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1. Introduction

Discriminant analysis is a standard tool for classification. For example, LDA and QDA aim to find hyperplanes and
quadratic hypersurfaces, respectively, to separate the data points. LDA is one of the most popular techniques for
classification because of its simplicity and robustness against growing dimensionality. Nevertheless, the performance of
LDA relies on the equal covariance assumption. In contrast, QDA allows data heteroscedasticity. The cost of the flexibility
is to estimate more parameters of the QDA model, which requires a large sample size. To make the QDA approach more
robust, Friedman [8] proposed regularized discriminant analysis (RDA), which shrinks the separate covariances of different
classes toward a common pooled covariance that can be further shrunken to a diagonal matrix when necessary. The level
of shrinkage is controlled by tuning parameters, which are often tuned by cross-validation. As a compromise between
LDA and QDA, RDA is a successful classification tool which has been further developed in Guo et al. [10].

Based on Fisher's original idea [7], LDA aims to find a 1D projection which best separates the data. Fisher suggested
the direction that maximizes the ratio of between-class variance to within-class variance. Under the Gaussian and equal
covariance assumption, the population version of LDA rule, or PoLDA for short, is the optimal classification rule. This
implies two facts. First, there is no information loss to project the data onto the PoLDA direction. Second, POLDA minimizes
classification error. These properties of PoLDA do not hold under data heteroscedasticity. In general, it is impossible to
project the data to a 1D subspace without loss of information. Even if a good projection exists, QDA might be a better
choice than LDA to separate the projected data. This motivates us to study the optimal 1D projection for heteroscedastic
data. To elaborate, we will define an optimal direction in which the projected data are separated by QDA with least
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classification error. We propose an algorithm to approximate this optimal direction and show its consistency. With strong
heteroscedasticity, our method can outplay LDA methods. Because the number of parameters in our algorithm is similar
to that of LDA, our method needs a smaller sample size than QDA does.

In this work, we are mainly concerned with data sets with p < n < p?> where n is the sample size and p is the
number of features. In this situation, LDA may be seriously biased because of data heteroscedasticity, and QDA is not
stable numerically due to dimensionality. Our method offers an alternative classification tool for practitioners. We have
to point out that, in the last 20 years, there are many works on discriminant analysis for high and ultra-high dimensional
data, Li and Shao [15], Jiang et al. [12], Wu et al. [23], Gaynanova and Wang [9], just to name a few closely related to QDA.
We refer readers to two review papers [17,19] for more comprehensive summaries of recent developments. A majority
of these works are based on various sparsity assumptions. In contrast, we do not impose sparsity assumptions and our
method shares invariance property with the classical LDA and QDA methods. Therefore, we do not suggest to apply our
method to high dimensional data directly.

The rest of this paper is organized as follows. In Section 2, we define the optimal 1D projection for heteroscedastic
Gaussian data, based on which we propose a new classification rule, QDA by Projection (QDAP). In Section 3, we show
that the direction of optimal 1D projection is estimated consistently by our plug-in estimator, and that our algorithm of
QDAP is invariant under invertible linear transformations. In Section 4, we present numerical results from both simulated
and real data examples. In Section 5, we discuss briefly a few related works and possible extensions.

2. Classification by 1D projection
2.1. Optimal 1D projection for heteroscedastic Gaussian data

Let X be a p-dimensional random vector, and Y € {0, 1} be its class label with X{Y = k} ~ N(u, =), and
Pr(Y = k) = 7y, k = 0, 1, where u,’s are p-dimensional vectors and X;’s are p by p symmetric positive definite matrices.
Define ¥ = my3 + 71X, which is the weighted average of within-class covariances. Note that 3 is the common within-
class covariance for homoscedastic data, and when 3y # X1, it is the expectation of estimated within-class covariance
under a misspecified homoscedastic model. We assume o = 1/2 in this paper for easy presentation.

For a heteroscedastic Gaussian model with known parameters, the QDA rule is optimal in a sense that it minimizes
the classification error for any X € RP. It labels an observation X = x* by class 1 when

x*T(zgl - 21‘1>x* - 2x*T(zglu0 - 21_1#1> SEITAD SR TS >ty T 1n(|20|/|21|) > 0. (1)

The discriminant boundary of the QDA rule is a quadratic hypersurface, determined by p(p + 3)/2 parameters. In
practice, when p is moderate or large, it is difficult to estimate the quadratic boundary accurately due to the large
parameter space. While dimension reduction is a plausible approach to reduce the number of parameters, it is impossible
to reduce the sample space without loss of classification power for general covariances 3y and ;. In contrast, LDA
assumes equal covariance ¥ = Xy = X4, under which the QDA rule (1) reduces to the LDA rule

* T 1 1 Ts—1
=X BT (o — ) + 5(#04‘#1) =7 (o — pq) > 0. (2)
In this special case, the optimal discriminant boundary is a hyperplane with the normal vector
B=3""(1o— my). (3)

The classification error of the optimal rule is

@ (=g — )2 (g — )/2) = @ (/87 28/2).

where @(-) is the cumulative distribution function (CDF) of a standard normal random variable. Note that for any nonzero
vector a, the distribution of a"X|{Y = k} is M(a' uy, o' Ser). It is straightforward to derive that the LDA rule in the
direction & can achieve classification error @(—|a' (g — #£1)|/(2+v/ e ), with a minimal value CD(—w/ﬁTEﬂ/Z) when
o = cf for any ¢ # 0. In summary, the direction of B8 is the optimal direction to project the data to achieve the best
classification accuracy. More importantly, we will not lose any classification power after dimension reduction to this 1D
subspace. This is one of the reasons that the LDA-based approach is more popular than QDA in data analysis. For the
downside, LDA is suboptimal when the data is heteroscedastic. First of all, the LDA direction, calculated by the same
formula B = 7 (ug — p4), With & = m¢%g + 7,34, is not the best direction to project the data onto. In a special case
when pg = p; and $y = I and =; = diag{2, 1, ..., 1}, the direction e; = (1,0,...,0)7 is the best, but 8 = 0. An
estimator to 8 would give a random and uninformative direction. Second, even if the best direction is known, the 1D
LDA is outperformed by the 1D QDA after the projection, when the marginal variances are not equal. While the second
issue is minor and easy to fix, in this paper, we aim to define and estimate the optimal 1D projection for heteroscedastic
Gaussian data.

For a classification rule ¥ : R? — {0, 1}, the classification error is defined by Pr(¥(X) # Y). Let Eq be the classification
error of the QDA rule defined in (1), and E;pa be the classification error of the LDA rule (2) with £ = 7y3¢ + 71X under
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heteroscedasticity. Under a projection of X to a 1D subspace spanned by «, define E(«) and Ejpa(et) by the classification
errors of the QDA and LDA rules for the projected data. Then we have

Eo < min E(a) < minEjpa(a) < Erpa. (4)
a#0 a#0
The equal signs in (4) hold in the special case when =y = 3. In general cases, it is impossible to approach E, empirically

if p?2 > n. Nevertheless, it is easier to estimate the direction that minimizes E(a). We show an explicit formula for E(e)
in the following theorem.

Theorem 1. Assume X|{Y = k} ~ N(py, Z), m = P(Y = k) = 1/2, k = 0, 1. Let m = a' py, 0} = o' Syat, where
k=0,1, « € RP\ {0}. Then the classification error function for 1D QDA E:RP \ {0} — R in (4) satisfies

mog—m
®<_| 020 1|)’ op =01:.:=0,
E(a) = % + %@(‘71(”11;5_0;%00«/2) _ %qb(ﬂl(ml;é"fijﬂoﬁ) (5)
+1g og(mi—mgl+o1vVAaY 1p og(my—mg)—o1v/A o0 # 01,
2 agfrr]z 2 (70276] ’

where A = (mg — my)? + (o — o) In(od /o).

We define a direction ey € argmin,_q E(e) an optimal direction for 1D QDA. The following proposition summarizes
two well-known special cases when close-form solutions can be derived to minimize E(c).

Proposition 1. Under the assumptions in Theorem 1, the following results hold.

DIfS=% =5

o (g — — )
oo = argmin E(at) = argmax( (Ko MT)(’LO 2) ) =3y — mo)- (6)
a0 o0 o' S
(i) If o = 1.
aTEwt aTEOa
op = argmin E(e) = argmax | max{———, . 7
o = argmin E(a) = argm ( (oo aTw}) (7)

If there is a unique maximum among all the eigenvalues of 25121 and 2;120, then ay is the eigenvector corresponding
to the greatest eigenvalue.

When the number of features is moderate, e.g., p < n < p?, the standard QDA is not stable empirically. As an alternative
approach, we attempt to estimate the best 1D subspace for dimension reduction before conducting QDA. Intuitively, this
approach is more robust than the standard QDA because much fewer parameters are needed. In particular, it requires
p — 1 parameters for direction estimation and two more parameters for the quadratic boundary after projection. Thus the
total number of parameters is similar to that of LDA. As a result, our method performs similarly to LDA for homoscedastic
data, and it is more sensitive to data heteroscedasticity than the LDA approach.

The LDA direction in (6) is well-defined and unique up to a scalar when u, # p,. However, the optimal direction
to 1D QDA might not be unique, especially when some symmetric structure occurs in the model. For example, in (7), if
>0 = ¢ol and = = ;I with ¢g # ¢4, every direction is an optimal direction because of symmetry. In general, the optimal
direction would be unique up to a scalar although it is difficult to specify the exact conditions on uniqueness.

2.2. Method and computation

Let {x;'< 1 < i < ng} be iid. observations from X|{Y = k}, k = 0, 1. With Theorem 1, we can approximate the
classification error E(e) with E‘(oe), which is equation (5) plugged in by sample means fi, ft; and sample covariance
matrices 3, 3;. We then find the minimizing direction &g of E‘(a). After projecting all the training data and test data
to &, predictions are made based on the 1D QDA rule of the projected data. We call this procedure QDA by projection
(QDAP), which is summarized in Algorithm 1.

Algorithm 1 QDA by Projection (QDAP)

1: @ < argming.o E(a)

2 x <& x, for1<i<m,k=0,1

3: (23()() < 1D QDA rule derived with projected data {x;{: 1<i<n,k=0,1}
4

: return y < ¢(x) for any new observation X, where x = &/ X
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By Corollaries 2 and 3 in the appendix, E‘(oc) is smooth almost everywhere, and it is uniformly continuous when viewed
as a function defined on the unit sphere. Thus the existence of minimizer is guaranteed by the compactness of the unit
sphere. We implemented a coordinate descent algorithm to conduct the optimization. Proposition 1 provides two good
initial directions, i.e., (6) and (7) to warm start the coordinate descent algorithm. The implementation details are illustrated
in Appendix B.

3. Theoretical properties

Proposition 1 shows that LDA is a special case of our method in the population level. Thanks to the explicit formula (3),
it is straightforward to see that the LDA direction can be consistently estimated. The following theorem shows a
counterpart result for the 1D QDA. As a by-product, it implies our method performs similar to LDA under the equal
covariance assumption.

Theorem 2. Assume tAhat X{Y = k} ~ N(uy, =¢), k = 0, 1. Let {x;{ : 1 > 1} be a sequence of i.i.d. observations from
X|{Y =k}, itg, i, 3G, 27 be sample means and sample covariance matrices calculated with first n observations in each class,
and E"(a) be the empirical classification error, i.e., (5) with the previous estimates plugged in. If E(a) has a unique minimizer
ap = argmin,pp-1 E(e) and assume that &g € argminy pp-1 E"(at), then

An @.S.
oy — o asn — oo.

Since the classification error function E depends only on the direction of vectors in RP \ {0}, it is essentially a function
defined on the p — 1 dimensional real projective space PP~!, which consists of all one dimensional subspaces of RP (see
Corollaries 3 and 4 in appendix for details). Practically, we may simply view « as a unit vector up to a sign. To make
the theorem mathematically rigorous, we use PP~! as the domain of . It is standard in mathematics to denote the one
dimensional subspace spanned by a vector a by equivalent class [e]. But we will omit the brackets for easy presentation
whenever there is no ambiguity.

LDA and QDA share an invariance property, which ensures that the classification result is unaffected by any invertible
affine transformation of the data. To elaborate, if we apply the same nonsingular linear transformation to the training
data and future test data, the prediction results of LDA and QDA will not change. The following proposition indicates that
the invariance property also holds for our method.

Proposition 2. For k =0, 1, let {x} : 1 < i < ny} be i.i.d observations from X|{Y = k}, and X, = b + Ax}, where b € R, A
is a p by p full rank matrix. Let a (&0) be the unique (up to a scalar) minimizer in step 1 of Algorithm 1, with E (E") derived
from training data {x;} ({X,}). Then the following equation holds:

A -1
&0 = C(AT) o,
where c is a nonzero constant.

This implies ¥, = &J X}, = c&JA~'b + c&] X, = c&] A~'b + cx}, where x, is the projected data defined in Algorithm 1,
step 2. That is, the projected data before and after transformation, x; and X, are up to an affine transformation. It implies

Corollary 1. Algorithm 1 is invariant under invertible affine transformations.

Here is a remark on the Gaussian assumption before we move on to the numerical studies. The formulation (5) of the
classification error of QDA with respect to direction « relies on the Gaussian distribution. As a consequence, the definition
of the optimal projection, &g, depends on the Gaussian assumption. Without the Gaussian assumption, the direction e
is still defined as the minimizer of (5), although it might not the be the optimal projection in the sense of minimizing
expected classification error. This is analogous to the story for LDA. Without the Gaussian assumption, LDA still works
and is consistent to its population version, although the population version of LDA is not the Bayesian or optimal rule
any more. In our case, the main theoretical results, i.e., consistency (Theorem 2) and invariance (Proposition 2) still hold
without the Gaussian assumption.

4. Numerical studies
4.1. Method for comparison

In this section, we compare our method, Algorithm 1 (QDAP), with LDA, DSDA [18], QDA, DAP [9], and RDA [10] by
both simulated and real data examples. Besides the classical methods LDA and QDA, RDA is a well known regularization
approach which works well for moderate and high dimensional data. DSDA and DAP are two representatives of modern
high dimensional classification tools. For DSDA, DAP and RDA, we used the R packages provided by the authors with
default settings. For LDA and QDA, we used functions from R recommended package MASS. In simulated data examples,
the oracle method that employs the true model for prediction is included for comparison as a benchmark.
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Table 1

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 1 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle
200 17.41(0.18 1422 (0.16) 1759 (0.17)  19.04 (0.17)  17.46 (0.18)  11.89

) (0.25) ) ( (0.10)
300 15.37 (0.14) (020)  13.41(0.13) 1568 (0.14) 1674 (0.14) 1542 (0.14)  11.93 (0.10)
400 1463 (0.13) 2879 (0.19) 13.08 (0.10)  15.00 (0.13)  15.95 (0.15)  14.65 (0.13)  11.86 (0.11)
) (0.18) ) ( (0.10)
) (0.17) ) ( (0.11)

500  14.07 (0.11 12.84 (0.09) 1429 (0.12)  15.04 (0.12)  14.06 (0.11)  11.72
600  13.64 (0.12 1274 (0.11) 1392 (0.12) 1452 (0.13)  13.67 (0.12)  11.90

Table 2

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 2 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle
200 9.11 966 (0.17) 2652 (0.44) 924 (0.14) 531

(0.14) (0.27) ) ( (0.07)
300  7.67 (0.10) (0.22) ) 804 (0.11) 2006 (0.35)  7.69 (0.10) 527 (0.06)
400 698 (0.09) 1685 (0.17)  7.18 (0.11) 728 (0.10)  17.30 (0.32)  6.99 (0.09)  5.30 (0.07)
(0.08) (0.15) ) ( (0.06)
(0.08) (0.14) ) ( (0.06)

500 6.59 14.91 6.80 (0.08) 15.29 (0.26) 6.57 (0.08) 5.24

600 6.30 6.53 (0.08) 13.72 (0.22) 6.32 (0.08) 5.32

Table 3

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 3 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle

200 3692 (026) 2838 (0.23) 18.12 (0.15) 2466 (027) 1520 (0.18)  17.16 (0.26)  7.94 (0.08)
300 3502 (025) 2529 (020) 1823 (0.13) 2329 (0.24)  12.34 (0.16)  11.76 (0.16)  8.10 (0.09)
400 3314 (0.28)  23.62 (0.19) 1827 (0.13) 2270 (021) 1131 (0.15)  10.41(0.13)  8.20 (0.10)
500 3144 (024) 21.80 (0.14) 1812 (0.13) 2192 (0.15) 1065 (0.12)  9.63 (0.09)  8.21 (0.09)
600 3060 (024) 2043 (0.14) 18.16 (0.13)  21.41(0.16)  10.02 (0.10)  9.18 (0.08)  8.06 (0.07)

4.2. Simulated data

We illustrate seven data generation settings as follows. In the first five models, the data are generated from Gaussian
distributions with parameters specified below.

e Model 1: 3y =% = Ip. Mo = Op, ny = lp/3

e Model 2: =y = »; = B"B + diag(v), where B is a p x p matrix with IID entries from A/(0, 1) distribution, and v is a
p x 1 vector with IID entries from ¢/(0, 1) distribution. py = 0p, p; = 1.

e Model 3: 3¢ =1, 31 = (0y), where oj; =3 and o =2 fori #j. g = 0p, pq = 1.

e Model 4: Same settings as Model 3 except that u; = 0,.

e Model 5: Same settings as Model 3 except that 3 = diag(10, 1,_1), and p, has IID entries from A/(0, 1/p)
distribution.

In the next two models, the data are from multivariate t-distributions with 3 degrees of freedom t3(u;, =), [1].

e Model 6: Same X;’s and p,’s as Model 2.
e Model 7: Same X;’s and p,’s as Model 5.

The number of features is set to p = 50. In each model, sample sizes are set to n € {200, 300, 400, 500, 600} for
training, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating classification
errors.

In Tables 1-7, we report the average classification errors (in percentage) with standard errors, based on 100 replicates
for each scenario. In Models 2, 5, 6 and 7, the model parameters are generated once, and all replicates are independently
generated from the same model.

For Models 1 and 2, the LDA assumption of equal covariance matrices is satisfied. LDA performs well, and our method
performs similarly to LDA. RDA performs better than LDA for Model 1, due to the diagonal covariance structure. For Models
3 and 4, the data are heteroscedastic, and there is only one useful direction for classification. As a result, our method
(QDAP) performs the best. The LDA-based methods performs much worse due to the unequal covariance structure. The
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Table 4

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 4 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle
200 49.88 (0.16 46.44 (0.48) 4961 (0.17)  25.02 (0.77) 1953 (026)  10.10 (0.08)

) (0.22) ) (
300 50.42 (0.15) (020) 4633 (0.44) 4980 (0.17)  20.39 (0.80)  13.93 (0.16)  9.91 (0.08)
400  50.17 (0.18)  25.82 (0.16) 4623 (0.43)  49.88 (0.18)  18.45 (0.72) 1241 (0.12)  9.93 (0.09)
) (0.17) ) (
) (0.13) ) (

500  49.95 (0.17 47.41(0.36)  49.67 (0.15)  18.02 (0.84)  11.71(0.11)  10.16 (0.10)
600  50.09 (0.16 4773 (0.32)  50.04 (0.15)  19.90 (1.15)  11.18 (0.10)  9.96 (0.09)

Table 5

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 5 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle
200 35.82 (0.22 22.36 (0.19) 35.61 (0.27) 35.98 (0.26 23.07 (0.62) 19.72 (0.25) 7.31

(0.22) ( (0.26) ( (0.08)
300 3469 (022) 18.69 (0.15)  34.44 (024) 3483 (0.25) 2033 (0.66)  14.03 (0.17)  7.29 (0.08)
400 3298 (0.17) 1682 (0.13)  32.81(0.19)  3321(0.19) 1863 (0.65) 1253 (0.12)  7.14 (0.08)
(0.16) ( (0.16) ( (0.08)
(0.13) ( (0.16) ( (0.07)

500 32.65 15.58 (0.13) 32.39 (0.17) 32.39 19.06 (0.62) 11.89 (0.11) 7.42

600 32.00 (0.13 14.69 (0.11) 31.79 (0.15) 32.07 (0.16 19.57 (0.70) 11.37 (0.10) 7.25

Table 6

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 6 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle
200 8.69 23.54 (0.26 9.09 (0.15) 24.06 (0.37) 8.78 (0.12) 5.22

(0.12) (0.26) ) ( (0.07)
300  7.40 (0.10)  19.23 (0.19) A1) 7.72(0.11) 1836 (0.29)  7.45 (0.10)  5.09 (0.06)
400 686 (0.09) 1644 (0.14)  7.03 (0.10)  7.16 (0.11)  14.81(026) 690 (0.09)  5.06 (0.07)
(0.08) (0.16) ) ( (0.07)
(0.08) (0.14) ) ( (0.06)

500 6.25 14.78 6.46 (0.09) 13.43 (0.24) 6.28 (0.08) 4.96

600 623 13.57 (0.14 6.37 (0.09) 1168 (0.19) 623 (0.08)  5.13

Table 7

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) for Model 7 over 100 replications. For each replication, different sizes of training sets are
generated, with n/2 samples in each class. A test set with 500 observations in each class is used for calculating
classification errors.

n LDA QDA RDA DSDA DAP QDAP Oracle

200 32.36 (020) 2257 (024) 31.60 (025) 32.08 (0.24) 2372 (055) 2254 (0.26)  6.27 (0.09)
300 3048 (0.18)  19.62 (020)  29.79 (0.18)  30.19 (0.19)  22.05 (0.48)  17.72 (0.16)  6.28 (0.08)
400 2957 (0.17) 17.74 (0.20)  28.97 (0.19) 2950 (0.18)  21.30 (0.45)  16.08 (0.14)  6.36 (0.07)
(0.16) ( (0.16) ( (0.08)
(0.14) ( (0.14) ( (0.07)

500 28.52 16.48 (0.18) 27.97 (0.15) 28.19 21.10 (0.44) 15.43 (0.13) 6.22

600 28.08 (0.14 16.03 (0.21) 27.52 (0.14) 27.99 (0.14 20.87 (0.45) 14.77 (0.11) 6.18

standard QDA suffers from small sample sizes. DAP method performs reasonably well and ranks in the second place. Model
5 represents a more general heteroscedastic setting. In this case, our method is suboptimal to QDA if the sample size is
big enough. However, our method could outperform QDA when the sample size is moderate, due to the bias-variance
trade-off. As a result, our method performs best in Table 5 for all sample sizes in the given range. To demonstrate the
robustness of our algorithm for non-Gaussian data, we consider Models 6 and 7, which are similar to Models 2 and 5
except that multivariate t distributions with 3 degrees of freedom are employed. In Model 6, LDA performs the best,
while our method performs similarly to LDA in terms of both classification error and its standard error. For Model 7,
three QDA-based methods are better than LDA-based methods and our method achieves the best accuracy. We conclude
from these two examples that our method is similar to LDA and other methods in terms of robustness to heavy-tailed
data.

4.3. Real data

In this subsection, five real data sets are used to compare these classification methods. In each real data experiment,
we randomly assigned 60% of the observations into the training set and the rest into the test set. We randomly split each
real data set 300 times, and calculated average classification error along with its standard error.

6



R. Wu and N. Hao Journal of Multivariate Analysis 190 (2022) 104987

Table 8

Average classification errors of QDAP (proposed method) and other classification methods in percentage (with standard
errors in parentheses) over 300 replications. Data set 1: Breast cancer Wisconsin data set. Data set 2: Ultrasonic
flowmeter diagnostics data set. Data set 3: Heart disease data set. Data set 4: Image segmentation data set. Data set
5: Satellite data set.

LDA QDA RDA DSDA DAP QDAP

Data set 1 4,62 (0.06) 5.02 (0.07) 4.23 (0.06) 4.87 (0.06) 4.24 (0.06) 3.30 (0.04)
Data set 2 158 (0.11) NA 34.05 (0.38) 2.94 (0.26) 15.52 (0.41) 0.89 (0.08)
Data set 3 17.81 (0.17) 20.86 (0.18) 17.56 (0.18) 18.00 (0.17) 18.43 (0.19) 17.48 (0.17)
Data set 4 0.72 (0.02) NA 0.78 (0.03) 0.84 (0.03) 1.64 (0.04) 0.69 (0.02)
Data set 5 1.37 (0.02) 1.79 (0.03) 1.38 (0.02) 1.39 (0.02) 1.54 (0.02) 1.32 (0.02)

4.3.1. Breast cancer Wisconsin data set

The breast cancer data set, created by Dr. WIllliam H. Wolberg [21], is available on the UCI Machine Learning
Repository [6]. There are n = 699 instances of patients from Dr. Wolberg’s clinical cases. 10 features are recorded for
each patient, p = 9 of which are the explanatory variables. The 10th feature assigns the patients into two classes —
“benign” and “malignant”.

4.3.2. Ultrasonic flowmeter diagnostics data set

This data set, provided by Gyamfi et al. [11], is available on the UCI Machine Learning Repository [6]. The goal of
this data set is to predict the health status of some flowmeters installed at UK using diagnostic data. There are n = 87
instances of diagnosed flowmeters and the diagnostic data comes in p = 36 dimensions. Two classes are either “Healthy”
or “Installation effects”.

4.3.3. Heart disease data set

This data set, provided by Andras Janosi, William Steinbrunn, Matthias Pfisterer and Robert Detrano, is available on the
UCI Machine Learning Repository [6]. There are n = 303 patients in total. p = 13 different attributes are used to predict
the patients’ angiographic disease status, which could be either 0 (< 50% diameter narrowing) or 1 (> 50% diameter
narrowing).

4.3.4. Image segmentation data

This data set, created by Vision Group, University of Massachusetts, is available on the UCI Machine Learning
Repository [6]. There are 2310 total images in 7 different classes, with 330 images each. To make this a binary classification
problem, we only include class 1 (brickface) and 4 (cement) for analysis. There are 19 features in total. Features 1, 3, 4,
5 are almost constants within the chosen classes, so they were removed from the data, leaving p = 15 features for
classification.

4.3.5. Satellite data set

This data set, provided by Ashwin Srinivasan, is available on the UCI Machine Learning Repository [G]. Satellite images
are labeled into 9 classes. Only class 1 (red soil) and class 3 (gray soil) are considered for our analysis, where there are 1072
images in class 1 and 961 images in class 3. p = 36 attributes (9 pixels times 4 spectral bands) are used for classification.

4.3.6. Results

Average classification errors (in percentage) for these experiments are summarized in Table 8. LDA performs reasonably
well for all data sets, but our method outplays LDA with a margin, especially in the first two data sets. To better understand
the result, we performed classical Box’s M test [2] and a modern high dimensional two-sample covariance test proposed
by Cai et al. [3]. All the p values for the 5 data sets are below 2.68 x 1078, indicating strong evidence of heteroscedasticity.
Nevertheless, the original QDA suffers from low sample sizes, and in particular, fails to work in data sets 2 and 4. As a
QDA based method, our method is more versatile and gives better classification results. It outperforms both LDA and QDA.
RDA performs well except in data set 2. DSDA and DAP, as representatives of sparse methods for high dimensional data,
produce slightly worse results than LDA and our method. Overall, our method performs the best among the algorithms
in comparison.

5. Discussion

In this work, we propose a new dimension reduction and classification method based on QDA. The empirical studies
show that our algorithm performs well for data sets with moderate dimensions and unequal covariance structures. An R
package QDAP implementing our algorithm is available on GitHub [22]. Note that we assume equal prior probability in
this paper for easy presentation, without which all theoretical results still hold with minor modifications. Moreover, the
implementation in our R package does not rely on this assumption.

7
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We discuss here briefly a few related works in the literature. In particular, Gaynanova and Wang [9] propose a
quadratic classification rule via linear dimension reduction called DAP, which works for high dimensional classification
with unequal covariances. Roughly speaking, DAP estimates simultaneously two directions ¥, = = 1§ and ¥, = 21’16
where § = ug— 4, and then employs QDA for classification after projecting the data to these two directions. Empirically,
a sparse method is used for estimating ¥, and ¥,. In the population level, the space spanned by ¥, and ¥, can be very
different from or even orthogonal to our 1D optimal subspace spanned by a9 = arg min, E(e). In short, DAP does not
aim to find such an optimal projection. An advantage of DAP is that it conducts variable selection and works for high
dimensional data. It is an interesting research direction to extend our method in a sparse high dimensional setting. Some
recent works [4,20] propose to ensemble classifiers on random subspaces. Instead of searching for an optimal projection,
these works employ and combine a collection of classifiers on subspaces, which may perform better when a single optimal
projection does not exist. In practice, an asymptotic expansion of the classification error would be helpful to decide sample
sizes for training [ 13]. It is an interesting research direction to study such an expansion for our method. Last but not least, it
is momentous to study classification with dependent observations, for example, time series data [14], spatially correlated
data [16], and clipping of random field [5].
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Appendix A. Proofs and auxiliary results

Proof of Theorem 1. Let ¥, be the 1D Bayesian rule for (a"X, Y). Clearly, a"X|{Y = k} ~ N(my, o). We prove by 2
cases:

(i) oo # o1. Without loss of generality, we may assume oy > o7. In this case,

Yy(x) = 1{x:q(x)>0}(x) = ](T1,r2)(x)’

where
1 1 me m m2  m? o}
q(x) = (—2 - —z)x2 — 2(—(2) — —21>x+ (—g - —21) +ln<—°2) >0
oy 03 o o, o o, o,

is the 1D version of QDA rule (1), and 1, r; = (M08 —mgo?) £ 0901+ A)/(0¢ — o) with A = (mg —my ) + (02 —
o?)In(o?/o?) are the roots of q(x).
The classification error is calculated as follows.

E(a) =%Pr<l]/a(ocTX) —1y = o) + %Pr(%(aTX) —oly = 1)

1 T 10 (T T
=§Pr<r1 <a'X<n|Y =0) + 5Pr(oc X<rora X>nly= 1)

1 _/ri—mg a'X—mg rp—mg
=—Pr < <

2 01 o8] [op] [o5]

1 r,—m 1 rhn—m 1 rn—m 1 rp—m
o) e () e ()
2 09 2 fo7) 2 o1 2 o1

This is exactly the expression of E(e) in Theorem 1 when oy # o73.
(ii) o9 = 01 = o. In this case ¥, reduces to the 1D LDA rule. Assuming mg > my, Ye(X) = 1(—co,(mg+m;)/2)(X). SO

1 NTX — My rn—my OCTX —my T —mq
Y= 0) + 5Pr< < or >

y=1>

0o 0o 0o

E(a) :%Pr(llla(ocTX) — 1|y = o) + %Pr(llla(ocTX) —o)y = 1)

1 m m 1 m m
=§Pr<aTX < Motmiy _ 0) " EPr(oﬁx s Mot m

y=1>

1 OCTX —my mo — My
Y = o) n fPr( >
2 o 20

1 OCTX — My m; —mgp
:fPr( <
2 o 20

Y:l)
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1 m; — 1 — -
lp(Mme) L 1Moo o (Mol
2 20 2 20 20

Similarly, we can show the same formula for my < m;. When my = my, LDA becomes random guess so E(a) = 1/2,
which is again the same as function value ¢(0). O

Continuity and analyticity of classification error function. We present a few properties of the classification error function

E(ar) which are helpful in the proof of Theorem 2.
Assuming r(a) = (mg — my)/o7 and g(a) = op/01, we can rewrite the classification error E(a) as the composition of

E:R x R.g — R and (r(w), g(a)), where

q>( '”) =1
_? s g =

Erg) = 14 lo(SR) - Jo (2l (A1)
ara\ _1g(na) E71E>0
+o () - o (%)

A =1+ (g2 - 1)In(g?).

Proposition 3. The following properties hold for &:

(i) ¥(r.g) € R x R.o, &(r, 8) € (0, 1/2],
(ii) & is continuous,
(iii) & is analytic on R x (R-¢ \ {1}).

Proof.
(i) We prove this by two cases:

(a) If g =1, since 0 < &(—|r|/2) < ®(0) = 1/2, &(r,g) = ®&(—|r|/2) € (0, 1/2].
(b) If g # 1, we can rewrite £ as

£0,8) = 5 + 5((0) — D(E) + 5(@(dh) — B(d)) = 5 + (P(e1) — D)) + 5(9(d) — D),
where ¢; = (r—gv/A)/(g2 — 1), ¢; = (rg =/ A)/(g? — 1), dy = (rg +/A)/(g* — 1), dy = (r +g/A)/(g* — 1).
Since v/A = /r2 + (g2 — 1)In(g?) > Vi =1r,wehavec; —c; = —(WA+1)/(g+1) <0,d; —dy =
—(W/A —1)/(g + 1) < 0, which implies ®(c;) — ®(c;) < 0 and &(d;) — ®(d>) < 0. Thus, &(r, g) < 1/2.

To prove &(r,g) > 0, we investigate separately for 0 < g < landg > 1.When0 < g < 1,
c1—dy = —2g/A/(g*—1)> 0,50 ®(c;)— P(dy) > 0,and &(r, g) > 1/2+(1/2)0+(1/2)(0 — 1) = 0. When
g > 1, we can prove @(d;) — ®(c;) > 0 and get &(r, g) > 0 as well.

Combining these two inequalities, we have £(r, g) € (0, 1/2).

(ii) Let U = Rx(R.o\{1}), then U¢ = R x {1}. € restricted on U is continuous because it is a composition of continuous
functions. Similarly, £ restricted on U°€ is also continuous. Since U is an open subset of R x R. g, £ is continuous at
every point of U. Thus, we only need to prove £ is continuous at every point of U°€.

For any (p, 1) € U, it suffices to show limys(r g)—(p,1) E(T, &) = £(p, 1). There are three cases:

(a) If p =0, then for any (r,g) e U

1.0~ 3| = 3010~ 0t + 5 01— o) <

S(@(e) — ()| + ‘;(cp(du — o(dy)

L L
<—lc; — —|dy —d
_2|C1 C2|+2| 1— da|
The last inequality holds because @ is Lipschitz continuous. Since |¢; — ¢;| = |[VA+7]/(g + 1) — 0 and
ldi —da| = WA —r|/(g+1)— 0as (r,g) — (0, 1) in U, we have limys( g)0.1) E(r, ) = 1/2 = £(0, 1).
(b) If p >0,as(r,g) — (p, 1)in U,
|f—r| (g% — 1)In(g?)
g+l (g+N)|Va+ r!
50 limys(r g)—(p.1) |9 (d1) — @(dy)| — 0 by Lipschitz continuity of ®.
For any (r, g) € U,
r A r—r rg —gJA r A—12
®( zgf) (p<2 g+g2gf)=¢<_ g )
g2 —1 g2 —1 g2 -1 g+1 (gz_l)(ﬂ+r)

|di — da| =

9
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r In(g?
co(— g ED ) (el
g+1 “JA+r 2
when (r, g) — (p, 1). Similar arguments yield limys (- g)—(,,1) P(C2) = @(|p]/2). As a result,
1 1 1

lim Er,g)= lim —(®(c1) — @(c)) + =(@(dy) — @(dy)) + =
elim e = lim (@) = @) + 5 (@(dh) = D(da) +

— ()~ o (")) s L= o () = ooy

(c) For p < 0, by a similar argument to the last case, we have limys( g)—(5,1) E(1, &) = E(p, 1).

(iii) Clearly, R x (R-o \ {1}) is an open subset of R x R.. £ is analytic on R x (R \ {1}) because it is a composition
of analytic functions. O

The properties of £ have direct implications on the properties of E. The next corollary presents a few of them.

Corollary 2. The following results hold for E:RP \ {0} — R:

(i) Ve # 0, E(ar) € (0, 1/2],
(ii) E is continuous,
(iii) E is analytic Lebesgue a.e.

One important property of E is homogeneity of degree 0, i.e., E(ca) = E(e) for any ¢ # 0, which is easy to see by
definition (5). This allows us to characterize E with function E’: PP~! — R through the factorization E = E’ o Q, where E’
is defined as E’([e]) = E(a) and Q : RP \ {0} — PP~ is the canonical projection Q(a) = [et].

Corollary 3. E’ is a well-defined uniformly continuous function.

Proof. If [e] = [B], then &« = cpB for some ¢ # 0. Thus, E'([e]) = E(t) = E(cB) = E(B) = E’([B]). This proves E’ is
well-defined.

PP~ is endowed with the quotient topology induced by Q, that is, U € PP~ is open iff Q ~(U) € RP \ {0} is open. For
any V C R, E"Y(V) = QY(E'~Y(V)) is open since E is continuous. As a result, E’~1(V) must be open as well. This proves
E' is continuous.

Since PP~! is compact, we conclude E’ is uniformly continuous by Heine-Cantor theorem. 0O

With the help of E’ we can prove the following property of E:
Corollary 4. argmin, E(a) is non-empty.

Proof. Since E’:PP~! — R is continuous and its domain is compact, argmin E’ is non-empty by Extreme Value Theorem.
Assume [B] € argminE’ and y is arbitrary element of R \ {0}, then E(8) = E'([B]) < E'([yl) = E(y). So
B € argminE. O

The proof of Corollary 4 shows how we can translate a property of E’ directly to a property of E. In practice, this is
often possible. With some abuse of notation, it is beneficiary to identify E with E’, and write [e] just as e. With this in
mind, we can think of E as a uniformly continuous function defined on projective space PP~ !,

Some lemmas for the proof of Theorem 2. Denote by f, = f if f, is uniformly convergent to f.

Lemma 1. Let S be a set, X, Y be metric spaces. Assume f, f,:S — X, g:X — Y, f, = f. If g is uniformly continuous, then
gofa=gof.

Proof. Let dx and dy be the metrics on X and Y respectively. For any € > 0, there exists a § > 0, such that whenever
dx(x1,x2) < 6, dy(g(x1), g(x2)) < €. For this §, there exists an N > 0, such that whenever n > N, dx(f(s), f.(s)) < § for all
s €S, thus dy(g o f(s), g o fu(s)) < e forallseS. O

Lemma 2. Let X, Y, Z be metric spaces. Assume f,f,: X — Y, g:Y — Z, f, = f. If X is compact, Y is complete, f, f, and g
are all continuous, then gof, = gof.

Proof. Let] = f(X)U (Un“;1fn(x)), we first show [ is totally bounded.

Since X is compact, f is continuous, it must also be uniformly continuous. For any € > 0, there exists § > 0, such that
whenever dx(x, X') < 8, dy(f(x), f(x')) < €/2. Let By(8) be open balls centered at x with radius 8, then X C |, B«(8). By
compactness of X, X is covered by finite number of those balls, say, X C Uﬁ\gl By,(8). Because f, = f, there exists N, > 0,
such that when n > N, dy(f(x), fu(x)) < €/2 for any x € X.

10
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We now claim that f(X) U N1 /n(X)) C U !, Brx(€). To see this, for any x € X, there is an ip € {1,..., Ny}
such that dx(x, x;,) < &, thus dy(f 7)fx,0 < €/2. Moreover if n > Ny, dy(f(x), u(X)) < €/2, so dy(fu(X), f(xi))) <
dy(f(x), f(xiy)) + dy(f(x), fa(x)) < €. This proves that f(X) U (U;“;Nzﬂfn(X)) is covered by finite e-balls.

U’:i] 1(X) is compact and totally bounded because it is finite union of compact sets. As a result, it can also be covered
by finite e-balls. Combining these two collections of e-balls, we have found a finite cover of I. Thus I is totally bounded.

Since Y is complete, I, the closure of I, must be complete and totally bounded, and thus compact. We can restrict g
to I such that g|; becomes uniformly continuous. Obviously, g o f; = glj o fu, 8 of = glj o f. By Lemma 1, we have
gofa=zgof. O

Lemma 3. f and {f,};2, are functions on a compact metric space X. Assume that f is continuous, and has a unique minimizer
X, = argminy f. If f, = f, then x, — X,, where x,, € argminy, f;.

Proof. Suppose x, /4 x,, then there exists an open ball B centered at x,, and a subsequence X,m C B°. Since X
is compact, we can further find a subsequence Xy and t € X such that X, — t. B is closed, thus t € B¢
and t # x,. For any € > O, there is I > 0, such that whenever [ > I, [f(x) faman(x)] < €/2 for all x € X. So
Fnmay)) < FameeyXnmay) + €/2 < famy)(x:) + €/2 < f(x.) + €. This yields f(t) = f(limy Xngmery)) = Hmy f(Xngmay)) < F(x.),
which contradicts w1th the uniqueness of global minimizer of f. Thus, we can conclude x,, — x,. O

Proof of Theorem 2. By strong Law of Large Numbers, we have fLZ &5 My and ﬁ:;} &5 . By Egorov’s theorem, for any
i € N, there exists an event £2; such that P(£27) < 1/i, and fi;(w) = py and ﬁ:ﬂ(w) = ¥ for k = 0, 1 on £2;, where R? is
equipped with Euclidean norm || - || and RP*P is equipped with Frobenius norm || - ||r. Let kmi“ be the smallest eigenvalue
of Z, and A = mln{xm‘“ )\“““} > 0. There exists an integer N > 0 such that whenever n > N, || =, — X}(w)|F < A/2 for
any w € £2;. From now on, we shall fix an w € £2;, and omit “w” for easy presentation.

Consider the following subsequences i}’ = i} "' and £/ = $N* k = 0, 1. We want to show that E"}(a) =

e((mp® =m0, 670 16y converges uniformly to E(et) = 5((m0—m1)/al, oo/o1) ona € SP~1, where my(at) = o iy,
orla) = a T Se, mj(a) = o fLZ op(a) = /aTﬁ:,’:oe, and € is defined as in (A.1). We also use || - ||, to denote the matrix

operator norm induced by Euclidean norm. For any a € SP~ 1,
‘F ’

1 I
‘a S — o 10 )<||a||z”(zk EZ”) ”25||a||2 sz S0

2.n(l (1
\ lleell, = sz —E;Z“HZ < sz—zﬁ”

which has the following consequences:

(i) Since || =y — 2, lr <2/2, "% > o5 — A/2 > A0 — 3/2 > /2. This implies &/'(a) > v/A/2.
(ii) Since ||=y — Ek ||F —0asl— oo, aTE,( o converges to &' S uniformly. /- is uniformly continuous, so a”(')( )
converges to oy(a) uniformly by Lemma 1.

Similarly, we can prove rﬁz(')(a) converges to my(e) uniformly.

Let f = (mo, my, o9, 1) and f' = (mp®, ", 61¥, 67V) be functions from compact SP~! to complete R? x [/A/2, 00)’.
We have proved that fl = fasl — 00, S0 We can apply Lemma 2 and conclude E" = E on SP~'. Since
supjyjepr-1 [E™([e]) — E([at])| = sup,esp-1 [E"V(a) — E(er)| — 0, we also have E"® = E as functions on PP~'. By Lemma 3,
&S() — o and thus &3(50) — ap. Recall this is true for any w € £2; and any i € N, so we have

ay(w) = ap, Yo € U 2.

ieN

Clearly, P((U;cy $2:)°) = 0. As a result, é&; 2w O

Proof of Proposition 2. For k € {0, 1}, since xk = b+Ax., we have i, = (1/m) Y%, X = b+(1/m)AY 1, xi = b+Af,
and Ek (1/(me — 1) Yo% (%, — ﬂk)(xk )" (1/ g — 1) an A( Xk M)(Xk IALk)TAT =ASAT.

Given any directions o and & = (AT) «a, for k =01, m = & p = a'A'(b + AfLy) = a'A7'b + 1y,
ok = &TEQJ,(& =o' A '(ASAT)AT) e = 6y Thus, fo — My = fig — 1y, and this implies that E(a) = E(&) by Eq. (5). In
other words, E and E only differ by a nonsingular linear transformation of the domain, defined by (A .

)~

By assumption, [&] and [&0] are unique minimizers of EandE respectively, so we have [&y] = [(AT

there exists a constant ¢ # 0 such that &, = c(AT)™'ap.

] As a result,

Appendix B. Coordinate descent algorithm

Assume f is a function on RP. Given an initial X, € SP~! C R, a prefixed number of maximal iterations m > 0 and a
tolerance level € > 0, the coordinate descent algorithm adapted for our method is described as the following:

11
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Algorithm 2 Coordinate Descent.

1:
2
3
4:
5
6
7
8

procedure MAIN(f, Xg, M, €)
i<« 0
repeat
Xi1 < ONE_ITER_COORDINATE_DESCENT(f, X;)
i<—i+1
until i = m or |f(x;) — f(Xi—1)| < €
return Xx; and f(x;)
end procedure

LR RN

procedure ONE_ITER_COORDINATE_DESCENT(g, y)
p < length of y
forj < 1,...,pdo
g(*) < 81 - Yim1s %, Vit 1o - Yp)
Yj < ONE_DIM_COORDINATE_DESCENT(g;, ;)
end for
y < /Iyl
return y
end procedure

1:
2
3
4:
5:
6
7
8
9

10:
11:

procedure ONE_DIM_COORDINATE_DESCENT(h, t)

h; < a quadratic approximation of h at t

if h; is concave up then
t < argmin h;

else if h is increasing at t then
t<—t—0.1

else
t<—t+0.1

end if

return t

end procedure

Remark 1. Empirically, the quadratic approximation h; is not always concave up when we update each coordinate. If it
is concave down, we update the coordinate by adding or subtracting a fixed step size of 0.1 to avoid saddle points.

Remark 2. It is possible that the sample covariance matrices £y, 3; are singular. We add a small scalar matrix
(e.g., 1077I,) to 3 and 5.
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