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In this work, we focus on a nonparametric regression model
that accounts for discontinuities. We propose a method called
Simultaneous CHange-point detection And Curve Estima-
tion (SCHACE) for effectively detecting jumps in a data
sequence and accurately capturing nonlinear trends between
these jumps in the mean curve. The SCHACE is a unified
regularization framework that incorporates two statistical
tools: the normalized fused Lasso for change-point detection
and B-splines for curve estimation. Notably, this approach
is a single-step method that does not require iteration and
is straightforward to implement. We demonstrate the ad-
vantages of the SCHACE by simulated and real-world data
examples.
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1. INTRODUCTION

Change-point detection, also known as jump detection, is
a critical component in the analysis of sequential data across
various fields, including biology, climatology, computer sci-
ence, econometrics, and engineering. Its primary objective is
to identify sudden and significant changes or jumps within a
sequence of observations. This technique holds great signifi-
cance in practical applications such as monitoring heart rates,
daily temperature fluctuations, greenhouse gas emissions, and
analyzing streaming video data. Over the years, numerous
change-point detection techniques have been developed to
effectively identify multiple changes within potentially long
and noisy sequences. Some popular approaches include bi-
nary segmentation and variants [37, 27, 11], the screening
and rank algorithm [26, 14], SMUCE [10], and penalized
regression [16, 15, 35, 28] among many others. While change-
point detection methods are effective in scenarios where the
true model structure follows a piecewise constant pattern,
they may not provide the necessary flexibility to accurately
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capture gradual mean changes and nonlinear trends in data
sequences. In such cases, a nonparametric regression model
with jumps becomes beneficial. Estimating regression curves
that incorporate jumps has gained considerable attention
and has been applied across a diverse range of fields. This
approach allows for a more comprehensive analysis of data
sequences, enabling the modeling of both abrupt changes
and smooth, nonlinear trends. For example, in economics,
data analysis to the exchange rate data can detect the sharp
change in the exchange rate of the Icelandic Kréna (ISK) per
US dollar (USD) in September 2008 that was likely caused
by the subprime mortgage crisis in the United States [18];
in climatology, a jump detection method [39] can identify
two jumps in sea-level pressure using a data set of December
sea-level pressures in the period 1921-1992 by the Bom-
bay weather station in India; in ecology, piecewise-smooth
function estimation displays the trends of the relative light
transmittance with discontinuities, which is helpful to un-
derstand the forest dynamics in the ecosystem [1].

As a classical topic, nonparametric regression aims to esti-
mate a regression function that is continuously differentiable
up to a certain order. Various nonparametric regression meth-
ods have been developed, e.g., local polynomial regression [7],
splines [38, 6], and wavelet methods [2] among many others.
Nonparametric regression with change points was studied by
McDonald and Owen [22], which considered the split linear
smoother by the weighted average of the left, right, and
central linear fits for each point. Similar approaches using
statistics constructed from the one- or two-sided observations
of any design point have been explored in the literature. For
example, a variety of methods have been developed based on
locally defined diagnostic statistics [41, 13, 32, 24]. Besides
aforementioned method, other approaches include curve fit-
ting with change points using splines [34, 17, 40, 20], kernel
smoother [39, 30, 12], and Bayesian methods [4, 8]. See [31]
for an in-depth review of the jump regression analysis.

Two main goals in jump regression analysis are jump
detection and curve estimation. In the literature, a popular
two-step strategy involves determining the jump positions
first, followed by curve estimation [32, 24, 33]. When the
jump points are accurately estimated, curve estimation in
smooth regions is straightforward. While these methods per-
form well when the jump locations are easily detectable, they
heavily rely on the accuracy of jump detection, which can be
challenging when dealing with noisy data. Consequently, the
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precision of curve estimation is significantly influenced by
the effectiveness of jump detection, particularly in scenarios
where the data is prone to noise. Another useful technique
is jump-preserving curve estimation [30, 12] which directly
estimates the regression curve while adapting at each point
to a possible discontinuity. The major goal of the second
approach is to achieve an accurate estimation of the mean
function, which may not necessarily uncover jump points
well. Moreover, some recent methods include penalized re-
gression with truncated power spline basis [18] and Piecewise
Constant plus Smooth Regression Estimator (PCpluS) [29].

In this paper, we introduce a novel approach named Si-
multaneous CHange-point detection And Curve Estimation
(SCHACE) for detecting change points in data and capturing
the underlying nonlinear and smooth trends between these
change points. One main advantage of SCHACE is its unified
regression framework, seamlessly integrating the normalized
fused Lasso and B-spline regression into a single-step process.
By incorporating these techniques, the SCHACE method en-
ables the automatic accommodation of change points in the
nonparametric regression curve fitting. Moreover, it simul-
taneously identifies the number and locations of the change
points, determines jump magnitudes, and estimates the re-
gression curve. This comprehensive approach sets SCHACE
apart in effectively addressing change point detection and
curve estimation in a unified manner.

The remainder of this paper is organized as follows. Section
2 introduces the regression model with discontinuities and
the proposed SCHACE method. In Section 3, we demonstrate
numerical experiments based on both synthetic and real data
examples. We conclude the paper with a short discussion in
Section 4.

2. METHODOLOGY

2.1 Model

Throughout the paper, we use y = (y1,...,yn) ' to denote
a sequence of observations generated by

(1) yi = f(i/N) + e

where f(-) is a piecewise continuous function on [0, 1], and
{e;}}¥, are independent and identically distributed (IID)
errors with mean zero and variance o?. We assume that
f(+) is a left continuous function with J discontinuities at
0< 7 <--- <7y <1 That is,

lim_f(x) = f(7;)

l—}Tj

for i=1,---,N,

# lim+ f(z).

l—)Tj

We call 7; a change point, or a jump point. We aim to
estimate the piecewise function f(-) and identify its jump
points.

Two important special cases of model (1) have been inten-
sively studied in the literature. First, without discontinuity,
model (1) is reduced to the classic nonparametric regression
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model. Local polynomial regression [7] and spline method
[38] are two popular approaches to nonparametric curve es-
timation. Second, if f(-) is a piecewise constant function, it
becomes a standard multiple change-point model. See [25] for
a recent review. Among many change-point detection meth-
ods, the fused Lasso approach can identify change points and
estimate the mean function simultaneously. As illustrated
in section 2.2, our approach is closely related to the spline
method and the fused Lasso.

2.2 Simultaneous Change-Point Detection
and Curve Estimation

Our proposed framework combines the B-splines and the
normalized fused Lasso into a penalized regression. Before
introducing the new method, we briefly review relevant sta-
tistical tools for curve estimation and change-point detection.

The B-spline method utilizes a linear combination of the B-
spline basis functions of order n to fit the data. To elaborate,
given the set of nondecreasing knot points tg < t; <--- <
tsion—1 with s internal knots, the basis functions of order j
are defined recursively by

1, ;<2 <tiq,

Bii(z) = { 0.

otherwise;
T —1 tiv; — T
By j(z) = ————Bij1(2) + —L——Bis1;-1(w),
titj—1 — Lits — tita
fori =1,..., 2n — j. For a fixed order n (that corresponds

to degree n — 1 polynomials) and properly chosen s interior
knots, we regress the response y on B-spline basis {B; ,}.
Thus, the estimation of f can be expressed as

s+n

(2) > 4iBin(@).
=1

We fix n = 4 in this paper. Define a matrix Z with Z;; =
Bj,n(Z/N)

The fused Lasso [35] is designed for detecting the change
points from perturbed observations of piecewise constant
signals. Assume that y is modeled as

3)

where m = (my,...,my) " is the piecewise constant mean
vector. The fused Lasso aims at striking a trade-off between
total variation, Zf\;Q |m; —my;—1], and the residual sum of

yi=m;+¢ for i=1-.-- N,

squares (RSS), Ef\;l(yl —m;)2. By combining these two cost
functions, the fused Lasso estimator is obtained by solving
the convex optimization problem

N N
. 1
(4)  mingcpny 5 E (yi —mi)> + A E |m; —mi_1],
=1 1=2



where A > 0 is a regularization parameter that controls
the balance between the fit and model complexity. After a
transformation 8; = m;; 1 —m; fori=1,..., N — 1, we can
rewrite (4) as a standard Lasso problem

. 1
(5) mingegy-1 iHy—mll_xﬁHg"‘")‘”ﬁ”h

=(1,..,1)T € RY X is an
=1 when i > jand X;; =0

where ,3 = (61,...,6]\/,1)—'—7 1
N x (N — 1) matrix with X,
otherwise.

Owrang et al. [28] proposed a variant of the fused Lasso
called normalized fused Lasso, which replaces X by a design
matrix with standardized columns. Let X be the standard-
ized version of X, and y be the centered vector of y. The
normalized fused Lasso is equivalent to the following Lasso
optimization with abuse of notation of 3.

. 1 ~ < 2

(6) mingepy-1 5[y — X8Iz + Bl

The main difference between the fused Lasso (5) and the
normalized fused Lasso (6) is that they use different relative
penalty levels among the features (i.e., columns of the design
matrix). Intuitively (6) is better as it treats all the features
fairly by standardizing the columns of the design matrix. It
was reported in [28] that the normalized fused Lasso improves
the fused Lasso for change-point detection. The computation
for (5) can be faster if making use of the special design matrix
X. There is little difference in computation time if one uses
R package glmnet to calculate (5) and (6).

Our framework, the SCHACE method, incorporates the B-
splines and the normalized fused Lasso in a unified penalized
regression scheme, where the normalized fused Lasso is used
to detect the discontinuities of the mean function, and B-
spline allows the estimation of the nonparametric regression
model. To elaborate, we combine the normalized design
matrix X with the B-spline basis matrix Z € RV*% where
df = s+ n is the degrees of freedom of the B-spline basis
matrix. Consider the optimization problem:

. 1 ~ v
(7) mingern-1 ~cprds §||y - X8 - Z’Y“g + AlIB:-

The optimization (7) leads to a sparse solution for 3, which
gives change point locations. For example, for a solution B
and an index ¢ with Bz # 0, the location i¢/N is an estimated
jump point. The B-spline part is used to estimate the con-
tinuous component of f(-) so we do not apply penalty on ~
in estimation.

Although (7) can identify change point locations well, it
is not ideal for estimating the mean function f(-) due to the
over-shrinkage of the Lasso estimator. Therefore, we suggest
a refit by ordinary least squares after variable selection,
which follows the idea of the relaxed Lasso [23]. That is, we
regress y on Z and the submatrix of X corresponding to the
nonzero component of 3 with an intercept. Note that it is
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Figure 1. Plot of the monthly average of USD to ISK
exchange rate from January 2004 to December 2015 (gray
dots), the estimated curve by the penalized regression (7)

(green curve), the refitted regression curve (blue curve), and
the detected change points (orange dashed lines).

equivalent but more convenient to use X instead of X in this
refit step because the coefficients from ordinary least squares
directly give the jump magnitudes at each jump location.
The refit step without penalization can reduce the shrinkage
of the Lasso estimation and give better estimations of the
jump sizes. Figure 1 illustrates the improvement of the curve
estimation after the refit step (blue curve) over the original
Lasso solution (green curve) from (7) using one of the real
data examples presented in section 3.4. Both blue and green
curves identify two jump points in 2008 and one in 2015.
But the jump magnitudes increase from 2.745, -0.005, and
2.7888 to 26.087, -17.360, and 16.989, respectively, after the
refit step. The two curves are similar in most regions, but
the blue curve is more faithful to the data in the region near
the jump points.

2.3 Choices of Tuning Parameters

Our procedure involves two tuning parameters, the num-
ber of quantile interior knots s for B-splines of order 4 and
the regularization parameter A\. We consider a range from
0 to 12 for s. A X sequence between 0 and Ap.x is given
by R package glmnet automatically once the length of the
sequence is specified. We fix the length of the sequence as
100 in all numerical experiments. The choices of tuning pa-
rameters are critical to the performance of the SCHACE. We
suggest two tuning procedures, the extended Bayesian Infor-
mation Criterion (eBIC) proposed in [3] and cross-validation
(CV) for choosing parameters.

The eBIC is one of the popular information criteria which
determines the tuning parameter A and s by minimizing the
score

eBIC(A,s) = N -log(RSS(), s)) + p - log(N)
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+4v-p-log(s+n+ N —1),

where p is the model size (the number of nonzero compo-
nents of the estimated regression coefficients) and RSS(A, s)
denotes the residual sum of squares with the refitted least
squares coefficients. The parameter v € [0, 1] controls the
model complexity. We take v = 0.5 as suggested by Foygel
and Drton [9].

Note that special care is needed when conducting a CV
procedure for sequential data in the change-point analysis.
For K-fold CV, we divide the index set {1,..., N} into K
subsets based on the reminders modulo K. For example,
with K = 3, the three subsets will be {1,4,...}, {2,5,...} and
{3,6,...}. This is in line with the order-preserved splitting
principle proposed in [42]. Moreover, the commonly used
Lo-error is inferior in calculating prediction error for data
points around jump positions because only one of the folds
contains a particular jump location. Therefore, we suggest
the trimmed Ls-error for CV, which can ignore the big
errors near jump points and gives a better choice of tuning
parameters.

3. NUMERICAL STUDIES
3.1 Experiment Setup

In this section, we conduct synthetic experiments and
real-world data analysis to assess the performance of the pro-
posed SCHACE method in jump detection and curve fitting.
For tuning parameter selection, we consider two procedures,
the eBIC and 3-fold CV with trimmed Ls-error, which are
labeled by SCHACE-eBIC and SCHACE-CYV in the tables,
respectively. Besides the SCHACE, we include two recent
algorithms, the MultiDegree Spline Estimator (MDSE) [18]
and Piecewise Constant plus Smooth regression estimator
(PCpluS) [29] for comparison. For MDSE, we choose the
quadratic programming variant MDSE-QP with degree-3
truncated power basis and 20 interior knots. For PCpluS, the
tuning parameters are determined by 5-fold cross-validation,
following the suggestion in the paper.

3.2 Evaluation Metrics

We compare the performance of different methods based
on four evaluation metrics. The first is the number of de-
tected change points. The second one is the number of true
positives, which are informative points that are close enough
to true jump positions. The definition of the informative
point was proposed by [19] to evaluate different change-point
detection procedures. Roughly speaking, an informative point
corresponding to a true change-point location, say 7; is the
closest estimated change-point location to 7;. In this paper,
we regard an information point as a true positive if and only

if there is a true change point within a distance h = 0.01.

The third measure is the false discovery rate (FDR) which is
calculated by the ratio between the number of false positives
and the total number of detected change points, J. That is
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_ #False Positives
Jv1 '
Last but not least, the mean squared error (MSE) is re-

ported to reflect the accuracy of the fitted regression curve
in synthetic experiments.

3.3 Synthetic data

We consider six mean functions with discontinuities in-
cluding four well-known benchmark functions burt and co-
sine from Abramovich et al. [1], heavisine from Donoho
and Johnstone [5], blip from Marron et al. [21], and two
additional examples cubic and step. Figure 2 provides an
illustration of these functions. In the analytic formulas below,
all functions are defined on the domain [0, 1}, 1(4(x) repre-
sents an indicator function taking value 1 when a < z < b,
sgn(-) is the standard sign function.

FDR

e Example 1: burt

f(x) = 20z cos(16z"2) — 20 - 1(g 0.5 ().

Example 2: cosine

f(z) = cos(5.5mz) — 4sgn(0.23 — ) — 2sgn(0.3 — x)
— 1.75sgn(0.55 — ) 4 3sgn(0.7 — x).

e Example 3: heavisine

f(z) = 4sin(4drz) — sgn(r — 0.3) — sgn(0.72 — x).

Example 4: blip

F(@) = (0.32+ 0.6z + 0.3¢100@=09") 1 0 o ()
+(~0.28 4 0.6z + 0.3 10@1DN) 1 4y (2).

Example 5: cubic
f(x) = 4322° — 5402 +-212. 42+ 5-1 (g 1) (2) —8-1(1 2 ().
¢ Example 6: step

f@) =311 19(2) +5- 11 2(2) + 12 yy(2).

The sample sizes of the synthetic data sets are N = 256,
and all the design points are equally spaced in [0, 1]. In order
to compare methods under different noise levels, we consider
three levels of the signal-to-noise-ratio (snr), defined by snr =
sd(f)/o, where sd(f) denotes the sample standard deviation
of the noiseless sequence {f(i/N)}¥ . For each example,
we run 100 independent replicates with snr = 4,6,8, and
report average evaluation metrics: the number of detected
change points (#CP), the number of true positives (#TP),
the mean square error (MSE), and the false discovery rate
(FDR). Tables 1-6 present the numerical results for Examples
1-6, respectively.

Wl
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Figure 2. Plots of data sequences generated from the six mean

functions with snr = 4. The true piecewise smooth functions

are depicted by the blue curves and the jumps are marked by
the vertical lines.

Table 1 presents the numerical results from Example 1
(burt). The proposed SCHACE-eBIC has the best perfor-
mance among all the methods as it has the smallest MSE
and highest accuracy in capturing the change-point location
at x = 0.5. As the signal-to-ratio increases, all the meth-
ods perform better as expected. SCHACE-CV is the second
best method although it tends to over-select change points.
PCpluS is similar to SCHACE-CV in terms of change-point
detection but produces a larger MSE in curve estimation.
MDSE-QP performs worst in this example. It can estimate
the number of change points reasonably well but fails to
recover the change-point location accurately. The reason is
that MDSE-QP can identify change points only among K
prefixed knots but not in a data-adaptive way. K = 20 is used
here, and unfortunately, none of those 20 equidistant interior
knots is within the distance h = 0.01 of the true change
point. This leads to #TP = 0 and a significantly larger MSE
than other methods. We have tried MDSE-QP with K = 50
which produces more false positives and worse overall results.
In short, the SCHACE outperforms the other two methods
in both curve estimation and change-point detection.

The numerical results for Example 2 (cosine) are shown in
Table 2. The true number of change points is 4. PCpluS and
SCHACE-eBIC perform best in terms of low FDR. SCHACE-
CV has the highest #TP among all the methods but tends to
over-select change points. For curve estimation, SCHACE-CV
and PCplus are the best, and SCHACE-eBIC is slightly worse
due to slightly lower #TP. MDSE-QP has the worst MSE
because it is not able to uncover change points accurately.

Tables 3-6 list the results of the rest of the examples. The
overall patterns are similar to the previous examples although
the performance of different methods varies. SCHACE-eBIC
is the winner for change-point detection. It has constantly
low FDR, and can perfectly identify change points when snr
is high. When snr is low, it may miss some change points,

which leads to a higher MSE than SCHACE-CV. SCHACE-
CV usually selects a larger number of change points so
FDR is higher. Nevertheless, it seldom misses any change
points. In the low snr scenarios, it often outperforms other
methods in terms of curve estimation. PCpluS is a strong
competitor to our methods, performing reasonably well in
most examples. But it is powerless in identifying change
points for Example 5. The performance of MDSE-QP highly
depends on the true locations of change points. Overall, it
produces a higher number of false positives and the largest
MSE in most scenarios.

Table 1. Numerical results for Example 1

Burt (snr = 4) #CP #TP MSE FDR
SCHACE-CV 1.75 0.99 0.7586 0.2032
SCHACE-eBIC 1.02 1 0.4321 0.01
PCpluS 1.79 0.98 1.06 0.3047
MDSE-QP 1.01 0 3.1672 1
Burt (snr = 6) #CP #TP MSE FDR
SCHACE-CV 1.86 1 0.3269 0.2189
SCHACE-eBIC 1 1 0.2244 0
PCpluS 2.01 1 0.5409  0.3497
MDSE-QP 1.02 0 2.9122 1
Burt (snr = 8) #CP #TP MSE FDR
SCHACE-CV 2.03 1 0.2052 0.2432
SCHACE-eBIC 1 1 0.154 0
PCpluS 1.99 1 0.3296  0.3432
MDSE-QP 1.06 0 2.8222 1

Table 2. Numerical results for Example 2

Cosine (snr = 4) #CP #TP MSE FDR
SCHACE-CV 12.31  3.74 0.2663 0.6205
SCHACE-eBIC 4.31 2.93 04091 0.231
PCpluS 5.07 3.45  0.2412  0.2562
MDSE-QP 4.23 0 1.0302 1

Cosine (snr = 6) #CP #TP MSE FDR
SCHACE-CV 11.85 3.97 0.1015 0.5946
SCHACE-eBIC 5.63 3.68  0.1698 0.2852
PCpluS 5.4 3.69 0.1084 0.2487
MDSE-QP 1.49 0 0.8272 1

Cosine (snr = 8) #CP #TP MSE FDR
SCHACE-CV 9.71 3.99 0.052  0.4959
SCHACE-eBIC 5.5 3.97  0.0622 0.2454
PCpluS 5.16 3.79 0.0617 0.2028
MDSE-QP 1.44 0 0.7989 1

3.4 Real Data

In this section, we apply our method to three data
sets, where the time series curves show interesting patterns
of abrupt changes due to unusual historical events. Since
SCHACE-eBIC outperforms SCHACE-CV in the simulated
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Table 3. Numerical results for Example 3

Heavisine (snr = 4) #CP #TP MSE FDR
SCHACE-CV 4.99 1.44 0.0759  0.476
SCHACE-eBIC 1.73 1.15  0.1032 0.2467
PCpluS 1.4 0.72  0.0873 0.1382
MDSE-QP 2.25 0.61 0.1043 0.6827
Heavisine (snr = 6) #CP #TP MSE FDR
SCHACE-CV 4.37 1.92  0.0262 0.3301
SCHACE-eBIC 2.33 1.96 0.0351 0.111
PCpluS 2.05 1.37  0.0429 0.1412
MDSE-QP 2.08 0.86 0.0814 0.5942
Heavisine (snr = 8) #CP #TP MSE FDR
SCHACE-CV 3.88 1.99 0.013  0.2334
SCHACE-eBIC 2.24 2 0.0193 0.0693
PCpluS 2.27 1.65 0.0252 0.1474
MDSE-QP 2.36 0.98 0.0727 0.5668
Table 4. Numerical results for Example 4
Blip (snr = 4) #CP #TP MSE FDR
SCHACE-CV 4.52 1 0.0002  0.3259
SCHACE-eBIC 2.39 1 0.0005  0.3493
PCpluS 2.25 1 0.0002  0.3486
MDSE-QP 3.1 1 0.0021  0.3354
Blip (snr = 6) #CP #TP MSE FDR
SCHACE-CV 3.93 1 0.0001  0.2155
SCHACE-eBIC 1.12 1 0.0001  0.0433
PCpluS 2.24 1 0.0001  0.3376
MDSE-QP 2.02 1 0.0019  0.3592
Blip (snr = 8) #CP #TP MSE  FDR
SCHACE-CV 2.81 1 0.0001 0.154
SCHACE-eBIC 1.17 1 0.0001  0.0817
PCpluS 2.19 1 7.54e-5 0.3344
MDSE-QP 2.26 1 0.0019  0.4358
Table 5. Numerical results for Example 5
Cubic (snr = 4) #CP #TP MSE FDR
SCHACE-CV 4.04 1.2 2.5689  0.5641
SCHACE-eBIC 1.54 0.99 2.6071 0.3025
PCpluS 1.38 0.04 4.1853 0.5392
MDSE-QP 13.83 1.42 49809 0.8903
Cubic (snr = 6) #CP #TP MSE FDR
SCHACE-CV 4.14 1.73  0.9396 0.4384
SCHACE-eBIC 2.21 1.72  0.6255 0.21
PCpluS 2.05 0.03 2.1601  0.749
MDSE-QP 15.09 1.64 3.3408 0.8492
Cubic (snr = 8) #CP #TP MSE FDR
SCHACE-CV 3.52 1.94 0.4194 0.2938
SCHACE-eBIC 2.26 1.94 0.218  0.1067
PCpluS 2.01 0.01  1.3045 0.8475
MDSE-QP 11.93 1.8 2.2363 0.6883
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Table 6. Numerical results for Example 6

Step (snr = 4) #CP #TP MSE FDR
SCHACE-CV 3.23 2 0.0088 0.2352
SCHACE-eBIC 2.09 2 0.0044 0.03

PCpluS 2.7 1.99 0.0076 0.1633
MDSE-QP 10.29 2 0.088  0.6922
Step (snr = 6) #CP #TP MSE FDR
SCHACE-CV 2.9 2 0.0037  0.1808
SCHACE-eBIC 2.01 2 0.0018 0.0033
PCpluS 2.94 1.99 0.0034 0.1969
MDSE-QP 9.32 2 0.0833 0.6459
Step (snr = 8) #CP #TP MSE FDR
SCHACE-CV 2.98 2 0.0021 0.1962
SCHACE-eBIC 2.01 2 0.001 0.0033
PCpluS 3.01 1.99 0.002  0.1932
MDSE-QP 9.17 2 0.083  0.6205

examples, we only present SCHACE-eBIC and compare it
with PcPluS and MDSE-QP.

e Revenue Passenger Miles for U.S. Domestic and

International Air Carriers (2000-2022). The rev-
enue passenger mile (RPM) is a transportation industry
measurement of airline traffic and a vital indicator of
the volume of air passenger transportation. It is calcu-
lated by the number of paying passengers multiplied by
the distance traveled. The data set is downloaded from
web site https://fred.stlouisfed.org/series/RPM, which
includes monthly RPMs (in thousands; not seasonally-
adjusted) for U.S. domestic and international airlines
from 2000 to 2022. Figure 3 presents the original data as
well as curve fitting by three methods. We can see from
Figure 3(a) that the RPM decreased greatly in March
2020, which is likely an outcome of restricted global
air travel due to the COVID-19 pandemic. It starts to
recover from May 2021. Plots 3(b)-(d) provide the fitted
curves (blue lines) of the three methods and detected
change points (orange dashed lines). SCHACE-eBIC de-
tects two change points in RPM around March 2020 and
May 2021. Interestingly, it seems that it is immune to
the obvious seasonal trends and gives an excellent esti-
mation of the overall trend. PCpluS doesn’t identify any
change point. The fitted curve by PCpluS demonstrates
the periodicity of passenger transportation. MDSE-QP
fits the curve well and detects two additional change
points in 2004 and 2005.

Monthly average exchange rate change of the
ISK per USD (2004-2015). This data set contains
the monthly average of the USD to ISK exchange rate
between 2004-2015. It has been analyzed in [18]. Plot
(a) in Figure 4 depicts the original data, which clearly
shows the sharp depreciation of the Icelandic kréna oc-
curred during the 2008-2011 Icelandic financial crisis.
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Figure 3. The trends in passenger transportation from 2000 to
2022.
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Figure 4. USD to ISK exchange rate data.

In plot (b), we see that SCHACE-eBIC detects three
jumps, two of which are in 2008. Plot (c) shows that
PCpluS claims a much larger number of jumps. Finally,
as shown in plot (d), MDSE-QP detects one jump in
2008. In summary, SCHACE-eBIC and MDSE-QP pro-
duce similar results and identify jumps that are related
to the Icelandic financial crisis, while PCpluS detects
many change points that are not easy to interpret.

e The GDP of Iran (1960-2020). The GDP per capita
serves as a crucial benchmark for assessing the progress
and well-being of a nation’s economy. It is calculated
by the gross domestic product divided by the mid-year
population. The data set has been demonstrated in
[36] and can be downloaded from the authors’ GitHub
site. The three methods, SCHACE-eBIC, PCpluS, and
MDSE-QP, find one, five, and four change points, re-
spectively. In particular, the change point identified by
SCHACE-eBIC occurred in 1978, which corresponds

(a) The GDP (constant LCU) of Iran (b) Fitted curve by SCHACE-eBIC
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Figure 5. The GDP (constant LCU) of Iran.

to the 1978-1979 Iranian Revolution when the GDP
dropped significantly.

4. DISCUSSION

In this paper, we propose a new approach called SCHACE
for simultaneously detecting jumps in data and estimating
the nonlinear trend between jumps. It unifies the operations
of change-point detection and curve estimation into one
regularization framework and avoids multi-step or iterative
processes. The implementation is straightforward, and more
importantly, it can be generalized to solve similar problems
for multiple sequences. We develop two tuning procedures,
the eBIC and CV, to select smoothing parameters. Based on
our numerical experiments, we would recommend the variant
SCHACE-eBIC in practice for its lower FDR and better
interpretability. We developed an R package that is available
on the web https://github.com/ZhaoyingLuLuLu/SCHACE.
Besides the suggested variants in this paper, the users can
choose the number of folds and the loss function (among
squared error, trimmed squared error, or absolute error loss)
in CV based on their need.
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