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ABSTRACT 

 

The rapid advancements in 5G technologies have created an unprecedented need for efficient spectrum 

utilization to support increasing data traffic and diverse communication services. In this context, accurate 

and reliable spectrum sensing is essential. This study explores wideband spectrum sensing strategies, 

comparing non-cooperative cognitive radio (CR) techniques with cooperative methods across multiple sub-

bands. A novel cooperative wideband spectrum sensing framework was developed, incorporating a K-out-

of-N fusion rule at the fusion center to make optimal decisions by selecting an appropriate K for a given 

number of cooperating CRs. This approach addresses noise uncertainty, a common challenge in traditional 

non-cooperative energy detection methods, particularly in 5G environments under Additive White 

Gaussian Noise (AWGN) conditions, assumed to be identically and independently distributed (i.i.d.). 

However, while cooperative sensing significantly improves detection in low signal-to-noise ratio (SNR) 

scenarios with higher false alarm rates (between 0.5 and 1), our findings reveal that it does not 

consistently outperform non-cooperative methods at very low false alarm rates (0.01 and 0.1) under poor 

SNR conditions. These findings highlight the need for further research to enhance cooperative sensing 

strategies for various operational environments. 
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1. INTRODUCTION 
 

The Federal Communications Commission (FCC) plays a vital role in managing the radio 
frequency (RF) spectrum in the United States, supervising a practical regulatory framework for 

spectrum sensing, sharing, and management. This framework allocates spectrum to fixed licensed 

owners - primary users (PUs) and flexible, unlicensed secondary users (SUs). While the fixed 
spectrum often needs to be utilized, the unfixed spectrum faces congestion challenges heightened 

by the rapid increase of Internet of Things (IoT) devices. The limited spectrum available 

struggles to accommodate these emerging technologies, necessitating innovative solutions. 

 
Cognitive radio (CR) technology enhances spectrum utilization. It dynamically detects 

underutilized bands within the wireless spectrum and adapts its transmission parameters, ensuring 

a seamless information flow [1]. Spectrum sensing and adaptation are the main functions of 
cognitive radio. [2]. This adaptability includes modifications to transmission power, modulation, 

and frequency bands to minimize interference with PUs and adjust for the possible re-emergence 
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of PUs during SU transmissions. SUs initially perform spectrum sensing to identify frequencies 
not occupied by PUs. Post-detection, SUs adjust their transmission characteristics to exploit these 

'spectrum holes9 effectively, as seen in Figure 1 while ensuring minimal interference with 

existing PUs. This process requires reliable detection metrics, notably the probability of detection 

(PD) and the probability of false alarm (PFA). PD measures the accuracy of detecting PUs' 
presence or absence, while PFA indicates the erroneous reporting of PUs'. 
 

 
 

Figure 1: Underutilized Spectrum Bands 

 

However, the performance of these detection mechanisms can be significantly compromised by 

factors such as multipath effects, hidden node issues, and shadowing, particularly in non-

cooperative spectrum sensing contexts [3,4]. Cooperative spectrum sensing was introduced to 
address these challenges and is gaining traction among researchers. This method enhances 

sensing accuracy by enabling SUs to share sensed information with a centralized fusion center, 

leveraging collective data to improve decision-making processes under diverse environmental 
conditions. The authors in [5] researched the evaluation of hard fusion sensing methods under the 

AWGN and Rayleigh channels. They believed that the OR rule performed better than other 

fusion rules without considering the accuracy and increased the false alarm rate of the OR rule 
under poor SNR. Chandra Mohan Dharmapuri et al. analyzed different fusion rules for 

cooperative sensing. They compared OR, AND, and Majority fusion rules and found the Majority 

rule to have the best performance in terms of PD and probability of channel state as occupied [6]. 

 
Cooperative wideband spectrum sensing enables dynamic access to unused spectrum in 5G 

networks, thus enabling efficient use of available resources and improving network throughput. 

Maria Trigka et al. [7] propose an efficient method for cooperative spectrum sensing using 
diffusion strategies. To improve spectrum sensing accuracy, the authors utilize the spatial 

diversity of secondary users (SUs) in changing network conditions and use the Adapt-Then-

Combine (ATC) strategy for distributed cooperation among SUs, providing enhanced 
performance under different power spectrum scenarios. Gupta, V. et al. [8] apply evolutionary 

algorithms to improve spectrum sensing in CRNs. They researched throughput maximization 

while ensuring efficient spectrum usage, addressing the challenges caused by the increasing 

demand for wireless communication in 5G environments.  
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Cooperative wideband spectrum sensing is essential in Internet of Things (IoT) applications in 
5G, where massive connectivity requires efficient and reliable spectrum usage without 

interference to primary users.  Mengistu, F.G. et al. [9] implemented universal filtered multi-

carrier (UFMC) transmission to increase spectral efficiency and reduce out-of-band emissions 

prevalent in traditional techniques like orthogonal frequency division multiplexing (OFDM). 
UFMC allows the individual filtering of sub-bands, which reduces interference and improves the 

sensing quality. It is relevant in 5G networks, where efficient sharing is critical for combating 

issues in wireless bandwidth. 
 

In high-capacity 5G applications, cooperative sensing ensures better spectrum sharing across 

wide bands, which leads to higher data rates and improved network performance in enhanced 
mobile broadband (eMBB). Junhee Kim et al. [10] explain optimizing detection performance by 

modifying the secondary user numbers involved in the cooperative sensing process in their paper. 

The modification enables a balance between improving detection accuracy and minimizing 

sensing delays, which is crucial for 5G applications that demand real-time responses, such as 
eMBB and ultra-reliable low-latency communications (URLLC). Dikmese S.  et al. [11] showed 

that the proposed filter bank-based cooperative spectrum sensing significantly outperforms 

traditional sensing techniques, particularly in scenarios with high interference and poor channel 
conditions. The proposed method is designed to support the high bandwidth and low latency 

demands beyond 5G (B5G) by ensuring that spectrum holes (unused frequencies) are accurately 

identified for secondary use. The study measures up with the requirements of B5G networks, 
where ultra-reliable low-latency communications (URLLC) and massive machine communication 

{mMTC} necessitate efficient spectrum efficiency. 

 

Security of the spectrum will enable greater availability of the spectrum. In their paper, Rangaraj, 
N et al. [12] focus on improving the security and accuracy of cooperative spectrum sensing in 

cognitive radio. Two algorithms, such as the Generic algorithm (GA) and particle swarm 

optimization (PSO), are applied to achieve spectrum sensing accuracy, security, and robustness, 
especially in an environment with low trust in the participating SUs. 

 

Integrating K-out-of-N decision rules at the fusion center enhances detection accuracy, crucial in 

5G environments where efficient and reliable spectrum management is paramount. This paper 
examines the performance of non-cooperative and cooperative spectrum sensing methods tailored 

for energy detection (ED) in 5G environments, specifically within Additive White Gaussian 

Noise (AWGN) and individually and identically distributed (i.i.d) contexts. We developed a 
simulation to determine the optimal average proportion of decisions required by CRs with an 

optimal k in the K-out-of-N rule under differing false alarm rates. This systematic approach 

maximizes PD while maintaining PFA within acceptable limits. 
 

The rest of the paper is arranged as follows: Section II presents the concept of non-cooperative 

spectrum sensing and clearly explains the energy detection (ED) technique and non-cooperative 

wideband spectrum sensing with subbands. In section III, we explained the concept of 
cooperative sensing approaches, where we explored the overview of cooperative spectrum 

sensing and cooperative wideband spectrum sensing with subbands, with the implementation of 

an optimal value for k needed for the cooperating CRs in k-out-of-N rule algorithm to solve the 
problem of noise uncertainty in ED in practical scenarios. The simulation results in section IV 

detail the experimental setup, analyze the performance of some fusion rules, and compare the 

results of non-cooperative and cooperative spectrum sensing. We concluded the paper in Section 
V. 
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2. –

Different detectors' spectrum sensing decisions are based on a binary hypothesis model whereby 
the signal received might be noise or signal with some noise components. 

 ā(ā) = { ý(ā), �0þ(ā) +  ý(ā), �1         (1) 

 
Where x(t) depicts the transmitted signal of the PU observed by the SU, R(t) is the SU9s received 
signal, and w(t) is the additive white Gaussian noise (AWGN). The two hypotheses, H0 and H1, 

assume that the PU is absent or present, respectively. 
 

Non-cooperative sensing is regarded as narrow-band spectrum sensing. This is because the 

detectors individually sensed the spectrum. The non-cooperative spectrum sensing techniques are 
energy detectors, matched filter Detectors, cyclostationary feature detectors, eigen value 

detectors, and preamble detectors [13]. This section explains the energy detection technique and 

demonstrates the workings of non-cooperative wideband spectrum sensing. 

 

2.1. Energy Detection 
 

An energy detector (ED) is a non-coherent detector that measures the signal energy received from 
a particular frequency band by measuring the signal energy received and compares it with an 

established threshold. The threshold is set considering the value of the noise power. If the signal 

energy of the received signal lies above a set threshold, the band is declared busy; otherwise, the 
band is idle and can be accessed by a cognitive user [14,15].  Figure 2 is the architecture of the 

ED. 

 

 
 

Figure 2: Conventional Energy Detector 

 

ED does not need prior knowledge of the signal9s carrier frequency, phase, or modulation type. 

Not having this knowledge makes ED to be susceptible to noise uncertainty. It is vulnerable to 

interference from other users and struggles with hidden node problems, especially when the 

primary user (PU) signal is weak or occluded.The decision statistics for energy detection in the 
time domain are based on the Neyman-Pearson formula: 

 � = 1þ 3  þ21Ā=0 |þ[Ā]|2   (2) 

 

Where N denotes the number of samples, x[n] is the sampled signal. A decision for the primary 

user's presence or absence is made if 8�’ exceeds a threshold, which is calculated based on the 

noise floor to maintain a specific false alarm rate. In the frequency domain, energy detection 

measures the power P(f) of the received signal at the output of a bandpass filter with bandwidth 
by the method of periodogram [16]. 
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2.2. Non-Cooperative Wideband Spectrum Sensing 
 

Non-Cooperative Wideband Spectrum Sensing is the process by which a cognitive radio (CR) 

autonomously identifies and detects signals across a wide range of frequencies [17]. For 
wideband non-cooperative sensing, the received signal of a CR is shown to be divided into 

subbands to emulate the PU subbands as shown in Figure 3: 

 

 
 

Figure 3: Architecture of Non-cooperative Wideband Spectrum Sensing 

 

The signal from the PU is corrupted by AWGN and is received by the receiving antenna. Under 

the null hypothesis (H0), the received signal  ā ÿ  (Ā)  for subband m at n is equal to ÿÿ (Ā) 

Under the alternate hypothesis (H1), the received signal,āÿ   (Ā) for subband m at n is equal to 

the transmitted signal Āÿ   (Ā),scaled by the channel gain and the added noise, ÿÿ (Ā). 
 

Where each subband m of a single CR with one antenna is defined as: 

 �āÿ   ∶  āÿ   (Ā) = ýÿ (Ā)             (3) �1ÿ   ∶  āÿ   (Ā) = /ÿĀÿ   (Ā) + ýÿ  (Ā),   Ā = 0,1,2, & , þ 2 1      (4) 

 āÿ   (Ā), ýÿ  (Ā), þÿ   (Ā) is modelled in matrix form as: 

 āÿ   (Ā) = [ r (0), r (1), r (2), ……………… ,rm-1(n)] ýÿ (Ā)= [ w (0), w (1), w (2), ……………,wm-1(n)]         (5) þÿ   (Ā)= [ x (0), x (1), x (2), …………….., xm-1(n)] 
 

Where  ÿ�   (Ā) = [ ÿ�   (0),  ÿ�   (1),  ÿ�   (2), & & & & & , ÿ�   (þ 2 1) and is the received signal 

in the i-th subband. ,   Ā = 0,1,2, & , þ 2 1 is the observational sample sequence in the i-th 
subband, (i Є {0,1,2,, M-1} and N is the total number of samples used for sensing. 

 

Considering Figure 3, the received signals, āÿ   (Ā) are filtered and conditioned with BPF, ADC 
and FFT, to remove noise and interference, ensuring the signals are suitable for further 

processing. 

 

The energy, Yn, is computed for each of the subbands and given as:  
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āĀ = 3  þ21Ā=0 |āÿ   (Ā)|2    (6) 

The calculated energy is compared with a set threshold to decide if some PU channels are 

occupied. The threshold ÿ is calculated in Equation 7 and used for energy detection (ED) under 

the assumption of complex additive white gaussian noise (AWGN). 

 ÿ = Ā21(ÿ�). √2(ÿĀ + �  2  þ )     (7) 

 

Q-1 is the inverse Q function, and Pfis the desired false alarm probability. The threshold is 

correctly set to maintain a specific probability of false alarm, Pf, considering noise power per 

sample, �  2  ,  �  2  þ  is the total noise power, and Ps being the signal power.  Q is the Q-function 

describing the tail probabilities of the Gaussian distribution, �2 is the noise power and the 

variance of AWGN, N is the number of samples per cognitive user per subband and λ is the 
detection threshold. 

 

3. COOPERATIVE SPECTRUM SENSING METHODS 
 
This section will discuss the cooperative spectrum sensing methods, starting with an overview of 

cooperative sensing. 

 

3.1. Cooperative Sensing Overview 
 

Cooperative sensing improves detection accuracy through the cooperation of individual detection 
and by having the benefit of spatial diversity, thereby combating some spectrum sensing 

problems such as shadowing, fading, and receiving uncertainty issues. All the secondary users are 

distributed over the entire cognitive radio network (CRN) over a specified distance from the PU 

transmitter. Each SU senses the whole band and sends its local binary decisions (<1= or <0=) to 
the fusion center, which makes the final decision. The cooperative spectrum sensing model 

architecture is shown in Figure 4 below:  

 

 
 

Figure 4: Cooperative Spectrum Sensing System Model 

 
The three steps in the cooperative sensing process are [18]: 

 

1. A particular band of interest is individually sensed by cooperating cognitive radios (CRs) 
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2. The Fusion center receives the sensed results from all cooperating CRs via a control 
channel. 

3. The fusion center combines all the received sensed information, makes decisions for the 

presence or absence of a primary user (PU), and reports to the CRs. 

 
By actively utilizing the benefit of spatial diversity, the issues emanating from noise uncertainty 

in the energy detector are solved by the CR's cooperation in sharing their individual information 

at the fusion center, which makes a final binary decision on the primary user's presence or 
absence. The cooperative sensing's two primary schemes are soft fusion and hard fusion schemes. 

In soft-data fusion schemes, all CRs send their sensing data as received energies or soft values to 

the fusion center without making a local binary decision. Soft-data fusion schemes that different 
researchers have reviewed are square law selection (SLS), maximal ratio combining (MRC), and 

selection Combining (SC). In the hard-decision fusion rule, different CR users sense the spectrum 

and report their local binary decision to the fusion center.  Different hard-decision fusion schemes 

such as OR-rule, AND-rule, Majority rule, and K-out-of-N rule are employed to make a binary 
decision by each CR user[19-21]. 

 

3.1.1. OR Fusion Rule 
 

The logical OR rules establish the presence of a PU if at least one SU detects it.  

 ÿ�ÿ� = 1 2 / (þ�=1 1 2 ÿ�, �)  (8) ÿ��ÿ� =  1 2 / (þ�=1 1 2 ÿ��, �) (9) 

 
3.1.2. AND Fusion Rule 

 
The AND fusion rule only decides if all the SUs detect the signal.  

 ÿ��þ� = /  þ�=1 ÿ�, �  (10) ÿ���þ� = /  þ�=1 ÿ��, �  (11) 

 
3.1.3. MAJORITY Fusion Rule 

 

For the Logical Majority rule, a consensus is made if half or more of the SUs detect the presence 
of the PU.  

 ÿ�ý�ý = ∑ (þ� )ÿ��(1 2 ÿ�)þ2�þ�=[þ/2]  (12) ÿ��ý�ý = ∑ (þ� )ÿ���(1 2 ÿ��)þ2�þ�=[þ/2]   (13) 

 

3.1.4. K-out-of-N Fusion Rule 
 

A decision is made with few k that can correctly detect the signal out of K positive outcomes of 

N CRs.  ÿ�þ2āÿþ2ā�2þ = ∑ (þ� )ÿ��(1 2 ÿ�)þ2�þ�=þ   (14) ÿ��þ2āÿþ2ā�2þ = ∑ (þ� )ÿ���(1 2 ÿ��)þ2�þ�=þ   (15) 
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3.2. Cooperative Wideband Spectrum Sensing 

 

3.2.1. Architecture Design 

 

The architectural design of the cooperative wideband spectrum sensing is as shown in Figure 5.  

 

 
 

Figure 5: Cooperative Wideband Spectrum Sensing for 6 Cognitive Radio (6CRs) 

 

Here, we partitioned the received signal into five subbands for a channel bandwidth of 100 MHz, 

giving a total bandwidth of 500 MHz from 3.3 GHz to 3.5 GH to reduce the design's complexity. 
We implemented the energy detection (ED) technique because of its non-coherency and 

simplicity, and we proffered a solution to the issue of noise uncertainty by implementing 

cooperative sensing.Each cognitive radio (CR1-CR6) receives an analog serial signal through its 

antenna and contains a wide range of frequency components from various primary user (PU) 
subbands. The bandpass filter (BPF) is applied to the analog signal to remove frequencies outside 

the desired bandwidth to prevent aliasing in subsequent stages. After FFT, each frequency 

component or subband has its energy calculated by summing the squares of the magnitude of the 
FFT output component, representing the power at each frequency. Energy detection is crucial in 

spectrum sensing as it determines the presence of a signal in a frequency band based on the 

energy content within that subband. The local binary decision output from each subband of the 
CR is sent to the fusion center, which aggregates these decisions using k-out -of-N to make a 

global decision. A soft optimal k, <2,= is implemented for six CRs, and the FC makes a final 
decision on the state of the spectrum. This decision is sent back to each cognitive radio, which 

can transmit utilizing the free PU9s band. 

 

3.2.2. The Model 

 

The system is modeled as a binary hypothesis, which can be either null, �ā�  or true, �1�  
hypothesis at a given state [10]. 

 �ā� ∶  Ăÿ� (Ā) = ÿÿ�(Ā),   ÿ = 0,1,2,3, & , ý 2 1   (16) 

 �1� ∶  Ăÿ� (Ā) = Āÿ� (Ā) + ÿÿ�(Ā),   Ā = 0,1,2,3, & , þ 2 1  (17) 
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Where Ăÿ� (Ā) , Āÿ� (Ā) , and ÿÿ�(Ā)  are the received, primary user, and the noise signals, 

respectively.  

 
The model in matrix form is given as: Ăÿ� (Ā) = [Āÿ0 , Āÿ1 , Āÿ2 , & , Āÿ(�21)], 
 ÿÿ�(Ā) = [ýÿ0 , ýÿ1 , ýÿ2 , & , ýÿ(�21)]  (18) 

 Āÿ� (Ā) = [þÿ0 , þÿ1 , þÿ2 , & , þÿ(�21)]  
 
Model Assumptions: 

 

1.  At each cognitive radio (CR), we take the noise to be additive, white, gaussian and 
complex, which is individually and identically distributed (i.i.d) across all CRs 

2. All CRs are also assumed to be synchronized during the sensing and reporting period.  

3. The reporting channel through which the local decisions are communicated to the FC is 

error-free. 
 

The model involves multiple cognitive radios working together to determine the state of the 

primary user (PU) within a frequency band of 3.5GHz, characterized as a 5G mid-band. The 3.5 
GHz band is mainly used in urban and sub-urban coverage, balancing coverage and capacity with 

better penetration and higher speeds than other higher bands. The received signal passes through 

the band pass filter, allowing the specifically chosen band to pass through while rejecting other 

frequencies. This helps filter out noise, and the detection strategy is the same as in the non-
cooperative spectrum sensing described above. Each CR performs local spectrum sensing using 

an energy detector defined as: 

 āÿ = 3  þ21Ā=0 |Ăÿ� (Ā)|2  (19) 

 

The decision at each CR is based on comparing āÿ  with a threshold,  ÿÿ 
  �ÿ = {    1, ÿ�  āÿ ≥  ÿÿ0      ÿ� āÿ <  ÿÿ   (20) 

 

For a real AWGN channel, the threshold is calculated using the inverse Q-function and the 
chosen PFA and is given as: 

 ÿ = Ā21(ÿ�). √2(ÿĀ + �  2  þ )   (21) 

 

Where Ā21 is the inverse Q-function for the chi-square distribution, N is the number of samples.   

The decision,  �ÿ from all the CRs are sent to a centralized fusion center to perform a global 
decision. The fusion center aggregates the local binary decision using a fusion rule. In this paper, 

we implemented a hard decision rule, k-out-of-N, and we performed soft decisions by manually 

selecting the optimal k based on the number of CRs performing spectrum sensing. The final 
decision, D, by the fusion center is as follows: 

  � = {    1, ÿ�  3  �ÿýĀ=1 ≥ �0      ÿ� 3  ýĀ=1  �ÿ < �    (22) 
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Where D is the final decision on the presence or absence of the primary user,  �ÿ is the local 

binary decision from the m-th CR. The decision is <1= if PU is present and <0= if otherwise. M is 
the total number of CRs involved in the sensing, and k is the threshold number of accurate 
decisions required to declare the presence of the primary user. The performance matrix is based 

on the probability of detection and the probability of false alarm. 

 

The probability of detection relies on the signal power Ā, the noise power �2  and the number of 

samples N. If the signal power is greater than the noise power, the probability of detection can be 
calculated assuming a non-central Chi square distribution of the test statistics under Hi, which 

signifies that the signal is present, and the PD is given as:  

 ÿ� = Ā (λ2(Āý+þ�  2  )√2þ�  2  )   (23) 

 

Where the signal power is ÿĀ,  and 2N is the degree of freedom that accounts for the real and 

imaginary components of the complex samples. 

The PFA is formed under the noise-only signal and given by: 
 ÿ�� = Ā ( λ2N�2√2þ�  2  )  (24) 

 

Q is the Q-function describing the tail probabilities of the Gaussian distribution, which is the 

noise power and the variance of AWGN. N is the number of samples per cognitive user per 
subband and is the detection threshold. 

 

The K-out-of-N data-fusion rule is best for scenarios where resources are limited or when 
reducing the system9s complexity and power consumption since not all N cognitive users are 
involved in the decision process. The detection and false alarm probabilities are calculated based 

on binomial distribution and a single CR9s PD and PFA. 
 

.ÿ�þ2āÿþ2ā�2þ = ∑ (þ� )ÿ��(1 2 ÿ�)þ2�þ�=þ   (25) 

 

Where ÿ� = Ā (λ2(Āý+þ�  2  )√2þ�  2  ) 

 ÿ��þ2āÿþ2ā�2þ = ∑ (þ� )ÿ���(1 2 ÿ��)þ2�þ�=þ 26 

 

Where ÿ�� = Ā ( λ2N�2√2þ�  2  ) 
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Algorithm Comparison Between Single CR and Cooperative Wideband Spectrum Sensing 

with multiple CRs (3CR) with K-out-0f-N Data-Fusion Rule 

Input: numCRs, SNR_range, Pfa, MaxPfa, Thresholds, Noise Power 

Output: NonCoopPd, CoopPd, OptimalK – Optimal Num. of CRs required to declare detection 

1: Initialize: comparison arrays for nonCoopPd and CoopPd across SNR_range 

2: For each SNR in SNR_range, do: 
3: Compute detection thresholds for each CR based on noise power and pfa 

4:      If numCRs == 1: 

5:             Compute NonCoopPd using the threshold for a single CR 

6:        Else: 
7:               Initialize local decisions for each CR 

8:               For each CR, compute local Pd using the threshold and current SNR 

9:               Initialize maxPd to 0 and optimal k to 1 
10:              For K =1 to numCRs 

11:                    Calculate global decisions by applying the k-out-of-N rule across CR's local  

12:              compute CoopPd and pfa for global decisions 
13:              If pfa <= Maxpfa and pd > maxpd then 

14:                    optimal k = k 

15:                    maxPd = CoopPd 

16:             End if 
17:       End for k 

18:       Store the optimal k for the current SNR 

19: End for each SNR 
20: Return NonCoopPd, CoopPd, and the arrays of values of optimal k correspondto each SNR  

21: End Algorithm 

 
The algorithm shows steps involved in comparing non-cooperative and cooperative detection 

probabilities in cognitive radio spectrum sensing. Each CR computes its detection threshold 

based on its noise power and false alarm probability. From the algorithm, we can observe that 

before cooperative decision-making, an individual probability of detection is calculated to 
establish a baseline, which in this case is the NonCoopPd. The k-out-of-N rule is applied where 

the signal9s presence is notified if at least 8k9 out of 8numCRs9 CRs detect the signal. The 
algorithm iterates over possible values of k to find an optimal number that maximizes the 
probability of detection without exceeding the maximum acceptable PFA. We soft-coded 8k =29 
for 6CRs to understand the implementation of 8k9 from many cognitive radio users in the 

network. Once a <k= success is made, the fusion center takes a global decision. It simultaneously 

communicates the result to each CR in the process to enable them to access the available 
spectrum band. 

 

4. SIMULATION AND RESULT 
 

4.1. Experimental Set-Up
 

The Keywords This section describes the steps and methodology used to investigate and compare 
cooperative and non-cooperative wideband spectrum sensing under 5G environments using 

Energy Detection (ED) algorithms. The procedure details the simulation setup, signal 

characteristics, parameters, and essential variables. 
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1. Channel Model: The simulation assumes that the Primary User (PU) operates in a 5G 
environment under Additive White Gaussian Noise (AWGN) conditions. The noise is 

identically and independently distributed (i.i.d.) across the sub-bands. 

2. SNR Conditions: The experiments are conducted under very poor signal-to-noise ratio 

(SNR) conditions, ranging from -20 dB to -8 dB, to reflect the challenging detection 
environment typically seen in 5G scenarios. 

3. Sub-band Division: The wideband signal is divided into five sub-bands, each with its 

energy detection mechanism. This approach is used for both cooperative and non-
cooperative spectrum sensing. 

4. Energy Detection Threshold: A threshold-based decision rule is applied to each sub-band. 

The Primary User is considered present if the detected energy exceeds the set threshold. 
The threshold is determined based on the noise floor information. This step applies to non-

cooperative wideband spectrum sensing, where only local decisions are made at each 

cognitive radio (CR). 

5. Cooperative Wideband Spectrum Sensing: In cooperative spectrum sensing, after local 
decisions are made in each sub-band, the results are sent to a fusion center, which makes a 

global decision based on the aggregated local decisions. 

6. K-out-of-N Fusion Rule: We implemented the K-out-of-N fusion rule, a hard decision 
rule that allows for flexible tuning to improve decision-making accuracy. It is energy 

efficient and has lower computational complexity. The false alarm rate for this rule is 

minimal under poor SNR conditions. The performance of this fusion rule is demonstrated 
in simulation plots, compared with other hard fusion rules. 

7. Performance Metrics: The key performance metrics considered are the Probability of 

Detection (PD) and the Probability of False Alarm (PFA). The PD vs. PFA plots are 

generated at varying SNR levels, such as -20 dB to -8 dB, to represent poor environmental 
conditions encountered in real-life settings. PD vs. SNR plots are generated at varying PFA 

values, chosen as 0.01, 0.1, 0.5, and 1. 

8. Our interest in Low PFA Values: Our primary focus is on PFA values of 0.01 and 0.1, as 
higher PFA values may lead to false results, compromising accuracy. Since accuracy is the 

primary concern, the FCC has adopted a standard of PFA less than 0.1 and PD of 0.9 or 

higher, which aligns with our objective. 

 

4.2. Performance Analysis of Hard Fusion Rule 
 

 
 

Figure 6: Comparative Analysis of Hard Fusion Rules for 6CRs 

 

In Figure 6, we considered the PFA range of 0.01 to 1 and SNR of -20 dB. The simulation 

analysis of the fusion rules is performed in MATLAB and is analyzed as follows: 
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1. The OR fusion rule has the highest detection but a high risk of false alarms. It reached the 
detection probabilities of around 0.6 and 0.9, as it depends on only one CR to declare 

detection. It has the lowest computational complexity and is most energy efficient as it 

requires minimal processing. However, it sacrifices detection accuracy, which may be more 

pronounced in poor SNR conditions. 
2. The AND fusion rule has the least detection probability at this range since it requires all 

CRs to agree before a decision can be made by the fusion center and is most likely to miss 

detection. It is close to zero for PFA < 0.1 and begins to improve detection probability after 
PFA > 0. 3.. It has the highest computational complexity and the least energy efficiency, 

especially in poor SNR, since all CRs must sense and report positive detection before 

making a decision. 
3. The MAJORITY fusion rule has moderate detection and a bit of balance between detection 

and false alarm probability. It shows detection capability between 0.4 and 0.6 and better 

performance than OR and AND fusion rules. Its computational complexity and energy 

efficiency are moderate in this context but more extensive as the number of CRs increases, 
as more than half of the CRs are required to declare a PU present before a final decision 

can be made. 

4. The k-out-of-N has the best balance between detection and false alarm probabilities and is 
ideal for use in poor SNR where false alarm and miss detection can be controlled. The 

complexity is moderate as the fusion center must compare a threshold 8k9 with the number 
of positive outcomes. Its energy efficiency is high as it does not require every CR to detect 

the primary user. The tunability of K-out-of-N makes it flexible for managing PFA  

 
Table 1: Summary of Fusion Rules Performance Analysis 

 
Fusion Rules Energy Efficiency Computational Complexity Probability of False Alarm 

OR Rule High Low High 

AND Rule Low High Low 

Majority Rule Semi-High High Semi-low 

K-out-of-N Rule High (Tuneable) Moderate Low (Tuneable) 

 

4.3. Performance Analysis of Cooperative and Non-cooperative Wideband 

Spectrum Sensing 
 

All simulations were performed in MATLAB R2023b to assess the performance of cooperative 

and non-cooperative sensing techniques under complex AWGN, which is independently and 

identically distributed in a 5G wireless network environment. Parameters such as signal-to-noise 

ratio (SNR), number of CRs, and PFA are varied to determine the probability of detection (PD). 

We implemented a maximum of 6CRs with k=2 for the cognitive radio network at a 3.5 GHz 

frequency, and the threshold was set based on the noise floor and acceptable false alarm limit. 
 

Table2: Simulation Parameters 

 
Parameters Values 

No. of subbands 5 

No. of samples 700 

SNR -20-to-8 

PUs 1 

SUs 6 

K 2 

PFA 0.01 to 1 
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Figure 7: Plot of PD versus PFA for 1 CR and 3CRs at K =2 under varying SNR. 

 
Considering Figure 7, with only three cognitive radios (3CRs), with k= 2, the cooperative sensing 

performs less poorly at low SNR compared to the single CR. The reason is that the noise in 

individual measurements might not be well averaged out with fewer cognitive radios, leading to 
poor performance, especially at lower PFA and very low SNR, as seen in the plot.  There is a 

tendency that 2 out of 3 CRs might be affected by noise and hence cannot perform well at a very 

poor SNR, which may lead to increased vulnerability to false positives. Both cooperative and 

non-cooperative show progressive improvement as SNR improves as well as an increase in PFA, 
although the rise in PFA should be avoided to reduce interference. 

 

 
 

Figure 8: Plot of PD versus PFA for 1 CR and 6 CRs at K =2 under varying SNR 

 

The receiver operating characteristics for 6CRs at k=2 and a single CR of Figure 8 show that 

cooperative sensing only performs better than single cooperative sensing, especially at an 
improved SNR and higher PFA. It can be observed from the plot that non-cooperative sensing 
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tends to have an initial detection compared to cooperative sensing, mainly at a very poor SNR 
and very low PFA of 0,01. We observed that 6CRs with k=2 provide better detection and 

robustness to the system, as against 3CRs with k =2. 

 

 
 

Figure 9: Plot of PD versus SNR for 1CR and 3CRs at k=2 across varying PFA 

 
In Figure 9, non-cooperative sensing shows a higher PD than cooperative sensing, especially at 

lower PFA values of 0.1 and 0,01. The cooperative mechanism might not optimally handle 

information fusion due to the combination of suboptimal data. So, the choice of k=2 for 3CRs 
might be sub-optimal, especially at an increased poor SNR. In addition, at very low SNRs (-20, -

16 dB), all curves start near zero, indicating that cooperative and non-cooperative methods 

struggle to detect signals under deplorable noise conditions. As SNR approaches 0dB, both 

methods of detection probabilities increase as the noise level becomes negligible with the signal 
strength. 

 

 
 

Figure 10: Plot of PD versus SNR for 1CR and 6CRs at k=2 across varying PFA 
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In Figure 10, with 6CRs and k=2, PD showed a little improvement than the 3CRs with k=2. The 
low SNR ratio affected the performance of cooperating sensing, especially at very low false 

alarm probability.  The cooperative sensing showed an enhanced PD at very low SNR and a 

higher false alarm rate of 0.5 and 1. However, as SNR improves at 0dB, both sensing strategies 

increase their detection performance. Increasing the number of CRs provides more diversity and 
redundancy, as it reduces the impact of individual noise and the likelihood of error propagation.9 
The plots visualize how SNR impacts detection performance in spectrum sensing applications, 

which is critical for cognitive radio functionality in next-generation networks. 
 

5. CONCLUSION 
 

This study highlights the advantages of energy detectors in improving wideband spectrum 

sensing within cognitive radio networks, a key factor for achieving efficient spectrum utilization 
in the complex 5G era [22]. By examining both non-cooperative and cooperative spectrum 

sensing strategies using energy detection (ED) methods in an Additive White Gaussian Noise 

(AWGN) channel, assumed to be identically and independently distributed (i.i.d.), we observed 
varied outcomes. While ROC curve analysis demonstrates that cooperative sensing significantly 

enhances detection performance in scenarios with very low signal-to-noise ratio (SNRs) and 

higher false alarm rates (between 0.5 and 1), the performance was inconsistent at very low false 
alarm rates (0.01 and 0.1). The result showed that although cooperative sensing offers benefits in 

certain conditions, it does not consistently outperform non-cooperative methods, particularly in 

environments with very low SNR. 

 
Implementing the K-out-of-N rule within cooperative strategies effectively improves detection 

accuracy and reliability under challenging conditions, particularly in dense 5G networks with 

high traffic and diverse IoT applications, where efficient and dependable spectrum management 
is critical. However, the variability in performance across different false alarm rates points to 

further refinement of these techniques to adapt to the diverse operational environments in 5G 

networks. 
 

Future research will focus on optimizing cooperative wideband spectrum sensing strategies, 

including incorporating diversity schemes in the energy detection process to enhance SNR and 

improve detection capabilities. Additionally, integrating machine learning algorithms to 
dynamically determine the optimal 'k' value with minimal human intervention could significantly 

improve the autonomy of cognitive radio networks. These improvements are vital for managing 

the radio spectrum effectively and enabling dynamic spectrum access in increasingly complex 5G 
and beyond environments where traditional methods may fall short. 
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