™*" low-rank factorization aims to find two matrices, B € R™*" and C €
R™™ with r being less than the minimum of m and n, while minimizing the Frobenius norm ||A —
BC||p. In our cost analysis, we assume the use of the standard low-rank factorization algorithm
that employs a rank-revealing QR factorization [28]. The asymptotic cost of this algorithm is
O(mnr).

3 Background

This section offers background for the proposed approach. In Section 3.1, we provide a short
survey of several common tensor networks discussed in the paper. In Section 3.2, we review both
the canonicalization-based algorithm and the density matrix algorithm for low-rank approximation
of tensor networks. This review serves as motivation for the density matrix algorithm explained
in detail in Section 6.

We cover additional backgrounds in the appendix. Appendix B.1 covers the standard swap-
based algorithm used to permute MPS modes, which serves as a motivation for our algorithm that
combines the density matrix algorithm and the swap-based algorithm, as outlined in Section 7.
Furthermore, in Appendix B.2, we delve into the definition and heuristics of the graph embedding
problem, which is utilized in Section 5 to select an efficient binary tree structure.

3.1 A survey of common tensor network structures

We survey both tree tensor networks and tensor networks defined on lattices. The matrix product
state (MPS) [78, 59], a binary tree tensor network [70], and a general tree tensor network state
(TTNS) [55, 54, 22] are illustrated in Fig. 1. An MPS is a tensor network with a linear structure,
with each tensor having one uncontracted mode. The binary tree tensor network has a rooted
binary tree structure, and all non-root vertices have an order of three. In a general TTNS, each
tensor can have uncontracted modes, and the network has a general tree structure.

In this work, we focus on discussing both MPS and the binary tree tensor network. These
networks are considered as special cases of TTNS, where each tensor has a maximum order of
three. This characteristic makes them more memory-efficient compared to more general TTNS,
especially when considering a fixed rank r. When the uncontracted mode size s is much smaller
than r, each MPS tensor has a size of O(sr?). This memory requirement is more efficient than
that of the general binary tree tensor network, whose tensor size is O(r?).

oo GH BB

PEPS) 3D lattice tensor network

Figure 5: lllustration of the matrix product operator (MPO), the projected entangled pair states (PEPS), and
the 3 x 3 x 2 3D lattice tensor network.

Fig. 5 and Fig. 3 provide visual representations of other tensor networks, including the matrix
product operator (MPO), the projected entangled pair states (PEPS) [79, 78], and a closed tensor
network defined on a 3D lattice. In the 2D lattice tensor network, each row is either an MPS or an
MPO. In the 3D lattice, each slice is either a PEPS or a PEPO. The PEPO has a similar structure
to PEPS, but with the distinction that each tensor has two uncontracted edges.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 7

3.2 The canonicalization-based algorithm and the density matrix algorithm

Let A € R B € REX¢ denote two tensors in a tensor network, and let E € R**® denote the
environment tensor network. The low-rank approximation problem that is widely used in this work
can be stated as
. min
AEROXT VEReXT

EAB — EAVTHF st VIV =T, (2)

where r < R. For the canonicalization-based algorithm, one first performs a QR decomposition
on EA and gets Q € R*F R € REXE and then computes the right » leading singular vectors of
RB to obtain V. For the density matrix algorithm, one first computes the Gram matrix (normal
equations) L = (EAB)"EAB, commonly known as the density matrix in the physics literature
(and is at the heart of the original formulation of the density matrix renormalization group (DMRG)
algorithm [81]), and then computes the right r leading singular vectors/eigenvectors of L to obtain
V.

For the case where E is a single matrix, both algorithms yield the same asymptotic cost with
the computational cost introduced in Section 2.2. However, when E takes the form of a tensor
network containing a large number of tensors, the density matrix algorithm is more advantageous in
terms of simplicity and efficiency. In particular, the density matrix L = (EAB)TEAB can be easily
computed using the existing exact tensor network contraction algorithms, while orthogonalizing EA
is usually hard when E does not have a tree structure. One potential approach for orthogonalizing
EA involves directly performing orthogonalization on the matrix resulting from the contraction of
EA, but this method is inefficient when E is not path-like.

In Section 3.2.1, we review the canonicalization-based algorithm to reduce the mode sizes of
tree tensor networks. We will show in Section 6.4 that the cost of the density matrix algorithm is
upper-bounded by the canonicalization-based algorithm. In Section 3.2.2, we provide a review of
existing algorithms employed in truncating the MPO-MPS contraction, a common tensor network
contraction and a special case of our more general algorithm.

3.2.1 The canonicalization-based algorithm for truncating tree tensor networks

We review the canonicalization-based algorithm to truncate a tree tensor network [82]. We first
introduce the canonical form in Definition 1. For a given matrix M that is implicitly represented
by a tree tensor network, its canonical form makes the whole tree orthogonal and uses another
matrix to store the non-orthogonal part.

canonical-formyp(u, v)

¢ contract
truncate

Figure 6: lllustration of truncating the mode represented by the edge (u,v) through canonicalization.

Definition 1 (Canonical form). Consider a tensor network with a tree structure 7' = (V, E). For a
given vertex u € V and an edge (u,v), let S C V denote the vertices connected to v when the edge
(u,v) is removed from T'. canonical _formp(u,v) means that all tensors represented by vertices in
S are orthogonalized towards the edge (u,v), and a new vertex is added between u and v whose
tensor contains the non-orthogonal part. An illustration of canonical formp(u,v) is in Fig. 6.

The canonicalization-based algorithm is shown in Algorithm 1. It proceeds by computing the
truncated network through a post-order depth-first search (DFS) traversal of the tree structure.
At each vertex v, the algorithm constructs the canonical form around v while truncating the edge
connected to v. The resulting orthogonal tensor U, is then computed. This iterative process
continues until only the root vertex remains, which contains the comprehensive non-orthogonal
information of the entire network.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 8

Algorithm 1 The canonicalization-based algorithm for truncating a tree tensor network

1: Input: The tree tensor network 7" = (V, E), the maximum mode size x, and the root vertex
r

2: T, + a directed tree of T" with a root vertex r

3: for each v € V'\ {r} based on a post-order DFS traversal of 7, do

4: wu < parent(7,,v)

5. Change the tree tensor network to canonical_formy(u,v) with the non-orthogonal matrix
Ru

6: M, < matricization of the tensor at v with the mode connecting u,v combined into the
column

7. UyRy, « rank-y approximation of M,R,, with U, being orthogonal

8 Update the tensor at u as f{uMu

9: end for

10: return the tree tensor network that contains all U, and the root tensor M,

3.2.2 Existing algorithms for truncating MPO-MPS multiplication

We provide a review of a set of algorithms to truncate the output of MPO-MPS multiplication.
These algorithms are widely used in the boundary-based algorithm to approximately contract
2D lattice tensor networks like those surveyed in Section 3.1. The boundary-based contraction
algorithm initiates the process with a boundary MPS of the 2D network (e.g., the leftmost MPS
in Fig. 3b). At each step, the adjacent MPO is applied to the MPS and the result is approximated
as a low-rank MPS. The boundary-based contraction algorithm serves as the basis for motivating
the proposed partial contraction tree abstraction and the generalized density matrix algorithm for
contracting arbitrary tensor networks.

Previous studies [60, 53] have explored various algorithms for MPO-MPS multiplication. These
algorithms include approaches based on canonicalization [72, 60], the density matrix algorithm [53,
24], and the iterative fitting algorithm [79, 72]. In this work, we specifically concentrate on the first
two types of algorithms. This choice is driven by the fact that both are one-pass algorithms and
theoretical error bounds can be derived for the resulting output of both algorithms. The iterative
fitting algorithm could have better scaling and lead to better performance in some cases but the
use of that approach within our new algorithm is left for future work.

Algorithms that use canonicalization We review two different canonicalization-based algo-
rithms: the zip-up algorithm [72] and the canonicalization algorithm with full environment [60].
The zip-up algorithm uses a smaller environment compared to the other algorithm, which consider
all tensors in the input MPO and MPS when performing truncations. Throughout the analysis we
use r to denote the MPS rank, use a to denote the MPO rank, and use s to denote the size of all
the other modes. The computational cost comparison between the algorithms is summarized in
Table 1.

Algorithm Asymptotic cost s<a=0(r) | s=0(a)Kr
Zip-up O(N(s?a®r? + sar?)) O(N(s%r)) O(N(s%r?))
Canonicalization w/ full env | ©O(N(s?ar? + sa’r?)) O(N(sr9)) O(N(s*r3))
Density matrix O(N (sa®r? + s2a3r? + s2ar?)) | O(N(s*r9)) O(N(s3r?))

Table 1: Comparison of asymptotic algorithmic complexity between the zip-up algorithm, the canonicalization-
based algorithm that uses the full environment, and the density matrix algorithm. s = ©(a) means s is asymp-
totically bounded by a both above and below.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 9

Figure 7: lllustration of the zip-up algorithm. Each dashed block includes the tensors to be contracted at a given
step. Each tensor represented by a triangular vertex denotes a tensor with an orthogonality property.

The zip-up algorithm [72, 60] is illustrated in Fig. 7. We also let the output truncated MPS
have rank r. The algorithm begins by contracting the leftmost pair of tensors. A truncated singular
value decomposition (SVD) is then performed to obtain the left leading singular vectors U; and
the remaining non-orthogonal component V. Next, Vi is combined with the second leftmost
pair of tensors, and another truncated SVD is performed. This process continues until it reaches
the right boundary of both the MPO and MPS. When the resulting MPS has an order of N, the
algorithm’s asymptotic computational cost is ©(N (s2a?r? +sar?)). It should be noted, as depicted
in Fig. 7, that the truncation at the ith step employs an environment including all ¢ left MPO and
MPS tensors, but not the full environment (all tensors in the MPS and MPO).

Orthogonahze 8 Truncate s

Figure 8: lllustration of the application and truncation algorithm.

The canonicalization-based algorithm that uses the full environment is illustrated in Fig. 8. The
algorithm first multiplies the MPS and MPO, resulting in an MPS with a rank of ar. Subsequently,
the MPS is truncated via the canonicalization-based algorithm reviewed in Section 3.2.1. When the
output MPS has an order N, the algorithm has an asymptotic cost of (N (s2a%r? 4 sar?)), which
is O(a?) times the cost of the zip-up algorithm. However, this algorithm offers better accuracy since
each truncation utilizes the full environment. Furthermore, the algorithm maintains a theoretical
upper bound on the truncation error [59].

The density matrix algorithm The density matrix algorithm produces an equivalent truncated
MPS as the application and truncation algorithm, and we illustrate the algorithm in Fig. 9. The
algorithm contains three steps,

1. Computing matrices L;, as is shown in Fig. 9a. These matrices are computed by sequen-
tially contracting the network from left to right, and intermediates L; are saved during the
contractions.

2. Performing a sweep of contractions from right to left and use L; to compute all the leading
singular vectors U; for ¢ € {1,..., N — 1}. Specifically, Ly is firstly used to compute the
density matrix with the last pair of uncontracted modes left open, and truncated eigende-
composition is performed on the density matrix to yield the leading singular vectors Uj.
Next, the intermediates Ly_1 is utilized to compute the density matrix with the right two
uncontracted modes left open. Additionally, the basis of this density matrix is transformed
by applying U, as shown in Fig. 9b. This process is repeated until N — 1 tensors U; are
obtained.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 10

r
S
a
s @(sa“"r3 + 32a3r2)
s —
a
s
T

s @(sa2r3+sza3r2)
§ ———

(E)(sazr2 + s2a2r) y 8(327')
7 —
s| Eigen

) =
I3
E 3
)
ém
1=

Ly 8 @(szar + sarz)

S

O(s%a’r? + sar® + s%ar®) sﬁr O(s?r?)

r Eigen

= 5
1)

Kl)
w

W

]

— T ~\T
. T
L ST S
a/\a ’,
.) O=— O (sar® + s2a%r?) O (s2a%? + sa’r® + s’ar’) sIqr o(sr?) T
i, 1s, 3 s| | Eige
. 1g2en
rs r ¥ @@ r EP B
O

(b) The second step

@(sar3 + s2a2r2) a@ Output () T < r r <

(¢) The third step

Figure 9: lllustration of the density matrix algorithm. Each triangular vertex represents a tensor with an orthogonal
property.

3. Getting the leftmost matrix My that encompasses all the non-orthogonal information through
the contraction depicted in Fig. 9c, and form the output MPS by combining all U; and M.

When the output MPS has an order N, the density matrix algorithm has an asymptotic cost of
O(N (sar3+s%a®r?+s%ar3)). In applications arising in statistical physics and quantum computing,
the size s is commonly the smallest. As is shown in Table 1, for the case where s < a = ©O(r),
the cost of density matrix algorithm is ©(s?r°), which is ©(r/s) better than the canonicalization
with full environment algorithm. For the other case, where s = ©(a) < r, the cost of the density
matrix algorithm is ©(s3r?), which is ©(s) better than the canonicalization with full environment
algorithm.

Automation and generalization of the MPO-MPS multiplication algorithms There is
an opportunity to generalize the MPO-MPS multiplication algorithms to arbitrary graphs. In par-
ticular, SweepContractor [14] generalizes the MPO-MPS zip-up algorithm, and uses a subroutine
that contracts a single tensor with an MPS into a new MPS to contract arbitrary tensor networks.
In contrast, our proposed algorithm includes a subroutine that contracts a general tensor network
(such as an MPO) with a binary tree tensor network into a binary tree network, allowing the
generalizing of all three MPO-MPS multiplication algorithms.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 11

The analysis and observations above suggest that the density matrix algorithm has greater
efficiency compared to the canonicalization-based algorithm. As a result, we generalize the density
matrix algorithm for the MPO-MPS multiplication and implement one that is able to approximate a
general tensor network into a tree tensor network. Generalization of the density matrix algorithm
to trees presents two challenges. Firstly, determining how to efficiently perform memoization
(accelerating the contraction by caching partial contraction results) to reduce costs becomes less
straightforward. In order to address this issue, we have introduced a strategy that utilizes graph
partitioning in Section 6. Secondly, selecting an appropriate output tree structure that enhances
the efficiency of the approximation poses a challenge. For the MPO-MPS multiplication, it is
evident that the MPS ordering consistent with the input MPS and MPO would yield favorable
results. In Section 5, we propose algorithms to select efficient tree structures for general graphs.

4 The proposed tensor network contraction algorithm

In this section, we present the proposed approximate tensor network contraction algorithm.

4.1 Definitions

We use G[S]| = (S, Eg) to denote a sub tensor network defined on S C V', where Eg contains all
edges in F adjacent to any v € S. For two disjoint subsets of V' denoted as X,Y’, we let E(X,Y)
denote the set of edges connecting X,Y. We let E(X) denote the set of uncontracted edges of
G[X].

For the tensor network represented by G = (V, E), we use V = {Vi,...,Vy} to denote a graph
partitioning that partitions V into Vi,...,Vn. A contraction tree of the partitioned network is a
directed binary tree showing how vertex subsets in V are contracted, and it is denoted (). Each
leaf of T(V) is a vertex subset in V, and each non-leaf vertex in T(¥) can be represented by a subset
of the vertices, W1 U Ws, where its two children are represented by Wi and Wa, respectively.

For a given vertex in the contraction tree () that is represented by V' c V, path(T™), V")
denotes a sub-contraction path of (). This sub-contraction path is a subgraph of T(V) that
contains all vertices in T() that are ancestors of V' as well as the children of these ancestors. To
illustrate, we provide an example of the sub-contraction path of Vy in Fig. 10.

ViUV, UV Vy Vs Ve

Figure 10: lllustration of the sub-contraction path. The left diagram denotes the graph partitioning and the
contraction tree T(V), and the right diagram denotes the sub-contraction path path(T"), V).

4.2 An overview of the algorithm

In this section we present an overview of the algorithm. The algorithm takes as inputs a tensor
network, a partitioning of that tensor network, a partial contraction tree of the partitioned tensor
network, an ansatz for the structure of intermediate network contractions (for example, an MPS or
a comb tree), and parameters for performing intermediate approximate tensor network contractions
which tune the level of accuracy of the method. The algorithm proceeds by traversing the partial

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 12

contraction tree and approximately contracting pairs of tensor network partitions specified by
the contraction tree. The pair of tensor network partitions are approximately contracted using
a specified algorithm such as the density matrix algorithm, resulting in a tensor network with
the specified structure, such as an MPS or comb tree structure. The algorithm proceeds until all
partitions are contracted. An example of the algorithm is shown in Fig. 4.

Algorithm 2 partitioned contract: approximate tensor network contraction based on its given
partition
1: Input: The tensor network J with graph G = (V, E), its partition V = {Vi,...,Vy} and its
contraction path (), ansatz A, maximum bond size y, and swap batch size r // The ansatz
A can be either “MPS” or “Comb”
2: tn < a mapping that maps each vertex set to its approximated tensor network
E—{EWV;,V;)i,j€{l,...,N}} // The set where each element is an edge subset connecting two

different partitions

w

4: // Lines 5-9: construct edge/edgeset linear orderings that define the embedding tree

5: {O'(E/) B eé& } + selecting an ordering for each edgeset in £ via recursive bisection

6: for each contraction (Uy, W,) € TV) do

7: & + The subset of £ that is adjacent to the sub tensor network with vertices Ugs U W

8. 0(%) « embedding_tree_ ordering (G[Us U W], path (TV, U, U Ws) ,Ss) // Select an order-
ing for edgesets in Eg

9: end for

10: for each contraction (Us, W) € T™V) do

11: tn(Us U W;) < approx_tensor_network (tn(Us) utn(Vs), o) {oE) . B € £}, x,, A) //
Approzimate the input tensor network tn(Us)Utn(Vy) as a binary tree tensor network Xy, Algorithm 6

12: end for

13: return the final approximated tensor network, tn(V")

Pseudocode providing more details of steps of the algorithm is presented in Algorithm 2. Def-
initions of all notations are summarized in Table 2. The algorithm takes as input the tensor
network partition V and its contraction path 7). During each contraction step along the path,
all tensors within the input partitions are treated as the environment. Consequently, larger parti-
tions typically lead to higher approximation accuracy, but at the cost of increased computational
complexity.

When two tensor network partitions are contracted, an embedding tree is first constructed
which specifies the structure of the network that will result from the contraction. The embedding
tree is a full binary tree where each leaf vertex is associated with a dangling edge/mode of the
subnetwork made from composing the two partitions that are being contracted. Furthermore,
each non-leaf vertex in the embedding tree corresponds to a tensor within the resulting binary
tree tensor network. All tensors within this network have an order of three, except for the tensor
located at the root vertex. An example of such an embedding tree is illustrated in the second left
diagram of Fig. 4b.

The selection of the embedding tree is guided by an analysis of the structure of the input tensor
network graph G, its partitioning, and the contraction path. This analysis aims to identify a tree
structure that optimizes the efficiency of both the current contraction and any subsequent contrac-
tions involving the contracted output. The determination of each embedding tree structure occurs
in lines 5-9. Note that the generation of the embedding tree only depends on the tensor network
graph structure, rather than the actual tensor data. The relationship between the embedding tree
and the orderings of the edges is further explained in Section 4.3.

While our method introduces a novel perspective on the construction of the embedding tree,
it is worth noting that alternative approaches have been proposed for determining tree structures

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 13

based on various other heuristics. For instance, Seitz et al. [69] propose a method specifically for
determining a tree structure based on a quantum circuit. Other studies, such as those by Nakatani
and Chan [55], Murg et al. [54], Szalay et al. [75], and Ferrari et al. [23], explore different heuristics
for tree construction, leveraging factors like entanglement or interaction strength.

After selecting an embedding tree, we proceed to embed the tensor network comprising two
partitions into the embedding tree and truncate it to ensure that the maximum bond size remains
below y. This process is performed in lines 10-12. In-depth explanations of the hybrid algorithm,
which combines the density matrix algorithm and the swap-based algorithm to obtain the approx-
imated binary tree tensor network, can be found in Section 6 and Section 7. This hybrid algorithm
involves multiple iterations of the density matrix algorithm, each progressively modifying the struc-
ture of the tensor network to a degree controlled by the swap batch size r. The choice of r allows
the user to find a balance between accuracy and computational cost for specific problem instances.

4.3 Determination of the embedding tree

We explain the embedding tree structure used in Algorithm 2. As is defined in Section 4.2, an
embedding tree is a rooted full binary tree, with each leaf vertex representing an uncontracted
edge in the tensor network.

Let £ ={E(V;,V}) 14,5 € {1,...,N}}, so that each element in £ is an edge subset connecting
two different partitions. For a specific contraction (Us, W) defined in Table 2, we let & be the
subset of £ that is adjacent to the tensor network represented by UsUW,. We design the embedding
tree structure so that the leaves that represent each E; € & are in close proximity to one another.
This arrangement is advantageous because all edges within each E; are always contracted together
in the same contraction. Placing them close to each other simplifies the contraction process and
eliminates the need for unnecessary permutation of modes.

Two structures we use for the embedding tree are the MPS (maximally-unbalanced full binary
tree) and the comb [5, 13]. The comb tensor network is a tree tensor network arranged in a
linear chain with branches. Both structures are based on a linear orderings (%) for & and linear
orderings ¢(&) for E' € &,, and they are generated in lines 5-9 of Algorithm 2. We formally define
the embedding tree with an MPS and a comb structure in Appendix C. We visualize both the
embedding tree with an MPS structure and with a comb structure in Fig. 11.

L1 Ty T3 T4 Ty
(a) MPS tree

S T T3

P el Iy el H

| 1 i I

1 h] i

i h H i H

; k | |

1
€] ey €3 e4 e; e €7 €g €9 ie1_ez_esi 'fﬁl__e_5___e§_' "EZ-.‘%&_PQ_'
(b) Embedding tree with an MPS structure (c) Embedding tree with a comb structure

Figure 11: (a) Visualization of the MPS tree defined on o° with o°(x;) = i. (b)(c) Visualization of the
embedding tree with an MPS structure and a comb structure. The input orderings are ¢(¢!) = (B, Es, E3)
with By = {e1,ea,e3}, By = {eq,e5,¢e6}, and E3 = {er,eg,e9}. 0B o(F2) 5(Es) are defined so that in
6 =0F) @oP2) golFs) &(e;) =i

In comparison to the MPS structure, the comb structure has a smaller diameter, representing
the maximum distance between any two vertices. However, the comb structure also has a larger
maximum tensor size of ©(x?®), where y is the maximum bond size. This is larger than the
maximum tensor size of the MPS structure, which is ©(sx?), where s represents the uncontracted

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 14

mode size and is typically much smaller than x. In Section 8, we conduct experimental comparisons
between the performance of the MPS structure and the comb structure.

Various heuristics can be used to obtain the linear ordering o) for each E/ € €. In this
work, we utilize the recursive bisection algorithm described in Appendix B.2, on a partition of the
input graph G that is connected to E’. The recursive bisection algorithm is a heuristic that aims
to minimize congestion in the linear ordering. By applying this algorithm, we obtain an ordering
that results in the embedding tree tensor network having low ranks. The algorithm for selecting
the ordering ¢(€s) is explained in detail in Section 5.

5 The algorithm to select the edge subset ordering of the embedding tree

For a given contraction (Us, W), we detail the algorithm to select the linear ordering o(&) for
the intermediate tensor network G, = (V;, E), where V, = U, U W,. o) is generated based on
both G4 and the sub-contraction path 7" = path (T(V), Vs) defined at Section 4.1, where TV) is
the contraction tree over the partition V.

The ordering o(®) is chosen with two objectives. Firstly, it is designed to satisfy a specific
adjacency relation that greatly facilitates efficient subsequent contractions. This adjacency relation
ensures that for each of the subsequent contractions (Uy, W), the contracted edges between Uy
and Wy, are adjacent in both input tensor networks tn(Uy) and tn(Vj). The adjacency of these
contracted edges results in a lower cost for the contraction, compared to the scenario where the
contracted edges are not adjacent. This adjacency relation is described by the constraint tree for &,
T(€). Each leaf vertex in the constraint tree represents an edge set in &, and each non-leaf vertex
has at least 2 children and indicates the edge subsets represented by the children are adjacent.
Each non-leaf vertex also denotes whether the children’s vertices are ordered or not. We show an
example of the constraint tree in the bottom right diagram of Fig. 25. In Appendix D, a detailed
explanation is provided on how to select the constraint tree.

Secondly, the resulting binary tree structure should be similar to the tensor network G in order
to keep the ranks of the resulting tree tensor network low. In Section 5.1, we detail the algorithm
to find the ordering not only consistent with the constraint tree, but also to minimize the cost of
permutation (Kendall-Tau distance between the chosen ordering and another reference ordering
whose corresponding line structure is similar to Gy).

5.1 Determination of the edge set ordering based on the constraint tree

We provide an explanation of the algorithm that determines the ordering for the set of elements
&, denoted as o(®). This ordering is not only constrained by the constraint tree T but also
aims to reflect the structure of the input graph G. The algorithm is presented in Algorithm 3. To
begin with, in Line 2, we generate a reference ordering denoted as 7 for the set of elements £. This
reference ordering is generated using recursive bisection and represents a linear structure that is
close to the structure of Gs. Subsequently, the algorithm proceeds to construct the output ordering
by employing a post-order DFS traversal of the constraint tree 7€), This traversal strategy ensures
that the ordering takes into account the constraints imposed by the tree structure. In Appendix E,
we prove that the output ordering of Algorithm 3 minimizes the Kendall-Tau distance with the
reference ordering under the adjacency constraint.

6 The density matrix algorithm for tree approximations

We present a density matrix algorithm to approximate an arbitrary tensor network into a tree
tensor network. The standard approach involves embedding the input tensor network into an
embedding tree and explicitly forming the untruncated tree tensor network, then truncating the
resulting tree tensor network using the canonicalization-based algorithm. However, this can lead

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 15

Algorithm 3 linear ordering under_constraint_tree: Algorithm to get the edge set ordering
that minimizes the Kendall-Tau distance with the reference ordering under the adjacency constraint

1: Input: the edge set &, the constraint tree T the tensor network graph G, = (Vs, Es)
2: T < linear_ordering (&s,Gs) // Ordering generated via recursive bisection

3. f < a mapping that maps each vertex in T to its edge set ordering

4: for each leaf vertex v that represents F; in T¢) do

5. f(v) < the ordering that contains the single edge set E;

6: end for

7: for each non-leaf vertex v that represents & based on a post-order DFS traversal of T®) do
8 Uj,...,Up, < children of v

9: if v is labeled as ordered then

10: o1 f(u1) ® f(uz) ® -+ & f(up,) // Concatenate all f(u;) in order

11: S < {o1,reverse(oy)}

12: else

13: S + a set of all permutations of {f(u1), f(u2),..., f(un,)}

14: end if

15: T, < a partial ordering of 7 over the subset éfz

16: f(v) < argminges dgr (0,7y) // Minimize the Kendall-Tau distance defiend at Definition 3
17: end for

18: return f (root (T(gs))>

to tree tensor networks with large ranks, resulting in expensive canonicalization and low-rank
approximation processes.

Our proposed density matrix algorithm builds upon the density matrix algorithm originally
designed for MPO-MPS multiplication, which is discussed in Section 3.2.2. Given a tree embed-
ding of the input tensor network, our algorithm eliminates the need to explicitly construct the
untruncated tree tensor network. It offers the advantage of forming a low-rank tree tensor network
without requiring the generation of large intermediate tensors. Specifically, we show in Section 6.4
that the asymptotic computational cost of the algorithm is upper-bounded by the cost of the
canonicalization-based algorithm, and we show in Section 8 that for many input tensor networks,
the proposed algorithm substantially reduces the overall execution time.

6.1 Definitions

Within the algorithm, we use density matrix, (v) and density matrix; (v, z) introduced in Def-
inition 2. For a given embedding tree T' = (Vp, E7) with each vertex in T representing a partition
of the tensor network embedded to that vertex, we use the notation density matrix, (v) to cal-
culate the density matrix of vertex v on top of the embedding tree T', with the open edges of the
matrix being the uncontracted edges incident to v. Moreover, density matrix, (v, z) calculates
the density matrix of vertex v with the open edge of the matrix being Er(v,z). We show an
illustration in Fig. 12.

Definition 2 (Density matrix). Consider a given embedding tree T' = (Vr, Er) with each T'(v)
for v € Vp representing a sub tensor network, and let T'(S) = UyesT (v). For a given vertex
v € Vp, and a set of edges EU C E7p that is adjacent to v, let S C Vi denote the vertices connected
to v when E, is removed from 7. Let T() denote the matricization of the tensor network

T(S) with all modes defined by E, are combined into the matrix row. Then the density matrix
T..

- (Ew)
let densitymatrixy (v) denote the density matrix of v when E, = Er(v,*) is the uncontracted
edge set incident on v, and we let densitymatrix, (v,u) denote the density matrix of v when

E, = Er(u,v).

defined on T, v, E,, denoted as density matrix; (v, Ev), equals T(EU)T For simplicity, we

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 16

ey AR o A A
AR A HEE AN T R
ARAR WYY BRAR ¢ Y
TS~ o

(a) density matrix, (v, z) (b) density matrix, (z) i

Figure 12: Visualization of density matrix, (v, z) and densitymatrix, (z). In the left diagrams of (a)(b),
the tree structure is the embedding tree 7', and each vertex represents a partition of the network embedded in
that vertex. The open edge of the density matrix is marked in red. The dashed boxes denote the tensor networks
squared in the density matrices (7'(S) in Definition 2). The right diagrams visualizes the density matrices. In (a),
L, = densitymatrix, (u;,v) and Ly = densitymatrix, (u2,v) can be cached and reused when computing
the density matrix.

For a tensor network G' = (V, E), we also define cutq(X,Y) = 3 cp(x,y) w(e), where E(X,Y)
denotes the set of edges connecting two disjoint vertex subsets X, Y. For two vertices u,v € V, we
define the minimum cut between u,v in G as

mincutg(u, v) = AI%inV cutg(A, B).
BC
ucAveB

Let E1, Eo be the two different subsets of the uncontracted edges of G, we define mincutg(E1, E2)
as the mincut between two new vertices a, b on the graph that contains both G and a, b, where a, b
are adjacent to E7, Es, respectively.

6.2 The density matrix algorithm

The density matrix algorithm is summarized in Algorithm 4. The algorithm involves computing
the output network by performing a post-order DFS traversal of the embedding tree. During
the traversal, at each vertex v, the corresponding tensor U, is computed. Subsequently, vertex
v is removed from the embedding tree. This process continues iteratively until only the root
vertex remains, whose tensor encapsulates all the non-orthogonal information of the network. A
visualization of the algorithm is shown in Fig. 13.

In Algorithm 4, we initially construct an embedding ¢ utilizing the recursive bisection technique
outlined in Algorithm 5. This embedding assigns a tensor network partition to each vertex in the
embedding tree and serves as a guide for the memoization strategy. As is reviewed in Appendix B.2,
recursive bisection is a standard heuristic to find embeddings with low congestion. It is worth noting
that Algorithm 5 may produce an embedding in which there exists a vertex in the embedding tree
whose corresponding tensor network partition is empty. In such cases, we can address this problem
by introducing identity matrices into the input graph. This adjustment ensures that the resulting
tensor network remains equivalent while guaranteeing the non-emptiness of each partition.

For computing U, at each vertex v € Vip, Algorithm 4 incorporates two subroutines that handle
two distinct cases efficiently. In the algorithm, we let M, denote the matricized contraction output
of the partition at v, T'(v), that combines all uncontracted modes into the matrix row. In addition,
let L, = density matrix (v) and L, = density matrixy (u,v).

Since L, = MULUMZ, if the number of rows in L, is smaller than the number of rows in L,,, in
Lines 10-11 we compute L, then obtain its singular vectors, which is the most efficient approach.
Conversely, if the number of rows in L, exceeds the number of rows in L,,, it implies that L, is not
full rank. In such cases, we use an subroutine called QR-SVD [62] instead in Lines 13-18. we first
use QR factorization to orthogonalize M, and yield Q,R,, and subsequently calculate the leading
singular vectors of R,L,RY, which yields an implicit representation of the singular vectors of L.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 17

QR-SVD avoids the generation of the large density matrix L,, thus having a better asymptotic
cost. In Section 6.4, we demonstrate that Algorithm 4 provides a guarantee that its asymptotic
computational cost remains upper-bounded by that of the canonicalization-based algorithm.

Algorithm 4 density matrix_alg: The density matrix algorithm for tree approximation

1: Input: The tensor network G = (V, F), its embedding tree T' = (Vp, E7), and maximum bond
size Y

2: ¢ < tree_embedding(G,T) // Constructed based on Algorithm 5

3: r < root vertex in T

4: T' + a tree with the same structure as T' and T'(v) for v € Vp denotes all tensors embedded

towvin ¢
5: for each v € V \ {r} based on a post-order DFS traversal of T' do
6: A, < uncontracted_edges(7’,v)
7. B, ¢ contracted_edges(T",v)
8: wu < parent(7’,v)
9: if w(4,) = O(w(B,)) then
10: L, < densitymatrix(v) // Defined in Definition 2
11: U, < leading eigenvectors(L,, x)
12: else
13: // Perform QR-SVD [62] to reduce the asymptotic cost
14: L, < densitymatrixg(u,v)
15: M, < the matricized contraction output of T'(v) with A, combined into row
16: Qu, Ry < QR(M’U)
17: U, + leading singular_vectors(R,L,RT,)
18: U, + Q,U,
19: end if

20: Add both T'(v) and a vertex that represents UL to T"(u), and remove v from 7"
21: end for

22: M, < contraction output of T'(r)

23: return the tree tensor network that contains all U, and the root tensor M,

Figure 13: Visualization of the density matrix algorithm. The tree structure in each diagram is the embedding
tree. Each dashed circle represents a partition of the tensor network, and each solid circle/rectangle represents
a tensor. Blue, purple, and orange vertices represent the input tensor network, intermediate tensors generated
during the algorithm, and the output tensors, respectively. The input tensor network is represented by the top left
diagram, and the output one is represented by the bottom right diagram. In each diagram, the network included
in the dashed box has a structure of 7”7 in Algorithm 4 and is used to compute the density matrix, and red edges
denote the open edges of the density matrix.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 18

Algorithm 5 tree_embedding: embedding a graph into the embedding tree via recursive bisection

1: Input: The source graph G = (V, E), the embedding tree T'= (Vp, E7)
2: if |Vr| =1 then

3: return an embedding that mapping all v € V' to the vertex in Vp

4: end if

5: ¢ < an empty embedding function

6: r < root vertex in T

7. Er, Er <+ open edges represented by the left leaves and right leaves r, respectively
8: S, Spr + bipartition of V' such that cutg(SL, Sr) = mincutg(Fr, ER)
9: ¢, < tree_embedding (G[SL],left_child tree(T))
10: E/L < E(SL,SR)
11: S}, S% < bipartition of Sy such that cutg (S}, S) = mincutg(E}, ER)
12: For each v € S, let ¢(v) =7
13: ¢p < tree_embedding (G[S%|,right_child_tree(T))
14: return the combination of ¢, ¢, dr

6.3 The density matrix algorithm with memoization

As can be seen from Fig. 13, there are many shared tensor network parts across density matrices.
We present a memoization strategy that generalizes the memoization strategy for the density
matrix algorithm of the MPO-MPS multiplication to reduce the computational cost. The strategy
is used in Lines 10, 14 of Algorithm 4.

The memoization strategy uses the following recursive relation for density matrix; (v) and
densitymatrix; (v, 2),

densitymatrix; (v) = Mg;(v %) ® density matrix(u,v) Mg;?v %)
uweN (v)
3)
density matrix, (v,z) = Mg;(v 2)) densitymatrix;(u,v) MSEU;{@ 2)’
ueN(v)\{z}

(v)
ET(Ua*)
denote a matricization of the tensor network represented by v, T'(v). In this matricization, all

. . . . v o e .
uncontracted modes incident on v are combined into the row. M Er(v,2) denote a matricization of

where N (v) denotes the set of vertices adjacent to v, ® denotes a Kronecker product, and M

T'(v) where the mode represented by the edge Ep(v,z) is the matrix row.

To compute the density matrix density matrix, (v, z), we first compute the density matrices
for its neighboring vertices u € N(v) \ {z}, then contract the target network that contains the
density matrices as well as the tensor network 7'(v) following (3). The contraction cost of the
above target tensor network is dependent on the selected contraction path, and in practice one can
either choose the optimal contraction path that minimizes the contraction cost or select it based on
multiple heuristics [27]. Note that one way to contract the target network is to contract T'(v) into
a tensor first and then contract it with the density matrices, but it may not yield the optimal cost.
If the terms density matrix,(u,v) have already been computed when generating other density
matrices, we will cache and reuse them here. We illustrate such strategy in Fig. 12a. The same
strategy is used to compute density matrix, (v).

In Algorithm 4, the computation of each density matrix occurs only once. Considering that
the embedding tree T is limited to being a rooted binary tree, there are at most three density
matrices to be calculated for each vertex v in the embedding tree. Below we bound the asymptotic
computational cost of the density matrix algorithm using memoization, and we show that for a
given embedding ¢, the cost will be upper-bounded by the algorithm that uses canonicalization,

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 19

justifying the efficiency of the algorithm.

6.4 Computational cost analysis

We compare the asymptotic computational costs of the density matrix algorithm and the baseline
algorithm that utilizes canonicalization, as discussed in Section 3.2.1. In Theorem 6.1, we establish
that the density matrix algorithm can be more efficient in approximating a general tensor network
as an embedding tree. The cost of the density matrix algorithm is upper-bounded by that of
the canonicalization-based algorithm. This efficiency arises from the fact that the density matrix
algorithm does not need to explicitly contract the partition embedded in each tree vertex into a
tensor.

Theorem 6.1. Consider a given tensor network G = (V, E), an embedding tree T = (Vp, ET), and
an embedding ¢ that embeds G into T'. Let o : Vp — {1,...,|Vp|} be a post-order DFS traversal of
T that shows the the tensor update ordering. Assuming that changing a tree tensor network into
its canonical form will not change any bond size of the network, the asymptotic cost of the density
matriz algorithm (Algorithm /) is upper-bounded by that of the canonicalization-based algorithm
(Algorithm 1) if both algorithms use the same embedding ¢, the same update ordering o, and the
same mazimum bond size x.

Proof. For the contraction of each density matrix at vertex v in the density matrix algorithm, a
valid contraction path can be obtained by contracting the partition at v into a tensor first, then
contracting it with other density matrices based on (3). The cost of this contraction path is an
upper bound of the contraction cost of this density matrix, assuming the optimal contraction path
is selected.

Therefore, the overall cost of the density matrix algorithm, assuming the optimal contraction
path is used during the contraction of each density matrix, is upper-bounded by the case where each
partition embedded into every vertex v € Vp is contracted into a tensor M, prior to conducting
the depth-first search (DFS) traversal. This transforms the tensor network into an untruncated
tree tensor network. According to Lemma F.3 in Appendix F, both the density matrix algorithm
and the canonicalization-based algorithm exhibit the same asymptotic cost when truncating a tree
tensor network. By examining this particular case, we establish that the upper bound of the density
matrix algorithm matches the asymptotic cost described in Algorithm 1. This finishes the proof.

O

7 The algorithm to approximate an input tensor network into an embedding
tree

We introduce a hybrid algorithm that combines the density matrix algorithm with the swap-
based algorithm to approximate an input tensor network G = (V, E) into an embedding tree.
This hybrid algorithm offers a compromise between accuracy and computational cost by perform-
ing multiple iterations of the density matrix algorithm. Each iteration incrementally modifies the
structure of the tensor network by a small degree, ensuring that the overall computational cost
remains manageable. While this approach may sacrifice a certain degree of approximation accu-
racy, it provides a balanced solution that achieves a reasonable trade-off between accuracy and
computational efficiency compared to the pure density matrix algorithm.

We present the algorithm in Algorithm 6, and an illustration is shown in Fig. 14. In this
algorithm, we denote the edge set ordering in the embedding tree as o(¢s), and the reference edge
set ordering of G as 7(6). We measure the structural difference between G and the embedding tree
‘95),0(55)). The algorithm
utilizes a parameter r to control the extent of structural modifications made by each density matrix
algorithm iteration. The number of density matrix algorithms performed is determined by [d/r].
Users can choose different values of depending on the specific problem. By selecting a larger value

using the Kendall-Tau distance in Definition 3, defined as d = dgkr (T(

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 20

Algorithm 6 approx_tensor network: approximate a tensor network into an embedding tree

1: Input: The tensor network T with graph G, = (V;, E,), the edge set ordering o(®), the edge

orderings {o(F) : E' € £,}, the maximum bond size , the swap batch size r, and ansatz A //

The ansatz A can be either “MPS” or “Comb”

7(€s) linear ordering (&, Gs) // Ordering generated via recursive bisection

d + dgr (7_(55)’ 0(55)) // Number of adjacent edge set swaps needed to change 7€) to o(&s)

n < [d/r] // The number of density matriz algorithms to be performed

01...,0p < n equally-spaced inverval orderings that separate 7€) and o(&)

:X:Q — T

forie{1,...,n} do
T < embedding tree (52‘, {oF) . B €&}, A) // construct the embedding tree based on Defini-
tion 5 and Definition 6

9: X; + densitymatrix alg(X;_1,T,x) // Algorithm /

10: end for

11: return the output tensor network X,

E; &) = (B, Es, E3, Ey) o1 = (B, En, Ey, E3) 0&) = (Ey, Ey, E3, Ey)
E, E, Es)
E, Eq E4
B B, B, Ey
Bl E, E; E;

Figure 14: lllustration of Algorithm 6 with the swap batch size being » = 2. The left diagram denotes the input
tensor network G5 as well as the set of edge subsets & = {E, Fa, F5, E4}. The second leftmost diagram shows
the ordering 7(¢+) that is generated based on analyzing the graph structure of G. Since 4 swaps are needed to
change 7(%¢) to ¢(%<) two density matrix algorithms are performed, one with the embedding tree generated by
the ordering &1 and the other with the embedding tree generated by the ordering o(%*).

of r, the behavior of the algorithm closely resembles that of the pure density matrix algorithm.
On the other hand, a smaller value of r generally leads to improved computational efficiency while
sacrificing some approximation accuracy.

In summary, the hybrid approach within the proposed partitioned contract algorithm ef-
fectively balances accuracy and computational cost for specific problem instances.

8 Experimental results

In this section, we present the results of a series of experiments to evaluate the performance of
the proposed approach. All experiments were executed on an Intel Core i7 2.9 GHz Quad-Core
machine.

In Section 8.1, we introduce our implementations, the tensor networks and models tested in our
experiments. In Section 8.2, we conducted a detailed comparison between the proposed density
matrix algorithm for tree approximation and the canonicalization-based algorithm. Across all
experiments, the density matrix algorithm consistently demonstrated either lower or the same
asymptotic cost. In particular, we achieved a remarkable 4.9X speedup with the density matrix
algorithm compared to the canonicalization-based algorithm when approximating an MPO-MPS
multiplication into an MPS.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 21

In Section 8.3, we justify the partitioned contract algorithm presented in Algorithm 2. We
justify our embedding tree selection algorithm and explore the impact of the environment size on
accuracy and efficiency across multiple problems. Additionally, we conduct a comprehensive com-
parison between the MPS and the comb ansatz. Furthermore, we evaluate partitioned_contract,
the CATN algorithm [61]', SweepContractor [14]?, and hyperoptimized approximate contraction
[26]%, in contracting tensor networks defined on lattices and random regular graphs as well as
tensor networks from random quantum circuit simulation. We demonstrate a 9.2X speed-up while
maintaining the same level of accuracy when contracting tensor networks defined on 3D lattices
using the Ising model.

8.1 Implementations, tested tensor networks, and the evaluation

The proposed algorithms in the paper are being developed at https://github.com/ITensor/
ITensorNetworks.jl. ITensorNetworks.jl is a publicly available Julia [6] package built for ma-
nipulating tensor networks of arbitrary geometry, and is built on top of ITensors.jl [24]. The
library also provides an interface to OMEinsumContractionOrders.jl*, which implements multiple
heuristics introduced in [27, 44] to generate efficient contraction paths for exact tensor network
contractions. For all the results presented in this work, we use the Simulated Annealing biparti-
tion + Greedy algorithm (SABipartite) [44] to generate contraction paths for exact tensor network
contractions.

Our experiments consider three types of tensor networks: those generated from random tensors,
the classical Ising model, and random quantum circuits.

For those generated from random tensors, each element within the tensors is an i.i.d. variable
uniformly distributed in the range of [« 1], where o € [—1,0]. These particular tensor networks
have been utilized in previous research [26] as benchmarks for evaluating contraction algorithms.
For specific structures like random regular graphs and 3D lattices, the approximate contraction of
the tensor network becomes more challenging as « approaches the value of —1 [12].

For a tensor network defined on a graph G' = (V, E') using the ferromagnetic Ising model, the
contraction output, denoted as Z and referred to as the partition function, can be expressed as

follows,
7 = Z H exp(foioj).
oi,0;€{—1,1} (4,))€E
In the tensor network, the tensor T() defined at each v € V has an elementwise expression of
(v) _
tpwy =2 1 Wie
i e€E(v)

where

L [V/eosh(B) + /Eh(B) v/cosh(B) - /Sh(E)
V2 [Vcosh(B) — v/sinh(B) +/cosh(B3) + y/sinh(3)

and (3 is an input parameter to the model. We show the relation between the relative error of In Z
and the running time of partitioned_contract and the baselines in Section 8.3. The quantity
In Z is an important measure that is proportional to the free energy of the system.

We also explore the simulation of a 2D random quantum circuit, denoted as |¢), as detailed
in [62, 10, 4]. The initial quantum state |0,...,0) is organized into a 6 x 6 grid, and we apply six
layers of random circuit gates to this initial state. Each layer contains random one-qubit rotations

We use the CATN implementation at https://github.com/panzhang83/catn.
2We use the SweepContractor implementation at https://github.com/chubbc/SweepContractor. j1.

3We use the hyperoptimized approximate contraction implementation at quimb [25] (https://github.com/
jemgray/quimb).

“The library is implemented at https://github.com/TensorBFS/0MEinsumContractionOrders. j1.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 22

on top of each qubit and a sequence of two-qubit controlled-X gates, and the two-qubit gates are
structured in a brick-layer pattern. The specific configuration of each 2-qubit layer is detailed in
Fig. 15. In Section 8.3, we approximately contract the tensor network (i|¢), and measure the
absolute error of the quantity.

o0 OO0 00 888888 80—00—08 00000
85883 o088 088808
COC8C8 900808 0T0CT0

goc8cs goo0gs 0c8g0s 808880

Figure 15: The arrangement of the initial four layers of quantum gates. Each circle denotes a qubit, and each
line denotes a two-qubit gate. The subsequent layers follow the same pattern.

To evaluate and compare the efficiencies of various algorithms, we measure both the execution
time and the required number of GFlops (giga floating-point operations). The GFlops calculations
encompass tensor contractions, QR factorization, and low-rank approximations, as outlined in the
model detailed in Section 2.2. It is worth noting that in our reported results, the execution time
excludes the graph analysis part, which involves graph embedding and computing the contraction
sequence of given tensor networks. This part remains independent of the tensor network ranks and
is negligible when the ranks are high.

8.2 Comparison between the density matrix algorithm and the canonicalization-based algorithm

-8- Canon-based 10*{ -® Canon-based -8 Canon-based 104
102 =k Density matrix =k Density matrix =% Density matrix -O-Cano.n-baseq
reeen y=xA K I 1021 o y=yr 3 | = Density matrix
— y=x'3 10 y=xr3 — y=x*4 103 . _on p
3 10 g o 3 g8 e
o
€ 5 10 £ 10 107
o 10 = © o
101 7 1 !
256 512 1024 2048 4096 256 512 1024 2048 4096 64 128 256 512 64 128 256 512
Rank Rank Rank Rank
(a) MPS, x = 100 (b) MPS, x = 100 (¢) BBT, x = 50 (d) BBT, x = 50

Figure 16: Performance comparison between the density matrix algorithm and the canonicalization-based algo-
rithm in truncating a binary tree tensor network. In (a)(b), the input networks are MPSs with different ranks. In
(c)(d), the inputs are balanced binary tree (BBT) tensor networks with different ranks. The number of uncon-
tracted modes is fixed to be 30 for all input tensor networks.

We conduct an efficiency comparison between the density matrix algorithm and the canonical-
ization based algorithm to approximate an input tensor network into a binary tree tensor network.
Our evaluation covers scenarios where the input tensor network structure matches the output
structure, as well as cases where the input network has a general non-tree structure. In both
instances, the density matrix algorithm has equal or superior asymptotic cost compared to the
canonicalization-based algorithm.

In Fig. 16, we conduct a performance comparison of truncating both MPSs and balanced binary
tree tensor networks. Let R denote the rank of the input MPS and the balanced binary tree, the
analytical asymptotic cost for truncating an MPS is ©(R?), whereas for truncating a balanced
binary tree is ©(R*). As depicted in the results, the scaling behavior of both algorithms aligns
with the analytical predictions. Despite the density matrix algorithm incurring a constant overhead
in terms of GFlops, we observe that it exhibits slightly faster performance. This advantage can be
attributed to the fact that the majority of the density matrix algorithm’s execution time is spent
on tensor contractions, which are practically faster compared to matrix factorizations, even though

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 23

both operations have a similar computational complexity. This property makes the density matrix
algorithm more favorable on GPUs due to their ability to efficiently run tensor contractions in

parallel.
Automatic canon-based Automatic canon-based
10%{ -e-Manual canon-based 0.00401 - Manual canon-based
-k~ Automatic density matrix '20 0.0025 =k Automatic density matrix
10?1 = Manual density matrix X =%~ Manual density matrix
— =
& . y:Xl\6 © 00016 e y:x
101 o
o ~
£ = 0.0010
o1 2
= 0.0006
107" ©
0.0004
1072
4 8 16 32 64 4 8 16 32 64
Rank Rank
(a) (b)

Figure 17: Performance comparison between the density matrix algorithm and the canonicalization-based algo-
rithm in approximating the MPO-MPS multiplication into a low-rank MPS. The order of the input MPS and
MPO is fixed to be 40. Both the input MPS and MPOQO have the same rank , and the output MPS rank is also
upper-bounded by x. The manual algorithms are those reviewed in Section 3.2.2 that use a manually-determined
memoization strategy.

In Fig. 17, we compare the performance of truncating the multiplication of an MPS and an
MPO. Our experiments encompass both the canonicalization-based algorithm and the density
matrix algorithm, alongside the reference algorithms reviewed in Section 3.2.2. In the reference
algorithms, the memoization strategy is determined and implemented manually rather than auto-
matically. For the canonicalization-based algorithm, the asymptotic cost is ©(R%), where R repre-
sents the input rank of both MPS and MPO. On the contrary, the density matrix algorithm exhibits
an asymptotic cost of ©(R%). As shown in Fig. 17b, the scaling behavior of both algorithms aligns
with our analysis. The density matrix algorithm outperforms the canonicalization-based algorithm
and has a remarkable 4.9X execution time speedup when the input rank is 64. Furthermore, our
algorithm, equipped with the automatically-chosen memoization strategy, performs similarly to
the reference algorithms, thereby confirming the efficacy of our approach.

-®-Canon-based -®-Canon-based -®-Canon-based 103 -® Canon-based
10° o Density matrix 10% Density matrix 10%{ % Density matrix <% Density matrix
2
2 2,105 g 210
© 10 a10 o 10 5
c o c o 10
= (G] = Y}
= 102 = 1
10 1
10 107"
8 9 10 1" 8 9 10 1" 6 7 8 9 6 7 8 9
Row size of PEPS Row size of PEPS Row size of PEPS Row size of PEPS
(a) MPS, x = 250 (b) MPS, x = 250 (c) Comb, x = 50 (d) Comb, x = 50

Figure 18: Performance comparison between the density matrix algorithm and the canonicalization-based algo-
rithm in approximating a PEPS with rank 2 into a binary tree tensor network. The column size of the PEPS
equals the row size. In (a)(b), the embedding tree structure is an MPS, and the MPS site ordering is chosen
based on the row- or column-wise traversal of the 2D coordinates of the PEPS tensors. In (c)(d), the embedding
tree structure is a comb, and each edge subset in the comb is a row of the PEPS.

In Fig. 18, we compare the performance of approximating PEPS on square grids into MPS
and comb binary tree structures. Both structures are defined in Section 4.3. As can be seen, the
density matrix algorithm outperforms the canonicalization-based algorithm when the number of
rows and columns of the PEPS is large. The inefficiency of the canonicalization-based algorithm is
due to the fact that there exists some partition embedded in one vertex of the MPS/comb whose

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 24

contraction yields a large-sized tensor. The density matrix algorithm avoids the explicit formation
of such tensors and thus is more efficient. In later sections we will discuss the relative merits of
using MPS or comb tree structures for intermediate networks.

8.3 Benchmark of the partitioned_contract algorithm

1500 “® SweepContractor 6000 -@- SweepContractor 10000 -®- SweepContractor
-k Partitioned contract 50001 <* Partitioned contract -k Partitioned contract
- 40001 - 8000
QE) aE) 3000 g 6000
= = J = 4000
= = 2000 i
1000+ 2000
0 0
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Max bond dim Max bond dim Max bond dim
(a) 2D lattice, rank=16 (b) 3D lattice, rank=4 (c) Random regular graph, rank=8

Figure 19: Performance comparison between partitioned_contract and SweepContractor under the same
contraction path. The swap batch size is set to 1 for all experiments in partitioned_contract. In (a), the
row and the column size of the 2D lattice is 8. In (b), each mode in the 3D lattice has a size of 5. In (c), the
random regular graph has 100 vertices, each with a degree of 3.

Impact of the embedding tree on contraction efficiency In this section we present results
that justify our embedding tree selection algorithm in partitioned_contract. In Fig. 19, we com-
pare partitioned contract with SweepContractor for tensor networks defined on three different
structures using tensor networks with random tensor elements that was introduced in Section 8.1.
For all the experiments, partitioned _contract uses the MPS ansatz, and both algorithms use the
same maximally-unbalanced contraction tree where each partition only contains one tensor. Con-
sequently, the only distinction between the two algorithms lies in the usage of different embedding
trees for each contraction between an MPS and a tensor.

As can be seen, both algorithms have a similar performance when contracting a 2D grid,
while partitioned_contract significantly outperforms SweepContractor for the other two graph
structures. This difference in performance arises from the fact that different embedding trees result
in varying numbers of adjacent swaps of MPS modes. For tensor networks defined on 3D lattice and
random regular graphs, our algorithm generates embedding trees that lead to substantially fewer
adjacent swaps. Note that the partitioned_contract algorithm achieves higher approximation
accuracy on these two graphs, as fewer swaps imply reduced truncations, contributing to improved
accuracy in the results.

Impact of the environment size on contraction accuracy and efficiency We explore
the impact of the environment size on the accuracy and efficiency of contracting tensor networks
defined on 2D and 3D lattices as well as random regular graphs, and the results are shown in
Fig. 20, Fig. 21, and Fig. 22.

In both lattices and random regular graphs, we employ the maximally-unbalanced partial con-
traction path for the contraction process. This path initiates from one partition and progressively
combines the previously-contracted section with a new partition following a linear sequence of the
partitions. For 3D lattices, each partition represents either a portion of a fiber or an entire fiber
of the lattice. The contraction path is determined through a row- or column-wise traversal of the
2D array resulting from partitioning the 3D lattice into fibers. Regarding random regular graphs,
we draw inspiration from [34] to construct the contraction path using a linear ordering of vertices.
We achieve this by first employing recursive bisection to generate the linear ordering of all the

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 25

10°] i omces
1 0_4 1 0—6 e o sweeécan«ractcv
_ =W HAC, =0
2 2 107 £ 107 .
5 s 1 0_6 s 1 0'8 PC.MPS, 28
5 ‘6 10_7 16 10-9
= £ 1078 £ 10710
e ot 107° TN, Dmaxezz $ 107"
© 40-10 o . Dmax= ..
10 . Dmax=
2100 oo 2 10-10] -5-camt orares £ 102
© 10 —@— SweepContractor © 10_11 —&— SweepContractor © 10_13
Q -12 HAC, =0 Q —w—HAC, =0 [0]
© 18,13 :‘E:HAQ =3 o 10712 ":‘":éC(,;F3b , ‘Al* :“’“ x 10714
-@=PC, Comb, 3 _ -@®-PC, Comb, < _15
107144 -*-pc.mps,3 107" -%=PC, MPS, 3 * 10
1 10 102 10° 10 102 10° 1 10 102
Time (s) Time (s) Time (s)
(a) 5x5x5, =03 (b) 6x6x6, 5=0.3 (c) 28 x 28, 8 = 0.44
1074
P Y107 o ¥ 107° 107
b < 108 % < 10° c 10
o S 1077 Y k] 107 o 7
[[-8 f . 8
g g 105 g 107 S 1o
5 5 1020 5 10°° 5 40°10
21071 2 40" 21070 210
RIS — Y & 10772 —&= SweepContractor® 5 10° 1077
st o012 P s s 10713 —@—Pc, comb, 1 40712 ~#—PC, MPS, 1 © 1013 —8—PC, Comb, 1
3 1012 _‘::gixz; ;ﬁ"-gu 2 10"14] -@-pc coms, 3 2 10°13 -%=PC, MPS, 3 * K 10-14] -@-Pc. coms, 3
101 ~wohee+ PC, MPS, § 10715 ~@~Pc, Comb, 5 10714 e PC, MPS, 6 10-15] ~@PC, Comb, & °
10 102 10° 10 102 10° 102 102 10° 102 102 10°
Time (s) Time (s) Maximum bond dimension Maximum bond dimension
(d)5x5x5,8=03 () 5x5x5, =03 (f)5x5x5, =03 (g) 5x5x5,3=0.3
< 2 = 2
s B s 5
g s s g
@ b] @
[
© 10_12 —&— SweepContractor Y450 ® 101 —— SweepContractor ~gse m1 1o ** I 101
§10_13 -%-PC, MPS, 3 *‘k\m & 4 o-12] ~®-PC, Comb, 3 [&)10_13 -%-PC, MPS, 3 . 510_12 -@-PC, Comb, 3 []
107" -k-Pc, MPS, 6 * 18_13 ~@-PC, Comb, 6 ® 107" -k-PC, MPS, 6 * jrais ~@-PC, Comb, 6]
10 10? 10° 10* 10 102 10° 102 102 10° 10° 102 102 10° 10°
Time (s) Time (s) Maximum bond dimension Maximum bond dimension
(h) 6x6x6,3=03 (i) 6 x 6 x6, 3=0.3 (j) 6 x 6 x 6, 3=0.3 (k) 6 x 6 x 6, 3=0.3
1074 —&— SweepContractor ‘ —&— SweepContractor *
N 1075 \ =k-PC,MPS, 14 N 10 \ -@-PC,Comb, 14 ¥ 107%{ T N
E %18:‘75 . ‘x’ e PC, MPS, 28 = ‘673 o \ -®PCCombz o 18'3 ‘** f
) \ S 10 S 107 s}
5 19% e 5 10 5 105k 5
£ 1000 * £40°10 £ 1079 ™ % . %0 .
<|.)10_11 N G 4o-1 @ 1010 . N o 10 . ‘Q
v 10 Q.0 12 0101 N 01071 ‘® .
£107° 2150 £40712 *-. R 210720 O N
o100, s100, o108 RN 2107
210 g10° ¢ 8 1g-14] ~*-pe.wps, 14, *"___‘_~* & 10-14] ~@-Pc. comb. 14
:}8_16 :1](0)_16 10-18 k- PC, MPS, 28 1015 @+ PC, Comb, 28
10 10 10 102 102 10 102 102
Time (s) Time (s) Maximum bond dimension Maximum bond dimension
(1) 28 x 28, B = 0.44 (m) 28 x 28, B = 0.44 (n) 28 x 28, 3 = 0.44 (0) 28 x 28, B = 0.44

Figure 20: Performance comparison between partitioned_contract, SweepContractor [14], CATN [61], and
hyperoptimized approximate contraction (HAC) [26] in contracting lattices based on the Ising model. The
swap batch size is fixed to be 32 for all experiments. In the legends, “PC” denotes partitioned_contract,
MPS/Comb denotes the embedding tree ansatz, and the values (1, 3, 5) denote the size of each partition. In
(a)-(f), the number shown on top of each point is the maximum bond size x. In CATN, “Dmax" is an additional
input parameter of the algorithm that controls the size of the MPS uncontracted modes. In HAC, r denotes the
distance of the spanning trees used in canonicalization.

vertices. Then, we sequentially include a partition consisting of a specified number of tensors into
the contraction path, following the order of traversal in the vertex ordering.

When contracting tensor networks defiend on lattices, the results presented in Figs. 20 and 21
reveal that employing a larger parition size (3 or 5 for the 5 x 5 x 5 3D grid and 14 for the
28 x 28 2D grid) leads to both faster and more accurate contractions when compared to the
base condition where each partition contains only one tensor. The improved efficiency arises from
using larger partitions, which reduces the number of executions of the density matrix algorithm,

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 26

2

10™ 1072
107 g10° =
‘G ‘G G
5107 5107 5
@ @ @
2107 010°° o
& s ——SweepC 10 ——SweepC .
K] . o] -6 weepContractor o] weepContractor "«
& 107 fﬁﬁﬁg:’;; S 210 k- PC, MPS, 1 & —e—PC, Comb, 1 N ®
—k—PC, MPS, 1 o, 512 -%-PC, MPS, 3 1077 -®-pc, comb, 3 Sgiz
107 LAmpoes s ® 10774 ~*-PC. MPS, 5 --@-PC, Comb, 5 ®
10 102 10° 1 10 102 10° 10 102 10°
Time (s) Time (s) Time (s)
(a) (b) (c)
N
=
G
s
@
1%
=
——PC, Comb, 1 ® 1078 —PC, MPs, 1 e,
& 1077 -@-Pc,comb,3 4 2 -%=-PC, MPS, 3 *
@+ PC, Comb, 5 L 4 1077{ ~kPC, MPS, 5 *
10 107 10° 10?2 107 10°
Maximum bond dimension Maximum bond dimension
(d) (e)
Figure 21: Performance comparison between partitioned_contract and SweepContractor [14] in contracting
5 X 5 x 5 random tensor networks defined on 3D lattices with a = —0.4. The swap batch size is fixed to be 32

for all experiments. In the legends, “PC" denotes partitioned_contract, MPS/Comb denotes the embedding
tree ansatz, and the values (1, 3, 5) denote the size of each partition. In (a)-(c), the number shown on top of
each point is the maximum bond size .

offsetting any overhead from using larger environments. Regarding accuracy, we can see from
Figs. 20f, 20g, 20j, 20k, 20n and 200 that under the same maximum contracted bond size, utilizing
a larger partition size generally yields lower relative errors for both MPS and comb structures.
This observation validates the efficacy of the environment in enhancing accuracy. See the next
section for a comparison of the MPS and comb structures.

Regarding random regular graphs, the results displayed in Figs. 22b, 22¢ and 22e to 22j indicate
that using a partition size of 6 results in the best combination of efficiency and accuracy. To
summarize, employing a larger partition leads to a larger environment size, generally reducing the
contraction error under the same rank. However, when it comes to efficiency, the optimal partition
size depends on the specific problem. Factors such as the number of executions of the density matrix
algorithm to be performed and the cost of forming the density matrix under different environment
sizes need to be taken into consideration to determine the most suitable partition size.

Comparison between the MPS and the comb structure In this section we discuss the
relative merits of using the MPS and comb tree ansatzes. When contracting lattices, the results
in Figs. 20a to 20c and 21a demonstrate that both MPS and comb structures exhibit similar
performance when the maximum bond size is small. However, as the maximum bond size increases,
using the comb ansatz becomes slower in comparison to MPS. On the other hand, when contracting
random regular graphs, the results in Figs. 22a and 22d reveal that both structures display similar
levels of accuracy and efficiency. In summary, both MPS and comb binary tree structures perform
similarly in terms of accuracy. However, the efficiency of the comb structure may lag behind MPS,
particularly when dealing with a large rank. This disparity in performance is attributed to the
presence of large tensors with size x? in the comb ansatz.

Comparison among partitioned contract and the baselines Here we compare our pro-
posed partitioned_contract algorithm, along with the CATN algorithm [61], SweepContrac-

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 27

107 107 107
N M ~N 2 N
<10 <10 <408
Y U Y
o o o
5107 5107 S .
210 210 210®
() (0] ()
2107 2107 207
H —4&— SweepContractor B B 10
© 108 —@PC, Comb, 1 © 18 —#- SweepContractor o) —&— SweepContractor
x --@-PC, Comb, 6 =4 —k—PC, MPS, 1 x 1078 —®-PC. Comb, 1
g | *—PC,MPs, 1 _g| “*-PC.MPS3 51 -®-PC, Comb, 3
1077 ~k-pPC, MPS, 6 1077 ~-PC, MPS, 6 --@--PC, Comb, 6
10 102 10° 10 102 10° 10 102 10°
Time (s) Time (s) Time (s)
(a) Ising Model, 8 = 0.65 (b) Ising Model, g = 0.65 (c) Ising Model, 5 = 0.65
> 2 —&— SweepContractor - i —&— SweepContractor & —&— SweepContractor
10 —&—PC, Comb, 1 10 Ea ——PC, WPS, 1 1072 o ~e—FC, Comb, 1
N ~@-PC Comb,6 S -%=-PC, MPS, 3 N Mu -@-PC, Comb, 3
= ':'Pcv MPS. 1 < . k- PC, MPS, 6 = 2 g --@-PC, Comb, 6
5107 LRGP 51073 51078
§ ‘é e § L
5 g 894 5 P
010 010 0107 E
2 2 2
B g g :
210 210 & o5
10
&
[
1078 107°
1 10 102 10° 1 10 102 10° 10 102 10°
Time (s) Time (s) Time (s)
d) Random Model, a = —0.2 e) Random Model, a = —0.2 f) Random Model, a = —0.2
bl ? bl
n 107 N N102 N1072
£ £ £ £
5107 5 5 5 00
o C 2107 .10
210 g g | £
o o) o 4 @ @ 1074
21077 o 0 10 o
2 = = = 5
E _g | —®—PC, Comb, 1 E 1078 —k—PC, MPS, 1 E _5 | ~®PC, Comb, 1 . E 1075{ —k—PC, MPS, 1, 3
21071 -e-pc, comb, 3 2 -%-PC, MPS, 3 91071 -e-pc, comb, 3 2 -%-PC,MPS, 3%, "
-@-PC, Comb, 6 ® 1079 --PC, MPS, 6 * -@-PC, Comb, 6 [4g-e L *Pe.mPs 6
10? 10? 10° 10 107 10° 10 10 10° 102 10 10°
Maximum bond dimension Maximum bond dimension Maximum bond dimension Maximum bond dimension
(g) Ising, 8 =0.3 (h) Ising, 8 =0.3 (i) Random, a = —0.4 (j) Random, o = —0.4

Figure 22: Performance comparison between partitioned_contract and SweepContractor [14] in contracting
random regular graphs with degree 3 and 220 vertices. The swap batch size is fixed to be 32 for all experiments.
In the legends, “PC" denotes partitioned_contract, MPS/Comb denotes the embedding tree ansatz, and the
number (1, 3, 6) denotes the size of each partition. In (a)-(f), the number shown on top of each point is the
maximum contracted bond size x.

tor [14], and hyper-optimizated approximate contraction (HAC) [26], on contracting tensor net-
works defined on lattices and random regular graphs.

As demonstrated in Figs. 20a to 20c, 21a and 22a, our algorithm consistently outperforms
CATN in terms of efficiency across all levels of relative error. When compared to SweepContractor,
our algorithm shows superior efficiency for 3D lattices and random graphs, while both methods
perform similarly on 2D grids. This is expected, as SweepContractor is specifically optimized for
planar graphs. Notably, when contracting a 3D lattice tensor network based on the Ising model,
partitioned _contract achieves a 9.2X speed-up compared to both CATN and SweepContractor
when reaching a relative error of less than 1079, Similarly, when contracting a tensor network with
a random regular graph structure based on the Ising model, partitioned contract achieves a
52.4X speed-up compared to SweepContractor when achieving a relative error of less than 1075.

As shown from the results in Figs. 20a to 20c, HAC is a more efficient baseline compared to
CATN and SweepContractor in contracting lattices based on the Ising model. On both 5 x 5 x 5
and 28 x 28 grids, both HAC and partitioned_contract can reach pretty high accuracy with
similar efficiency. On the 6 x 6 x 6 grid, the results indicate that partitioned_contract can reach

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 28

128
196

-1
107" { - sweepContractor
PC, MPS, 5

Absolute error of InZ

-PC, MPS, 10 1024
1072{ -®-PC, MPS, 25
102 10°
Time (s)
(a) Tensor diagram of |¢) (b) Benchmark results

Figure 23: An illustration and benchmark results for approximately contracting a 2D random quantum circuit
tensor network with 6 layers of gates. (a) The tensor diagram visualization of the PEPS [¢) that is the output
of the random quantum circuit simulation with 6 layers of gates. Each black edge denotes a mode with size
2, and each thick red edge denotes a mode with size 4. The dashed line denotes a graph cut with the cut
mode size being 2'2. (b) Performance comparison between partitioned contract and SweepContractor [14]
in contracting the tensor network that represents (¢|1)). The swap batch size is fixed to be 8 for all experiments.
In the legends, “PC" denotes partitioned_contract, and the number (5, 10, 25) denotes the size of each
partition. The number shown on top of each point is the maximum contracted bond size .

higher accuracy and is more efficient when the relative error is smaller than 1071, This can be
attributed to HAC generating high-order intermediate tensors, which slows it down and exceeds
memory capacity when tested with a rank of 256. In contrast, partitioned_contract performs
better due to its use of the MPS ansatz, making it more memory-efficient and effective at higher
ranks.

In terms of memory usage, let s denote the size of dimensions in the input graph, x > s the max-
imum bond dimension, and D,.x > s an additional parameter controlling the size of uncontracted
MPS modes in CATN. The largest intermediate tensor generated in partitioned contract has
a size of sx? for the MPS ansatz and x> for the comb ansatz. For CATN, the largest tensor size
is Dpaxr?. SweedContractor and partitioned_contract with the MPS ansatz share a similar
memory footprint of sy?. For HAC, the largest tensor size can be x? where d is the maximum
order of the intermediate tensors. To summarize, partitioned_contract with the MPS ansatz
has memory usage that is better than other algorithms as a function of bond dimension.

We also benchmark our algorithm against SweepContractor [14] in contracting the random
quantum circuit tensor network outlined in Section 8.1. The output state of the circuit can be
represented as a PEPS that is visualized in Fig. 23a. When accurately transforming [¢)) into an
MPS, the maximum bond size will be at least 2'2 = 4096, as inferred from the graph cut in Fig. 23a.
As illustrated in Fig. 23b, our method manages to approximate the tensor network contraction
with a bond size of 2!0 = 1024, achieving an absolute error of 1072. In contrast, SweepContractor
fails to converge within the same amount of time. These significant speed improvements clearly
demonstrate the efficiency of our approach over the compared algorithms.

9 Conclusion

In this work we introduced an efficient algorithm called partitioned_contract to contract tensor
networks with arbitrary structures. The algorithm has the flexibility to incorporate a large por-
tion of the environment when performing low-rank approximations, and includes a cost-efficient
density matrix algorithm for approximating a general tensor network into a tree structure whose
computational cost is asymptotically upper-bounded by that of the standard algorithm that uses
canonicalization. Experimental results indicate that the proposed technique outperforms previ-
ously proposed approximate tensor network contraction algorithms for multiple problems in terms

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 29

of both accuracy and efficiency.

We emphasize several potential future directions that need further exploration and investiga-
tion. Firstly, the partitioned_contract algorithm assumes that both a partitioning of the input
tensor network and a contraction path over these partitions are provided. There remains an op-
portunity to explore efficient methods for finding optimal partitionings and contraction paths for
partitioned_contract, which could further improve its performance. Additionally, there is scope
for investigating how the canonicalization-based algorithm for tree approximation can be acceler-
ated. One possibility is to leverage tensor network sketching techniques [48, 47, 63, 1] to speed up
randomized SVD [30], which may enhance the efficiency of the tree approximation process. An-
other is to use variational or fitting algorithms for approximately contracting network partitions,
which can have better scaling than density matrix and canonicalization-based algorithms at the
expense of potentially requiring multiple iterations to converge [79, 72]. Finally, integrating the
proposed algorithm into automatic differentiation libraries [50, 25, 43] could be highly beneficial.
This integration would enable the algorithm to be used in gradient-based optimization algorithms
for tensor networks, thereby expanding its utility in various optimization tasks.

Acknowledgments

M.F. and M.S. are grateful for ongoing support through the Flatiron Institute, a division of the
Simons Foundation. L.M. acknowledges support through the Flatiron Institute internship program
through which this work was initiated. The work of L.M. and E.S. was also supported by the
US National Science Foundation (NSF) grant #1942995 and the Department of Energy (DOE)
Advanced Scientific Computing Research program via award DE-SC0023483.

References

[1] Thomas D. Ahle, Michael Kapralov, Jakob B. T. Knudsen, Rasmus Pagh, Ameya Vel-
ingker, David P. Woodruff, and Amir Zandieh. Oblivious Sketching of High-Degree Poly-
nomial Kernels, page 141-160. Society for Industrial and Applied Mathematics, January
2020. ISBN 9781611975994. DOI: 10.1137/1.9781611975994.9. URL https://doi.org/10.
1137/1.9781611975994.9.

[2] R. Alkabetz and I. Arad. Tensor networks contraction and the belief propagation algo-
rithm. Physical Review Research, 3(2), April 2021. ISSN 2643-1564. DOI: 10.1103/phys-
revresearch.3.023073. URL https://doi.org/10.1103/PhysRevResearch.3.023073.

[3] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM, 56(2):1-37, April 2009. ISSN 1557-735X. DOI:
10.1145/1502793.1502794. URL https://doi.org/10.1145/1502793.1502794.

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature, 574(7779):505-510,
October 2019. ISSN 1476-4687. DOI: 10.1038/s41586-019-1666-5. URL https://doi.org/
10.1038/s41586-019-1666-5.

[5] Daniel Bauernfeind, Manuel Zingl, Robert Triebl, Markus Aichhorn, and Hans Gerd Evertz.
Fork tensor-product states: Efficient multiorbital real-time DMFT solver. Physical Review X,
7(3), July 2017. ISSN 2160-3308. DOI: 10.1103/physrevx.7.031013. URL https://doi.org/
10.1103/PhysRevX.7.031013.

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65-98, January 2017. ISSN 1095-7200. DOI:
10.1137/141000671. URL https://doi.org/10.1137/141000671.

[7] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Rottger, and U.-P. Schroeder. The congestion
of n-cube layout on a rectangular grid. Discrete Mathematics, 213(1-3):13-19, February 2000.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 30

[19]

[20]

[21]

[22]

ISSN 0012-365X. DOI: 10.1016/s0012-365x(99)00162-4. URL https://doi.org/10.1016/
S0012-365X(99)00162-4.

Jacob D. Biamonte, Jason Morton, and Jacob Turner. Tensor network contractions for
#SAT. Journal of Statistical Physics, 160(5):1389-1404, June 2015. ISSN 1572-9613. DOI:
10.1007/s10955-015-1276-z. URL https://doi.org/10.1007/s10955-015-1276-z.

Dan Bienstock. On embedding graphs in trees. Journal of Combinatorial Theory, Series
B, 49(1):103-136, June 1990. ISSN 0095-8956. DOI: 10.1016/0095-8956(90)90066-9. URL
https://doi.org/10.1016/0095-8956 (90)90066-9.

Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14(6):595-600, April 2018. ISSN 1745-2481.
DOI: 10.1038/s41567-018-0124-x. URL https://doi.org/10.1038/s41567-018-0124~-x.
Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karloff, and Satish Rao. £3 spreading
metrics for vertex ordering problems. Algorithmica, 56:577-604, 2010.

Jielun Chen, Jiaqing Jiang, Dominik Hangleiter, and Norbert Schuch. Sign problem in tensor
network contraction. 2024. DOI: 10.48550/arXiv.2404.19023. URL https://doi.org/10.
48550/arXiv.2404.19023.

Natalia Chepiga and Steven R. White. Comb tensor networks. Physical Review B, 99(23),
June 2019. ISSN 2469-9969. DOI: 10.1103/physrevb.99.235426. URL https://doi.org/10.
1103/PhysRevB.99.235426.

Christopher T Chubb. General tensor network decoding of 2D pauli codes. 2021. DOI:
10.48550/arXiv.2101.04125. URL https://doi.org/10.48550/arXiv.2101.04125.

Andrzej Cichocki. Tensor networks for big data analytics and large-scale optimization prob-
lems. 2014. DOI: 10.48550/ARXIV.1407.3124. URL https://doi.org/10.48550/ARXIV.
1407 .3124.

Carsten Damm, Markus Holzer, and Pierre McKenzie. The complexity of tensor calculus.
computational complezity, 11(1):54-89, 2002. DOI: 10.1109/ccc.2000.856737. URL https:
//doi.org/10.1109/CCC.2000.856737.

Nikhil R. Devanur, Subhash A. Khot, Rishi Saket, and Nisheeth K. Vishnoi. Integrality gaps
for sparsest cut and minimum linear arrangement problems. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of Computing, STOCO06, page 537-546. ACM, May 2006.
DOI: 10.1145/1132516.1132594. URL https://doi.org/10.1145/1132516.1132594.
Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and
Alon Shalita. Compressing graphs and indexes with recursive graph bisection. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16. ACM, August 2016. DOI: 10.1145/2939672.2939862. URL https://doi.org/10.
1145/2939672.2939862.

Josep Diaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM Computing
Surveys, 34(3):313-356, September 2002. ISSN 1557-7341. DOI: 10.1145/568522.568523. URL
https://doi.org/10.1145/568522.568523.

Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approxi-
mation algorithms via spreading metrics. Journal of the ACM, 47(4):585-616, July 2000. ISSN
1557-735X. DOI: 10.1145/347476.347478. URL https://doi.org/10.1145/347476.347478.
Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear
arrangement problem. Information Processing Letters, 101(1):26-29, January 2007. ISSN
0020-0190. DOI: 10.1016/j.ipl.2006.07.009. URL https://doi.org/10.1016/3.1ipl.2006.
07.009.

Timo Felser, Simone Notarnicola, and Simone Montangero. Efficient tensor network ansatz
for high-dimensional quantum many-body problems. Physical Review Letters, 126(17), April
2021. ISSN 1079-7114. DOI: 10.1103/physrevlett.126.170603. URL https://doi.org/10.
1103/PhysRevLett.126.170603.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 31

23]

[24]

[25]

[26]

[27]

Giovanni Ferrari, Giuseppe Magnifico, and Simone Montangero. Adaptive-weighted tree tensor
networks for disordered quantum many-body systems. Physical Review B, 105(21), June
2022. ISSN 2469-9969. DOI: 10.1103/physrevb.105.214201. URL https://doi.org/10.
1103/PhysRevB.105.214201.

Matthew Fishman, Steven White, and Edwin Stoudenmire. The ITensor software library for
tensor network calculations. SciPost Physics Codebases, August 2022. DOI: 10.21468/scipost-
physcodeb.4. URL https://doi.org/10.21468/SciPostPhysCodeb.4.

Johnnie Gray. quimb: A Python package for quantum information and many-body calcula-
tions. Journal of Open Source Software, 3(29):819, September 2018. ISSN 2475-9066. DOI:
10.21105/joss.00819. URL https://doi.org/10.21105/joss.00819.

Johnnie Gray and Garnet Kin-Lic Chan. Hyperoptimized approximate contraction of tensor
networks with arbitrary geometry. Physical Review X, 14(1), January 2024. ISSN 2160-3308.
DOI: 10.1103/physrevx.14.011009. URL https://doi.org/10.1103/PhysRevX.14.011009.

Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum,
5:410, March 2021. ISSN 2521-327X. DOI: 10.22331/q-2021-03-15-410. URL https://doi.
org/10.22331/9-2021-03-15-410.

Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM Journal on Scientific Computing, 17(4):848-869, July 1996. ISSN
1095-7197. DOI: 10.1137/0917055. URL https://doi.org/10.1137/0917055.

Chu Guo, Yong Liu, Min Xiong, Shichuan Xue, Xiang Fu, Anqi Huang, Xiaogang Qiang,
Ping Xu, Junhua Liu, Shenggen Zheng, He-Liang Huang, Mingtang Deng, Dario Poletti,
Wan-Su Bao, and Junjie Wu. General-purpose quantum circuit simulator with projected
entangled-pair states and the quantum supremacy frontier. Physical Review Letters, 123
(19), November 2019. ISSN 1079-7114. DOI: 10.1103/physrevlett.123.190501. URL https:
//doi.org/10.1103/PhysRevLett.123.190501.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288,
January 2011. ISSN 1095-7200. DOI: 10.1137/090771806. URL https://doi.org/10.1137/
090771806.

M.D. Hansen. Approximation algorithms for geometric embeddings in the plane with ap-
plications to parallel processing problems. In 30th Annual Symposium on Foundations
of Computer Science, page 604-609. IEEE, 1989. DOI: 10.1109/sfcs.1989.63542. URL
https://doi.org/10.1109/SFCS.1989.63542.

L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society for
Industrial and Applied Mathematics, 12(1):131-135, March 1964. ISSN 2168-3484. DOI:
10.1137/0112012. URL https://doi.org/10.1137/0112012.

Stephen W. Hruska. On tree congestion of graphs. Discrete Mathematics, 308(10):1801-1809,
May 2008. ISSN 0012-365X. DOI: 10.1016/j.disc.2007.04.030. URL https://doi.org/10.
1016/j.disc.2007.04.030.

Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, and Ilya Safro. Construct-
ing optimal contraction trees for tensor network quantum circuit simulation. In 2022 IEEE
High Performance Extreme Computing Conference (HPEC), page 1-8. IEEE, September 2022.
DOI: 10.1109/hpec55821.2022.9926353. URL https://doi.org/10.1109/HPEC55821.2022.
9926353.

Adam Jermyn. Automatic contraction of unstructured tensor networks. SciPost Physics, 8
(1), January 2020. ISSN 2542-4653. DOI: 10.21468/scipostphys.8.1.005. URL https://doi.
org/10.21468/SciPostPhys.8.1.005.

George Karypis. METIS: Unstructured graph partitioning and sparse matrix ordering system.
Technical report, 1997.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455-500, August 2009. ISSN 1095-7200. DOI: 10.1137/07070111x. URL https:
//doi.org/10.1137/07070111X.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 32

[38]

[41]

[42]

[43]

[44]

[45]

[46]

[51]

[52]

[53]

Stefanos Kourtis, Claudio Chamon, Eduardo Mucciolo, and Andrei Ruckenstein. Fast count-
ing with tensor networks. SciPost Physics, 7(5), November 2019. ISSN 2542-4653. DOI:
10.21468 /scipostphys.7.5.060. URL https://doi.org/10.21468/SciPostPhys.7.5.060.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms. In 29th Annual Sympo-
stum on Foundations of Computer Science. IEEE, 1988. DOI: 10.1109/sfcs.1988.21958. URL
https://doi.org/10.1109/SFCS.1988.21958.

Michael Levin and Cody P. Nave. Tensor renormalization group approach to two-dimensional
classical lattice models. Physical Review Letters, 99(12), September 2007. ISSN 1079-
7114. DOI: 10.1103/physrevlett.99.120601. URL https://doi.org/10.1103/PhysRevLett.
99.120601.

Chao Li, Junhua Zeng, Zerui Tao, and Qibin Zhao. Permutation search of tensor network
structures via local sampling. In International Conference on Machine Learning, pages 13106
13124. PMLR, 2022.

Jingling Li, Yanchao Sun, Jiahao Su, Taiji Suzuki, and Furong Huang. Understanding gen-
eralization in deep learning via tensor methods. In International Conference on Artificial
Intelligence and Statistics, pages 504-515. PMLR, 2020.

Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable programming tensor
networks. Physical Review X, 9(3), September 2019. ISSN 2160-3308. DOI: 10.1103/phys-
revx.9.031041. URL https://doi.org/10.1103/PhysRevX.9.031041.

Jin-Guo Liu, Xun Gao, Madelyn Cain, Mikhail D. Lukin, and Sheng-Tao Wang. Computing
solution space properties of combinatorial optimization problems via generic tensor networks.
SIAM Journal on Scientific Computing, 45(3):A1239-A1270, June 2023. ISSN 1095-7197.
DOI: 10.1137/22m1501787. URL https://doi.org/10.1137/22M1501787.

Michael Lubasch, J. Ignacio Cirac, and Mari-Carmen Banuls. Algorithms for finite pro-
jected entangled pair states. Physical Review B, 90(6), August 2014. ISSN 1550-235X. DOI:
10.1103 /physrevb.90.064425. URL https://doi.org/10.1103/PhysRevB.90.064425.
Michael Lubasch, J Ignacio Cirac, and Mari-Carmen Banuls. Unifying projected entangled
pair state contractions. New Journal of Physics, 16(3):033014, March 2014. ISSN 1367-2630.
DOI: 10.1088/1367-2630/16/3/033014. URL https://doi.org/10.1088/1367-2630/16/3/
033014.

Linjian Ma and Edgar Solomonik. Fast and accurate randomized algorithms for low-rank
tensor decompositions. Advances in Neural Information Processing Systems, 34:24299-24312,
2021.

Linjian Ma and Edgar Solomonik. Cost-efficient gaussian tensor network embeddings for
tensor-structured inputs. In Advances in Neural Information Processing Systems, volume 35,
pages 38980-38993, 2022.

Linjian Ma and Chao Yang. Low rank approximation in simulations of quantum algo-
rithms. Journal of Computational Science, 59:101561, March 2022. ISSN 1877-7503. DOI:
10.1016/j.jocs.2022.101561. URL https://doi.org/10.1016/j.jocs.2022.101561.

Linjian Ma, Jiayu Ye, and Edgar Solomonik. AutoHOOT: Automatic high-order optimiza-
tion for tensors. In Proceedings of the ACM International Conference on Parallel Architec-
tures and Compilation Techniques, PACT 20, page 125-137. ACM, September 2020. DOI:
10.1145/3410463.3414647. URL https://doi.org/10.1145/3410463.3414647.

Paul Manuel, Indra Rajasingh, Bharati Rajan, and Helda Mercy. Exact wirelength of hyper-
cubes on a grid. Discrete Applied Mathematics, 157(7):1486-1495, April 2009. ISSN 0166-
218X. DOI: 10.1016/j.dam.2008.09.013. URL https://doi.org/10.1016/j.dam.2008.09.
013.

Akira Matsubayashi. Separator-based graph embedding into multidimensional grids with small
edge-congestion. Discrete Applied Mathematics, 185:119-137, April 2015. ISSN 0166-218X.
DOI: 10.1016/j.dam.2014.11.024. URL https://doi.org/10.1016/j.dam.2014.11.024.
Tensornetwork.org contributors. Density matrix algorithm. tensornetwork.org, 2021.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 33

[54]

[55]

[56]

[57]

[58]

[66]

[67]

[68]

[69]

V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and O. Legeza. Tree tensor network state
with variable tensor order: An efficient multireference method for strongly correlated systems.
Journal of Chemical Theory and Computation, 11(3):1027-1036, February 2015. ISSN 1549-
9626. DOI: 10.1021/ct501187j. URL https://doi.org/10.1021/ct501187j.

Naoki Nakatani and Garnet Kin-Lic Chan. Efficient tree tensor network states (TTNS)
for quantum chemistry: Generalizations of the density matrix renormalization group al-
gorithm. The Journal of Chemical Physics, 138(13), April 2013. ISSN 1089-7690. DOI:
10.1063/1.4798639. URL https://doi.org/10.1063/1.4798639.

Bryan O’Gorman. Parameterization of tensor network contraction. 2019. DOL:
10.48550/arXiv.1906.00013. URL https://doi.org/10.48550/arXiv.1906.00013.

Roméan Orus. Tensor networks for complex quantum systems. Nature Reviews Physics, 1
(9):538-550, August 2019. ISSN 2522-5820. DOI: 10.1038/s42254-019-0086-7. URL https:
//doi.org/10.1038/s42254-019-0086-7.

Romaéan Orias. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Annals of Physics, 349:117-158, October 2014. ISSN 0003-4916.
DOI: 10.1016/j.a0p.2014.06.013. URL https://doi.org/10.1016/j.a0op.2014.06.013.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295-2317, January 2011. ISSN 1095-7197. DOI: 10.1137/090752286. URL https://doi.
org/10.1137/090752286.

Sebastian Paeckel, Thomas Kohler, Andreas Swoboda, Salvatore R. Manmana, Ulrich
Schollwock, and Claudius Hubig. Time-evolution methods for matrix-product states. Annals
of Physics, 411:167998, December 2019. ISSN 0003-4916. DOI: 10.1016/j.a0p.2019.167998.
URL https://doi.org/10.1016/j.ao0p.2019.167998.

Feng Pan, Pengfei Zhou, Sujie Li, and Pan Zhang. Contracting arbitrary tensor networks:
General approximate algorithm and applications in graphical models and quantum circuit sim-
ulations. Physical Review Letters, 125(6), August 2020. ISSN 1079-7114. DOI: 10.1103/phys-
revlett.125.060503. URL https://doi.org/10.1103/PhysRevLlett.125.060503.

Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou, and Edgar Solomonik. Efficient 2D
tensor network simulation of quantum systems. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1-14. IEEE, 2020. DOI:
10.5555/3433701.3433719. URL https://dl.acm.org/doi/10.5555/3433701.34337109.
Beheshteh Rakhshan and Guillaume Rabusseau. Tensorized random projections. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 3306-3316. PMLR, 2020.
Satish Rao and Andréa W. Richa. New approximation techniques for some linear ordering
problems. SIAM Journal on Computing, 34(2):388-404, January 2005. ISSN 1095-7111. DOTI:
10.1137/s0097539702413197. URL https://doi.org/10.1137/50097539702413197.

J A Reyes and E M Stoudenmire. Multi-scale tensor network architecture for machine learning.
Machine Learning: Science and Technology, 2(3):035036, July 2021. ISSN 2632-2153. DOLI:
10.1088/2632-2153 /abffe8. URL https://doi.org/10.1088/2632-2153/abffe8.

Subhayan Sahu and Brian Swingle. Efficient tensor network simulation of quantum many-
body physics on sparse graphs. 2022. DOI: 10.48550/arXiv.2206.04701. URL https://doi.
org/10.48550/arXiv.2206.04701.

Sebastian Schlag, Tobias Heuer, Lars Gottesbiiren, Yaroslav Akhremtsev, Christian Schulz,
and Peter Sanders. High-quality hypergraph partitioning. ACM Journal of Fxperimental
Algorithmics, 27:1-39, December 2022. ISSN 1084-6654. DOI: 10.1145/3529090. URL https:
//doi.org/10.1145/3529090.

U. Schollwock. The density-matrix renormalization group. Reviews of Modern Physics, 77
(1):259-315, April 2005. ISSN 1539-0756. DOI: 10.1103/revmodphys.77.259. URL https:
//doi.org/10.1103/RevModPhys.77.2509.

Philipp Seitz, Ismael Medina, Esther Cruz, Qunsheng Huang, and Christian B. Mendl.
Simulating quantum circuits using tree tensor networks. Quantum, 7:964, March 2023.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 34

[70]

[71]

[72]

[73]

[80]

[81]

[82]

[83]

A

B
B.1

ISSN 2521-327X. DOI: 10.22331/q-2023-03-30-964. URL https://doi.org/10.22331/
q—-2023-03-30-964.

Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems
with a tree tensor network. Physical Review A, 74(2), August 2006. ISSN 1094-1622. DOI:
10.1103 /physreva.74.022320. URL https://doi.org/10.1103/PhysRevA.74.022320.

Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM Jour-
nal on Scientific Computing, 18(5):1436-1445, September 1997. ISSN 1095-7197. DOI:
10.1137/s1064827593255135. URL https://doi.org/10.1137/81064827593255135.

E M Stoudenmire and Steven R White. Minimally entangled typical thermal state algorithms.
New Journal of Physics, 12(5):055026, may 2010. DOI: 10.1088/1367-2630/12/5/055026. URL
https://doi.org/10.1088/1367-2630/12/5/055026.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. Advances
in Neural Information Processing Systems, 29, 2016. DOI: 10.5555/3157382.3157634. URL
https://dl.acm.org/doi/10.5555/3157382.3157634.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354-356,
August 1969. ISSN 0945-3245. DOI: 10.1007/bf02165411. URL https://doi.org/10.1007/
BF02165411.

Szilard Szalay, Max Pfeffer, Valentin Murg, Gergely Barcza, Frank Verstraete, Reinhold
Schneider, and Ors Legeza. Tensor product methods and entanglement optimization for ab
initio quantum chemistry. International Journal of Quantum Chemistry, 115(19):1342-1391,
2015. DOI: 10.1002/qua.24898. URL https://doi.org/10.1002/qua.24898.

Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1-24, July 2005. ISSN 0196-6774. DOI:
10.1016/j.jalgor.2004.12.001. URL https://doi.org/10.1016/j.jalgor.2004.12.001.
Vijay V Vagirani. Approzimation algorithms, volume 1. Springer, 2001.

F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entangled pair
states, and variational renormalization group methods for quantum spin systems. Advances
in Physics, 57(2):143-224, March 2008. ISSN 1460-6976. DOI: 10.1080/14789940801912366.
URL https://doi.org/10.1080/14789940801912366.

Frank Verstraete and J Ignacio Cirac. Renormalization algorithms for quantum-many body
systems in two and higher dimensions. 2004. DOI: 10.48550/ARXIV.COND-MAT /0407066.
URL https://doi.org/10.48550/ARXIV.COND-MAT/0407066.

Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations.
Physical Review Letters, 91(14), October 2003. ISSN 1079-7114. DOI: 10.1103/phys-
revlett.91.147902. URL https://doi.org/10.1103/PhysRevLett.91.147902.

Steven R. White. Density matrix formulation for quantum renormalization groups. Physical
Review Letters, 69(19):2863-2866, November 1992. ISSN 0031-9007. DOI: 10.1103/phys-
revlett.69.2863. URL https://doi.org/10.1103/PhysRevLett.69.2863.

Yifan Zhang and Edgar Solomonik. On stability of tensor networks and canonical forms. 2020.
DOI: 10.48550/arXiv.2001.01191. URL https://doi.org/10.48550/arXiv.2001.01191.
Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal. What limits the simulation of
quantum computers? Physical Review X, 10(4), November 2020. ISSN 2160-3308. DOI:
10.1103/physrevx.10.041038. URL https://doi.org/10.1103/PhysRevX.10.041038.

Notations

Additional background

The swap-based algorithm to reorder MPS modes

In the MPS-based automated tensor network contraction algorithms including CATN and Sweep-
Contractor, an important step is to reorder the sites in an MPS. The reordering changes the

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 35

Notations Meanings

G=(V,E) The input tensor network graph
V={V,...,Vn} A partitioning of G

V) A contraction tree over V

G[U] A subgraph of G that only contains vertices U

E={E(V;,V;):i,j €{1,...,N}} | The set where each element in £ is an edge subset connecting
two different partitions

(Us, W) The contraction s where the first tensor is the contraction
output of vertices U and the second tensor is the contraction
output of vertices W

Es={F' NEU;UWy): E' €&} | The subset of £ that is adjacent to the tensor network rep-
resented by Us U W

o(&s) A linear ordering of the elements in &
T = path (T(V), V;) The sub-contraction path over Vj
T(&) Constraint tree detailed in Appendix D

Table 2: Notation used throughout the paper.

adjacency relation in the MPS, and is used so that subsequent contractions can be performed with
lower cost. The reordering is commonly performed via a sequence of adjacent site swappings. For
a given MPS whose sites are denoted as a set S and its input ordering is denoted as an injective
mapping o : S — {1,...,]5]}, changing it to a different ordering 7 requires at least dxr (o, 7)
number of swaps, where dkgT denotes the Kendall-Tau distance defined in Definition 3.

Definition 3. Let 0,7 be two orderings over S. The Kendall Tau distance between o, 7 is the
number of pairs that are ordered differently in o, 7, and is also the number of pairwise adjacent
transpositions needed to transform o into 7 (or vise versa),

dgr (0,7) = Z ‘U(C, d)—71(e,), (4)

(e,c)eS

where o(c,d) =1 (U(c) < a(c’)) indicates if ¢ is ahead of ¢ in o.

We illustrate the standard algorithm to swap adjacent MPS sites via a contraction and a low-
rank approximation in Fig. 24. The algorithm first contracts two sites into a single tensor and
subsequently performs a low-rank approximation to split the tensor into two parts. When the
uncontracted modes have sizes x and y, and the MPS ranks are a,c, and b, the contraction step
has an asymptotic cost of ©(abczry), resulting in a tensor with a size of abzry. Without truncation,
the output rank of the low-rank approximation operation would be the minimum among ay, bx, czy.
In practice, it is common to set an upper bound v for the MPS ranks, which limits the asymptotic
cost of the approximation operation to O(abry min(ay, bz, cry,~y)) when using the cost model in
Section 2.2. To reduce the truncation error, canonicalization is commonly performed on the MPS
to orthogonalize all other sites.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 36

contract Yy low-rank approximation y T
DD e o,
. cee @(abcwy) cee *** O(abzy - min(ay, bz, czy,~)) s i
b b a b

O(min(ay, bz, czy, 7))

Figure 24: lllustration of the swap operation and the asymptotic computational cost.

B.2 Background on embedding an source graph into a target graph

Our proposed algorithm uses heuristics from the graph embedding problem. A graph embedding
of a source graph G = (Vs, Fs) into a target graph Gy = (V;, E}) is a map from vertices of the
input graph onto vertices of the output graph, ¢ : V; — V;, and each edge connecting u, v of G
is mapped onto a path connecting ¢(u), ¢(v) of Gy. For each edge e € E;, we let congestion(e)
denote the number of times e is used as a corresponding path of some edge in G;. We look at
the problem of finding the graph embedding that minimizes the congestion [33, 9, 52, 7, 51]. This
metric is used since when embedding a tensor network into another graph, low congestion implies
that the embedded tensor network has low ranks as well as low memory usage.

For the case where G; is a line graph and ¢ is an injective mapping, finding ¢ that minimizes
the congestion is the widely-discussed linear ordering problem. When the objective is to minimize
max.e g, congestion(e), the problem has been called the minimum cut linear arrangement problem,
and the congestion is also called cutwidth in the previous work [76]. When the objective is to
minimize) ., congestion(e), the problem has been called the minimum linear arrangement
problem [32, 19], and multiple approximation algorithms with bounded complexity have been
proposed [20, 64, 21, 11, 17].

Recursive bisection is a simple yet effective divide-and-conquer heuristic widely adopted in
both linear ordering problems [18, 31| and balanced graph partitioning [67, 71]. For the linear
ordering problem, the algorithm proceeds via first applying an approximate 1/3-balanced cut to
separate Vs into two parts S and V; \ S, then placing all vertices of S before all vertices not in
S, and then recursing on both S and V; \ S. Let n denote the number of vertices in the graph,
it is known that if one has a 7-approximation algorithm for minimum 1/3-balanced cut, then
both the minimum cut linear arrangement and the minimum linear arrangement problem admit
an approximation of O(ylogn) [31, 77]. The approximation factor for the 1/3-balanced cut is
improved from v = O(logn) [39] to v = O(v/Iogn) [3], making the approximation factor of the
recursive bisection O(log!® n).

In Sections 5 and 6, we use recursive bisection as a heuristic for other embedding problems
where ¢ is not necessarily injective, and Gy is a general binary tree rather than a line graph.

C Embedding tree definitions

We formally define the embedding tree with an MPS and a comb structure in Definition 5 and
Definition 6. Both definitions are based on the MPS tree, which is defined in Definition 4.

Definition 4 (MPS tree). Consider a set S with a linear ordering o°. Let x; € S denote the
element with o°(x;) = i. The MPS tree defined on ¢ is a full binary tree with the elements
of S serving as the tree’s leaf nodes. The MPS tree contains |S| — 1 non-leaf nodes, where the
first non-leaf node is connected to z; and z2, and the ith non-leaf node for i € {2,...,|S| — 1} is
connected to the ¢ — 1th non-leaf node and ;1. An example is shown in Fig. 11a.

Definition 5 (Embedding tree with an MPS structure). Consider orderings ¢(®) and ¢(*) for
E' € &;. Let ng = |&|, and let E; denote the edgeset with 0(53)(Ei) = 4. The MPS embedding tree
based on o), {c(E) E' € £,} is the MPS tree defined on the ordering o("1) @ - - @ ¢ns) | where
we use 0”1 @ 02 to denote the concatenation of two orderings ¢! and 02, so that each x € S is
mapped to 0 (z) and each = € Sy is mapped to o2 (x) + |S1].

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 37

Definition 6 (Embedding tree with a comb structure). Consider orderings o) and (&) for
E' € &,. Let ng, = |&|, and let E; denote the edgeset with o(és)(E;) = i. Let T; denote the MPS
tree on top of o) and let r; denote the root node of T;. The comb embeddlng tree based on o),
{oF) E' € &, } contains all T; for i € {1,...,ns} and another MPS tree T used to connect all Tj.
The MPS tree T’ connects all r; and is deﬁned on top of the ordering 6 : {ry,...,r.} — {1,...,ns},
where 6(r;) = i.

D Determination of the constraint tree based on the contraction path

The constraint tree 7€) is constructed based on the sub-contraction path 7. The tree is con-
structed bottom-up by connecting subsets of edges involved in the contraction path. This construc-
tion is based on the assumption that ordering edges to make earlier rather than later contractions
efficient is more important.

Specifically, we let Uy, ..., U, be the n partitions contracted with V; in order in the path 7', let
& be the edge partitions deﬁned in Line 3 of Algorithm 2, and let £(U;) = {ENEU;): Ec&} be
the subset of £ incident on U;. For each contraction with U;, we use &; to denote the subset of &
that we want to be connected in T®) based on the contraction. In particular, & = (£ N E(UL))
contains all contracted edges E(Vs,Uy). For each i € {2,...,n}, we want (€, N E(U;)) along with
some c‘fj,j < i to be adjacent. Formally speaking, for each i € {1,...,n}, we define

&= EnEW)) U &, (5)
JES;
where S; C {1,...,7—1} is a subset of indices ahead of i such that for each j € S;, U; is adjacent

to U;. In Fig. 25, we use an example to illustrate the constraint tree construction algorithm, and
each &; is also shown in the figure.

After contracting U; After contracting Us After contracting Us
& = {62’63} & = {627 63,64} & = {61762,63}
Unordered Ordered
f === -?] ----- ‘I Unordered Unordered Unordered
Ve ———
r----l-_-_} el €9 €3 €4 €5 €1 €9 es3 €4 €5 (] €9 €3 €4 €5
pemee———— ’
Gar m—— | pm——— . .
_I@ H After contracting Uy After contracting Us
-_1 &y = {ez,e3,65} & = {e1, e, 3,5}
6-2- 33 ey Unordered Unordered
Ordered Ordered
Unordered Unordered
€1 €2 €3 €4 €5 €1 €2 €3 €4 €5

Figure 25: lllustration of the algorithm to construct the constraint tree. The constraint tree is built on top of the
uncontracted edgesets of Vi, & = {{e1},{e2},{es},{es}, {e5}}. The partitions Uy,...,Us are contracted with
Vs in order. For the ith contraction, we show the value of &; and show the constraint tree after that contraction
step.

In the algorithm, 7'¢) is initialized to be a disconnected graph with vertices &. For the
ith contraction that contracts U;, the algorithm updates the T¢s) so that the leaves & will be
connected. The rules are as follows.

1. It & are already connected in T*) | we just keep the constraint tree unchanged. For example,
in Fig. 25 the constraint tree is unchanged after we consider the fifth contraction, since &5 is
already connected.

2. If & is the union of multiple connected leaf subsets, then a vertex is added to T¢*) whose
children are the root vertices of these connected leaf subsets. In addition, this new vertex is

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 38

labeled as “unordered”. In Fig. 25, the constraint trees after both the first and the second
contraction belong to this case.

3. If & is a subset of the union of multiple connected leaves subsets &, then there are cases
where & cannot be adjacent in the tree. For this case, a vertex is added to T) whose
children are the root vertices of £ and the vertex is labeled as “unordered”. In Fig. 25, the
constraint trees after the fourth contraction belongs to this case. For the other cases, we
can reorder the constraint tree and label some vertices as “ordered” to add the adjacency
constraints. In Fig. 25, the constraint trees after the third contraction belongs to this case.

E Optimality of the edge set ordering algorithm

In this section, we prove that the output ordering of Algorithm 3 minimizes the Kendall-Tau
distance with the reference ordering under the adjacency constraint.
Let P (T(55)> represents the set of orderings of the leaves of T¢s) constrained by T'¢). Each

ordering in this set must adhere to all the adjacency relations specified by 7). In Theorem E.2,
we establish that the output ordering produced by Algorithm 3 aims to minimize the Kendall-Tau
distance, as defined in Definition 3, between itself and the reference ordering 7,

(&) = in d : 6
o arggepn(ljl“r(l&)) KT (0,7) (6)

Before the presentation of Theorem E.2, we first present Lemma E.1 that is used in the proof of
the theorem. The lemma can be easily proved based on the definition of Kendall-Tau distance in
Definition 3.

Lemma E.1. Consider an ordering 7€) over a set C = C, U Cy, and let 7€V, 7(C2) denote the
restrictions of the ordering 7€) to the subset Cy, Cy, respectively. Consider another two orderings

(@) () over Cy, Ca, respectively. Then, we have

dgr (T(C),O'(Ol) ® 0(02)> =dygr (7—(0)7 (C1) g T(CQ))—FdKT (7(01)7 J(Cl)>+dKT (7(02)7 J(6'2)) . (7)

where 7(€V) @& 7(C2) denotes the concatenation of (1), 7(C2).

Theorem E.2. Given a reference ordering T and a guide tree T'®5) | the output ordering of Algo-
rithm 3 is an optimal solution of the optimization problem, minaep(T(gs)) dgr(o,7).

Proof. For each vertex v in the constraint tree T(¢s), we let subtree (v, T(SS)) denote the subtree in
the constraint tree where the root vertex is v. In addition, as is defined in Line 15 of Algorithm 3,
we use T, to denote the restriction of the ordering 7 to the subset represented by the leaves of
subtree (v, T(SS)>. Below we prove that for each v € T(&s),

v) =ar min d 0, Ty) , 8
f() goG'P(subtree(v,T(Es))) KT() ()

where f(v) is defined in Line 16 of Algorithm 3. Since we output f () with r = root (T(gs)), and

subtree (r, T(gs)) = T(&) the output ordering satisfies f(r) = arg minaep(T(gs)) dgr (0, 7). This
finishes the proof.

For the base cases where v is one of the leaf vertices, (8) holds since the set to be ordered only
contains one element thus the ordering is unique.

Now consider the case where v is a non-leaf vertex. In the analysis we assume v has two
children, u; and us. Note that the analysis can be easily generalized to the case of more than 2
children for both “unordered” and “ordered” labels.

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 39

Assume (8) holds for its children, u; and uz. Consider the case where

dir (f(u1) @ f(u2), 7o) < dxr (f(u2) ® f(wa),), (9)
so that Line 16 sets f(v) as f(u1) @ f(uz). We then have

dgr (f(0), 7o) = dir (f (u1) ® f(u2), 70) (10)
L E.1
T dger (T Tuy @ Tuy) + dier (f (1), Tuy) + dier (f (42), Tuy) -

The first term in (10) reaches the minimum since (9) holds. Moreover, the last two terms also
reach the minimum since (8) holds for u; and us. These conditions imply f(v) satisfies (8). Similar
analysis can be applied for the case where dxr (f(u1) ® f(u2),7v) > dxr (f(u2) & f(u1), 7). This

along with the based cases finish the proof.
O

F Lemmas in computational cost analysis

This section provides lemmas for Theorem 6.1, which shows that the asymptotic cost of the density
matrix algorithm is upper-bounded by that of the canonicalization-based algorithm. We demon-
strate in Lemma F.3 that when the input tensor network has a tree structure, both the density
matrix algorithm and the canonicalization-based algorithm exhibit the same asymptotic cost for
truncating the bond sizes in the tree tensor network.

The Lemma F.1 and Lemma F.2 below are used to prove Lemma F.3.

Lemma F.1. Consider a tensor network with a tree structure T = (Vp, Er). Assuming that
changing a tree tensor network into the canonical form will not change any bond size of the network.
For two adjacent vertices z,v, forming canonical_formp(v,z) has the same asymptotic cost as
forming density_matrizy(v, z).

Proof. For each edge set E' C Ep, we let s(E') = exp(w(E")) denote the bond size of E’. We also
let M, denote the tensor at each vertex v € V.

For the pair of adjacent vertices v, z, assume that canonical_formp(u,v) already exist for all
u € N(v)\{z}. Let R,, denote the non-orthogonal core of canonical_formy(u,v). To construct the
form canonical formp (v, z), we first contract M, with R,, for each u € N(v)\ {z}, which yields a

cost of © (ZUEN(U)\{z} s(ET(v))s(ET(u,v))), and then use a QR decomposition to orthogonalize
the tensor at v, which yields a cost of O (s(Er(v))s(Er(v,z))). These steps make the overall cost

@(Z s(ET(v))s(ET(u,v))) . (11)

ueN (v)

We now consider the computation of density matrix,(v, z) under the assumption that for all
u € N(v)\ {z}, L, = density matrix (u,v) already exist. Below we consider the three different
cases,

o when N(v)\ {2z} = (), the computation involves the contraction M, M
o when N(v)\ {z} = {u}, the computation involves the contraction (M,L,)MZ

o when N(v)\ {2z} = {u1,uz2}, the computation involves the contraction M, (L, ® Ly,)MZI,
which can be efficiently computed by performing the contractions M, with L,,, and M,, with
L,, first, and then contracting the outputs.

For all the cases above, the overall cost is © (Z%N(v) s(Ep(v))s(Er(u, v))), which equals the
cost of the canonical form. Since both canonical_formr(v,z) and density matrix,(v,z) have
the same recursive relation, computing canonical formp(u,v) has the same cost as that of the
densitymatrixp(u,v) for uw € N(v)\ {z}. This finishes the proof.

U

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 40

Lemma F.2. Consider a tensor network with a tree structure T = (Vp, E), where each z € Vp
represents a tensor M. Let v € Vi be a leaf vertex that represents M, € R%*b where a,, denotes
the size of the uncontracted modes and b, denotes the size of the contracted modes incident on v,
and let uw = parent(T,v). Given that density-matrizy(u,v) has been computed, computing the
orthogonal matriz U, (Line 11 or 18 of Algorithm /) has a cost of © (a,b?).

Proof. For the case where a, = O (b,), the algorithm first computes L, = densitymatrix;(v)
with a cost of © (avbf, +a%bv), and then computes U, via a low-rank factorization on L, €
R with the maximum rank being r = O (a,), which costs © (a?r). The overall cost is
O (ayb? + a2b, + a?r) = O (a,b?) .

For the case where a, = Q (b,), the algorithm first performs a QR decomposition of M, into
U, € Rwxtv R, € R»*bv with a cost of © (avbg), then computes the leading singular vectors
of RyL,, that is denoted U, € Rb»*7 which costs © (bf’,) Finally, U, is updated as the product
U, U, with a cost of ©(ayb,r). Overall the cost is © (apb? + b2 + aybyr) = O (a,b?). This finishes
the proof. O

canonical-formr(u, v)

contract
—

, N
H - /,‘. A T & '{X‘.
TR AR RAR

Figure 26: Illustration of the difference between the canonicalization-based algorithm and the density matrix
algorithm. The upper path denotes truncating the edge (u,v) using canonicalization, and the lower path uses
the density matrix algorithm. In the lower path, the orthogonal matrix is calculated as the leading singular
vectors/eigenvectors of the density matrix density matrix (z).

Lemma F.3. Consider a given tree tensor network T'= (Vp, Ep). Let o : Vp — {1,...,|Vp|} be a
post-order DFES traversal of T that shows the the tensor update ordering. Assuming that changing
a tree tensor network into its canonical form will not change any bond size of the network, the
asymptotic cost of the density matriz algorithm (Algorithm 4) for truncating the modes in T is the
same as that of the canonicalization-based algorithm (Algorithm 1) if both algorithms use the same
update ordering o, and the same mazximum bond size x.

Proof. Consider the step to update the tensor at a given vertex v € V. Let M, € R**% where
a, denote the size of the uncontracted modes and b, denote the size of the contracted modes of
M,. Also let 7 = min (ay, by, x) and u = parent(T,v). We break down the cost of Algorithm 4 and
Algorithm 1 into 3 parts, and show that for each of the three parts, the costs of the two algorithms
are asymptotically equal.

In Algorithm 1, the steps include 1) forming canonical formyp(u,v), 2) multiplying M, with
R, € R¥* the non-orthogonal core of the canonical form, and 3) performing a rank-y approxi-
mation to get U, € R%*" R, € R™% and 3) multiplying R, with M,,.

In Algorithm 4 with each partition contracted into a tensor, the steps include 1) forming
the density matrix density matrixp(u,v), 2) using density matrix,(u,v) and M, to compute
U, € R®*" and M, = UI'M,, and 3) multiplying M, € R™*% with M,,.

The comparison between the two algorithms is visualized in Fig. 26. It can be seen that
the third step of both algorithms have the same asymptotic cost. For the first step, we show
in Lemma F.1 that both algorithms have the same asymptotic cost. For the second step, the

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 41

canonicalization-based algorithm yields a cost of © (a,b? + ayb,r) = O (a,b?) using the cost model
in Section 2.2. In addition, we show in Lemma F.2 that the cost to compute U, in the density
matrix algorithm under the assumption that each partition is contracted into a tensor is also
O (a,b?). Since the multiplication UTM,, costs O (a,b,7) = O (a,b?), the cost equals the cost of
the canonicalization-based algorithm, thus finishing the proof. O

Accepted in { Xuantum 2024-12-20, click title to verify. Published under CC-BY 4.0. 42

	Introduction
	Our contributions
	Organization

	Definitions and the computational cost model
	Tensor network definitions
	The computational cost model

	Background
	A survey of common tensor network structures
	The canonicalization-based algorithm and the density matrix algorithm
	The canonicalization-based algorithm for truncating tree tensor networks
	Existing algorithms for truncating MPO-MPS multiplication

	The proposed tensor network contraction algorithm
	Definitions
	An overview of the algorithm
	Determination of the embedding tree

	The algorithm to select the edge subset ordering of the embedding tree
	Determination of the edge set ordering based on the constraint tree

	The density matrix algorithm for tree approximations
	Definitions
	The density matrix algorithm
	The density matrix algorithm with memoization
	Computational cost analysis

	The algorithm to approximate an input tensor network into an embedding tree
	Experimental results
	Implementations, tested tensor networks, and the evaluation
	Comparison between the density matrix algorithm and the canonicalization-based algorithm
	Benchmark of the partitioned_contract algorithm

	Conclusion
	Notations
	Additional background
	The swap-based algorithm to reorder MPS modes
	Background on embedding an source graph into a target graph

	Embedding tree definitions
	Determination of the constraint tree based on the contraction path
	Optimality of the edge set ordering algorithm
	Lemmas in computational cost analysis

