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The advent of 5G technologies has ushered in unprecedented demands for efficient 

spectrum utilization to accommodate a surge in data traffic and diverse communication 

services. In this context, accurate and reliable spectrum sensing is crucial. We investigated 

wideband spectrum sensing strategies by comparing non-cooperative cognitive radio (CR) 

approaches with cooperative methods across multiple sub-bands. Our research led to the 

development of a sophisticated cooperative wideband spectrum sensing framework that 

incorporates a K-out-of-N fusion rule at the fusion center to make optimal decisions, 

selecting an appropriate K for a given number of cooperating CRs. This method aims to 

combat the noise uncertainty typically affecting traditional non-cooperative energy 

detection methods in 5G environments under Additive White Gaussian Noise (AWGN) 

conditions, assumed to be identically and independently distributed (i.i.d). However, our 

findings indicate that while cooperative sensing significantly improves detection in 

scenarios with poor signal-to-noise ratios (SNRs) and higher false alarm rates (between 

0.5 and 1), it does not consistently outperform non-cooperative methods at very low false 

alarm rates (0.01 and 0.1). This finding suggests the limited effectiveness of the cooperative 

sensing method under certain conditions, underscoring the need for further research to 

optimize these strategies for diverse operational environments 
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The Federal Communications Commission (FCC) plays an important role in managing the radio 

frequency spectrum in the United States, overseeing a dynamic regulatory framework for 
spectrum sensing, sharing, and management. This framework allocates spectrum to fixed licensed 

owners - primary users (PUs) and flexible, unlicensed secondary users (SUs). While the fixed 

spectrum often remains underutilized, the unfixed spectrum faces congestion challenges 

exacerbated by the burgeoning proliferation of Internet of Things (IoT) devices. The limited 
spectrum available struggles to accommodate these emerging technologies, necessitating 

innovative solutions. 
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Cognitive radio (CR) technology enhances spectrum utilization [1]. It dynamically detects 
underutilized bands within the wireless spectrum and adapts its transmission parameters 

accordingly, ensuring a seamless flow of information. The core functions of cognitive radio are 

spectrum sensing and adaptation [2]. This adaptability includes modifications to transmission 

power, modulation, and frequency bands to minimize interference with PUs and adjust for the 
possible re-emergence of PUs during SU transmissions. SUs initially perform spectrum sensing 

to identify frequencies not occupied by PUs. Post-detection, SUs adjusts their transmission 

characteristics to exploit these 'spectrum holes9 effectively as seen in figure 1, while ensuring 
minimal interference with existing PUs. This process requires reliable detection metrics, notably 

the probability of detection (PD) and the probability of false alarm (PFA). PD measures the 

accuracy of detecting PUs' presence or absence, while PFA indicates the erroneous reporting of 
PUs' presence. 

 

 
 

Figure 1: Underutilized Spectrum Hole 

 
However, the performance of these detection mechanisms can be significantly compromised by 

factors such as multipath effects, hidden node issues and shadowing, particularly in non-

cooperative spectrum sensing contexts [3]. Cooperative spectrum sensing was introduced to 

address these challenges and is gaining traction among researchers. This method enhances 
sensing accuracy by enabling SUs to share sensed information with a centralized fusion center, 

leveraging collective data to improve decision-making processes under diverse environmental 

conditions [3,4]. Integrating K-out-of-N decision rules at the fusion center enhances this 
approach, which is particularly crucial in 5G environments where efficient and reliable spectrum 

management is paramount. This paper investigates the performance of non-cooperative and 

cooperative spectrum sensing techniques tailored for energy detection (ED) in 5G environments, 
specifically within Additive White Gaussian Noise (AWGN) and individually and identically 

distributed (i.i.d) contexts. We developed a simulation to determine the optimal average 

proportion of decisions required by CRs with an optimal k in the K-out-of-N rule under differing 

false alarm rates. This systematic approach maximizes PD while maintaining PFA within 
acceptable limits. 

 

The authors in [5] researched an algorithm for sensing node reliability in CRNs. They confirmed 

that the secondary users (SUs) may have several sensing nodes that are uniformly distributed, and 

each node utilizes the energy of the primary user (PU) individually to confirm the availability of 

the spectrum. From path loss theory, the PU signal energy is individually sensed by each node, 
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although operating within the same condition. More so, from energy detection theory, incorrect 
decisions will be made by nodes that receive less energy, and these nodes will interfere with the 

global decision. The authors in [6] believe that the fusion centers' reliability helps maintain 

optimal detection in low SNR conditions.  

 
The authors in [7] researched cooperative sensing and investigated the effect of shadowing 

among cognitive radios. They inferred that correlated shadowing limits the cognitive node's 

performance and suggested that few independent users can perform better than many correlated 
users. This assumption is correct since a narrowband sensing node performs sensing at a 

particular spectrum band and may be significantly affected by deep fade. This problem can be 

solved by independent multiple radio sensing at individual spectrum bands, which explains the 
concept of wideband spectrum sensing 

 

The authors in [8] proposed an efficient sequential decision fusion (SDF) scheme based on the k-

out-of-N rule. They believed that the fusion center (FC) might achieve a global decision by 
fusing the received decisions sequentially before receiving all individual choices. They assume 

that the fusion center may decide that the PU is occupying the spectrum if there is a continuous 

sequential result of 819 from at least five individual SU. This may not apply in real life due to 
unstable environmental conditions.  Based on their proposed scheme, they investigated the 

average proportion of decisions required based on three fusion rules, AND, OR, and Majority 

rule, when there are different numbers of SUs in cognitive radio networks. They observed that the 
average decision percentage required at the fusion center is significantly large when the AND 

fusion rule is implemented, especially at low SNR. This is because, under the AND rule, the gap 

between the PD and PFA is minimal in low SNR, necessitating high individual detection 

probability for all SUs. However, at a high SNR, the average number of decisions decreases for 
AND rule implementation, making AND rule outperform the OR and Majority rule in terms of 

the probability of detection. 

 
In [9], while considering the TV spectrum, the authors believe that a detector can minimize 

detection error probability by implementing the k-out-f-N rule while maintaining an optimal 

number of Sus for cooperative sensing. The authors in [10] worked on a wideband spectrum 

considering the energy measurement of different subbands. Their observation is based on a 
simulation that the wideband sensing subbands algorithm detects PU9s signal up to -8dB with a 

sample size of 256 for eight nodes in a corporation considering DVB-T signal under AWGN and 

Rayleigh fading channels. They affirm that the CR senses the signals in wideband to improve the 
opportunistic throughput. 

 

 In this paper, we developed a simulation to determine the optimal average proportion of 
decisions required by CRs with an optimal k in the K-out-of-N rule under differing false alarm 

rates. This systematic approach maximizes PD while maintaining PFA within acceptable limits. 

We designed an architecture with six cognitive radios (6CRs) and implemented an optimal value 

of k=2 to detect the signal accurately in a wideband spectrum sensing scenario. The fusion center 
activity is detailed, illustrating how local decisions collected from different cognitive radios 

(CRs) are aggregated to determine the optimal K value, thereby providing practical insights into 

the fusion center's operation in real-world settings. The efficacy of the K-out-of-N fusion rule is 
visualized through the fusion center's rapid and accurate decision-making process, which 

facilitates timely spectrum sharing among CRs for efficient transmission without interfering with 

primary users (PUs). 
 

The cooperative spectrum sensing aims to combat the noise uncertainty typically affecting 

traditional non-cooperative energy detection methods in 5G environments under Additive White 

Gaussian Noise (AWGN) conditions, assumed to be identically and independently distributed 
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(i.i.d). However, our findings indicate that while cooperative sensing significantly improves 
detection in scenarios with poor signal-to-noise ratios (SNRs) and higher false alarm rates 

(between 0.5 and 1), it does not consistently outperform non-cooperative methods at very low 

false alarm rates (0.01 and 0.1). 

 
We organize the rest of the papers as follows: Section II presents the concept of non-cooperative 

spectrum sensing and clearly explains the energy detection (ED) technique and non-cooperative 

wideband spectrum sensing with subbands. In section III, we described the concept of 
cooperative sensing techniques where we explored the overview of cooperative spectrum sensing 

as well as the cooperative wideband spectrum sensing with subbands, with the implementation of 

an optimal value for k needed for 6CRs in k-out-of-N rule algorithm to solve the problem of 
noise uncertainty in ED in practical scenarios. The simulation results in section IV compare the 

results of non-cooperative and cooperative spectrum sensing and verify that the detection 

performance of the cooperative sensing strategy improves across all the poor SNR at higher false 

alarm rate but has a lower performance at very low SNR and very low false alarm rate. We 
concluded the paper in Section V. 

 

 –
 
The following< Different detectors' spectrum sensing decisions are based on a binary hypothesis 

model whereby the signal received might be noise or signal with some noise components. 

 

                                                                                                        1                                  

 

Where R(t) is the SU9s received signal, x(t) is the transmitted signal of the PU observed by the 

SU, and w(t) is the additive white Gaussian noise (AWGN). The two hypotheses, H0 and H1, 
assume that the PU is absent or present, respectively. 

 

Non-cooperative sensing is regarded as narrow-band spectrum sensing. This is because the 
detectors individually sensed the spectrum. The non-cooperative spectrum sensing techniques are 

energy detectors, matched filter Detectors, cyclostationary feature detectors, eigenvalue detectors, 

and preamble detectors [11]. This section explains the energy detection technique and 

demonstrates the workings of non-cooperative wideband spectrum sensing. 

 

2.1. Energy Detection 
 

An energy detector is a non-coherent detector that measures the signal energy received from a 

particular frequency band by measuring the received signal energy and comparing it with an 

established threshold. The threshold is set considering the value of the noise power. If the signal 
energy of the received signal lies above a set threshold, the band is declared busy; otherwise, the 

band is idle and can be accessed by a cognitive user [12]. The architecture of the Energy detector 

is shown in Figure 2 below: 
 

 
 

Figure 2: Conventional Energy Detector 
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The decision statistics, �, for energy detection in the time domain are based on the Neyman-
Pearson criterion and are given as follows: 

 

                                                                                                           2                             

 

Where x[n] represents the sampled signal, and N is the number of samples. A decision for the 

presence of the primary user is made if � exceeds a threshold, λ, which is calculated based on the 

noise floor to maintain a specific false alarm rate. In the frequency domain, energy detection 

measures the power P(f) of the received signal at the output of a bandpass filter with bandwidth 

by the method of periodogram [13]. 
 

2.2. Non-Cooperative Wideband Spectrum Sensing 
 

Non-Cooperative Wideband Spectrum Sensing is the process by which a cognitive radio (CR) 

autonomously identifies and detects signals across a wide range of frequencies [10]. For a 

wideband non-cooperative sensing, the received signal of a CR is shown to be divided into 
subbands to emulate the PU subbands as shown in Figure 3: 

 

 
 

Figure 3: Architecture of Non-cooperative Wideband Spectrum Sensing 

 

The signal from the PU is corrupted by the additive white Gaussian noise (AWGN) and is 

received by the receiving antenna. Under the null hypothesis (H0), the received signal    

for subband m at n is equal to  

 

Under the alternate hypothesis (H1), the received signal,  for subband m at n is equal to 

the transmitted signal ,scaled by the channel gain and the added noise, . 

Where each subband m of a single CR with one antenna is defined as: 

 

                                                                                                           3                               

                                               4                               

, ,  is modelled in matrix form as: 

 = [ r (0), r (1), r (2), ……………… ,rm-1(n)] 

= [ w (0), w (1), w (2), ……………,wm-1(n)]                                                                       5                               
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= [ x (0), x (1), x (2), …………….., xm-1(n)] 

 

Where  and is the received signal 

in the i-th subband.  is the observational sample sequence in the i-th 

subband, (i Є {0,1,2,…, M-1} and N is the total number of samples used for sensing. 
 

Considering Figure 3, the received signals,  are filtered and conditioned with BPF, ADC 

and FFT, to remove noise and interference, ensuring the signals are suitable for further 

processing. 

 
The energy, Yn is computed for each of the subband and given as:  

 

                                                                                                                 6                               

 

The computed energy is compared with a threshold ÿ, to decide if some of the PU channels are 

occupied. The threshold ÿ is calculated in Equation 7 and used for energy detection (ED) under 
the assumption of complex additive white gaussian noise (AWGN). 

 

                                                                                                    7 

 

Where Pf is the desired probability of false alarm and Q-1 is the inverse Q function. The threshold 

is correctly set to maintain a specific probability of false alarm, Pf, considering noise power per 

sample, ,    is the total noise power, and Ps being the signal power.  Q is the Q-function 

describing the tail probabilities of the Gaussian distribution,  is the noise power and the 

variance of AWGN, N is the number of samples per cognitive user per subband and  is the 

detection threshold. 

 

3. COOPERATIVE SPECTRUM SENSING METHOD 
 

3.1. Cooperative Sensing Overview 
 

Cooperative sensing improves detection accuracy through the cooperation of individual detection 
and by having the benefit of spatial diversity, thereby combating some spectrum sensing 

problems such as shadowing, fading, and receiver uncertainty issues. All the secondary users are 

distributed over the entire cognitive radio network (CRN) over a specified distance from the PU 

transmitter. Each SU senses the whole band and sends its local binary decisions (<1= or <0=) to 
the fusion center, which makes the final decision. The model architecture of the cooperative 

spectrum sensing is shown in Figure 4 below:  
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Figure 4: Cooperative Spectrum Sensing System Model 

 
The three steps in the cooperative sensing process are [14]: 

 

1. A particular band of interest is individually sensed by cooperating cognitive radios (CRs) 

2. All cooperating CRs' sensing results are sent to the fusion center via a control channel. 
3. The fusion center combines all the received sensed information, makes decisions for the 

presence or absence of a primary user (PU), and reports to the CRs. 

 
By actively utilizing the benefit of spatial diversity, the problems of shadowing fading and noise 

uncertainty are solved by the CR's cooperation in sharing their individual information at the 

fusion center, which makes a final binary decision of the presence or absence of the primary user. 

The cooperative sensing's two primary schemes are soft fusion and hard fusion schemes. In soft-
data fusion schemes, all CRs send their sensing data as received energies or soft values to the 

fusion center without making a local binary decision. Soft-data fusion schemes that different 

researchers have reviewed are square law selection (SLS), maximal ratio combining (MRC), and 
selection Combining (SC). In the hard-decision fusion rule, different CR users sense the spectrum 

and report their local binary decision to the fusion center.  Different hard-decision fusion schemes 

such as OR-rule, AND-rule, Majority rule, and K-out-of-N rule are employed to make a binary 
decision by each CR user. [15] 

 

Logical OR Rule 

 

The logical OR rules establish the presence of a PU if at least one SU detects it. Therefore, the 

cooperative probability of detection and the probability of false alarm for this rule is evaluated by 

setting k=1 in [15] 
 

                                                                                                         8 

                                                                                                        9 

 
The OR rule, which by implication is the 1-out-of-N rule, has the fastest detection performance 

since its detection happens if at least one of the SUs detects the PU signal. The problem with its 

reliability is that it has a high probability of false alarm, as noise in any single SU can trigger a 
false detection 

 

Logical AND Rule 

 

The logical AND rule only decides if all the SUs detect the signal. The cooperative probability of 

detection and the probability of false alarm for this rule is evaluated by setting k=M in [15] 
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The AND rule requires all SUs to detect the signal before the detector declares the presence of 
the signal. Although the AND rule can minimize Pfa, it also reduces the probability of detection, 

especially in noisy environments and where the CRs are spatially diverse  

 
Logical MAJORITY Rule 

 

For the Logical Majority rule, a consensus is made if half or more of the SUs detect the presence 

of the PU. The cooperative probability of detection and the probability of false alarm for this rule 
is evaluated by setting k=M/2 in [15] 
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The MAJORITY rule maintains that at least half of the CR users will detect the signal before the 

signal9s presence is declared.  It balances between the OR and AND rules and requires an odd 
number to declare a clear majority, but it is still not robust in highly heterogeneous networks.  

Logical K-out-of-N Rule 

 
A decision is made on whether K out of N SUs correctly detect the PU signal. K- out-of- N rule is 

adopted in this research and represented by binomial distribution theorem, based on Bernoulli 

trials, and each trial represents the decision process of each SU [15]; the probability of detection 
and probability of false alarm, respectively, at the fusion center is given as M=  

 

M/k                                                                                   

14 

                                                                               15 

 

 

The K-out-of-N rule allows for customization of K and declares the presence of a signal if at least 

K out of the CR users detects it. It is highly flexible and can be adjusted to specific environmental 
conditions and network states without system reconfigurations. The main concern is that it 

requires a careful selection of K, which can balance between detection and false alarm.  It can be 

turned to find the best balance between the PD and PFA based on the environmental conditions, 

especially as the noise environment changes. Wrongfully selecting K can lead to high false 
alarms or missed detection. 
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4.1. Architecture Design 
 

 
 

Figure 5: Cooperative Wideband Spectrum Sensing for 6 Cognitive Radio (6CRs) 

 

Here, we partitioned the received signal into five subbands for a channel bandwidth of 100 MHz, 

giving a total bandwidth of 500 MHz from 3.3 GHz to 3.5 GH to reduce the design's complexity. 
We implemented the energy detection (ED) technique because of its non-coherency and 

simplicity, and we proffered a solution to the issue of noise uncertainty by implementing 

cooperative sensing. 
 

Each cognitive radio (CR1-CR6) receives an analog serial signal through its antenna and contains 

a wide range of frequency components from various primary user (PU) subbands. The bandpass 

filter (BPF) is applied to the analog signal to remove frequencies outside the desired bandwidth to 
prevent aliasing in subsequent stages. The analog-to-digital converter (ADC) converts the filtered 

analog signal into a digital signal. This process involves sampling the continuous-time analog 

signal at discrete intervals and quantizing these samples into digital values. The serial digital 

output of the ADC is converted into multiple parallel streams, and each stream is dedicated to a 

specific subband to facilitate simultaneous processing of different segments of the signal. This 

process is essential in 5G networks as it increases throughput and decreases processing time. The 
fast Fourier transform (FFT) is applied to each parallel stream or subband. FFT is a 

computational algorithm that converts a time-domain signal into its frequency-domain 

representation, and it is beneficial in spectrum sensing as it identifies and analyzes specific 

frequencies within each subband. After FFT, each frequency component or subband has its 
energy calculated by summing the squares of the magnitude of the FFT output component, 

representing the power at each frequency. Energy detection is crucial in spectrum sensing as it 

determines the presence of a signal in a frequency band based on the energy content within that 
The local binary decision output from each subband from each CR is sent to the fusion center, 

which aggregates these decisions using k-out -of-N to make a global decision. A soft optimal k, 

which in this case is <2,= is implemented for six CRs, and the fusion center makes a global 
decision on the state of the spectrum. This decision is sent back to each cognitive radio, which 

can transmit utilizing the free PU9s band. 
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4.2. The Model 
 

The system is modelled as a binary hypothesis which can be either null,  or true,  

hypothesis at a given state. [10] 

 

                                                                          16 
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Where  ,  , and   are the received, primary user, and the noise signals, 

respectively. The matrix representation of the model is given as: 
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Model Assumptions: 

 

1.  At each cognitive radio (CR), we assume that the noise  , is an Additive White 

Gaussian noise, which is complex and individually and identically distributed (i.i.d) 
across all CRs. 

2. All CRs are also assumed to be synchronized during the sensing and reporting period.  

3. The reporting channel through which the local decisions are communicated to the fusion 
center is assumed to be error-free. 

 

The model involves multiple cognitive radios working together to determine the presence or 

absence of a primary user (PU) within a frequency band of 3.5GHz, characterized as a 5G mid-
band.  The 3.5 GHz band is mainly used in urban and sub-urban coverage as it balances coverage 

and capacity with better penetration and higher speeds than other higher bands. The received 

signal is passed through the band pass filter, allowing the specific chosen band to pass through 
while rejecting other frequencies. This helps to filter out noise, and the detection process is the 

same as in the non -non-cooperative spectrum sensing described above, Each CR performs local 

spectrum sensing using an energy detector defined as: 
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The decision at each CR is based on comparing  with a threshold,  

 

                                                                                                         20 

 

The threshold for the energy detector is computed using the noise floor and the desired 

probability of false alarm. The threshold is calculated following the distribution of the noise; in 

our case, we are working with AWGN. The assumption of AWGN follows a Chi-square 
distribution when squared values are summed up. Alternately, given N samples and assuming the 

noise variance,  is normalized, where  = 1, the threshold  for a given PFA can be computed 

using inverse Chi-square distribution [16]. 

 

For a real AWGN channel, the threshold is calculated using the inverse Q-function and the 
chosen PFA and is given as: 
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Where  is the inverse Q-function for the chi-square distribution, PFA is the desired false 

alarm probability, and 2N is the degree of freedom in the chi-squared distribution for N complex 

samples. Note, each complex sample contributes to two degrees of freedom, one for the real part 

and the other for the imaginary part. The is the standard deviation of noise, N is the number of 

samples.   
 

The decision,  from all the CRs are sent to a centralized fusion center to perform a global 

decision. The fusion center aggregates the local binary decision using a fusion rule. In this paper, 

we implemented a hard decision rule, k-out-of-N, and we performed soft decision by manually 

selecting the optimal k based on the number of CRs performing spectrum sensing. The final 
decision, D by the fusion center is as follows: 

 

                                                                                      22 

 

Where D is the final decision on the presence or absence of the primary user,  is the local 

binary decision from the m-th CR. The decision is <1= if PU is present and <0= if otherwise. M is 
the total number of CRs involve in the sensing and k is the threshold number of accurate 

decisions required to declare the presence of the primary user. The performance matrix is based 

on the probability of detection and the probability of false alarm. 
 

The probability of detection depends on the signal power Ā, the noise power   and the number 

of samples N. If the signal power is higher than the noise power, the probability of detection can 

be calculated assuming a non-central Chi square distribution of the test statistics under Hi, which 

signifies that the signal is present and the PD is given as:  
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Where the signal power is ,  and 2N is the degree of freedom that accounts for the real and 

imaginary components of the complex samples. 

 

The PFA is formed under the noise-only signal and given by: 
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Q is the Q-function describing the tail probabilities of the Gaussian distribution, which is the 

noise power and the variance of AWGN. N is the number of samples per cognitive user per 
subband and is the detection threshold. Note that the above probabilities apply to a single sensor 

using an energy detector in noise-only and signal environments. 

 
The K-out-of-N data-fusion rule is best for scenarios where resources are limited or when 

reducing the system9s complexity and power consumption since not all N cognitive users are 
involved in the decision process. The probability of detection and false alarm are computed based 

on binomial distribution and a single sensor9s PD and PFA. 
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Where  

                                                                               26 

Where  

 

Algorithm Comparison Between Single CR and Cooperative wideband Spectrum Sensing 

with multiple CRs (3CR) with K-out-0f-N Data-Fusion Rule 

 
Input: numCRs, SNR_range, Pfa, MaxPfa, Thresholds, Noise Power 

Output: NonCoopPd, CoopPd, OptimalK – Optimal Num. of CRs required to declare detection 

1: Initialize: comparison arrays for nonCoopPd and CoopPd across SNR_range 

2: For each SNR in SNR_range do: 
3: Compute detection thresholds for each CR base on noise power and pfa 

4:      If numCRs == 1: 

5:             Compute NonCoopPd using the threshold for a single CR 
6:        Else: 

7:               Initialize local decisions for each CR 

8:               For each CR compute local Pd using the threshold and current SNR 

9:               Initialize maxPd to 0 and optimal k to 1 
10:              For K =1 to numCRs 

11:                    Calculate global decisions by applying k-out-of-N rule across CR local decision 

12:              compute CoopPd and pfa for global decisions 
13:              If pfa <= Maxpfa and pd > maxpd then 

14:                    optimal k = k 

15:                    maxPd = CoopPd 
16:             End if 

17:       End for k 

18:       Store the optimal k for the current SNR 

19: End for each SNR 
20: Return NonCoopPd, CoopPd, and the arrays of values of optimal k corresponding to each 

SNR  

21: End Algorithm 
 

The algorithm shows steps involved in comparing non-cooperative and cooperative detection 

probabilities in cognitive radio spectrum sensing. Each CR computes its detection threshold 
based on its noise power and false alarm probability. From the algorithm, we can observe that 

before cooperative decision-making, an individual probability of detection is calculated to 

establish a baseline, which in this case is the NonCoopPd. The k-out-of-N rule is applied where 

the presence of a signal is declared if at least 8k9 out of 8numCRs9 CRs detect the signal. The 
algorithm iterates over possible values of k to find an optimal number that maximizes the 

probability of detection without exceeding the maximum acceptable PFA. We soft-coded 8k =29 
for 6CRs to understand the actual implementation of 8k9 out of many cognitive radio users in the 
network. Once a <k= success is made, the fusion center takes a global decision. It simultaneously 
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communicates the result to each CR in the process to enable them to access the available 
spectrum band. 

 

5. SIMULATION AND RESULT 
 

 All simulations were performed in MATLAB R2023b to evaluate the performance of 
cooperative and non-cooperative sensing techniques under complex AWGN, which is 

independently and identically distributed in a 5G wireless network environment. Parameters such 

as signal-to-noise ratio (SNR), number of CRs, and PFA are varied to determine the probability 
of detection (PD). We implemented a maximum of 6CRs with k=2 for the cognitive radio 

network at a 3.5 GHz frequency, and the threshold was set based on the noise floor and 

acceptable false alarm limit. 

 
The graph of Figure 6 shows a plot of the probability of detection versus the probability of false 

alarms for non-cooperative sensing under varying SNRs. We observed that poor SNR affects a 

single CR even with subbands, as some subbands may have occluded signals and, therefore, are 
unsuitable for 5G networks. From the plot, subband 5 of 0dB had a better detection at 0.01 PFA 

and might be positioned in the part of the spectrum with less environmental noise. 

 

 
 

Figure 6: Plot of ROC for Non-Cooperative Spectrum Sensing under varying SNR 

 

In addition, the range of false alarms is chosen from 0.01 to 1, and at 0.1 PFA, the 4th subband of 
-8dB was able to show an improved detection. As the PFA values increase, the subbands with 

poor SNR try to detect the PU9s signal, which by implication is erroneous as noise can be 
interpreted as signal. The inability to accurately detect signals at different SNR levels leads to 
underutilization of spectrum and interference.  

 



44                                         Computer Science & Information Technology (CS & IT) 

 
 

Figure 7: Plot of PD versus PFA for 1 CR and 3CRs at K =2 under varying SNR. 

 

Considering Figure 7, with only three cognitive radios (3CRs), with k= 2, the cooperative sensing 

is less effective in performance at low SNR compared to the single cognitive radio (1CR). The 
reason is that with fewer cognitive radios, the noise in individual measurements might not be well 

averaged out, leading to poor performance, especially at lower PFA and very low SNR, as seen in 

the plot.  There is a tendency that the 2 out of 3 CRs might be affected by noise and hence cannot 
perform well at a very poor SNR, which may lead to increased vulnerability to false positives. 

Both cooperative and non-cooperative show progressive improvement as SNR improves as well 

as an increase in PFA, although the rise in PFA should be avoided to reduce interference. 
 

 
 

Figure 8: Plot of PD versus PFA for 1 CR and 6 CRs at K =2 under varying SNR 

 

The receiver operating characteristics for 6CRs at k=2 and a single CR show that cooperative 

sensing only performs better than single cooperative sensing, especially at an improved SNR and 
higher PFA. It can be observed from the plot that non -cooperative sensing tends to have an 

initial detection than cooperative sensing, mainly at a very poor SNR and very low PFA of 0,01. 

We observed that 6CRs with k=2 provide better detection and robustness to the system, as against 

3CRs with k =2.  
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Figure 9:  Plot of PD versus SNR for 1CR and 3CRs at k=2 across varying PFA 

 

In Figure 9, non-cooperative sensing shows a higher PD than cooperative sensing, especially at 

lower PFA values of 0.1 and 0,01 in the scenario of 1CR against k = 2. The cooperative 
mechanism might not optimally handle information fusion due to the combination of suboptimal 

data. So, the choice of k=2 for 3CRs might be sub-optimal, especially at an increased poor SNR. 

In addition, at very low SNRs (-20, -16 dB), all curves start near zero, indicating that cooperative 

and non-cooperative methods struggle to detect signals under deplorable noise conditions. As 
SNR approaches 0dB, both methods of detection probabilities increase as the noise level becomes 

negligible with the signal strength. 

 

 
 

Figure 10: Plot of PD versus SNR for 1CR and 6CRs at k=2 across varying PFA 

 

In Figure 10, with 6CRs and k=2, PD showed a little improvement than the 3CRs with k=2. The 

low SNR ratio affected the performance of cooperating sensing especially at very low false alarm 

probability.  The cooperative sensing showed an enhanced PD at very low SNR and higher false 
alarm rate of 0.5 and 1. However, as SNR improves at 0dB, both sensing strategies increase their 

detection performance. Increasing the number of CRs provides more diversity and redundancy, as 
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it reduces the impact of individual noise and the likelihood of error propagation. The result 
visualizes how SNR impacts detection performance in spectrum sensing applications especially 

in cooperative wideband spectrum sensing under complex AWGN channel and 5G environment 

scenarios, critical for cognitive radio functionality in next-generation networks. 

 

6. CONCLUSION 
 

The study underscores the benefit of energy detectors in enhancing wideband spectrum sensing 

within cognitive radio networks, which is crucial for achieving optimal spectrum utilization 
amidst the complexities of the 5G era. Our investigation, focusing on both non-cooperative and 

cooperative spectrum sensing strategies using energy detection (ED) methods in an Additive 

White Gaussian Noise (AWGN) channel, which is assumed to be identically and independently 

distributed (i.i.d), reveals nuanced outcomes. While ROC curve analysis delineates the 
advantages of cooperative sensing in significantly elevating detection performance in scenarios 

with extremely low Signal-to-Noise Ratios (SNRs) and higher false alarm rates (ranging from 0.5 

to 1), the results were less consistent at very low false alarm rates (0.01 and 0.1). This 
inconsistency suggests that despite its benefits in specific settings, cooperative sensing does not 

uniformly surpass the performance of non-cooperative methods under all conditions, especially at 

a very low SNR.  
 

Implementing the K-out-of-N rule within cooperative strategies effectively enhances the accuracy 

and reliability of detecting spectrum states under challenging conditions prevalent in dense 5G 

networks. These networks are characterized by higher traffic and a diverse array of IoT 
applications, where efficient and reliable spectrum management is indispensable. To our 

knowledge, the architectures and simulations used in this work is novel and the findings of the 

performance of cooperative sensing technique across deplorable signal conditions in a complex 
AWGN channel and different false alarm rates underscores the need for further refinement of this 

technique to address the diverse operational environments within 5G networks. 

 
Future research will aim to optimize cooperative wideband spectrum sensing strategies further, 

including integrating a diversity scheme in the energy detection circuitry to enhance SNR and 

improve the detection capabilities of cooperative sensing techniques within 5G networks. 

Incorporating machine learning algorithms to dynamically determine the optimal 'k' value with 
minimal human intervention could significantly propel the autonomous capabilities of cognitive 

radio networks. These enhancements are crucial for effectively managing the radio spectrum and 

facilitating dynamic spectrum access in increasingly complex 5G and beyond environments, 
especially where traditional methods face limitations. 
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