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ABSTRACT

The advent of 5G technologies has ushered in unprecedented demands for efficient
spectrum utilization to accommodate a surge in data traffic and diverse communication
services. In this context, accurate and reliable spectrum sensing is crucial. We investigated
wideband spectrum sensing strategies by comparing non-cooperative cognitive radio (CR)
approaches with cooperative methods across multiple sub-bands. Our research led to the
development of a sophisticated cooperative wideband spectrum sensing framework that
incorporates a K-out-of-N fusion rule at the fusion center to make optimal decisions,
selecting an appropriate K for a given number of cooperating CRs. This method aims to
combat the noise uncertainty typically affecting traditional non-cooperative energy
detection methods in 5G environments under Additive White Gaussian Noise (AWGN)
conditions, assumed to be identically and independently distributed (i.i.d). However, our
findings indicate that while cooperative sensing significantly improves detection in
scenarios with poor signal-to-noise ratios (SNRs) and higher false alarm rates (between
0.5 and 1), it does not consistently outperform non-cooperative methods at very low false
alarm rates (0.01 and 0.1). This finding suggests the limited effectiveness of the cooperative
sensing method under certain conditions, underscoring the need for further research to
optimize these strategies for diverse operational environments
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1. INTRODUCTION

The Federal Communications Commission (FCC) plays an important role in managing the radio
frequency spectrum in the United States, overseeing a dynamic regulatory framework for
spectrum sensing, sharing, and management. This framework allocates spectrum to fixed licensed
owners - primary users (PUs) and flexible, unlicensed secondary users (SUs). While the fixed
spectrum often remains underutilized, the unfixed spectrum faces congestion challenges
exacerbated by the burgeoning proliferation of Internet of Things (IoT) devices. The limited
spectrum available struggles to accommodate these emerging technologies, necessitating
innovative solutions.
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Cognitive radio (CR) technology enhances spectrum utilization [1]. It dynamically detects
underutilized bands within the wireless spectrum and adapts its transmission parameters
accordingly, ensuring a seamless flow of information. The core functions of cognitive radio are
spectrum sensing and adaptation [2]. This adaptability includes modifications to transmission
power, modulation, and frequency bands to minimize interference with PUs and adjust for the
possible re-emergence of PUs during SU transmissions. SUs initially perform spectrum sensing
to identify frequencies not occupied by PUs. Post-detection, SUs adjusts their transmission
characteristics to exploit these 'spectrum holes’ effectively as seen in figure 1, while ensuring
minimal interference with existing PUs. This process requires reliable detection metrics, notably
the probability of detection (PD) and the probability of false alarm (PFA). PD measures the
accuracy of detecting PUs' presence or absence, while PFA indicates the erroneous reporting of
PUs' presence.
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Figure 1: Underutilized Spectrum Hole

However, the performance of these detection mechanisms can be significantly compromised by
factors such as multipath effects, hidden node issues and shadowing, particularly in non-
cooperative spectrum sensing contexts [3]. Cooperative spectrum sensing was introduced to
address these challenges and is gaining traction among researchers. This method enhances
sensing accuracy by enabling SUs to share sensed information with a centralized fusion center,
leveraging collective data to improve decision-making processes under diverse environmental
conditions [3,4]. Integrating K-out-of-N decision rules at the fusion center enhances this
approach, which is particularly crucial in 5G environments where efficient and reliable spectrum
management is paramount. This paper investigates the performance of non-cooperative and
cooperative spectrum sensing techniques tailored for energy detection (ED) in 5G environments,
specifically within Additive White Gaussian Noise (AWGN) and individually and identically
distributed (i.i.d) contexts. We developed a simulation to determine the optimal average
proportion of decisions required by CRs with an optimal k in the K-out-of-N rule under differing
false alarm rates. This systematic approach maximizes PD while maintaining PFA within
acceptable limits.

The authors in [5] researched an algorithm for sensing node reliability in CRNs. They confirmed
that the secondary users (SUs) may have several sensing nodes that are uniformly distributed, and
each node utilizes the energy of the primary user (PU) individually to confirm the availability of
the spectrum. From path loss theory, the PU signal energy is individually sensed by each node,
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although operating within the same condition. More so, from energy detection theory, incorrect
decisions will be made by nodes that receive less energy, and these nodes will interfere with the
global decision. The authors in [6] believe that the fusion centers' reliability helps maintain
optimal detection in low SNR conditions.

The authors in [7] researched cooperative sensing and investigated the effect of shadowing
among cognitive radios. They inferred that correlated shadowing limits the cognitive node's
performance and suggested that few independent users can perform better than many correlated
users. This assumption is correct since a narrowband sensing node performs sensing at a
particular spectrum band and may be significantly affected by deep fade. This problem can be
solved by independent multiple radio sensing at individual spectrum bands, which explains the
concept of wideband spectrum sensing

The authors in [8] proposed an efficient sequential decision fusion (SDF) scheme based on the k-
out-of-N rule. They believed that the fusion center (FC) might achieve a global decision by
fusing the received decisions sequentially before receiving all individual choices. They assume
that the fusion center may decide that the PU is occupying the spectrum if there is a continuous
sequential result of ‘1’ from at least five individual SU. This may not apply in real life due to
unstable environmental conditions. Based on their proposed scheme, they investigated the
average proportion of decisions required based on three fusion rules, AND, OR, and Majority
rule, when there are different numbers of SUs in cognitive radio networks. They observed that the
average decision percentage required at the fusion center is significantly large when the AND
fusion rule is implemented, especially at low SNR. This is because, under the AND rule, the gap
between the PD and PFA is minimal in low SNR, necessitating high individual detection
probability for all SUs. However, at a high SNR, the average number of decisions decreases for
AND rule implementation, making AND rule outperform the OR and Majority rule in terms of
the probability of detection.

In [9], while considering the TV spectrum, the authors believe that a detector can minimize
detection error probability by implementing the k-out-f-N rule while maintaining an optimal
number of Sus for cooperative sensing. The authors in [10] worked on a wideband spectrum
considering the energy measurement of different subbands. Their observation is based on a
simulation that the wideband sensing subbands algorithm detects PU’s signal up to -8dB with a
sample size of 256 for eight nodes in a corporation considering DVB-T signal under AWGN and
Rayleigh fading channels. They affirm that the CR senses the signals in wideband to improve the
opportunistic throughput.

In this paper, we developed a simulation to determine the optimal average proportion of
decisions required by CRs with an optimal k in the K-out-of-N rule under differing false alarm
rates. This systematic approach maximizes PD while maintaining PFA within acceptable limits.
We designed an architecture with six cognitive radios (6CRs) and implemented an optimal value
of k=2 to detect the signal accurately in a wideband spectrum sensing scenario. The fusion center
activity is detailed, illustrating how local decisions collected from different cognitive radios
(CRs) are aggregated to determine the optimal K value, thereby providing practical insights into
the fusion center's operation in real-world settings. The efficacy of the K-out-of-N fusion rule is
visualized through the fusion center's rapid and accurate decision-making process, which
facilitates timely spectrum sharing among CRs for efficient transmission without interfering with
primary users (PUs).

The cooperative spectrum sensing aims to combat the noise uncertainty typically affecting
traditional non-cooperative energy detection methods in 5G environments under Additive White
Gaussian Noise (AWGN) conditions, assumed to be identically and independently distributed
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(i.i.d). However, our findings indicate that while cooperative sensing significantly improves
detection in scenarios with poor signal-to-noise ratios (SNRs) and higher false alarm rates
(between 0.5 and 1), it does not consistently outperform non-cooperative methods at very low
false alarm rates (0.01 and 0.1).

We organize the rest of the papers as follows: Section II presents the concept of non-cooperative
spectrum sensing and clearly explains the energy detection (ED) technique and non-cooperative
wideband spectrum sensing with subbands. In section III, we described the concept of
cooperative sensing techniques where we explored the overview of cooperative spectrum sensing
as well as the cooperative wideband spectrum sensing with subbands, with the implementation of
an optimal value for k needed for 6CRs in k-out-of-N rule algorithm to solve the problem of
noise uncertainty in ED in practical scenarios. The simulation results in section IV compare the
results of non-cooperative and cooperative spectrum sensing and verify that the detection
performance of the cooperative sensing strategy improves across all the poor SNR at higher false
alarm rate but has a lower performance at very low SNR and very low false alarm rate. We
concluded the paper in Section V.

2. NON — COOPERATIVE SPECTRUM SENSING METHODS

The following< Different detectors' spectrum sensing decisions are based on a binary hypothesis
model whereby the signal received might be noise or signal with some noise components.

W[f]_, HE'.'

2 =]
© x(t) + w(t), H,

Where R(t) is the SU’s received signal, x(t) is the transmitted signal of the PU observed by the

SU, and w(t) is the additive white Gaussian noise (AWGN). The two hypotheses, Ho and Hi,

assume that the PU is absent or present, respectively.

Non-cooperative sensing is regarded as narrow-band spectrum sensing. This is because the
detectors individually sensed the spectrum. The non-cooperative spectrum sensing techniques are
energy detectors, matched filter Detectors, cyclostationary feature detectors, eigenvalue detectors,
and preamble detectors [11]. This section explains the energy detection technique and
demonstrates the workings of non-cooperative wideband spectrum sensing.

2.1. Energy Detection

An energy detector is a non-coherent detector that measures the signal energy received from a
particular frequency band by measuring the received signal energy and comparing it with an
established threshold. The threshold is set considering the value of the noise power. If the signal
energy of the received signal lies above a set threshold, the band is declared busy; otherwise, the
band is idle and can be accessed by a cognitive user [12]. The architecture of the Energy detector
is shown in Figure 2 below:
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Figure 2: Conventional Energy Detector
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The decision statistics, P, for energy detection in the time domain are based on the Neyman-
Pearson criterion and are given as follows:

¥ =3Z5 Ixlnll 2

Where x[n] represents the sampled signal, and N is the number of samples. A decision for the
presence of the primary user is made if 1) exceeds a threshold, A, which is calculated based on the
noise floor to maintain a specific false alarm rate. In the frequency domain, energy detection
measures the power P(f) of the received signal at the output of a bandpass filter with bandwidth
by the method of periodogram [13].

2.2. Non-Cooperative Wideband Spectrum Sensing
Non-Cooperative Wideband Spectrum Sensing is the process by which a cognitive radio (CR)
autonomously identifies and detects signals across a wide range of frequencies [10]. For a

wideband non-cooperative sensing, the received signal of a CR is shown to be divided into
subbands to emulate the PU subbands as shown in Figure 3:
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Figure 3: Architecture of Non-cooperative Wideband Spectrum Sensing

The signal from the PU is corrupted by the additive white Gaussian noise (AWGN) and is
received by the receiving antenna. Under the null hypothesis (Ho), the received signal R, ()
for subband m at n is equal to W, (1)

Under the alternate hypothesis (H1), the received signal,E_, () for subband m at n is equal to

the transmitted signal X, (1},scaled by the channel gain and the added noise, W, {n).
Where each subband m of a single CR with one antenna is defined as:

H™ : R, (n)=w, (n) 3
H" : R, (n)=h,s,, (W +w,(n), n=012,..,.N—1 4
R, (n),w,(n),x, (n)is modelled in matrix form as:

R, (n)=[1(0),1(1),r(2), ccceerrrrrerrnn.. JTm1(n)]

w, ()= w (0), w(1), W(2), eoovvrernnnn. Wan1(n)] 5
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X (1)=[x(0), X (1), X (2), ceneevinaeaas , Xm1(0)]

Where v, (rn) =[r. (0), r, (1), 7 (2)sees e veo oo, 7, (N — 1) and is the received signal
in the i-th subband. , n = 0,1,2,...,/N — 1 is the observational sample sequence in the i-th
subband, (i € {0,1,2,..., M-1} and N is the total number of samples used for sensing.

Considering Figure 3, the received signals, R, () are filtered and conditioned with BPF, ADC
and FFT, to remove noise and interference, ensuring the signals are suitable for further
processing.

The energy, Yn is computed for each of the subband and given as:
Yo =JXN 0 |R. () 6

The computed energy is compared with a threshold A, to decide if some of the PU channels are
occupied. The threshold A is calculated in Equation 7 and used for energy detection (ED) under
the assumption of complex additive white gaussian noise (AWGN).

A= Q‘l{Pf}._\JIIE(P5+53N} 7

Where Pf is the desired probability of false alarm and Q™' is the inverse Q function. The threshold
is correctly set to maintain a specific probability of false alarm, Pf, considering noise power per
sample, =, @ % N is the total noise power, and Ps being the signal power. Q is the Q-function

describing the tail probabilities of the Gaussian distribution, 2 is the noise power and the
variance of AWGN, N is the number of samples per cognitive user per subband and A is the
detection threshold.

3. COOPERATIVE SPECTRUM SENSING METHOD

3.1. Cooperative Sensing Overview

Cooperative sensing improves detection accuracy through the cooperation of individual detection
and by having the benefit of spatial diversity, thereby combating some spectrum sensing
problems such as shadowing, fading, and receiver uncertainty issues. All the secondary users are
distributed over the entire cognitive radio network (CRN) over a specified distance from the PU
transmitter. Each SU senses the whole band and sends its local binary decisions (“1” or “0”) to
the fusion center, which makes the final decision. The model architecture of the cooperative
spectrum sensing is shown in Figure 4 below:
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Figure 4: Cooperative Spectrum Sensing System Model

The three steps in the cooperative sensing process are [14]:

[

A particular band of interest is individually sensed by cooperating cognitive radios (CRs)
2. All cooperating CRs' sensing results are sent to the fusion center via a control channel.

3. The fusion center combines all the received sensed information, makes decisions for the
presence or absence of a primary user (PU), and reports to the CRs.

By actively utilizing the benefit of spatial diversity, the problems of shadowing fading and noise
uncertainty are solved by the CR's cooperation in sharing their individual information at the
fusion center, which makes a final binary decision of the presence or absence of the primary user.
The cooperative sensing's two primary schemes are soft fusion and hard fusion schemes. In soft-
data fusion schemes, all CRs send their sensing data as received energies or soft values to the
fusion center without making a local binary decision. Soft-data fusion schemes that different
researchers have reviewed are square law selection (SLS), maximal ratio combining (MRC), and
selection Combining (SC). In the hard-decision fusion rule, different CR users sense the spectrum
and report their local binary decision to the fusion center. Different hard-decision fusion schemes
such as OR-rule, AND-rule, Majority rule, and K-out-of-N rule are employed to make a binary
decision by each CR user. [15]

Logical OR Rule

The logical OR rules establish the presence of a PU if at least one SU detects it. Therefore, the
cooperative probability of detection and the probability of false alarm for this rule is evaluated by
setting k=1 in [15]

Pt =1-IL_(1-Pp, k) 8
POl = 1~TRid 1 — P %) 9

The OR rule, which by implication is the 1-out-of-N rule, has the fastest detection performance
since its detection happens if at least one of the SUs detects the PU signal. The problem with its
reliability is that it has a high probability of false alarm, as noise in any single SU can trigger a
false detection

Logical AND Rule

The logical AND rule only decides if all the SUs detect the signal. The cooperative probability of
detection and the probability of false alarm for this rule is evaluated by setting k=M in [15]
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PAY? =TTi=y Pp, k 10
PF‘?::’D — J:Lt:I 'PFAJ k 11

The AND rule requires all SUs to detect the signal before the detector declares the presence of
the signal. Although the AND rule can minimize Pfa, it also reduces the probability of detection,
especially in noisy environments and where the CRs are spatially diverse

Logical MAJORITY Rule

For the Logical Majority rule, a consensus is made if half or more of the SUs detect the presence
of the PU. The cooperative probability of detection and the probability of false alarm for this rule
is evaluated by setting k=M/2 in [15]

K o o
P;'!'A_. ~ Z {I:.)PDE{J_ _ PD}!L—E 12
zf[K.-"f]
MAJ T o
S Z__[Kh](?)PFA (1—Ppa)*® 13
[— s

The MAJORITY rule maintains that at least half of the CR users will detect the signal before the
signal’s presence is declared. It balances between the OR and AND rules and requires an odd
number to declare a clear majority, but it is still not robust in highly heterogeneous networks.
Logical K-out-of-N Rule

A decision is made on whether K out of N SUs correctly detect the PU signal. K- out-of- N rule is
adopted in this research and represented by binomial distribution theorem, based on Bernoulli
trials, and each trial represents the decision process of each SU [15]; the probability of detection
and probability of false alarm, respectively, at the fusion center is given as M=

- J"f- - - et s
M/kP;f—ﬂ...—D_, N " Z_K{?}PDE(J- L PD}J\-—E
i=
14

N
K—out—of—-N N N—i
Fra . = E '—E(:}PFA!{']- —Ppg )V 15
=

The K-out-of-N rule allows for customization of K and declares the presence of a signal if at least
K out of the CR users detects it. It is highly flexible and can be adjusted to specific environmental
conditions and network states without system reconfigurations. The main concern is that it
requires a careful selection of K, which can balance between detection and false alarm. It can be
turned to find the best balance between the PD and PFA based on the environmental conditions,
especially as the noise environment changes. Wrongfully selecting K can lead to high false
alarms or missed detection.



Computer Science & Information Technology (CS & IT) 39
4. COOPERATIVE WIDEBAND SPECTRUM SENSING

4.1. Architecture Design
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Figure 5: Cooperative Wideband Spectrum Sensing for 6 Cognitive Radio (6CRs)

Here, we partitioned the received signal into five subbands for a channel bandwidth of 100 MHz,
giving a total bandwidth of 500 MHz from 3.3 GHz to 3.5 GH to reduce the design's complexity.
We implemented the energy detection (ED) technique because of its non-coherency and
simplicity, and we proffered a solution to the issue of noise uncertainty by implementing
cooperative sensing.

Each cognitive radio (CR1-CR6) receives an analog serial signal through its antenna and contains
a wide range of frequency components from various primary user (PU) subbands. The bandpass
filter (BPF) is applied to the analog signal to remove frequencies outside the desired bandwidth to
prevent aliasing in subsequent stages. The analog-to-digital converter (ADC) converts the filtered
analog signal into a digital signal. This process involves sampling the continuous-time analog
signal at discrete intervals and quantizing these samples into digital values. The serial digital
output of the ADC is converted into multiple parallel streams, and each stream is dedicated to a
specific subband to facilitate simultaneous processing of different segments of the signal. This
process is essential in 5G networks as it increases throughput and decreases processing time. The
fast Fourier transform (FFT) is applied to each parallel stream or subband. FFT is a
computational algorithm that converts a time-domain signal into its frequency-domain
representation, and it is beneficial in spectrum sensing as it identifies and analyzes specific
frequencies within each subband. After FFT, each frequency component or subband has its
energy calculated by summing the squares of the magnitude of the FFT output component,
representing the power at each frequency. Energy detection is crucial in spectrum sensing as it
determines the presence of a signal in a frequency band based on the energy content within that
The local binary decision output from each subband from each CR is sent to the fusion center,
which aggregates these decisions using k-out -of-N to make a global decision. A soft optimal k,
which in this case is “2,” is implemented for six CRs, and the fusion center makes a global
decision on the state of the spectrum. This decision is sent back to each cognitive radio, which
can transmit utilizing the free PU’s band.
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4.2. The Model

The system is modelled as a binary hypothesis which can be either null, H¥ or true, H/
hypothesis at a given state. [10]

HE: 5k (n)=WE(n), m=0123, .. M—1 16
HY: SE(n)=XEn)+wWkEn), n=0123,..,.N—1 17

Where 5F(n) , XEi(n) , and W,5{n) are the received, primary user, and the noise signals,
respectively. The matrix representation of the model is given as:

i (=1}
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X;r;‘-.ﬂ}: [wax:lJiqumJ""xm 1
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Model Assumptions:

1. At each cognitive radio (CR), we assume that the noise W,¥{n} , is an Additive White
Gaussian noise, which is complex and individually and identically distributed (i.i.d)
across all CRs.

2. All CRs are also assumed to be synchronized during the sensing and reporting period.

3. The reporting channel through which the local decisions are communicated to the fusion
center is assumed to be error-free.

The model involves multiple cognitive radios working together to determine the presence or
absence of a primary user (PU) within a frequency band of 3.5GHz, characterized as a 5G mid-
band. The 3.5 GHz band is mainly used in urban and sub-urban coverage as it balances coverage
and capacity with better penetration and higher speeds than other higher bands. The received
signal is passed through the band pass filter, allowing the specific chosen band to pass through
while rejecting other frequencies. This helps to filter out noise, and the detection process is the
same as in the non -non-cooperative spectrum sensing described above, Each CR performs local
spectrum sensing using an energy detector defined as:

Yo =E0cs |Sh(m] 19
The decision at each CR is based on comparing ¥,,, with a threshold, 4,,

L df Y= e
e 20
The threshold A for the energy detector is computed using the noise floor and the desired
probability of false alarm. The threshold is calculated following the distribution of the noise; in
our case, we are working with AWGN. The assumption of AWGN follows a Chi-square
distribution when squared values are summed up. Alternately, given N samples and assuming the
noise variance, = is normalized, where @~ = 1, the threshold A for a given PFA can be computed
using inverse Chi-square distribution [16].

For a real AWGN channel, the threshold is calculated using the inverse Q-function and the
chosen PFA and is given as:
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1= Q-l{Pf}._J';z(PHafwj 21

Where @71 is the inverse Q-function for the chi-square distribution, PFA is the desired false
alarm probability, and 2N is the degree of freedom in the chi-squared distribution for N complex
samples. Note, each complex sample contributes to two degrees of freedom, one for the real part
and the other for the imaginary part. The  is the standard deviation of noise, N is the number of
samples.

The decision, I';, from all the CRs are sent to a centralized fusion center to perform a global
decision. The fusion center aggregates the local binary decision using a fusion rule. In this paper,
we implemented a hard decision rule, k-out-of-N, and we performed soft decision by manually
selecting the optimal k based on the number of CRs performing spectrum sensing. The final
decision, D by the fusion center is as follows:

L if They Dz K

= {ﬂ if Ter Dm<k 2
Where D is the final decision on the presence or absence of the primary user, [, is the local
binary decision from the m-th CR. The decision is “1” if PU is present and “0” if otherwise. M is
the total number of CRs involve in the sensing and k is the threshold number of accurate
decisions required to declare the presence of the primary user. The performance matrix is based
on the probability of detection and the probability of false alarm.

The probability of detection depends on the signal power u, the noise power @2 and the number
of samples N. If the signal power is higher than the noise power, the probability of detection can
be calculated assuming a non-central Chi square distribution of the test statistics under Hi, which
signifies that the signal is present and the PD is given as:

A—(Ps+Ne®
Py=0 [Ps+Nce ™ ) 23

12N 2
W

Where the signal power is Ps, and 2N is the degree of freedom that accounts for the real and
imaginary components of the complex samples.

The PFA is formed under the noise-only signal and given by:

A—Mo>

P.FA = Q 24

12N 2

W

Q is the Q-function describing the tail probabilities of the Gaussian distribution, which is the
noise power and the variance of AWGN. N is the number of samples per cognitive user per
subband and is the detection threshold. Note that the above probabilities apply to a single sensor
using an energy detector in noise-only and signal environments.

The K-out-of-N data-fusion rule is best for scenarios where resources are limited or when
reducing the system’s complexity and power consumption since not all N cognitive users are
involved in the decision process. The probability of detection and false alarm are computed based
on binomial distribution and a single sensor’s PD and PFA.
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Algorithm Comparison Between Single CR and Cooperative wideband Spectrum Sensing
with multiple CRs (3CR) with K-out-0f-N Data-Fusion Rule

Input: numCRs, SNR_range, Pfa, MaxPfa, Thresholds, Noise Power

Output: NonCoopPd, CoopPd, OptimalK — Optimal Num. of CRs required to declare detection
1: Initialize: comparison arrays for nonCoopPd and CoopPd across SNR_range

2: For each SNR in SNR_range do:

3: Compute detection thresholds for each CR base on noise power and pfa

4:  If numCRs == 1:

5: Compute NonCoopPd using the threshold for a single CR

6: Else:

7 Initialize local decisions for each CR

8: For each CR compute local Pd using the threshold and current SNR
9: Initialize maxPd to 0 and optimal k to 1

10: For K =1 to numCRs

11: Calculate global decisions by applying k-out-of-N rule across CR local decision
12: compute CoopPd and pfa for global decisions

13: If pfa <= Maxpfa and pd > maxpd then

14: optimal k = k

15: maxPd = CoopPd

16: End if

17: End for k

18: Store the optimal k for the current SNR

19: End for each SNR

20: Return NonCoopPd, CoopPd, and the arrays of values of optimal k corresponding to each
SNR

21: End Algorithm

The algorithm shows steps involved in comparing non-cooperative and cooperative detection
probabilities in cognitive radio spectrum sensing. Each CR computes its detection threshold
based on its noise power and false alarm probability. From the algorithm, we can observe that
before cooperative decision-making, an individual probability of detection is calculated to
establish a baseline, which in this case is the NonCoopPd. The k-out-of-N rule is applied where
the presence of a signal is declared if at least ‘k’ out of ‘numCRs’ CRs detect the signal. The
algorithm iterates over possible values of k to find an optimal number that maximizes the
probability of detection without exceeding the maximum acceptable PFA. We soft-coded ‘k =2’
for 6CRs to understand the actual implementation of ‘k’ out of many cognitive radio users in the
network. Once a “k” success is made, the fusion center takes a global decision. It simultaneously
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communicates the result to each CR in the process to enable them to access the available
spectrum band.

5. SIMULATION AND RESULT

All simulations were performed in MATLAB R2023b to evaluate the performance of
cooperative and non-cooperative sensing techniques under complex AWGN, which is
independently and identically distributed in a 5G wireless network environment. Parameters such
as signal-to-noise ratio (SNR), number of CRs, and PFA are varied to determine the probability
of detection (PD). We implemented a maximum of 6CRs with k=2 for the cognitive radio
network at a 3.5 GHz frequency, and the threshold was set based on the noise floor and
acceptable false alarm limit.

The graph of Figure 6 shows a plot of the probability of detection versus the probability of false
alarms for non-cooperative sensing under varying SNRs. We observed that poor SNR affects a
single CR even with subbands, as some subbands may have occluded signals and, therefore, are
unsuitable for 5G networks. From the plot, subband 5 of 0dB had a better detection at 0.01 PFA
and might be positioned in the part of the spectrum with less environmental noise.

1Non-Cooperative Detection Performance for Different Subbands
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Figure 6: Plot of ROC for Non-Cooperative Spectrum Sensing under varying SNR

In addition, the range of false alarms is chosen from 0.01 to 1, and at 0.1 PFA, the 4th subband of
-8dB was able to show an improved detection. As the PFA values increase, the subbands with
poor SNR try to detect the PU’s signal, which by implication is erroneous as noise can be
interpreted as signal. The inability to accurately detect signals at different SNR levels leads to
underutilization of spectrum and interference.
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ROC for Non-Coop. and Coop. Wideband Spectrum Sensing
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Figure 7: Plot of PD versus PFA for 1 CR and 3CRs at K =2 under varying SNR.

Considering Figure 7, with only three cognitive radios (3CRs), with k= 2, the cooperative sensing
is less effective in performance at low SNR compared to the single cognitive radio (1CR). The
reason is that with fewer cognitive radios, the noise in individual measurements might not be well
averaged out, leading to poor performance, especially at lower PFA and very low SNR, as seen in
the plot. There is a tendency that the 2 out of 3 CRs might be affected by noise and hence cannot
perform well at a very poor SNR, which may lead to increased vulnerability to false positives.
Both cooperative and non-cooperative show progressive improvement as SNR improves as well
as an increase in PFA, although the rise in PFA should be avoided to reduce interference.

ROC for Non-Coop. and Coop. Wideband Spectrum Sensing
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Figure 8: Plot of PD versus PFA for 1 CR and 6 CRs at K =2 under varying SNR

The receiver operating characteristics for 6CRs at k=2 and a single CR show that cooperative
sensing only performs better than single cooperative sensing, especially at an improved SNR and
higher PFA. It can be observed from the plot that non -cooperative sensing tends to have an
initial detection than cooperative sensing, mainly at a very poor SNR and very low PFA of 0,01.
We observed that 6CRs with k=2 provide better detection and robustness to the system, as against
3CRs with k =2.
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PD versus SNR for Varing PFA
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Figure 9: Plot of PD versus SNR for 1CR and 3CRs at k=2 across varying PFA

In Figure 9, non-cooperative sensing shows a higher PD than cooperative sensing, especially at
lower PFA values of 0.1 and 0,01 in the scenario of 1CR against k = 2. The cooperative
mechanism might not optimally handle information fusion due to the combination of suboptimal
data. So, the choice of k=2 for 3CRs might be sub-optimal, especially at an increased poor SNR.
In addition, at very low SNRs (-20, -16 dB), all curves start near zero, indicating that cooperative
and non-cooperative methods struggle to detect signals under deplorable noise conditions. As
SNR approaches 0dB, both methods of detection probabilities increase as the noise level becomes
negligible with the signal strength.
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Figure 10: Plot of PD versus SNR for 1CR and 6CRs at k=2 across varying PFA

In Figure 10, with 6CRs and k=2, PD showed a little improvement than the 3CRs with k=2. The
low SNR ratio affected the performance of cooperating sensing especially at very low false alarm
probability. The cooperative sensing showed an enhanced PD at very low SNR and higher false
alarm rate of 0.5 and 1. However, as SNR improves at 0dB, both sensing strategies increase their
detection performance. Increasing the number of CRs provides more diversity and redundancy, as
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it reduces the impact of individual noise and the likelihood of error propagation. The result
visualizes how SNR impacts detection performance in spectrum sensing applications especially
in cooperative wideband spectrum sensing under complex AWGN channel and 5G environment
scenarios, critical for cognitive radio functionality in next-generation networks.

6. CONCLUSION

The study underscores the benefit of energy detectors in enhancing wideband spectrum sensing
within cognitive radio networks, which is crucial for achieving optimal spectrum utilization
amidst the complexities of the 5G era. Our investigation, focusing on both non-cooperative and
cooperative spectrum sensing strategies using energy detection (ED) methods in an Additive
White Gaussian Noise (AWGN) channel, which is assumed to be identically and independently
distributed (i.i.d), reveals nuanced outcomes. While ROC curve analysis delineates the
advantages of cooperative sensing in significantly elevating detection performance in scenarios
with extremely low Signal-to-Noise Ratios (SNRs) and higher false alarm rates (ranging from 0.5
to 1), the results were less consistent at very low false alarm rates (0.01 and 0.1). This
inconsistency suggests that despite its benefits in specific settings, cooperative sensing does not
uniformly surpass the performance of non-cooperative methods under all conditions, especially at
a very low SNR.

Implementing the K-out-of-N rule within cooperative strategies effectively enhances the accuracy
and reliability of detecting spectrum states under challenging conditions prevalent in dense 5G
networks. These networks are characterized by higher traffic and a diverse array of IoT
applications, where efficient and reliable spectrum management is indispensable. To our
knowledge, the architectures and simulations used in this work is novel and the findings of the
performance of cooperative sensing technique across deplorable signal conditions in a complex
AWGN channel and different false alarm rates underscores the need for further refinement of this
technique to address the diverse operational environments within 5G networks.

Future research will aim to optimize cooperative wideband spectrum sensing strategies further,
including integrating a diversity scheme in the energy detection circuitry to enhance SNR and
improve the detection capabilities of cooperative sensing techniques within 5G networks.
Incorporating machine learning algorithms to dynamically determine the optimal 'k’ value with
minimal human intervention could significantly propel the autonomous capabilities of cognitive
radio networks. These enhancements are crucial for effectively managing the radio spectrum and
facilitating dynamic spectrum access in increasingly complex 5G and beyond environments,
especially where traditional methods face limitations.
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