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ABSTRACT The stochastic linear bandit problem has emerged as a fundamental building-block in

machine learning and control, and a realistic model for many applications. By equipping this classi-

cal problem with safety constraints, the safe linear bandit problem further broadens its relevance to

safety-critical applications. However, most existing algorithms for safe linear bandits only consider lin-

ear constraints, making them inadequate for many real-world applications, which often have non-linear

constraints. To alleviate this limitation, we study the problem of safe linear bandits under general (non-

linear) constraints. Under a novel constraint regularity condition that is weaker than convexity, we give

two algorithms with Õ(d
√

T ) regret. We then give efficient implementations of these algorithms for

several specific settings. Lastly, we give simulation results demonstrating the effectiveness of our algo-

rithms in choosing dynamic pricing signals for a demand response problem under distribution power flow

constraints.

INDEX TERMS Safe bandit, safe learning, stochastic linear bandit.

I. INTRODUCTION

The stochastic linear bandit problem is a sequential decision-

making framework where, in each round, a learner chooses

a vector action and then receives a stochastic reward that

is linear with respect to the action [1], [15]. In choosing

these actions, the learner aims to maximize her total payout

over a number of rounds, despite the fact that the underlying

reward functions are unknown. This problem has emerged

as a fundamental building-block in both machine learning

and control, with notable generalizations being linear re-

inforcement learning [19], [47] and adaptive control [2],

[16]. Furthermore, the stochastic linear bandit problem en-

joys a wide variety of real-world applications, including

online advertising [28], clinical trials [37] and the smart

grid [38].

Motivated by the safety-critical nature of many such appli-

cations, the stochastic linear bandit problem has recently been

extended to incorporate safety constraints via the framework

of safe linear bandits, e.g. [4], [30], [33]. This framework

has garnered significant attention in recent years, and has

inspired the development of other safe learning settings such

as safe reinforcement learning [6], [26] and safe online convex

optimization [13]. Despite the significance of the safe linear

bandit problem, most prior work in this area is limited to lin-

ear constraints, which may be inadequate for many real-world

settings. As a concrete example, bandit algorithms for active

demand management in distribution networks (e.g. [38]) need

to ensure satisfaction of power flow constraints, which are

known to be highly non-linear [29] and linear approximations

may be inadequate. In this paper, we aim to fill this gap

by developing safe linear bandit algorithms that can handle

general (non-linear) safety constraints.

In particular, we formulate the problem of safe linear ban-

dits under general constraints, and give two algorithms for

this setting: one that builds on the scaled confidence-set ap-

proach from [30], [33], and one that builds on the scaled

action approach from [17]. By introducing a novel constraint

regularity condition that is weaker than convexity, we show
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that both of these algorithms enjoy (near) optimal Õ(d
√

T )

regret. We then give efficient versions of these algorithms

under several specific settings (see Table 1), and numerically

demonstrate their efficacy in toy settings and a smart grid

example.

A. RELATED WORK

In the following sections, we discuss related work broadly

classified in to the areas of (1) bandits with round-wise

constraints, (2) bandits with cumulative constraints and (3)

safe learning and control generally.

1) BANDITS WITH ROUND-WISE CONSTRAINTS

The distinctive characteristic of bandits with round-wise con-

straints is that the constraints are enforced in each round

(as opposed to cumulatively across all rounds). One such re-

search direction considers constraints on the reward function

without any additional feedback [4], [21], [31]. This differs

from our problem in that we consider a separate constraint

function for which the learner receives feedback. More closely

related to our setting, another research direction considers

an auxiliary linear constraint function Axt ≤ b with separate

feedback Axt + εt [17], [30], [33]. In fact, we consider the

same feedback Axt + εt , except with a more general constraint

Axt ∈ Gt , where Gt is the union of (potentially infinite) convex

sets and therefore the constraint is in general non-linear and

non-convex. Non-linear constraints have also been considered

by [41] of the form f (xt ) ≤ b, where f is a β-smooth func-

tion. However, they require that the constraint is loose on

the optimal action with a gap proportional to the smoothness

constant, i.e. f (x∗) ≤ b − cβ for constant c. This differs from

our setting, which allows for the constraint to be tight on the

optimal action. Lastly, we point out that our prior conference

paper [17] gave algorithms for the special case where the

constraint set Gt is convex, although it did not provide effi-

cient versions of these algorithms. In this work, we extend

the analysis approach in [17] to the setting where Gt is the

union of convex sets, and give efficient implementations for

several special cases (including the case of convex Gt ). One

of the key difficulties in developing efficient implementations

for this setting is that the standard “relaxed-confidence-set”

approach for designing efficient bandit algorithms [15] is only

applicable when the constraints are linear. To address this

challenge, we introduce a technical approach that uses gen-

eralized inequalities (Section VI-A) and the properties of the

norm ball (Section VI-B) to develop efficient algorithms for

several types of non-linear constraints.

2) BANDITS WITH CUMULATIVE CONSTRAINTS

Cumulative constraints have been considered in a number

of different bandit settings, including knapsacks [3], [8],

[12], budget constraints [14], [45], and conservatism con-

straints [20], [46]. There has also been some efforts to give

unifying frameworks to handle cumulative constraints gener-

ally [25], [27]. However, all of these works fundamentally

differ from our setting because they do not guarantee con-

straint satisfaction in every round.

3) SAFE LEARNING AND CONTROL

Constraint satisfaction under uncertainty has also been con-

sidered in the context of control [11], [16], [22], [43],

reinforcement learning [6], [10], [26], optimization [39], [40],

and Gaussian process (GP) bandits [5], [35], [36]. The most

directly relevant is the safe GP bandit setting, which handles

non-linear constraint and cost functions by modeling them as a

GP with a specified covariance kernel. This is a highly general

model that captures many non-linear functions. However, for

many popular kernels, existing approaches suffer exponen-

tially in the problem dimension in both convergence rate and

computation complexity, making them unsuitable for many

high-dimensional settings (such as in the smart grid). Fur-

thermore, existing regret guarantees in the safe GP setting [5]

use the assumption that the constraint is loose on the optimal

action, i.e. h(x∗) < 0 for constraint function h and optimal

action x∗. This assumption is particularly restrictive in the

case of linear costs, where the optimal action is necessarily

in the boundary of the feasible set. In light of the above

discussion, our setting serves as an alternative to GP for han-

dling non-linear constraints, and has several advantages with

respect to safe GP bandits: (a) linear dimension dependence

in the regret, (b) efficient implementations for convex sets

and several types of non-convex sets (see Table 1), (c) regret

guarantees include the case where constraint is tight on the

optimal action.

B. PAPER ORGANIZATION

We specify the problem of safe linear bandits with general

constraints in Section II, and give the model assumptions in

Section III. We then introduce a framework for studying this

problem in Section IV, give suitable algorithms in Section V,

and give efficient versions of these algorithms in Section VI.

Lastly, we demonstrate the numerical efficacy of these meth-

ods in Section VII.

C. NOTATION

We use the following notations: [n] := {1, 2, . . ., n} for natu-

ral number n, Rd
− is the non-positive orthant, M� is transpose

of matrix M, ‖ · ‖ is 2-norm, ‖x‖A :=
√

x�Ax for vector x

and p.d. matrix A, Bp := {x : ‖x‖p ≤ 1} for p ∈ [1,∞], f :

X ⇒ Y is set-valued mapping from X to subsets of Y, A ⊕
B := {a + b : a ∈ A, b ∈ B} and A 
 B := {x : B + x ⊆ A}
for sets A,B.

II. PROBLEM SETUP

In each round t ∈ [T ], the learner receives the action set Xt ⊆
R

d and constraint set Gt ⊆ R
n, chooses an action xt ∈ Xt ,

and then observes the reward feedback yt = θ�xt + εt and

the constraint feedback zt = Axt + ηt . The parameters θ ∈ R
d

and A ∈ R
n×d are unknown and εt ∈ R and ηt ∈ R

n are ran-

dom noise terms.
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The learner needs to ensure constraint satisfaction Axt ∈ Gt

for all t ∈ [T ] with high probability. At the same time, the

learner aims to accumulate a large expected reward. To bench-

mark the performance of the learner in this task, we compare

the actions chosen by the learner to the actions that have the

highest expected reward in each round. In particular, we use

the well-known notion of pseudo-regret,

RT :=
T
∑

t=1

θ�(x�
t − xt ), (1)

where x�
t are the optimal constraint-satisfying actions, i.e.

x�
t : = arg maxx∈Yt

θ�x, (2)

Yt : = {x ∈ Xt : Ax ∈ Gt }. (3)

For brevity, we will use the term regret in place of pseudo-

regret going forward. In order to demonstrate that our pro-

posed approaches are effective, we will aim to establish a high

probability bound on the growth of the regret.

Remark 1: This setting can be extended to the case where

the noisy constraint feedback needs to satisfy the constraint

with high probability, i.e. zt = Axt + ηt ∈ Gt w.h.p. We show

this in Appendix A.

III. ASSUMPTIONS

We first assume that the action set and unknown parameters

are bounded and that the noise is conditionally-subgaussian,

all of which are standard in the stochastic linear bandit litera-

ture, e.g. [1], [15].

Assumption 1 (Bounded Actions and Parameters): We as-

sume that the action set Xt is closed and bounded, and that the

unknown parameters θ, A are bounded. That is, there exists

positive reals D, Sθ , SA such that1 ‖Xt‖ ≤ D, ‖θ‖ ≤ Sθ , and

‖ai‖ ≤ SA for all i ∈ [n], where a�
i denotes the ith row of A.

Let S := max(Sθ , SA).

Assumption 2 (Conditionally-Subgaussian Noise): We as-

sume that εt , ηt are conditionally-subgaussian, i.e. given

variance proxies σ 2
r , σ 2

c , it holds that

E[εt |Ft ] = 0, E[eλεt |Ft ] ≤ exp

(
λ2σ 2

r

2

)

∀λ ∈ R,

E[ηt,i|Ft ] = 0, E[eληt,i |Ft ] ≤ exp

(
λ2σ 2

c

2

)

∀λ ∈ R ∀i ∈ [n],

where Ft := σ (ε1, η1, x1, . . ., εt−1, ηt−1, xt ) is the filtration

defined by all randomness up to the time that yt and zt are

observed.

Then, in Assumption 3, we assume that the origin is a

feasible action, and that the action set is always star-convex.

Knowledge of a feasible point is necessary to ensure feasibil-

ity from the first round and it is often available in practice.

Indeed, real-world systems often have a conservative action

that has been determined previously and therefore can be used

1We use the notation ‖Xt ‖ ≤ D to mean that every element in the image of
Xt under ‖ · ‖ is less than D, i.e. maxx∈Xt

‖x‖ ≤ D.

for this initially feasible action. Also note that the assumption

of a star-convex action set is strictly weaker than convexity

and allows us to interpolate between any action and the origin,

which is critical to our approach. Lastly, we point out that our

setting extends to the case where the known feasible point is

not the origin as discussed in Remark 2. We do not explicitly

consider this setting for ease of notation.

Assumption 3 (Known Feasible Action and Star-convexity):

For all t ∈ [T ], it holds that 0 ∈ Yt and Xt is star-convex, i.e.

αx ∈ Xt for all α ∈ [0, 1] and x ∈ Xt .

Remark 2 (Non-zero Feasible Action): If there are known

(non-zero) feasible actions x̄t ∈ Yt with known constraint val-

ues z̄t = Ax̄t and the action set is star convex about x̄t , we

can reduce the problem to an equivalent one satisfying As-

sumption 3 by passing the algorithm the shifted past actions

xt ← xt − x̄t (for calculations relating to the constraint), the

shifted constraint feedback zt ← zt − z̄t and shifted constraint

set Gt ← Gt − z̄t . The actions chosen by the algorithm are

then shifted back as xt ← xt + x̄t before being played.

Lastly, we assume in Assumption 4 that the constraint set is

the union of (possibly infinite) convex sets that have the origin

in the interior. Roughly speaking, this assumption ensures that

the constraint set Gt is sufficiently “spacious” to allow for

safe and efficient learning of the constraints. More precisely, it

guarantees that by scaling down any point in the set (i.e. mov-

ing it towards the origin), we can create separation between

this scaled point and the boundary of the set. This property

will be critical to our algorithm and analysis, as we will use

this “scaling” to create separation with the set boundary, and

therefore ensure that a given point is safe despite uncertainty

on the constraint function. Furthermore, it is worth pointing

out that by Assumption 4, Gt is necessarily connected, but not

necessarily convex.

Assumption 4 (Constraint is Union of Convex sets): For

all t ∈ [T ], the constraint set Gt is closed and the union of

(possibly infinite) convex sets with the origin in the inte-

rior. Precisely, there exists a set-valued mapping Dt : I ⇒ R
d

from an index set I such that Gt =
⋃

i∈I Dt (i), where Dt (i)

is convex for all i ∈ I and there exists rt (i) ∈ R such that

rt (i)B∞ ⊆ Dt (i) for all i ∈ I with r̄ := inf i∈I,t∈[T ] rt (i) > 0.

We assume that ν := r̄
SA

≤ D.

Remark 3: Our assumption that ν = r̄
SA

≤ D ensures that

the problem is nontrivial. In fact, if ν > D, then it is known

that every x ∈ Xt satisfies the constraints2 and the prob-

lem can be treated as a conventional stochastic linear bandit

problem. Assuming ν ≤ D will also simplify presentation of

results.

IV. PRELIMINARIES

In this section, we give the main tools that we will use to study

the specified problem. In particular, we discuss confidence

bounds in Section IV-A, pessimistic sets in Section IV-B and

optimistic algorithms in Section IV-C.

2Indeed, if r̄ > SAD, then for all x ∈ Xt , it holds that ‖Ax‖∞ =
maxi |a�

i x| ≤ SAD < r ⇒ Ax ∈ r̄B∞ ⊆ Gt .
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A. CONFIDENCE BOUNDS

A central challenge of the specified problem is that the reward

function θ�x and the constraint function Ax are unknown. In

order to ensure both constraint satisfaction and low regret, it

is paramount that we can tightly bound the true functions θ�x

and Ax using past observations of the reward and constraint.

To do so, we follow the standard approach in the stochastic

linear bandit literature [1], [15], and consider high-probability

confidence bounds of the form,

Ax ∈ Ât x + βA
t ‖x‖

V −1
t

B∞, (4)

θ�x ∈ θ̂�
t x + βθ

t ‖x‖
V −1

t
[−1, 1], (5)

for any x ∈ R
d , where θ̂t and Ât are the regularized least-

squares estimator,

θ̂t := V −1
t

t−1
∑

s=1

ysxs, Â�
t := V −1

t

t−1
∑

s=1

z�
s xs,

Vt :=
∑t−1

s=1 xsx
�
s + λI is the Gram matrix (with λ > 0), and

βA
t , βθ

t > 0 are appropriately-chosen hyper-parameters. In

fact, a good choice of βA
t , βθ

t is given in Lemma 1, which

guarantees that (4) and (5) hold with high probability for all

rounds.

Lemma 1 (Theorem 2 in [1]): Let Assumptions 1 and 2

hold. Fix δ ∈ (0, 1) and let3

βθ
t := σr

√

d log

(
1 + (t − 1)D2/λ

δ/(n + 1)

)

+
√

λSθ

βA
t := σc

√

d log

(
1 + (t − 1)D2/λ

δ/(n + 1)

)

+
√

λSA

With this choice of βθ
t , βA

t , let E be the event that (5) and (4)

both hold for all t ∈ N. Then, P(E) ≥ 1 − δ.

B. PESSIMISTIC SETS

Since constraint satisfaction is a central objective of our prob-

lem setting, we will next specify a set of actions that are

guaranteed to satisfy the constraints. In particular, we use the

confidence bounds in (4) and the fact that A(νB) ⊆ Gt (see

Remark 3) to define the set of actions that are guaranteed to

satisfy the constraints, which we call the pessimistic set,

Y
p
t := {x ∈ Xt : Ât x + βA

t ‖x‖
V −1

t
B∞ ⊆ Gt } ∪ (Xt ∩ νB),

which ensures that Y
p
t ⊆ Yt for all t ∈ [T ] under the high

probability event E (defined in Lemma 1). Using a pessimistic

set to ensure constraint satisfaction is a standard technique

in the safe linear bandit literature, e.g. [4], [30], [33]. How-

ever, these existing works are only applicable to the special

case of our setting in which there are linear constraints, i.e.

Gt = b + R−. Lastly, note that without further assumptions

on the problem setting or improved confidence bounds for

3We modify Theorem 2 in [1] by taking union bounds over the rows of A

as well as θ (i.e. n + 1 union bounds).

least-squares estimators, the action set Y
p
t is about as large as

is possible to ensure high probability constraint satisfaction.

C. OPTIMISTIC ALGORITHMS

In this section, we specify a class of algorithms that choose

actions from the pessimistic set and are guaranteed to have

low regret. To do so, we build on the paradigm of optimism

in the face of uncertainty, which is known to be successful in

the stochastic bandit literature, e.g. [1], [7], [23]. This concept

is distilled in the notion of optimistic algorithms as defined

in Definition 1. The key property of an optimistic algorithm

(as we have defined it) is that it chooses actions in such a

way that the the optimal reward θ�x�
t is upper bounded by

the realized reward θ�xt plus a multiple of the weighted norm

at the played actions ‖xt‖V −1
t

, as specified in (6). This property

guarantees low regret, which we prove later in this section.

Definition 1 (Optimistic Algorithm): Let the relevant in-

formation in round t be denoted by Jt = (Gt ,Xt , Ât ,

θ̂t ,Vt , β
A
t , βθ

t ). Then, an optimistic algorithm, denoted by A,

maps Jt to the pessimistic set, i.e. xt = A(Jt ) ∈ Y
p
t , such that

there exists KA, Kθ ≥ 0 where for all t ∈ [T ],

θ�x�
t ≤ θ�xt + (KAβA

t + Kθβ
θ
t )‖xt‖V −1

t
, (6)

under the event E.

When the constraint is loose (i.e. ν > D as discussed in

Remark 3) then the problem is unconstrained, and the classical

LinUCB algorithm [1], [7] provides a valid optimistic algo-

rithm. This is shown in Example 1. The key idea behind the

LinUCB algorithm is that it chooses the action that maximizes

the upper confidence bound on the reward (see (7)). Since the

upper confidence bound is larger than the true reward (with

high probability) and the optimal action is in the pessimistic

set (when the constraint is loose), this algorithm gives an

upper bound on the optimal reward that satisfies Definition 1.

Example 1 (Optimistic Algorithm for Unconstrained Case):

In the case where ν > D and therefore the constraint is known

to be loose, a valid optimistic algorithm is,

A(Jt ) = arg maxx∈Xt
(θ̂�

t x + βθ
t ‖x‖

V −1
t

), (7)

where Kθ = 2 and KA = 0.

Proof: Since ν > D, it holds that x�
t ∈ Yt = Xt = Y

p
t , and

therefore with xt = A(Jt ),

θ�x�
t ≤ max

x∈Yt

(θ̂�
t x + βθ

t ‖x‖
V −1

t
)

= max
x∈Xt

(θ̂�
t x + βθ

t ‖x‖
V −1

t
)

= θ̂�
t xt + βθ

t ‖xt‖V −1
t

≤ θ�xt + 2βθ
t ‖xt‖V −1

t
,

where both inequalities use the confidence bounds

from (5). �

Constructing an optimistic algorithm is more difficult in the

case of general constraints because there needs to be a way

to upper bound the optimal reward, despite the fact that the
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Algorithm 1: ROFUL.

input Gt ,Xt , Ât , θ̂t ,Vt , β
A
t , βθ

t .

1: Construct optimistic set:

Yo
t := {x ∈ Xt : Ât x + βA

t ‖x‖
V −1

t
B∞ ∩ Gt �= ∅}.

2: Compute optimistic action:

x̃t ∈ arg maxx∈Yo
t
(θ̂�

t x + βθ
t ‖x‖

V −1
t

).

3: Compute safe scaling:

γt = max{γ ∈ [0, 1] : γ x̃t ∈ Y
p
t }.

4: return xt = γt x̃t .

optimal action may not yet be in the pessimistic set. The next

section will be dedicated to developing optimistic algorithms

for this problem. In any case, the following proposition shows

that if there is an optimistic algorithm and KA, Kθ do not de-

pend on d or T , then we can guarantee near-optimal Õ(d
√

T )

regret.4

Proposition 1 (Regret of Optimistic Algorithms): Let A be

an optimistic algorithm in the sense of Definition 1. Then,

choosing xt = A(Jt ) for all t ∈ [T ], and λ ≥ max(1, D2),

ensures that,

RT ≤ (Kθβ
θ
T + KAβA

T )

√

2dT log

(

1 +
T

λd

)

,

under the event E.

Proof: See Appendix B. �

V. OPTIMISTIC ALGORITHMS

In this section, we present two different algorithms that

satisfy Definition 1. Specifically, the ROFUL algorithm is

given in Section V-A, and the OptPess algorithm is given in

Section V-B. We provide some discussion on the difference

between the two in Section V-C.

A. ROFUL

The ROFUL algorithm (Algorithm 1) operates by first con-

structing an optimistic set Yo
t , which is an outer approximation

of the feasible set Yt ⊆ Yo
t . It then finds the intermediate

iterate x̃t by maximizing an upper bound on the reward over

the optimistic set, which provides an upper bound on the opti-

mal reward, i.e. θ̂�
t x̃t + βθ

t ‖x̃t‖V −1
t

≥ θ�x�
t . However, x̃t is not

necessarily in the feasible set, so selecting it might violate the

constraints. Instead, ROFUL scales x̃t into the pessimistic set,

which ensures both that the chosen action is safe with high

probability, and that the algorithm gains information in the

direction of the optimistic action.

Remark 4: It may not be immediately apparent that the

calculation of γt in line 3 of Algorithm 1 is well-defined.

However, it follows from Assumption 3 that 0 is in Gt and Xt ,

and therefore 0 ∈ Y
p
t . This ensures that the set {μ ∈ [0, 1] :

μx̃t ∈ Y
p
t } is nonempty (and trivially, closed and bounded)

4To see that the bound in Proposition 1 is Õ(d
√

T ), note that βA
t = Õ(

√
d )

and βθ
t = Õ(

√
d ) from their definitions in Lemma 1.

so the maximum element exists. Also, note that x̃t ∈ Xt , so

by the star-convexity of Xt , it holds that xt = γt x̃t ∈ Xt since

γt ∈ [0, 1].

In the following theorem, we show that ROFUL does in fact

satisfy the requirements of Definition 1.

Theorem 1: ROFUL (Algorithm 1) is a valid optimistic

algorithm in the sense of Definition 1, where KA = 2DSA

r̄
and

Kθ = 2DSθ

r̄
.

The central piece of this theorem is the following lemma,

which bounds the scaling required to go from the optimistic

set in to the pessimistic set. This ultimately gives a bound on

γt and will also be used for the analysis of OptPess in the next

section.

Lemma 2: Consider any x ∈ Yo
t and μ = max{μ ∈ [0, 1] :

μx ∈ Y
p
t }. Then, it holds that,

μ ≥ max

(

r̄

r̄ + 2βA
t ‖x‖

V −1
t

,
r̄

DSA

)

. (8)

Furthermore, setting y = μx gives that,

μ ≥ max

(

1 −
2

r̄
βA

t ‖y‖
V −1

t
,

r̄

DSA

)

. (9)

Proof: First let,

α :=
r̄

r̄ + 2βA
t ‖x‖

V −1
t

⇐⇒ α =
r̄

2βA
t ‖x‖

V −1
t

(1 − α).

Then, we show that αx ∈ Y
p
t . From the definition of Yo

t , there

exists v ∈ B∞ such that,

u := Ât x + βt‖x‖
V −1

t
v ∈ Gt .

Then, since Gt is the union of convex sets {Dt (i)}i, there exists

i ∈ I such that u ∈ Dt (i). Therefore, it holds that

Ât (αx) + βA
t ‖αx‖

V −1
t

B∞

⊆ Ât (αx) + βA
t ‖αx‖

V −1
t

(2B∞ + v)

= Ât (αx) + βA
t ‖αx‖

V −1
t

v + 2βA
t ‖αx‖

V −1
t

B∞

= α
(

Ât x + βA
t ‖x‖

V −1
t

v

)

+ 2αβA
t ‖x‖

V −1
t

B∞

= αu + (1 − α)r̄B∞

⊆ αDt (i) ⊕ (1 − α)r̄B∞

⊆ αDt (i) ⊕ (1 − α)r(i)B∞

⊆ αDt (i) ⊕ (1 − α)Dt (i) = Dt (i) ⊆ Gt ,

where the last equality is from the convexity of Dt (i). Thus,

we have shown that αx ∈ Y
p
t (and α ∈ [0, 1] trivially), so it

follows that

μ = max{μ ∈ [0, 1] : μx ∈ Y
p
t } ≥ α. (10)
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Also, it holds that (νB) ∩ Xt ⊆ Y
p
t and therefore

min
(

ν
‖x‖ , 1

)

x ∈ Y
p
t so,

μ ≥ min

(
ν

‖x‖
, 1

)

≥ min
( ν

D
, 1
)

=
r̄

DSA

, (11)

where we use the fact that ν ≤ D from Assumption 4. Com-

bining (10) and (11) gives the inequality (8).

Then, noting that y = μx and therefore ‖y‖
V −1

t
= μ‖x‖

V −1
t

,

we can rearrange (10) to get that,

r̄ ≤ μr̄ + μ2βA
t ‖x‖

V −1
t

= μr̄ + 2βA
t ‖y‖

V −1
t

⇐⇒ μ ≥ 1 −
2

r̄
βA

t ‖y‖
V −1

t
.

(12)

Combining (11) and (12) gives the inequality (9). �

With this, we then give the proof of Theorem 1.

Proof of Theorem 1: First, note that we can apply (9) in

Lemma 2 with x ← x̃t , μ ← γt and y ← xt to get that,

γt ≥ max

(

1 −
2

r̄
βA

t ‖xt‖V −1
t

,
r̄

DSA

)

. (13)

Then, consider the decomposition,

θ�(x�
t − xt ) = θ�(x�

t − x̃t )
︸ ︷︷ ︸

Term I

+ θ�(x̃t − xt ).
︸ ︷︷ ︸

Term II

When E holds, we can bound Term I as,

Term I = θ�(x�
t − x̃t )

≤ θ̂�
t x̃t + βθ

t ‖x̃t‖V −1
t

− θ�x̃t

= (θ̂t − θ )�x̃t + βθ
t ‖x̃t‖V −1

t

≤ 2βθ
t ‖x̃t‖V −1

t

≤ 2βθ
t

‖xt‖V −1
t

γt

≤
2DSA

r̄
βθ

t ‖xt‖V −1
t

,

where the last inequality applies γt ≥ r̄
DSA

from (13).

As for Term II, it holds (almost surely) that,

Term II = θ�(x̃t − xt )

= θ�x̃t (1 − γt )

≤ SAD(1 − γt )

≤
2Sθ D

r̄
βA

T ‖xt‖V −1
t

,

where we use γt ≥ 1 − 2
r̄
βA

t ‖xt‖V −1
t

from (13).

Therefore, ROFUL satisfies Definition 1 with KA = 2DSA

r̄

and Kθ = 2Sθ D
r̄

. �

B. OPTPESS

The OptPess algorithm (Algorithm 2) performs a maximiza-

tion directly on the pessimistic set. To provide an upper bound

Algorithm 2: OptPess.

input Gt ,Xt , Ât , θ̂t ,Vt , β
A
t , βθ

t .

1: Optimistic-pessimistic update:

xt ∈ arg maxx∈Yp
t
(θ̂�

t x +
(

βθ
t + 2Sθ D

r̄
βA

t

)

‖x‖
V −1

t
).

2: return xt .

on the optimal reward, it incorporates both the uncertainty

on the reward βθ
t ‖x‖

V −1
t

and the uncertainty on the constraint

βA
t ‖x‖

V −1
t

into this maximization. The idea of expanding the

confidence bounds in the maximization was proposed by [33]

in the UCB case and [30] in the Thompson Sampling case.

Here, we extend the approach to non-linear constraints (i.e.

Gt �= R−) and differentiated confidence radii for costs and

constraints (i.e. βA
t �= βθ

t ).

In the following theorem, we show that OptPess is an opti-

mistic algorithm in the sense of Definition 1.

Theorem 2: OptPess (Algorithm 2) is a valid optimistic

algorithm in the sense of Definition 1, where KA = 2DSA

r̄
and

Kθ = 2.

Proof: First note that since x�
t ∈ Yt ⊆ Yo

t under Econf, we

can apply Lemma 2 with x ← x�
t to get that αx�

t ∈ Y
p
t where,

α =
1

1 + 2
r̄
βA

t ‖x�
t ‖V −1

t

.

Therefore, from the maximization in Algorithm 2, it holds

under Econf that,

θ̂�
t xt +

(

βθ
t +

2Sθ D

r̄
βA

t

)

‖xt‖V −1
t

≥ θ̂�
t (αx�

t ) +
(

βθ
t +

2Sθ D

r̄
βA

t

)

‖αx�
t ‖V −1

t

= α

(

θ̂�
t x�

t +
(

βθ
t +

2Sθ D

r̄
βA

t

)

‖x�
t ‖V −1

t

)

≥ α

(

θ�x�
t +

2Sθ D

r̄
βA

t ‖x�
t ‖V −1

t

)

≥ αθ�x�
t

(

1 +
2

r̄
βA

t ‖x�
t ‖V −1

t

)

= θ�x�
t ,

where the second inequality uses the confidence bounds (5),

and the third inequality uses that Sθ D ≥ ‖θ‖‖x�
t ‖ ≥ θ�x�

t .

Applying (5) again gives that,

θ�x�
t ≤ θ�xt +

(

2βθ
t +

2Sθ D

r̄
βA

t

)

‖xt‖V −1
t

which satisfies Definition 1 with KA = 2Sθ D
r̄

and Kθ = 2. �

C. COMPARISON OF ROFUL AND OPTPESS

One of the key differences between the two algorithms is that

ROFUL requires solving an optimization problem over the

optimistic set Yo
t , while OptPess requires solving an optimiza-

tion problem over the pessimistic set Y
p
t . When the action set

Xt and the constraint set Gt are convex, the pessimistic set Y
p
t
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TABLE 1. Summary of efficient implementations.

can be written as a convex set (see Appendix C) because it can

then be specified as the intersection of convex sets. As a result,

OptPess can be implemented efficiently (with modification)

in such settings, which we discuss further in the following

section.

However, even when Xt and Gt are convex, the optimistic

set Yo
t is not generally convex because it would be the union

of convex sets. Nonetheless, we find that the optimistic set

is amenable to efficient implementations when Gt is a non-

convex set that can be represented as the union of certain

convex sets. This is because, unlike for the pessimistic set, we

can interchange the unions that define the constraint set and

the unions that define the optimistic set. As a result, ROFUL

can be implemented efficiently (with modification) when the

constraint set is the union of certain types of convex sets,

which we discuss further in the next section.

It is also worth pointing out that [17] observed empiri-

cal differences in performance between ROFUL and OptPess

in the case of linear constraints.5 In particular, they found

that ROFUL performs better than OptPess in certain set-

tings where the constraint is looser. Lastly, we note that

both algorithms require knowledge of the problem parameters

D, SA, Sθ , σr, σc, r̄.

VI. EFFICIENT IMPLEMENTATIONS

In this section, we study novel efficient implementations of

the developed algorithms. Note that as specified in the last

section, neither ROFUL and OptPess yield efficient imple-

mentations in general. As such, we give versions of these

algorithms that can be implemented efficiently for the several

special cases detailed in Table 1.

A. UNION OF CONVEX CONES

In this section, we consider the case where Xt is convex and

Gt is the union of a finite number of convex cones, i.e.

Gt =
⋃

i∈I
Di, where Di = Ki + bi, (14)

where bi ∈ R
n, I is a finite set, and Ki are proper cones.6

5Note that [17] uses the name GenOP to refer to the algorithm that we call
OptPess.

6A cone is called proper if it is convex, closed, has nonempty interior, and
is pointed [9].

To handle this setting, we use ROFUL (Algorithm 1) with

the following computation to find x̃t in line 2:

max
(i, j,p,ξ ,ζ )∈I×[d]2×{−1,1}2

f (i, j, p, ξ , ζ ),

f (i, j, p, ξ , ζ ) := max
x∈Xt

(

θ̂�
t + ζ

√
dβθ

t v
−1/2
t,p

)

x

s.t.

(

Ât −
ξ
√

dbiβ
A
t

ri

v
−1/2
t, j

)

x ∈ Di

(15)

We use v
−1/2
t,p to denote the pth row of V

−1/2
t . Then, we

compute γt in line 3:

γt = max

(

r̄2

r̄2 + 2b̄
√

dβA
t ‖V

−1/2
t x̃t‖∞

,
r̄

DSA

)

. (16)

The optimization problem (15) requires solving 4|I|d2 con-

vex programs. In the following theorem, we show that using

ROFUL with (15) yields Õ(d3/2
√

T ) regret.

Theorem 3: Playing ROFUL (Algorithm 1) with the max-

imizer of (15) for x̃t in line 2 and (16) instead of line 3 is

an optimistic algorithm (in the sense of Definition 1) with

KA = 2DSAb̄
√

d

r̄2 and Kθ = 2Sθ

√
d

r̄
, where b̄ := maxi∈I ‖bi‖∞.

In order to prove Theorem 3, we will first establish an

equivalent form for the feasible set of (15) that will allow for

analysis. To do so, we define the notation for the feasible set

for x in (15) as,

Ỹ
o

t :=
⋃

i∈I
ξ∈{−1,1}

j∈[d]

{

x ∈ Xt : Ât x −
ξ
√

dbiβ
A
t

ri

v
−1/2
t, j x ∈ Di

}

.

(17)

Then, in the following, we establish an equivalent form for Ỹ
o

t .

Lemma 3: The set Ỹ
o

t , defined in (17), can be written as,

Ỹ
o

t =
⋃

i∈I

{

x ∈ Xt :

(

Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Wi

)

∩ Di �= ∅
}

,

(18)

where ‖x‖∞
V −1

t

:= ‖V
−1/2

t x‖∞ and,

Wi := conv(riB∞ ∪ {−bi} ∪ {bi}).

Before proving Lemma 3, we first give some properties of

the set Wi that will be useful for analysis. We will make use

of the notion of generalized inequality, denoted by x �K y
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with proper cone K and defined by y − x ∈ K. See Section

2.4 in [9] for more details on generalized inequalities.

Lemma 4 (Properties of Wi): It holds that,

1) Wi is symmetric, i.e. Wi = −Wi,

2) Wi ⊆ Ki + bi,

3) −bi is a maximum element of Wi with respect to �Ki
,

i.e. −bi �Ki
z for all z ∈ Wi.

Proof: Property 1) holds because,

−Wi = −conv(riB∞ ∪ {−bi} ∪ {bi})

= conv(−riB∞ ∪ {bi} ∪ {−bi})

= conv(riB∞ ∪ {bi} ∪ {−bi}) = Wi.

Property 2) holds because,

riB∞ ⊆ Ki + b (Assumption 4),

bi = 0 + bi ∈ Ki + bi (0 ∈ Ki ),

− bi = 2(0 − bi ) + bi ∈ Ki + bi (0 − bi ∈ Ki ).

Since Wi is the convex hull of these terms and Ki + bi is

convex, it holds that Wi ⊆ Ki + bi.

Property 3) holds because −bi ∈ Wi and,

Wi = conv(riB∞ ∪ {−bi})

⊆ −conv(riB∞ ∪ {bi})

⊆ −bi − Ki,

and therefore, from the definition of maximum element (e.g.

Definition 4.8 in [18]), −bi is a maximum element with re-

spect to �Ki
. �

With this established, we prove Lemma 3 in the following.

Proof of Lemma 3: First, note that, because Wi is symmet-

ric and convex,

‖x‖∞
V −1

t

Wi = max
ξ∈{−1,1}

j∈[d]

(ξv
−1/2
t, j x)Wi =

⋃

ξ∈{−1,1}
j∈[d]

ξv
−1/2
t, j xWi.

(19)

Then, note that −bi is a maximum element of Wi (via Lemma

4). Therefore, there exists ξ∗, j∗ such that −ξ∗v
−1/2
t, j∗

xbi is the

maximum element of ‖x‖∞
V −1

t

Wi, and, at the same time, it

holds that ξv
−1/2
t, j xbi ∈ ‖x‖∞

V −1
t

Wi for all ξ, j (due to (19)).

It follows that for any c ∈ R
n,

∃(ξ, j) ∈ {−1, 1} × [d] : c �Ki
−ξv

−1/2
t, j xbi

⇐⇒ ∃w ∈ Wi : c �Ki
‖x‖∞

V −1
t

w.
(20)

With this, we can show that the condition defining (17) is

equivalent to the condition defining (18). In particular, choos-

ing c = ri (bi−Ât x)√
dbiβ

A
t

in the sense of (20), it holds that,

∃(ξ, j) ∈ {−1, 1} × [d] : Ât x −
ξ
√

dbiβ
A
t

ri

v
−1/2
t, j x ∈ Ki + bi

⇐⇒ ∃(ξ, j) ∈ {−1, 1} × [d] : c �Ki
ξv

−1/2
t, j x

⇐⇒ ∃w ∈ W : c �Ki
‖x‖∞

V −1
t

w

⇐⇒
(

Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Wi

)

∩ Di �= ∅,

which is the defining condition of (18). �

Next, we show that Ỹ
o

t can be “sandwiched” between two

sets, which will facilitate the regret analysis.

Lemma 5: It holds that Ỹ
o

t defined (18) satisfies the follow-

ing,

Yo
t ⊆ Ỹ

o

t

⊆
{

x ∈ Xt :

(

Ât x +
b̄
√

d

r̄
βA

t ‖x‖∞
V −1

t

B∞

)

∩ Gt �= ∅
}

,

where b̄ = maxi∈I ‖bi‖∞ and r̄ = mini∈I ri.

Proof: First, note that by construction of Wi it holds that,

B∞ ⊆
1

ri

Wi ⊆
‖bi‖∞

ri

B∞ ⊆
b̄

r̄
B∞.

Also, it holds that ‖x‖
V −1

t
≤

√
d‖x‖∞

V −1
t

. It follows that,

Yo
t = {x ∈ Xt : Ât x + βA

t ‖x‖
V −1

t
B∞ ∩ Gt �= ∅}

⊆ {x ∈ Xt : Ât x +
√

dβA
t ‖x‖∞

V −1
t

B∞ ∩ Gt �= ∅}

=
⋃

i∈I
{x ∈ Xt : Ât x +

√
dβA

t ‖x‖∞
V −1

t

B∞ ∩ Di �= ∅}

⊆
⋃

i∈I

{

x ∈ Xt : Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Wi ∩ Di �= ∅
}

= Ỹ
o

t

⊆
⋃

i∈I

{

x ∈ Xt : Ât x +
b̄
√

d

r̄
βA

t ‖x‖∞
V −1

t

B∞ ∩ Di �= ∅
}

⊆
{

x ∈ Xt : Ât x +
b̄
√

d

r̄
βA

t ‖x‖∞
V −1

t

B∞ ∩ Gt �= ∅
}

,

completing the proof. �

With this established, we prove Theorem 3 in the following.

Proof of Theorem 3: First, note that (15) is equivalent to,

max
x∈Ỹo

t
p∈[d]

ζ∈{−1,1}

(

θ̂�
t + ζ

√
dβθ

t v
−1/2
t,p

)

x

= max
x∈Ỹo

t

θ̂�
t x +

√
dβθ

t ‖x‖∞
V −1

t

≥ max
x∈Ỹo

t

θ̂�
t x + βθ

t ‖x‖
V −1

t

≥ max
x∈Yo

t

θ̂�
t x + βθ

t ‖x‖
V −1

t
≥ θ�x�

t ,

(21)

where we use Lemma 5 and condition on E. Therefore, it holds

that θ̂�
t x̃t +

√
dβθ

t ‖x̃t‖∞
V −1

t

≥ θ�x�
t conditioned on E.
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Then, also note that, with Lemma 2 and the substitution

βA
t ← b̄

√
d

r̄
βA

t , it holds that xt = γt x̃t is in the set,
{

x ∈ Xt :

(

Ât x +
b̄
√

d

r̄
βA

t ‖x‖∞
V −1

t

B∞

)

⊆ Gt

}

∪ (Xt ∩ νB),

which is a subset of Y
p
t . Therefore, it holds that xt ∈ Y

p
t . The

rest of Theorem 1 then applies with the substitution βθ
t ←√

dβθ
t . This results in ROFUL being an optimistic algorithm

(in the sense of Definition 1) with KA = 2DSAb̄
√

d

r̄2 and Kθ =
2Sθ

√
d

r̄
. �

B. UNION OF NORM BALLS

In this section, we consider the case where Xt is convex and

Gt is the union of a finite number of norm balls, i.e.

Gt =
⋃

i∈I
Di where Di = {z ∈ R

n : ‖z‖Di
≤ 1},

where ‖ · ‖Di
is a norm for all i ∈ I. Equivalently, we can say

that Di is a compact, convex, and symmetric set that contains

0 and has a nonempty interior.

For this setting, we use ROFUL with the following compu-

tation to find x̃t in line 2:

max
(i, j,p,ξ ,ζ )∈I×[d]2×{−1,1}2

f (i, j, p, ξ , ζ ),

f (i, j, p, ξ , ζ ) := max
x∈Xt

(

θ̂�
t + ζ

√
dβθ

t v
−1/2
t,p

)

x

s.t. ‖Ât x‖Di
−

ξ
√

dβA
t

ri

v
−1/2
t, j x ≤ 1

(22)

We use v
−1/2
t,p to denote the pth row of V

−1/2
t . Then, we

compute γt in line 3:

γt = max

(

r̄2

r̄2 + 2C
√

dβA
t ‖V

−1/2
t x̃t‖∞

,
r̄

DSA

)

. (23)

We use the notation C := maxi∈I maxz∈Di
‖z‖∞. Solving (22)

requires solving 4|I|d2 convex programs. Now, we state the

regret guarantees obtained by using (22) with ROFUL.

Theorem 4: Playing ROFUL (Algorithm 1) with the max-

imizer of (22) for x̃t in line 2 and (23) in place of line 3 is

an optimistic algorithm (in the sense of Definition 1) with

KA = 2DSAC
√

d

r̄2 and Kθ = 2Sθ

√
d

r̄
.

Same as in the previous section, the key difficulty in prov-

ing Theorem 4 is to establish an equivalent form of the feasible

set that allows for analysis. Reusing notation, we define the

feasible set in (22) as,

Ỹ
o

t =
⋃

i∈I

⋃

ξ∈{−1,1}
j∈[d]

{

x ∈ Xt :

‖Ât x‖Di
−

ξ
√

dβA
t

ri

v
−1/2
t, j x ≤ 1

}

, (24)

where v
−1/2
t,i is the ith row of V

−1/2
t .

We will then give an equivalent formulation of this set.

Lemma 6: It holds that Ỹ
o

t defined in (25) is equal to,

Ỹ
o

t :=
⋃

i∈I

{

x ∈ Xt : Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Di ∩ Di �= ∅
}

.

(25)

To prove this lemma, we first state the following fact, which

gives us a closed-way to check the satisfaction of the norm

constraint.

Fact 1: For arbitrary norm ‖ · ‖† and y ∈ R
n, it holds that

min
‖x‖†≤1

‖x − y‖† = max(‖y‖† − 1, 0)

Proof: We denote the minimizer as x∗. If ‖y‖† ≤ 1, then

choosing x∗ = y minimizes as the norm is non-negative. If

‖y‖† > 1, then it holds for any feasible x that,

‖y‖† = ‖y − x + x‖† ≤ ‖y − x‖† + ‖x‖† ≤ ‖y − x‖† + 1.

This implies that the objective is lower bounded by ‖y‖† − 1

for any feasible x which is attained by choosing x∗ = y
‖y‖†

. �

With this in hand, we prove Lemma 6 in the following.

Proof of Lemma 6: We show that the condition that defines

(25) is equivalent to the condition that defines (24). First, note

that when x = 0 it is immediate, so we take x �= 0 for the rest

of the proof. In particular,

Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Di ∩ Di �= ∅

⇐⇒ ∃ w ∈ Ât x +
√

d

ri

βA
t ‖x‖∞

V −1
t

Di : ‖w‖Di
≤ 1

⇐⇒ min
w∈Ât x+

√
d

ri
βA

t ‖x‖∞
V −1

t

Di

‖w‖Di
≤ 1

⇐⇒ min
y∈Di

∥
∥
∥
∥
∥

Ât x +
√

d

ri

βA
t

∥
∥
∥
∥
∥

x‖∞
V −1

t

y‖Di
≤ 1

⇐⇒
√

d

ri

βA
t ‖x‖∞

V −1
t

min
y∈Di

∥
∥
∥
∥
∥
∥
∥

−Ât x
√

d
ri

βA
t ‖x‖∞

V −1
t

− y

∥
∥
∥
∥
∥
∥
∥
Di

≤ 1

⇐⇒ max

(

‖Ât x‖Di
−

√
d

ri

βA
t ‖x‖∞

V −1
t

, 0

)

≤ 1

⇐⇒ ‖Ât x‖Di
−

√
d

ri

βA
t ‖x‖∞

V −1
t

≤ 1

⇐⇒ min
ξ∈{−1,1}

j∈[d]

(

‖Ât x‖Di
−

ξ
√

dβA
t

ri

v
−1/2
t, j x

)

≤ 1,

where we use Fact 1 in the third-to-last line. The condition in

the last line is the same as in (24). �

Finally, we prove Theorem 4 in the following.
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Proof of Theorem 4: First note that, similar to Lemma 5, it

holds for any x ∈ R
d that,

‖x‖
V −1

t
B∞ ⊆

√
d‖x‖∞

V −1
t

B∞

⊆
√

d

ri

‖x‖∞
V −1

t

Di ⊆
√

dC

r̄
‖x‖∞

V −1
t

B∞.

And therefore,

Yo
t =

⋃

i∈I
{x ∈ Xt : (Ât x + βA

t ‖x‖
V −1

t
B∞) ∩ Di �= ∅}

⊆
⋃

i∈I
{x ∈ Xt :

(

Ât x + βA
t

√
d

ri

‖x‖∞
V −1

t

Di

)

∩ Di �= ∅}

= Ỹ
o

t

⊆
⋃

i∈I
{x ∈ Xt :

(

Ât x + βA
t

√
dC

r̄
‖x‖∞

V −1
t

B∞

)

∩ Di �= ∅}

Then, using similar reasoning as in (21), it holds that θ̂�
t x̃t +√

dβθ
t ‖x̃t‖∞

V −1
t

≥ θ�x�
t conditioned on E.

Then, by applying Lemma 2 with the substitution βA
t ←

b̄
√

dC
r̄

βA
t , we know that xt = γt x̃t is in the set,

{

x ∈ Xt :

(

Ât x + βA
t

√
dC

r̄
‖x‖∞

V −1
t

B∞

)

⊆ Gt

}

∪ (νB ∩ Xt ),

which is a subset of Y
p
t . Therefore, xt ∈ Y

p
t . The rest of

Theorem 1 then applies with the substitution βθ
t ←

√
dβθ

t .

This results in ROFUL being an optimistic algorithm (in the

sense of Definition 1) with KA = 2DSAC
√

d

r̄2 and Kθ = 2Sθ

√
d

r̄
.�

C. CONVEX SETS

In this section, we consider the case where both Xt and Gt

are convex. To handle this setting, we use OptPess with the

following calculation for xt :

max
(p,ζ )∈[d]×{−1,1}

f (p, ξ ),

f (p, ξ ) := max
x∈Xt

(

θ̂�
t + ζ

√
d

(

βθ
t +

2nSθ DβA
t

r̄

)

v
−1/2
t,p

)

x

s.t.
(

Ât + ξn
√

dβA
t ekv

−1/2

t,j

)

x ∈ Gt

∀(k, j, ξ ) ∈ [n] × [d] × {−1, 1} (26)

We use v
−1/2
t,p to denote the pth row of V

−1/2
t . Solving this

requires 2d convex programs, where each program has 2dn

constraints. We give the regret guarantees in the following.

Theorem 5: Playing the maximizer of (26) in each round

is an optimistic algorithm (in the sense of Definition 1) with

KA = 2DSAn
√

d
r̄

and Kθ = 2
√

d and therefore enjoys regret of

Õ(nd3/2
√

T ).

Same as in the previous section, we will establish an equiv-

alent form of the feasible set in (26), which we denote as,

Ỹ
p

t =
⋂

k∈[n]
ξ∈{−1,1}

j∈[d]

{

x ∈ Xt : Ât x + ξn
√

dβA
t v

−1/2
t, j xek ∈ Gt

}

,

where v
−1/2
t, j is the jth row of V

1/2
t . Then, we state another

form that allows for easier analysis.

Lemma 7: It holds that,

Ỹ
p

t = {x ∈ Xt : Ât x + n
√

dβA
t ‖x‖∞

V −1
t

B1 ⊆ Gt }. (27)

Proof: It holds that,

Ât x + n
√

dβA
t ‖x‖∞

V −1
t

B1 ⊆ Gt

⇐⇒ Ât x + n
√

dβA
t max

ξ∈{−1,1}, j∈[d]
(ξv

−1/2
t, j x)B1 ⊆ Gt

⇐⇒ Ât x + n
√

dβA
t ξv

−1/2
t, j xB1 ⊆ Gt , ∀ξ, j

⇐⇒ Ât x + n
√

dβA
t ξv

−1/2
t, j xek ⊆ Gt, ∀ξ, j, k,

where the second line uses the fact that we can write ‖z‖∞ =
maxξ∈{−1,1}, j∈[d] ξz j , and the last line holds because for con-

vex set D, it holds that B1 ⊆ D ⇐⇒ e1, . . ., en ∈ D. To see

that B1 ⊆ D ⇐⇒ e1, . . ., en ∈ D, first note that ⇒ is imme-

diate, and then ⇐= holds because B1 = conv(e1, . . ., en) and

therefore any b ∈ B1 is convex combination of e1, . . ., en and

therefore must be in D given convexity. �

With this, we then give the proof of Theorem 5.

Proof of Theorem 5: First, note that the Ỹ
p

t ⊆ Y
p
t as it holds

for all x ∈ Ỹ
p

t that,

Ât x + βA
t ‖x‖

V −1
t

B∞ ⊆ Ât x +
√

dβA
t ‖V

−1/2
t x‖∞B∞

⊆ Ât x + n
√

dβA
t ‖V

−1/2
t x‖∞B1 ⊆ Gt .

It follows that all chosen actions satisfy xt ∈ Ỹ
p

t ⊆ Yt .

Also, it holds that,

max
(p,ζ )∈[d]×{−1,1}

f (p, ξ )

= max
x∈Ỹp

t
p∈[d]

ζ∈{−1,1}

(

θ̂�
t + ζ

√
d

(

βθ
t +

2nSθ DβA
t

r̄

)

v
−1/2
t,p

)

x

= max
x∈Ỹp

t

θ̂�
t x +

√
d

(

βθ
t +

2nSθ DβA
t

r̄

)

‖x‖∞
V −1

t

.

Then, note that the steps of Theorem 2 apply with the substitu-

tion βθ
t ←

√
dβθ

t and βA
t ← n

√
dβA

t . This immediately gives

that KA = 2DSAn
√

d
r̄

and Kθ = 2
√

d . �

D. FINITE STAR-CONVEX ACTION SET

In this section, we consider the case where Xt is a finite star-

convex set, i.e.,

Xt =
⋃

k∈[K]

{νuk : ν ∈ [0, νk]},
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where u1, . . ., uK ∈ R
d and ν1, . . ., νK ∈ R+. We assume that

the constraint set can be represented as a functional inequality,

i.e. Gt = {x ∈ R
n : gt (x) ≤ 0} where gt : Rn → R is continu-

ous. Furthermore, we assume that gt (0) < 0 and will specify

that gt is either convex or concave.

When gt is concave, we use ROFUL. In particular, to cal-

culate x̃t in ROFUL (line 2), we use,

max
k∈[K]

μ̃k (θ̂�
t uk + βθ

t ‖uk‖V −1
t

), (28)

where

μ̃k = max

{

μ ∈ [0, νk] :

min
w∈e1,...,en

gt (μ(Ât uk + nβA
t ‖uk‖V −1

t
w)) ≤ 0

}

. (29)

For each k, μ̃k can be solved by root-finding, where each

step of the root-finding requires n evaluations of gt . Note that

root-finding algorithms such as bisection are guaranteed to

converge linearly given that gt (0) < 0.

Proposition 2: When gt is concave, playing ROFUL

(Algorithm 1) with (28) in place of line 3 is an optimistic

algorithm (in the sense of Definition 1) with KA = 2DSAn
r̄

and

Kθ = 2DSθ

r̄
.

Proof: First, note that a vertex of a polytope is always a

minimizer of a concave function, and therefore we can rewrite

(29) with,

min
w∈e1,...,en

gt (μ(Ât uk + nβA
t ‖uk‖V −1

t
w)) ≤ 0

⇐⇒ min
w∈B1

gt (μ(Ât uk + nβA
t ‖uk‖V −1

t
w)) ≤ 0

⇐⇒ μ(Ât uk + nβA
t ‖uk‖V −1

t
B1) ∩ Gt �= ∅.

Therefore, Theorem 1 applies with βA ← nβA. �

When gt is convex, we use OptPess (Algorithm 2), where

the action xt in line 1 is calculated with:

max
k∈[K]

μk

(

θ̂�
t uk +

(

βθ
t +

2Sθ D

r̄
βA

t

)

‖uk‖V −1
t

)

, (30)

where

μk = max

{

μ ∈ [0, νk] :

max
w∈e1,...,en

gt (μ(Ât uk + nβA
t ‖uk‖V −1

t
w)) ≤ 0

}

.

For each k, μk can be calculated with root-finding, where each

step requires n evaluations of gt .

Proposition 3: When gt is convex, playing OptPess (Algo-

rithm 2) with (30) in place of line 1 is an optimistic algorithm

(in the sense of Definition 1) with KA = 2DSAn
r̄

and Kθ = 2.

Proof: Follows from the fact that gt is convex, and there-

fore a vertex is a maximum. �

VII. NUMERICAL EXPERIMENTS

In this section, we give numerical experiments in a series of

toy settings and also in a smart grid demand response setting.

A. TOY SETTINGS

We consider toy settings where the constraint set is either

(a) union of cones (b) union of norm balls or (c) convex.

For all settings, we take n = 2, d = 2, X = 2B, A = I , ηt ∼
N(0, 0.1I ) and εt ∼ N(0, 0.1). Therefore, the feasible set is

Y = {x ∈ X : Ax ∈ G} = X ∩ G. The constraint in each setting

is:

a) Union of cones: G = (R− + 1) ∪ (−R− − 1)

b) Union of norm balls: G = (1.18B∞) ∪ (1.59B1)

c) Convex: G =

⎧

⎪
«

⎪
¬

x ∈ R
n :

£

¤
¥

0 1√
3 −1

−
√

3 −1

¦

§
¨ x ≤

£

¤
¥

1.2

1.2

1.2

¦

§
¨

«

⎪
¬

⎪
­

In each of these settings, we implement the applicable al-

gorithm from Section VI as summarized in Table 1.

The results are shown in Fig. 1. The top row of Fig. 1 shows

the played actions, where the color indicates the round in

which the action was played, and � shows the optimal action.

We downsample the played actions so that every twentieth

action is shown. The bottom row of Fig. 1 shows the regret

at each round, where the dashed line is the mean over 10 trials

with different realizations of the noise {εt , ηt }t∈[T ], and the

shaded region indicates the standard deviation.

B. APPLICATION TO DEMAND RESPONSE IN THE SMART

GRID

In this section, we show how our algorithms can be used

for demand response in the smart grid. Demand response

is a class of mechanisms where an aggregator (or other

electricity-supplying entity) modifies the electricity demand

of customers via interventions. In particular, we consider day-

ahead real-time pricing, which is a popular demand response

mechanism. In each day (t) of day-ahead real-time pricing,

the aggregator chooses a vecctor of prices (pt ) to be applied

to each user in the following day. We consider a realistic

model where the aggregator does not know how users will

respond to prices a priori and instead has to learn users’ price

response in real-time by choosing prices and observing the

resulting demand. In particular, we model the user’s demand

as a stochastic and parametrically-linear function of price, i.e.

zt = Aφ(pt ) + ηt where pt ∈ Pt is the vector of prices and

φ : Pt → R
d is a known feature map. Therefore, without loss

of generality, we work in the space of actions xt = φ(pt ) ∈
Xt = φ(Pt ) as we can always map these back to prices. In

choosing these prices, the aggregator aims to maximize an

objective (e.g. customer satisfaction or operating costs), which

we model as a stochastic linear function yt = θ�xt + εt . At

the same time, the aggregator aims to ensure that the cus-

tomers’ demand satisfies the grid constraints (G) due to the

nodal voltage limits and line power limits.

As a proof-of-concept, we demonstrate our approach in a

demand response setting with the 22-bus distribution system
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FIGURE 1. The played actions (top row) and the resulting regret (bottom row) for each type of constraint: (a) union of cones, (b) union of norm balls and
(c) convex.

from [34], which we access via the MATPOWER soft-

ware [48]. Since power flow constraints are known to be

non-convex and highly irregular [29], we approximate the

constraints by using a convex subset of the true feasible set,

which is known as a convex restriction [24]. Convex restric-

tions provide a tractable way to approximate power flow

constraints, while also ensuring that the true constraints are

satisfied. Many different convex restrictions of power flow

constraints have been proposed in the literature, e.g. [24], [32],

[44]. We use the convex restriction from [44] and assume

that the power factor of each node is fixed as the nominal

power factor given in the test distribution system. Therefore,

the constraint set can be written as,

G = {z ∈ R
n : ‖Mdiag(z)‖∞ ≤ 1/4},

where M ∈ R
n×n is defined as,

M := |W−1Y−1
LL W

−1
diag(1 − ρ j)|.

Here | · | denotes the element-wise complex magnitude, and ·
denotes the complex conjugate. The notation ρ is the vector

of nominal power factors at each of the nodes, YLL is the

admittance matrix of the buses, and W is the diagonal matrix

of zero-load voltages. See [44] for the exact equations for YLL

and W.

In our simulations, we consider d = 3 features, and take

X = 2B, A = (0.13)1, ηt ∼ N(0, 0.01I ) and εt ∼ N(0, 0.01).

We sample θ ∼ U(S ∩ R+) in each trial. We use the ROFUL

algorithm for constraint sets that are the union of norm balls

(see Section VI-B). Since the constraint set is a norm (i.e. the

union of N = 1 norm balls), we calculate γ with the exact

equation (line 3 in Algorithm 1) as a root-finding problem

instead of the lower bound specified in (23). The resulting

regret is shown in Fig. 2, where the line indicates the average

of 10 trials and the shading indicates the standard deviation.

FIGURE 2. Regret of ROFUL in demand response pricing problem.

VIII. CONCLUSION

In this work, we study the problem of stochastic linear bandits

under general safety constraints. We present two different

algorithms for this setting, and give efficient versions of these

algorithm for several special cases. Furthermore, we give sim-

ulation results that demonstrate how our algorithms can be

used to efficiently and safely choose dynamic pricing signals

in the smart grid.

An interesting direction for future work is to identify ad-

ditional special cases that enjoy efficient implementations

beyond those in Table 1. This would expand the possible ap-

plications of our algorithms. Another direction for future work

is to perform a more detailed study on the effectiveness of our

algorithms for dynamic pricing in the smart grid. For example,

we could consider a larger distribution network and different

power flow approximations, beyond the ones we consider in

this paper.

APPENDIX

A. CHANCE-CONSTRAINED FORMULATION

In this section, we show how our problem setting (as defined

in Section II) can be extended to handle chance-constraints on
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the noisy feedback zt = Axt + ηt , rather than just constraints

on the expected feedback Axt . In particular, we specify that

the constraint needs to hold for all possible distributions on

ηt , where the set of possible distributions is specified by the

conditionally-subgaussian assumption (Assumption 2). After

formulating the problem with chance-constraints, we show

that our original setting (Section II) subsumes this model, and

therefore that our previous results are applicable.

We consider a setting where the learner needs to ensure

high-probability satisfaction of the noisy constraint term zt =
Axt + ηt under all possible distributions for ηt , i.e.

inf
Pt ∈P

Pt (Axt + ηt ∈ Ḡt ) ≥ 1 − δ′, ∀t ∈ [T ], (31)

where Ḡt is the constraint set, Pt is the conditional distribution

of ηt given Ft and P is the set of possible conditional distri-

butions. Since ηt is assumed to be conditionally-subgaussian

(Assumption 2), we can specify P as the set of distributions

on R
n such that for all P ∈ P,7

Eη∼P[η] = 0,

P
(

|ηi| ≤ σ
√

log(2/δ),∀i ∈ [n]
)

≥ 1 − δ,
(32)

for any δ ∈ (0, 1). Therefore, for a given δ′, we can equiva-

lently state (31) as,

Axt ∈ Gt :=
{

z ∈ R
d : z + σ

√

log(2/δ′)B∞ ⊆ Ḡt

}

= Ḡt 
 (σ
√

log(2/δ′)B∞),

which matches the constraint satisfaction requirement in

Section II, provided that the stated assumptions on Gt are

satisfied.

In order to measure the performance of the learner in this

setting, we compare her performance to a “bechmark learner”

that knows the parameters θ, A, but does not know the realiza-

tion of the noise terms η1, . . ., ηT or ε1, . . ., εT . Therefore, in

each round, the benchmark learner plays the action x�
t which

solves the chance-constrained optimization problem,

x�
t := arg maxx∈Xt

θ�x

s.t. inf
Pt∈P

Pη∼Pt (Axt + η ∈ Ḡt ) ≥ 1 − δ′

= arg maxx∈Xt ,Ax∈Gt
θ�x.

We can then define the (psuedo) regret as the cumulative

difference in reward between the benchmark learners’ and the

learners’ actions,

RT =
T
∑

t=1

θ�(x∗
t − xt ),

which matches the definition in (1).

7The σ in (32) does not necessarily match the σc in Assumption 2. How-
ever, the existence of each constant implies the existence of the other [42,
Proposition 2.5.2].

B. PROOF OF PROPOSITION 1

Before stating the proof, we first give the so-called elliptic

potential lemma.

Lemma 8 (Elliptic Potential Lemma, Lemma 11 [1]): Let

Assumption 1 hold. If λ ≥ max(1, D2), then it holds for all

T ∈ N that,

T
∑

t=1

‖xt‖2

V −1
t

≤ 2d log

(

1 +
T

λd

)

.

Using this, we then state the proof of Proposition 1 in the

following.

Proof of Proposition 1: Under event E, it holds that,

RT =
T
∑

t=1

θ�(x�
t − xt )

≤
T
∑

t=1

(KAβA
t + Kθβ

θ
t )‖xt‖V −1

t
(a)

≤ (KAβA
T + Kθβ

θ
T )

T
∑

t=1

‖xt‖V −1
t

(b)

≤ (KAβA
T + Kθβ

θ
T )

√
√
√
√T

T
∑

t=1

‖xt‖2

V −1
t

(c)

≤ (KAβA
T + Kθβ

θ
T )

√

2dT log

(

1 +
T

λd

)

, (d)

where (a) uses the UCB property in Definition 1, (b) uses the

fact that βA
t , βθ

t are increasing in t , (c) uses Cauchy-Schwarz,

and (d) uses Lemma 8. �

C. CONVEX VERSION OF PESSIMISTIC SET

In this section, we show that the pessimistic set can be for-

mulated in a convex way when used with the OptPess. This is

shown in the following proposition.

Proposition 4: If Xt and Gt are convex, then the following

set is convex,

Ȳ
p
t := {x ∈ Xt : Ât x + βA

t ‖x‖
V −1

t
B∞ ⊆ Gt }. (33)

Furthermore, playing OptPess with Y
p
t ← Ȳ

p
t results in the

same guarantees as Theorem 2.

Proof: First, we show that Ȳ
p
t is convex. In particular,

consider z = νx + (1 − ν)y for any x, y ∈ Ȳ
p
t and ν ∈ [0, 1].

First, note that z ∈ Xt by convexity. Then, it holds that,

Ât z + βA
t ‖z‖

V −1
t

B∞

⊆ Ât z + βA
t (ν‖x‖

V −1
t

+ (1 − ν)‖y‖
V −1

t
)B∞

= Ât z + νβA
t ‖x‖

V −1
t

B∞ ⊕ (1 − ν)‖y‖
V −1

t
B∞

= ν(Ât x + βA
t ‖x‖

V −1
t

B∞) ⊕ (1 − ν)(Ât y + ‖y‖
V −1

t
B∞)

⊆ νGt ⊕ (1 − ν)Gt = Gt ,

Therefore, z ∈ Ȳ
p
t and thus Ȳ

p
t is convex.

Then, we show that the regret guarantees of OptPess are

unchanged with Y
p
t ← Ȳ

p
t . This holds because the proof of
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Theorem 2 only uses the fact that Y
p
t ⊇ Ȳ

p
t , and therefore the

regret guarantees apply. �
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