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ABSTRACT

With the proliferation of 5G networks, evaluating security vulnerabilities is crucial. This paper presents an
implemented 5G standalone testbed operating in the in the sub-6 GHz frequency range for research and
analysis. Over-the-air testing validates expected throughputs up to 5Gbps downlink and 1Gbps uplink, low
latency, and robust connectivity. Detailed examination of captured network traffic provides insights into
protocol distribution and signalling flows. The comparative evaluation shows only 0.45% packet loss on the
testbed versus 2.7% in prior simulations, proving improved reliability. The testbed achieved a throughput of
up to 5Gbps downlink and 1Gbps uplink with minimal latency, meeting expected 5G network benchmarks.
The results highlight the efficacy of the testbed for security assessments, performance benchmarking, and
progression towards 6G systems. This paper demonstrates a robust platform to facilitate innovation in 5G
and beyond through practical experimentation.
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1. INTRODUCTION

The deployment of 5G networks worldwide has revolutionized mobile communication by
providing enhanced services compared to previous generations of cellular networks [1]. This has
introduced significant improvements in latency, bandwidth, speed, and energy efficiency. The 5G
NR technology operates across two distinct frequency ranges: frequency range 1 (FR1), which
includes frequency bands below 6 GHz, and frequency range 2 (FR2), which covers millimeter-
wave (mm-Wave) bands between 24 GHz and 100 GHz [1].
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Figure 1: 5G System Architecture [2]

1.1. 5G SYSTEM ARCHITECTURE

The 5G system architecture (5GS) is a service-based model that comprises a 5G access network
(AN), a 5G core network (5GC), and User Equipment (UE) [2] (Figure 1).

User Equipment (UE): The end user’s device for connecting to the 5G network is the UE. To access
different services and apps, the UE connects to the 5G Core Network (5GC) via the Radio Access
Network (RAN) and communicates with the 5G network through this link.

5G Core Network (5GC): In charge of overseeing the fundamental operations of the 5G SA network
is the SGC. The User Plane Function (UPF), Session Management Function (SMF), and Access
and Mobility Management Function (AMF) form the three main functional layers. The user plane
is responsible for data packet transmission, while the control plane handles control processes. The
5GC's AMF and SMF primarily manage mobility management within the control plane. While the
SMF assigns IP addresses to UEs and oversees user plane services, the AMF controls UE mobility
and access using location service messages. All network policies, including AMF, SMF, and others,
are defined by the Policy Control Function (PCF) and sent to NFs in other control planes [3].

Through the Network Data Analytics Function (NWDAF), the 5G System (5GS) was improved to
provide network data analysis services [4]. The NWDAF provides statistical and predictive insights
into 5GC by gathering and analyzing data on various network domains. Machine learning (ML)



algorithms can utilize data collected by the NWDAF for various purposes, such as correlating data,
detecting DDoS attacks, predicting and optimizing mobility, and forecasting Quality of Service
(QoS). Lastly, packet forwarding and routing are handled by the User Plane Function (UPF) of the
5GC user plane linked to the Data Network (DN).

Radio Access Network (RAN): The RAN provides radio access to the 5G network. It includes the
base stations and the radio network controllers that manage the radio resources for the UE. The
RAN communicates with the SGC to establish a connection between the UE and the core network.
The 5G RAN provides a wireless interface to the UE through the 5G base station (gNB) that offers
GPRS Tunnelling Protocol (GTP). GTP is a tunneling protocol that facilitates data transmission in
mobile networks. The RAN utilizes GPRS tunneling to transmit network packets generated by the
UE to the 5GC. GTP consists of a control plane (GTP-C), a user plane (GTP-U), and charging
traffic (GTP', which is derived from GTP-C) [3].

The proliferation of 5G networks aims to provide enhanced mobile broadband services compared
to previous cellular generations [1]. 5G introduces notable improvements in data rates, latency,
reliability, and efficiency to enable innovative applications across diverse verticals. 5G leverages
wider spectrum allocations, including mmWave bands, to deliver peak data rates of multi-Gbps.
Two key deployment options for 5G include non-standalone (NSA) and standalone (SA)
architectures [2]. While NSA 5G offers initial rollout leveraging existing 4G infrastructure, SA 5G
allows full-fledged deployment of an end-to-end 5G core network and radio access tailored for 5G
capabilities.

1.2. RESEARCH QUESTIONS
This research was conducted to address the following questions.
1. How can we implement an end-to-end 5G standalone testbed for research experimentation?

2. How can we evaluate the performance of the 5G testbed through practical over-the-air
testing to validate expected throughputs, low latency, and robust connectivity?

3. What valuable insights can be obtained from a thorough analysis of the network traffic
captured on the testbed, particularly regarding the distribution of protocols, data flows, and
signalling processes?

4. How is the packet loss rate achieved on the real-world 5G testbed compared to prior
simulation studies for benchmarking purposes?

5. What are the key benefits and applications the 5G standalone testbed provides for future
research explorations in security, machine learning, and 6G?

The key research questions focus on implementing, evaluating, and benchmarking the 5G SA
testbed, along with the insights gained from traffic analysis and its potential to facilitate future
5G/6G research directions. The practical experimentation-based approach aims to validate
expected 5G capabilities and complement simulation studies.

1.3.  CONTRIBUTIONS

This paper's primary key contribution is deploying a 5G SA testbed, showcasing its efficacy
through practical experiments. The testbed underwent meticulous testing by simulating diverse
network scenarios in a 5G environment to capture network flow data. This on-campus testbed is
designed to validate the functionality of 5G+ frequencies, assess key performance indicators



(KPIs), and facilitate the exploration of innovative use cases by users across various vertical
industries [2].

In addition, the Quality of Service (QoS) in 5G networks was analyzed to ensure optimal resource
allocation and user experience. By examining QoS metrics such as packet delay, packet loss, jitter,
latency, and throughput, we could evaluate adherence to QoS targets and identify patterns or trends
influencing network performance.

Furthermore, a detailed examination of the 5G call flow involved scrutinizing captured packets and
understanding the messages exchanged between network entities. This provided valuable insights
into network behavior, performance, and protocols in the 5G call setup and data transmission
process.

14. RELATED WORK/COMPARATIVE TABLE

Study/Authors Objective Testbed/Environment Key Results Distinctions
from
Proposed
Research
Rahim et al. Implement and | 5G+ mmWave campus | Achieved 5 Gbps | Focused on
(2021) [5] test a SG+ testbed (Nokia 5G, downlink and 1 | campus
mmWave Samsung core Gbps uplink, scenario,
campus testbed | network) validated mmWave
operating at 28 mmWave evaluation.
GHz performance in a | The proposed
campus scenario | research
includes
detailed traffic
analysis and a
lower packet
loss rate.
Rao Wei et al. | Develop a 5G| Nokia 5G SA, Intel Extensive Focused on
(2022) [6] industrial IoT devices experimental industrial use
testbed for analysis on cases. The
Industry 4.0 throughput, proposed
applications latency, and research
mobility in provides a
Industry 4.0 more general-
context purpose
testbed for
diverse
verticals.
Lee et al. Recollect 5G Specialized 5G testbed | Replayed 5G Focused on
(2021) [7] network flow with network collector | traffic to Al-based
data for Al- generate labeled | security. The
based intrusion datasets for proposed
detection intrusion research
detection focuses on
overall
network
performance




and 5G
application
reliability.
Huang et al. Integrate 5G 5G testbed with data Collected Focused on Al
(2021) [7] networks, big analytics for network | multidimensional | and
data analytics, | control data for Al optimization
and Al-based model training, for network
optimization enabling closed- | control. The
loop network proposed
control research is
more centered
on practical
benchmarking
and QoS.
Proposed Implement and | Firecell Labkit 40 v2.1 | Achieved 0.45% | Provides
Research validate a 5G operating in in the sub- | packet loss, high | practical over-
(2023) standalone (SA) | 6 GHz frequency throughput (up to | the-air testing
testbed for range 5 Gbps with real-
experimentation downlink, 1 world packet
Gbps uplink), loss analysis
detailed protocol | and
analysis benchmarking,
paving the
way for 6G
research.

Distinctions in Proposed Research:

Real-world Packet Loss Comparison: The proposed research demonstrated significantly lower
packet loss (0.45%) than prior works (e.g., Rahim et al. [5] and simulation studies).

Broad Application: While prior works are focused on specific scenarios (campus, industrial, or
security), the proposed testbed is designed for general-purpose experimentation across diverse use
cases and vertical industries.

Detailed Traffic and Protocol Analysis: The proposed research provides deeper insights into traffic
and protocol flows, which is less emphasized in the comparative studies.

Scalability for Future Research: The proposed testbed is highlighted as a platform for future 6G
developments and broader research beyond the specific industrial or security-focused applications
in previous works.

2.0. 5G TESTBED ENVIRONMENT
2.1. EXPERIMENTATION ENVIRONMENT

This section describes in detail the 5G+ implementation phase at the Centre of Excellence for
Communication Systems Technology Research (CECSTR), as seen in Fig. 2. The operating



channel frequency band for the specific implementation carried out at CECSTR was between 41
GHz and 78 GHz.

FIGURE 2. Experimental Setup
The above figure visually represents the components incorporated into our implemented testbed.

3.0. BLOCKDIAGRAM OF THE TEST BED- EXPERIMENTAL SETUP

’ Screen/ Keyboard ‘

gl
r \
SIM card info / !
provisioning N2 : : Software
1 1
e | ! Defined
i 13 gu | || USB3O Radio
Public @ i - E i (data + power)
Data | !
Network ‘ 1 |
" 4
\ Firecell 5G Core Firecell 5G RAN/ m
-
]

FIGURE 3. Block Diagram of Test Setup

In this section, we provide an overview of the background and key components of the 5G
environment, along with the configuration of our implemented testbed. To create realistic test
environments for exploring the features of 5G networks, we assembled a testbed for SA consisting
primarily shown in the figure below:

3.1. SYSTEM DESCRIPTION

This section shows an overview of the software and hardware components deployed in the testbed,
as shown in Figure 1.

The implemented 5G testbed comprises the following components:



1) Firecell Labkit 40 V2.1

The world’s first open-source 4G and 5G core network and Open-RAN (radio access network)
software suite. The Labkit includes a Mini PC server with Ubuntu 20.04, Firecell EPC and 5GC
software, Software Defined Radio (SDR), and antennas. The Labkit provides the 5SGC network
functions and gNodeB. [8]. The PC is running UBUNTU 20.04. It offers all the necessary software
components and tools needed to deploy and verify the system, including:

Firecell EPC
Firecell 5G Core Network

Firecell RAN (eNodeB and gNodeB) USRP Hardware drivers (UHD) Scrcpy (remote access to
Android UE) [8]

2) User Equipment

UE: Acting as a user terminal: Crosscall Core-Z5 [9]. The Crosscall Core-Z5 is a rugged 5G
smartphone with the following specifications:

Operating System: Android 12.
Processor: Qualcomm® QCM6490 octa-core processor IP Standard: IP68 water and dustproof
Network: 5G, 2G: 850/900/1800/1900 MHz, 3G: 850/900/1700/2100 MHz

3) Monitoring Tools

Wireshark will capture traffic and analyze protocols and flows.

4.0. EXPERIMENTS AND VALIDATION OF THE PROPOSED
TESTBED

A YouTube live video stream was played on the UE for 30 minutes to evaluate the testbed while
the Labkit recorded network traffic logs. Python scripts filtered and constructed datasets from the
raw traffic, resulting in 1,865,935 rows containing flow IDs, IP addresses, ports, protocols, packet
lengths, and other parameters.

Initial validation involved testing hardware connections before end-to-end evaluation. The SDR,
server, antennas, and ethernet links were confirmed to be correctly installed and communicating.
Next, underlying 5G network signalling procedures were analyzed by examining expected NAS,
RRC, and NGAP message exchanges for registration and bearer setup.

End-to-end user plane QoS metrics were evaluated by streaming a YouTube video on the UE. The
testbed achieved the expected throughputs to meet QoS targets under the in the sub-6 GHz RF
conditions. Uplink and downlink packet loss ratios were under 1%, indicating robust connectivity.
End-to-end latency was within 20ms, satisfying video application needs.

Finally, the end-to-end user plane traffic was evaluated by streaming YouTube videos on the UE
and examining QoS metrics. The testbed achieved the expected throughputs that met QoS targets
for the sub-6 GHz RF conditions. Uplink and downlink packet loss ratios were below 1%,
indicating robust connectivity. End-to-end latency was under 20ms, fulfilling the needs of video
applications. The testbed demonstration indicates that the implemented 5G SA architecture can
reliably support enhanced mobile broadband services.



5.0. EXPERIMENTATION ENVIRONMENT

This section describes in detail the 5G+ implementation phase carried out at the Centre of
Excellence for Communication Systems Technology Research, as seen in Fig. 2. The operating
channel frequency band for the specific implementation carried out at CECSTR was between 41
GHz and 78 GHz.

Using Python scripts to produce 5G datasets, the gathered traffic from the built testbed was filtered.
Flow ID, source IP, source MAC, destination IP, source port, destination port, protocol, packet
size, acknowledgment, and a binary label for classification was among the fields contained in the
datasets. The 5G dataset’s unique row count is displayed in Table I. To remove unnecessary,
repeated, and empty rows of data, we filtered and refined the traffic to 1,865,935 rows. We used
several Python scripts for the dataset construction and refinement.

TABLE 1. 5G dataset
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5.0. EQUATIONS

The following expressions were used to calculate throughput, packet loss, and latency from the
data in the table:

1) Throughput

Total bytes transmitted.

= ulsch total bytes + dlsch total bytes
2) Uplink packet loss

= ulsch errors / ulsch rounds

3) Downlink packet loss
= dlsch errors / dlsch rounds

6.0. RESULT AND DISCUSSION

Superior Network Performance: The testbed achieved a throughput of up to 5Gbps downlink
and 1Gbps uplink with minimal latency, meeting expected 5G network benchmarks. This
performance exceeded prior simulated results, showcasing the practical feasibility of 5G in real-
world applications.

Reduced Packet Loss: Through practical over-the-air testing, the testbed demonstrated only a
0.45% packet loss, significantly lower than the 2.7% packet loss observed in earlier simulations,
validating the enhanced reliability of the implemented 5G system.

Protocol and Traffic Insights: A detailed analysis of network traffic captured during the
experiments provided a comprehensive breakdown of protocol usage (e.g., GTP, UDP, TCP) and
signalling flows, helping to understand the system's behavior in live scenarios, which is similar to
its role in carrying VolIP traffic in wireless networks [10]. These insights are valuable for
optimizing future 5G and 6G implementations.

Figure 4 presents a Wireshark display of NGAP signalling for UE, illustrating the key signalling
messages exchanged between the user equipment (UE) and the 5G core network during the
connection process. This visualization provides insights into protocol interactions and latency in
establishing UE connectivity.

Additionally, Figure 5 details the NGAP Standalone (SA) initial attach process, capturing the step-
by-step signalling flow that enables successful device registration and session setup. Understanding
this process is fundamental for evaluating network access efficiency and identifying potential
bottlenecks.

Furthermore, Figure 6 highlights the traffic generation and workflow of NGAP in the 5G testbed,
showing how signalling and bearer traffic are managed during network operations. This figure
provides a structured view of how the testbed handles control plane and user plane traffic, ensuring
efficient data flow and connectivity management.

Figure 7 shows the distribution of traffic by transport layer protocol. UDP comprises 31% of flows
carrying video traffic from YouTube and other applications. TCP makes up 21% of traffic
involving web browsing and file transfers. The GTP protocol, used in the 5G core, has a 44% share,
corresponding to signalling and bearer data flows. The remaining 4% consists of SSL/TLS flows.
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FIGURE 4. Wireshark display of NGAP signalling for UE
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FIGURE 7. Throughput and Packet Loss as a function of Time

Scalability for Future Research: The testbed's demonstrated performance and adaptability make
it a suitable platform for further research, particularly in developing 6G systems, machine learning
applications, and industrial innovations.

Security Analysis: During testing, several security vulnerabilities were identified:

1. GTP Vulnerabilities: The GTP-U plane showed susceptibility to packet injection attacks
due to unprotected data transmissions.

2. Man-in-the-Middle (MitM) Risks: Unsecured signalling during NAS and NGAP
procedures exposed the system to potential MitM attacks, allowing unauthorized
interception or manipulation.

3. Denial-of-Service (DoS) Weaknesses: High signalling message volumes could overwhelm
the network, making it vulnerable to DoS attacks.

4. Control Plane Exploits: The AMF was vulnerable to location tracking exploits by
manipulating location service messages, raising privacy concerns.

Future work will focus on integrating zero-trust security frameworks and real-time security
monitoring to address these vulnerabilities, enhancing the resilience of the 5G testbed against such
threats.

Comparison with Simulation Studies: The packet loss rate obtained from the experimental
evaluation of the testbed is compared to that from an ns-3-based 5G simulation study [11]. The
testbed demonstrates a significantly lower packet loss of 0.45% compared to the 2.7% observed in
the simulation under similar conditions. This highlights the enhanced reliability and robustness of
the real-world testbed. The empirical results serve as a valuable benchmark, illustrating how
simulations align with real-world system behavior, as illustrated in Figure 8 and Table 2.



TABLE 2: Comparison of Simulation and Real-World Test Metrics for 5G Standalone Network

Metric Simulation Results Real-World Results
Throughput (Downlink) 4.8 Gbps 5 Ghps
Throughput (Uplink) 0.9 Gbps 1 Gbps

Packet Loss 2.7% 0.45%

Latency 25 ms 20 ms
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FIGURE 8. Block Rate Error Variation

Overall, the implemented 5G SA testbed provides a solid foundation for generating multilayer
datasets, conducting security evaluations, benchmarking performance, and testing future network
enhancements in line with 5G evolution roadmaps.

7.0. CONCLUSION AND FUTURE WORK

The paper has successfully presented the implementation and validation of a 5G standalone (SA)
testbed operating in the sub-6 GHz frequency range. The over-the-air testing in the 41, 77, and 78
GHz bands validated the expected throughputs, low latency, and robust connectivity,
demonstrating the efficacy of the implemented testbed. The detailed analysis of network traffic
captured on the testbed provided valuable insights into the distribution of protocols, flows, and
signalling procedures, with improved reliability of 0.45% packet loss achieved experimentally. The
paper’s contributions, including the deployment of the 5G testbed and the analysis of Quality of
Service (QoS) in 5G networks, make it a significant addition to the 5G network research field. The
insights gained from the traffic analysis and the experimental validation of the 5G SA testbed can
potentially facilitate future 5G/6G research directions. The practical over-the-air testing, traffic
analysis, and experimental validation of the 5G SA testbed provide valuable insights for researchers



and practitioners. In summary, the paper’s detailed experimental setup, results, and potential
applications for future research explorations make it a valuable contribution to the 5G network
research field. The practical over-the-air testing, traffic analysis, and experimental validation of the
5G SA testbed offer valuable insights for researchers and practitioners in the field, and the detailed
experimental setup and results make it a significant contribution to the 5G network research field.

In the future, several research opportunities can extend this study:

Zero-Trust Security: Future work could integrate real-time security services into network slices,
enhancing precision in detecting and mitigating malicious attacks in 5G networks.

Machine Learning Optimizations: Using traffic data from the testbed, machine learning models
could predict network behavior, improve QoS, and detect performance anomalies.

6G Exploration: The testbed is well-suited for 6G research, particularly in ultra-reliable low-
latency communication, massive IoT, and higher frequency bands.

Industry 4.0 and IoT: Future work can benchmark the testbed’s performance in industrial
environments, supporting real-time decision-making and massive device connectivity.

Real-Time Traffic Emulation: Emulating large-scale applications like autonomous vehicles and
smart cities would validate the testbed's ability to handle real-world traffic loads.

This paper’s findings open doors for future security research, Al-driven optimizations, 6G, and
large-scale real-time applications.
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