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ABSTRACT The stochastic linear bandit problem has emerged as a fundamental building-block in
machine learning and control, and a realistic model for many applications. By equipping this classi-
cal problem with safety constraints, the safe linear bandit problem further broadens its relevance to
safety-critical applications. However, most existing algorithms for safe linear bandits only consider lin-
ear constraints, making them inadequate for many real-world applications, which often have non-linear
constraints. To alleviate this limitation, we study the problem of safe linear bandits under general (non-
linear) constraints. Under a novel constraint regularity condition that is weaker than convexity, we give
two algorithms with O(d+/T) regret. We then give efficient implementations of these algorithms for
several specific settings. Lastly, we give simulation results demonstrating the effectiveness of our algo-
rithms in choosing dynamic pricing signals for a demand response problem under distribution power flow

constraints.

INDEX TERMS Safe bandit, safe learning, stochastic linear bandit.

I. INTRODUCTION

The stochastic linear bandit problem is a sequential decision-
making framework where, in each round, a learner chooses
a vector action and then receives a stochastic reward that
is linear with respect to the action [1], [15]. In choosing
these actions, the learner aims to maximize her total payout
over a number of rounds, despite the fact that the underlying
reward functions are unknown. This problem has emerged
as a fundamental building-block in both machine learning
and control, with notable generalizations being linear re-
inforcement learning [19], [47] and adaptive control [2],
[16]. Furthermore, the stochastic linear bandit problem en-
joys a wide variety of real-world applications, including
online advertising [28], clinical trials [37] and the smart
grid [38].

Motivated by the safety-critical nature of many such appli-
cations, the stochastic linear bandit problem has recently been
extended to incorporate safety constraints via the framework
of safe linear bandits, e.g. [4], [30], [33]. This framework

has garnered significant attention in recent years, and has
inspired the development of other safe learning settings such
as safe reinforcement learning [6], [26] and safe online convex
optimization [13]. Despite the significance of the safe linear
bandit problem, most prior work in this area is limited to /in-
ear constraints, which may be inadequate for many real-world
settings. As a concrete example, bandit algorithms for active
demand management in distribution networks (e.g. [38]) need
to ensure satisfaction of power flow constraints, which are
known to be highly non-linear [29] and linear approximations
may be inadequate. In this paper, we aim to fill this gap
by developing safe linear bandit algorithms that can handle
general (non-linear) safety constraints.

In particular, we formulate the problem of safe linear ban-
dits under general constraints, and give two algorithms for
this setting: one that builds on the scaled confidence-set ap-
proach from [30], [33], and one that builds on the scaled
action approach from [17]. By introducing a novel constraint
regularity condition that is weaker than convexity, we show
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that both of these algorithms enjoy (near) optimal O(d~/T)
regret. We then give efficient versions of these algorithms
under several specific settings (see Table 1), and numerically
demonstrate their efficacy in toy settings and a smart grid
example.

A. RELATED WORK

In the following sections, we discuss related work broadly
classified in to the areas of (1) bandits with round-wise
constraints, (2) bandits with cumulative constraints and (3)
safe learning and control generally.

1) BANDITS WITH ROUND-WISE CONSTRAINTS

The distinctive characteristic of bandits with round-wise con-
straints is that the constraints are enforced in each round
(as opposed to cumulatively across all rounds). One such re-
search direction considers constraints on the reward function
without any additional feedback [4], [21], [31]. This differs
from our problem in that we consider a separate constraint
function for which the learner receives feedback. More closely
related to our setting, another research direction considers
an auxiliary linear constraint function Ax; < b with separate
feedback Ax; + ¢ [17], [30], [33]. In fact, we consider the
same feedback Ax; + ¢, except with a more general constraint
Ax; € Gy, where G, is the union of (potentially infinite) convex
sets and therefore the constraint is in general non-linear and
non-convex. Non-linear constraints have also been considered
by [41] of the form f(x;) < b, where f is a B-smooth func-
tion. However, they require that the constraint is loose on
the optimal action with a gap proportional to the smoothness
constant, i.e. f(x,) < b — ¢p for constant c. This differs from
our setting, which allows for the constraint to be tight on the
optimal action. Lastly, we point out that our prior conference
paper [17] gave algorithms for the special case where the
constraint set G; is convex, although it did not provide effi-
cient versions of these algorithms. In this work, we extend
the analysis approach in [17] to the setting where G, is the
union of convex sets, and give efficient implementations for
several special cases (including the case of convex G;). One
of the key difficulties in developing efficient implementations
for this setting is that the standard “relaxed-confidence-set”
approach for designing efficient bandit algorithms [15] is only
applicable when the constraints are linear. To address this
challenge, we introduce a technical approach that uses gen-
eralized inequalities (Section VI-A) and the properties of the
norm ball (Section VI-B) to develop efficient algorithms for
several types of non-linear constraints.

2) BANDITS WITH CUMULATIVE CONSTRAINTS

Cumulative constraints have been considered in a number
of different bandit settings, including knapsacks [3], [8],
[12], budget constraints [14], [45], and conservatism con-
straints [20], [46]. There has also been some efforts to give
unifying frameworks to handle cumulative constraints gener-
ally [25], [27]. However, all of these works fundamentally
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differ from our setting because they do not guarantee con-
straint satisfaction in every round.

3) SAFE LEARNING AND CONTROL

Constraint satisfaction under uncertainty has also been con-
sidered in the context of control [11], [16], [22], [43],
reinforcement learning [6], [10], [26], optimization [39], [40],
and Gaussian process (GP) bandits [5], [35], [36]. The most
directly relevant is the safe GP bandit setting, which handles
non-linear constraint and cost functions by modeling them as a
GP with a specified covariance kernel. This is a highly general
model that captures many non-linear functions. However, for
many popular kernels, existing approaches suffer exponen-
tially in the problem dimension in both convergence rate and
computation complexity, making them unsuitable for many
high-dimensional settings (such as in the smart grid). Fur-
thermore, existing regret guarantees in the safe GP setting [5]
use the assumption that the constraint is loose on the optimal
action, i.e. h(x,) < 0O for constraint function & and optimal
action x,. This assumption is particularly restrictive in the
case of linear costs, where the optimal action is necessarily
in the boundary of the feasible set. In light of the above
discussion, our setting serves as an alternative to GP for han-
dling non-linear constraints, and has several advantages with
respect to safe GP bandits: (a) linear dimension dependence
in the regret, (b) efficient implementations for convex sets
and several types of non-convex sets (see Table 1), (c) regret
guarantees include the case where constraint is tight on the
optimal action.

B. PAPER ORGANIZATION

We specify the problem of safe linear bandits with general
constraints in Section II, and give the model assumptions in
Section III. We then introduce a framework for studying this
problem in Section IV, give suitable algorithms in Section V,
and give efficient versions of these algorithms in Section VI.
Lastly, we demonstrate the numerical efficacy of these meth-
ods in Section VIIL.

C. NOTATION

We use the following notations: [n] := {1, 2, ..., n} for natu-
ral number n, RY is the non-positive orthant, M Tis transpose
of matrix M, | - || is 2-norm, |lx|[4 := vxTAx for vector x

and p.d. matrix A, B, := {x : [|x]|, < 1} for p € [1,00], f:
X = Y is set-valued mapping from X to subsets of ), A ®
B:={la+b:ac A,beB} and A©B:={x:B+xC A}
for sets A, B.

1l. PROBLEM SETUP

In each round r € [T], the learner receives the action set X; C
R9 and constraint set G; € R", chooses an action x; € X},
and then observes the reward feedback y, = 0x, + ¢ and
the constraint feedback z; = Ax; + ;. The parameters 6 € R4
and A € R"*? are unknown and ¢, € R and 7, € R" are ran-
dom noise terms.
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The learner needs to ensure constraint satisfaction Ax; € G;
for all + € [T] with high probability. At the same time, the
learner aims to accumulate a large expected reward. To bench-
mark the performance of the learner in this task, we compare
the actions chosen by the learner to the actions that have the
highest expected reward in each round. In particular, we use
the well-known notion of pseudo-regret,

T
Rr:=Y 60" —x), (1)
=1
where x} are the optimal constraint-satisfying actions, i.e.
X7 =arg maxxeyﬁ—rx, (2)
Vit ={xe X Ax € G} 3)

For brevity, we will use the term regret in place of pseudo-
regret going forward. In order to demonstrate that our pro-
posed approaches are effective, we will aim to establish a high
probability bound on the growth of the regret.

Remark 1: This setting can be extended to the case where
the noisy constraint feedback needs to satisfy the constraint
with high probability, i.e. zz = Ax; + 1, € G; w.h.p. We show
this in Appendix A.

1Il. ASSUMPTIONS

We first assume that the action set and unknown parameters
are bounded and that the noise is conditionally-subgaussian,
all of which are standard in the stochastic linear bandit litera-
ture, e.g. [1], [15].

Assumption 1 (Bounded Actions and Parameters): We as-
sume that the action set AX; is closed and bounded, and that the
unknown parameters 6, A are bounded. That is, there exists
positive reals D, Sy, S4 such that! |X;|| < D, ||6]| < Sy, and
llai|| < Sx for all i € [n], where alT denotes the ith row of A.
Let S := max(Sg, S4).

Assumption 2 (Conditionally-Subgaussian Noise): We as-
sume that €, 7, are conditionally-subgaussian, i.e. given
variance proxies 0,2, crcz, it holds that

222
Ele|F] =0, E[e*|F] < exp ( 2 ) )V/\ eR,

22o2
Eln, ;| F] =0, E[e"™i|F] < exp (T‘) Vi e RVi € [n],

where F; := o (€1, 01, X1, ..., €&—1, Nr—1, X¢) is the filtration
defined by all randomness up to the time that y, and z; are
observed.

Then, in Assumption 3, we assume that the origin is a
feasible action, and that the action set is always star-convex.
Knowledge of a feasible point is necessary to ensure feasibil-
ity from the first round and it is often available in practice.
Indeed, real-world systems often have a conservative action
that has been determined previously and therefore can be used

'We use the notation ||X; || < D to mean that every element in the image of
A under || - || is less than D, i.e. max, .y, [lx]| < D.
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for this initially feasible action. Also note that the assumption
of a star-convex action set is strictly weaker than convexity
and allows us to interpolate between any action and the origin,
which is critical to our approach. Lastly, we point out that our
setting extends to the case where the known feasible point is
not the origin as discussed in Remark 2. We do not explicitly
consider this setting for ease of notation.

Assumption 3 (Known Feasible Action and Star-convexity):
For all t € [T1], it holds that 0 € ) and A; is star-convex, i.e.
ax € X; forall o € [0, 1] and x € A;.

Remark 2 (Non-zero Feasible Action): If there are known
(non-zero) feasible actions X; € ), with known constraint val-
ues Z; = AX; and the action set is star convex about X;, we
can reduce the problem to an equivalent one satisfying As-
sumption 3 by passing the algorithm the shifted past actions
X; < Xy — Xy (for calculations relating to the constraint), the
shifted constraint feedback z; < z; — Z; and shifted constraint
set G; < G; — 7;. The actions chosen by the algorithm are
then shifted back as x;, <— x; + &; before being played.

Lastly, we assume in Assumption 4 that the constraint set is
the union of (possibly infinite) convex sets that have the origin
in the interior. Roughly speaking, this assumption ensures that
the constraint set G, is sufficiently “spacious” to allow for
safe and efficient learning of the constraints. More precisely, it
guarantees that by scaling down any point in the set (i.e. mov-
ing it towards the origin), we can create separation between
this scaled point and the boundary of the set. This property
will be critical to our algorithm and analysis, as we will use
this “scaling” to create separation with the set boundary, and
therefore ensure that a given point is safe despite uncertainty
on the constraint function. Furthermore, it is worth pointing
out that by Assumption 4, G; is necessarily connected, but not
necessarily convex.

Assumption 4 (Constraint is Union of Convex sets): For
all t € [T], the constraint set G, is closed and the union of
(possibly infinite) convex sets with the origin in the inte-
rior. Precisely, there exists a set-valued mapping D, : 7 = R?
from an index set Z such that G, = UieI D, (i), where D; (i)
is convex for all i € Z and there exists 7;(i) € R such that
11 ()Boe € D, (i) for all i € 7 with 7 := infer e 1, (i) > 0.
We assume that v := % <D.

Remark 3: Our assumption that v = % < D ensures that
the problem is nontrivial. In fact, if v > D, then it is known
that every x € X, satisfies the constraints> and the prob-
lem can be treated as a conventional stochastic linear bandit
problem. Assuming v < D will also simplify presentation of
results.

IV. PRELIMINARIES

In this section, we give the main tools that we will use to study
the specified problem. In particular, we discuss confidence
bounds in Section IV-A, pessimistic sets in Section IV-B and
optimistic algorithms in Section IV-C.

ZIndeed, if 7> S4D, then for all x € &, it holds that [[Ax]e =
max; |a x| < SaD < r = Ax € FBs C G;.

i
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A. CONFIDENCE BOUNDS

A central challenge of the specified problem is that the reward
function 6 " x and the constraint function Ax are unknown. In
order to ensure both constraint satisfaction and low regret, it
is paramount that we can tightly bound the true functions 6 " x
and Ax using past observations of the reward and constraint.
To do so, we follow the standard approach in the stochastic
linear bandit literature [1], [15], and consider high-probability
confidence bounds of the form,

Ax € Ax + B xlly, -1 Boo, )
0"x €6 x+ B xll, 1 [-1. 1], 5)

for any x € R?, where 6, and A, are the regularized least-
squares estimator,

t—1 t—1
A . —1 AT . -1 T
0 = Vz Zysxm A, = Vt ZZ‘Y X,
s=1 s=1

V= le;i )cS)c;r + Ml is the Gram matrix (with A > 0), and
BA, B! > 0 are appropriately-chosen hyper-parameters. In
fact, a good choice of g2, B is given in Lemma 1, which
guarantees that (4) and (5) hold with high probability for all
rounds.

Lemma 1 (Theorem 2 in [1]): Let Assumptions 1 and 2
hold. Fix 8§ € (0, 1) and let?

_ 2
Bl = ar\/d log <M> + V/ASs

8/(n+1)
— 2

With this choice of 87, B4, let & be the event that (5) and (4)
both hold for all r € N. Then, P(£) > 1 — 4.

B. PESSIMISTIC SETS

Since constraint satisfaction is a central objective of our prob-
lem setting, we will next specify a set of actions that are
guaranteed to satisfy the constraints. In particular, we use the
confidence bounds in (4) and the fact that A(vB) C G, (see
Remark 3) to define the set of actions that are guaranteed to
satisfy the constraints, which we call the pessimistic set,

V= {v € X s A+ B xlly -1 Boo € G} U (X N UB),

which ensures that )V C ), for all ¢ € [T] under the high
probability event £ (defined in Lemma 1). Using a pessimistic
set to ensure constraint satisfaction is a standard technique
in the safe linear bandit literature, e.g. [4], [30], [33]. How-
ever, these existing works are only applicable to the special
case of our setting in which there are linear constraints, i.e.
G: = b+ R_. Lastly, note that without further assumptions
on the problem setting or improved confidence bounds for

3We modify Theorem 2 in [1] by taking union bounds over the rows of A
as well as 0 (i.e. n + 1 union bounds).
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least-squares estimators, the action set y;’ is about as large as
is possible to ensure high probability constraint satisfaction.

C. OPTIMISTIC ALGORITHMS
In this section, we specify a class of algorithms that choose
actions from the pessimistic set and are guaranteed to have
low regret. To do so, we build on the paradigm of optimism
in the face of uncertainty, which is known to be successful in
the stochastic bandit literature, e.g. [1], [7], [23]. This concept
is distilled in the notion of optimistic algorithms as defined
in Definition 1. The key property of an optimistic algorithm
(as we have defined it) is that it chooses actions in such a
way that the the optimal reward QTxt* is upper bounded by
the realized reward 6 " x; plus a multiple of the weighted norm
at the played actions ||x; || y1sas specified in (6). This property
guarantees low regret, which we prove later in this section.
Definition 1 (Optimistic Algorithm): Let the relevant in-
formation in round ¢ be denoted by J, = (G, A, A,,
é,, Vi, ,BtA, ,8,9 ). Then, an optimistic algorithm, denoted by A,
maps J; to the pessimistic set, i.e. x; = A(J;) € J¥, such that
there exists K4, Ky > 0 where forallt € [T],

0"x; <0 x + (Kap + Kol 1 (©6)

under the event &.

When the constraint is loose (i.e. v > D as discussed in
Remark 3) then the problem is unconstrained, and the classical
LinUCB algorithm [1], [7] provides a valid optimistic algo-
rithm. This is shown in Example 1. The key idea behind the
LinUCB algorithm is that it chooses the action that maximizes
the upper confidence bound on the reward (see (7)). Since the
upper confidence bound is larger than the true reward (with
high probability) and the optimal action is in the pessimistic
set (when the constraint is loose), this algorithm gives an
upper bound on the optimal reward that satisfies Definition 1.

Example 1 (Optimistic Algorithm for Unconstrained Case):
In the case where v > D and therefore the constraint is known
to be loose, a valid optimistic algorithm is,

AT = arg max,ey, 0 x + B Ixly, ). (D)

where Ky = 2 and K4 = 0.
Proof: Since v > D, it holds that x* € ), = &, = )7, and
therefore with x;, = A(J;),

0T x* < max(d x + B ||x]||,, -1
7 < xey,( A B/ ”Vt )
AT 0
= max(0, x + x|y, -1
max @+ f7 1)
AT 0
= 9; X + IBz ”xt”Vfl

T 0
<075 + 28] Iyl -1,

where both inequalities use the confidence bounds
from (5). |

Constructing an optimistic algorithm is more difficult in the
case of general constraints because there needs to be a way
to upper bound the optimal reward, despite the fact that the
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Algorithm 1: ROFUL.

input G;, XI,AI, ét, Vi, ,3;4, .3[0
1:  Construct optimistic set:
V= {x € & A+ Blxlly, -1 Boo NG # B},
2:  Compute optimistic action:
X € arg maxxew(éfx + ,3,9 ||x||V71 ).
3:  Compute safe scaling:
v, = max{y € [0, 1] : y%; € y{’}.
4:  returnx, = y%;.

optimal action may not yet be in the pessimistic set. The next
section will be dedicated to developing optimistic algorithms
for this problem. In any case, the following proposition shows
that if there is an optimistic algorithm and Ky, Ky do not de-
pend on d or T, then we can guarantee near-optimal O(d /T )
regret.4

Proposition 1 (Regret of Optimistic Algorithms): Let A be
an optimistic algorithm in the sense of Definition 1. Then,
choosing x; = A(J;) for all t € [T], and 1 > max(l,Dz),
ensures that,

T
Rr < (Keﬂ? + KA,B?)\/ZdT log <1 + ﬁ)’

under the event £.
Proof: See Appendix B. |

V. OPTIMISTIC ALGORITHMS

In this section, we present two different algorithms that
satisfy Definition 1. Specifically, the ROFUL algorithm is
given in Section V-A, and the OptPess algorithm is given in
Section V-B. We provide some discussion on the difference
between the two in Section V-C.

A. ROFUL

The ROFUL algorithm (Algorithm 1) operates by first con-
structing an optimistic set )7, which is an outer approximation
of the feasible set ); € )}. It then finds the intermediate
iterate ¥; by maximizing an upper bound on the reward over
the optimistic set, which provides an upper bound on the opti-
mal reward, i.e. 6, %, + 7% ll,-1 > 6T x;. However, % is not
necessarily in the feasible set, 50 selecting it might violate the
constraints. Instead, ROFUL scales & into the pessimistic set,
which ensures both that the chosen action is safe with high
probability, and that the algorithm gains information in the
direction of the optimistic action.

Remark 4: It may not be immediately apparent that the
calculation of y; in line 3 of Algorithm 1 is well-defined.
However, it follows from Assumption 3 that 0 is in G; and A},
and therefore 0 € y;’ . This ensures that the set { € [0, 1] :
u% € Y} is nonempty (and trivially, closed and bounded)

4To see that the bound in Proposition 1 is O(d~/T), note that ,Bf‘ = OW/d)
and ¢ = O(+/d) from their definitions in Lemma 1.
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so the maximum element exists. Also, note that X; € A;, so
by the star-convexity of A&;, it holds that x, = 3, %, € A} since
v € [0, 1].

In the following theorem, we show that ROFUL does in fact
satisfy the requirements of Definition 1.

Theorem 1: ROFUL (Algorithm 1) is a valid optimistic
algorithm in the sense of Definition 1, where K4 = ZD% and
Ky = 2DSy

7
The central piece of this theorem is the following lemma,

which bounds the scaling required to go from the optimistic
set in to the pessimistic set. This ultimately gives a bound on
¥, and will also be used for the analysis of OptPess in the next
section.

Lemma 2: Consider any x € )7 and i = max{u € [0, 1] :
px € Y} Then, it holds that,

F F
>max | ———, —— | . ®)
o (r + 287 xll, DSA>

Furthermore, setting y = px gives that,

M max /3 —1, .
= Fhe vt el

Proof: First let,

7

2Bl

= 0o=—F"
260111l -

(1 — ).
Then, we show that ax € y,” . From the definition of )7, there
exists v € By such that,

u:=Ax+ ﬂ,llxllvtqv € g.

Then, since G; is the union of convex sets {D; (i)};, there exists
i € Z such that u € D, (i). Therefore, it holds that

Ar(ax) + B lxlly, -1 Boo
S Ar(ax) + Bl lexlly -1 (2Boo + v)
—A

(@) + Bl lloxly,1v + 287 erxlly -1 Boo

= o (Apx + B xlly-1v) + 208 Il Boo
—au+ (1 —a)Bu

C aDy(i) & (1 — a)7Bo

< oDy(i) & (1 — a)r(i)Boo

C aDy(i)® (1 - @)Dy(i) = Di(i) € Gi,

where the last equality is from the convexity of D, (i). Thus,
we have shown that ax € yf’ (and « € [0, 1] trivially), so it
follows that

w=max{u € [0,1]: ux € Y} > a. (10)
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Also, it holds that (WB)NA; C y{’ and therefore
min (”T"”, 1) x € ) so,
> m1n< )zmin<i,1)=i, (11)
flx]l” D DSy

where we use the fact that v < D from Assumption 4. Com-
bining (10) and (11) gives the inequality (8).

Then, noting that y = px and therefore ||y||vr_1 = ,u||x||V1_1,
we can rearrange (10) to get that,

F < i+ w28 xlly 1 = uF + 288y,

) (12)
A

= pwz =Byl

Combining (11) and (12) gives the inequality (9). |
With this, we then give the proof of Theorem 1.
Proof of Theorem 1: First, note that we can apply (9) in
Lemma 2 with x < %, u < y; and y < x; to get that,

v zmax( ﬁ, Il e ) (13)
Then, consider the decomposition,
0T —x)=0"(x —%)+0" G —x).
Term 1 Term 11
When £ holds, we can bound Term I as,
Term [ = OT(x,* — %)
<675+ B 1%l 1 — 0%

=0 =) 5 + B 1]

0~
< 28] 15l

X _
el

Vi

ZDSA
= 7 .B[ ”xt”\/—la

where the last inequality applies y; > DS from (13).
As for Term II, it holds (almost surely) that,

Term I =0T (% —x,)

=0"%(—n)
< SaD(1 —y,)
259
ﬂT”xt”V—l s

where we use y; > 1 — %,B;“||x,||vﬁl from (13).

Therefore, ROFUL satisfies Definition 1 with K4 = @
and Ky = ”%D. ]

B. OPTPESS
The OptPess algorithm (Algorithm 2) performs a maximiza-
tion directly on the pessimistic set. To provide an upper bound
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Algorithm 2: OptPess.

input G, X, Ay, éh Vi, ,BtAy ,Btg

1:  Optimistic-pessimistic update:
X; € arg maxxeyf(éfx + (,3,9 +

2:  return x;.

25D
7

1) el .

on the optimal reward, it incorporates both the uncertainty
on the reward ,Bf [lx]l,,~1 and the uncertainty on the constraint
t

ﬂ,A llx[l, 1 into this maximization. The idea of expanding the
confidence bounds in the maximization was proposed by [33]
in the UCB case and [30] in the Thompson Sampling case.
Here, we extend the approach to non-linear constraints (i.e.
G, # R_) and differentiated confidence radii for costs and
constraints (i.e. p # p9).

In the following theorem, we show that OptPess is an opti-
mistic algorithm in the sense of Definition 1.

Theorem 2: OptPess (Algorithm 2) is a valid optimistic
algorithm in the sense of Definition 1, where K4 = @ and
Ky = 2.

Proof: First note that since x; € )} € )7 under Econr, We
can apply Lemma 2 with x < x* to get that ax} € ) where,

_ 1
L 2BM I Ny

Therefore, from the maximization in Algorithm 2, it holds
under E.opnf that,

SoD
- ﬁ:‘) (B

) o 1y, -1
o (3 ( 25 it )
> o <9Tx* A||x;||vt1)

> ol x* (1 + ,Bl B ||V_1) =0'x,

6, x + (ﬁf +

otxt)—i—(

where the second inequality uses the confidence bounds (5),
and the third inequality uses that SpD > ||0]||lx;|| > GTx,*.
Applying (5) again gives that,

259

QT‘XZ* = eTxl + <2ﬂze /3[ ) ”xl ”Vfl

which satisfies Definition 1 with K4 = ZSHD and Ky =2. N

C. COMPARISON OF ROFUL AND OPTPESS

One of the key differences between the two algorithms is that
ROFUL requires solving an optimization problem over the
optimistic set ), while OptPess requires solving an optimiza-
tion problem over the pessimistic set y{’ . When the action set
A, and the constraint set G, are convex, the pessimistic set yf’
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TABLE 1. Summary of efficient implementations.

Section  Conditions on X} Conditions on G; Base Algorithm Computation Regret
VLA convex union of N convex cones ROFUL 4Nd? convex programs O(d*?V/T)
VLB convex uni?;b?fral\rfynr?g?ngalls ROFUL 4Nd® convex programs O(d*'*V/T)
VI.C convex convex OptPess \z/iitt(l: (;Igsxcg ;(;ﬁr:;ﬁltss O(nd*?V/T)
VLD K-finite star-convex concave/convex ROFUL/OptPess K root-findings O(ndv/T)

with n evaluations each step

can be written as a convex set (see Appendix C) because it can
then be specified as the intersection of convex sets. As a result,
OptPess can be implemented efficiently (with modification)
in such settings, which we discuss further in the following
section.

However, even when &; and G, are convex, the optimistic
set )7 is not generally convex because it would be the union
of convex sets. Nonetheless, we find that the optimistic set
is amenable to efficient implementations when G, is a non-
convex set that can be represented as the union of certain
convex sets. This is because, unlike for the pessimistic set, we
can interchange the unions that define the constraint set and
the unions that define the optimistic set. As a result, ROFUL
can be implemented efficiently (with modification) when the
constraint set is the union of certain types of convex sets,
which we discuss further in the next section.

It is also worth pointing out that [17] observed empiri-
cal differences in performance between ROFUL and OptPess
in the case of linear constraints.’ In particular, they found
that ROFUL performs better than OptPess in certain set-
tings where the constraint is looser. Lastly, we note that
both algorithms require knowledge of the problem parameters
D, Sy, Sp, 0y, 00, T.

V1. EFFICIENT IMPLEMENTATIONS

In this section, we study novel efficient implementations of
the developed algorithms. Note that as specified in the last
section, neither ROFUL and OptPess yield efficient imple-
mentations in general. As such, we give versions of these
algorithms that can be implemented efficiently for the several
special cases detailed in Table 1.

A. UNION OF CONVEX CONES
In this section, we consider the case where X; is convex and
G, is the union of a finite number of convex cones, i.e.

g = UDi’ where D; = K; + b;,
ieZ

(14)

where b; € R", Zis a finite set, and K; are proper cones.®

5Note that [17] uses the name GenOP to refer to the algorithm that we call
OptPess.

A cone is called proper if it is convex, closed, has nonempty interior, and
is pointed [9].
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To handle this setting, we use ROFUL (Algorithm 1) with
the following computation to find %; in line 2:

fG. j.p.§.%),

max
(i,j:p,& HETX[d P x{~1,1}2

fGJp &, ¢) = max (7 + ¢ Vap! v, ) x
xXeX;

(15)
. db;g* _
s.t. (Ar — w_—lﬂtv, ;/2> x € D;
ri ’
We use UZ ;/ 2 to denote the pth row of Vt_l/ 2, Then, we

compute y; in line 3:

72 r
Yy = max - — ,— . (16)
’ (f2+2bﬁﬁ{*||w % o DS

The optimization problem (15) requires solving 4|Z|d* con-
vex programs. In the following theorem, we show that using
ROFUL with (15) yields O(d?/?>\/T) regret.

Theorem 3: Playing ROFUL (Algorithm 1) with the max-
imizer of (15) for %, in line 2 and (16) instead of line 3 is
an optimistic algorithm (in the sense of Definition 1) with

Ky = %‘? and Ky = M, where b := max;e7 ||5i | 0.

In order to prove Theorem 3, we will first establish an
equivalent form for the feasible set of (15) that will allow for
analysis. To do so, we define the notation for the feasible set

for x in (15) as,
<0 p ENdbi! 1)
W= g xeX,:A,x—T‘vt’j xeD;}.
Ee{—1,1}
Jeld]
(17)

Then, in the following, we establish an equivalent form for V.
Lemma 3: The set 3/f , defined in (17), can be written as,

5 Lo Vd
yf:U{xeXt:<A1x+r—iﬂf‘||x||“;:’lwi ND; 01,

i€
(18)
where [lx|5%, := [[V,”"2x]|o0 and,

W; = conv(riBs U {—b;} U {b;}).

Before proving Lemma 3, we first give some properties of
the set W; that will be useful for analysis. We will make use
of the notion of generalized inequality, denoted by x <k y
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with proper cone K and defined by y — x € K. See Section
2.4 in [9] for more details on generalized inequalities.
Lemma 4 (Properties of W;): It holds that,
1) W; is symmetric, i.e. W; = =W,
2) Wi €K+ b,
3) —b; is a maximum element of W; with respect to <,
ie. —b; >i, zforallz € W,.
Proof: Property 1) holds because,

—W; = —conv(riBo U {—b;} U {b;})
= conv(—rBs U {b;} U {=D;})
= conv(riBso U {b;} U {—b;}) =W,
Property 2) holds because,
riBoo CK;i+b (Assumption 4),
bi=0+b; € K; + b; 0 e K)),
—bi=20—-b;)+b; €Ki+ b; (0 —b; € ).

Since W; is the convex hull of these terms and /C; + b; is
convex, it holds that W; C [C; + b;.
Property 3) holds because —b; € W; and,

W; = conv(riBs U {—b;})
C —conv(riBs U {b;})

g _bi - Kiv

and therefore, from the definition of maximum element (e.g.
Definition 4.8 in [18]), —b; is a maximum element with re-
spect to <j;. |
With this established, we prove Lemma 3 in the following.
Proof of Lemma 3: First, note that, because VV; is symmet-

ric and convex,
0 A —1/2

el W = U &
gef{—1,1)

Jj€ld]

1/2
max (§v, X)W, =
[ max (v %)
/E[d]

(19)
Then, note that —b; is a maximum element of W; (v1a Lemma
4). Therefore, there exists &, j, such that é*v l/ sz is the
maximum element of ||x|| Wi, and, at the same time, it

holds that gv*‘/ xb; € ||x||°° W for all &, j (due to (19)).
It follows that for any ¢ € R”
3, j) e {—

— JweW

1,1} x [d] : ¢ <x; —§v; ]/ xb;
(20)

te 2 Il w.
t

With this, we can show that the condition defining (17) is
equivalent to the condition defining (18). In particular, choos-

ing ¢ = ”fjlbf;’x) in the sense of (20), it holds that,
t
. db;p* _
3, j) e (=1, 1} x [d] : Ax — é‘/_—"3’z)t JPx e Kit b
ri ’

& 3E ) e (-1, 1) x[d]: e 2, £, 12y

110

— Jw e W:c g, ||x||;°_1w
t

VZ]
= (Atx+ SN | N D # 8,

which is the defining condition of (18). [ |
Next, we show that 540 can be “sandwiched” between two
sets, which will facilitate the regret analysis.
Lemma 5: It holds that j/f defined (18) satisfies the follow-

ing,

ey
. b\/d
- {X e (Atx+ %_,324”)6”;011800) NG # @},

where b = max;er ||bi]loo and 7 = minjez 7.
Proof: First, note that by construction of W, it holds that,

1 b; b
Boo € 2, ¢ ilop o Op

7

ri ri

Also, it holds that [lx[|, -1 < v/d eIl

o
,- It follows that,
V=t e XA+ Blxlly-1Boo N G # 1)

C v e X Ax+ VaB NI B NG, # 1)

=Jirex:Ax+ «/Zﬂ;“uxu;f,llaam N'D; # 0}

i€l
. Wd
cUJjredAdat —=plIxIFLWiND; # 0
ieT i '

-5

. bV
cUjre :A,x+fﬂ?||x||;°1BoomDi¢w}
r t

i€
N
c {x € & : A+ —— BN Boo NGy # @} :

completing the proof. |
With this established, we prove Theorem 3 in the following.
Proof of Theorem 3: First, note that (15) is equivalent to,

m%})o( <0T+§«/_,3t vt;/2>

xe);
peld]
¢e{-11}

=max 0, x + Vd g’ x|

x€y,

v Q1)

> max 6, x + B |lx|ly,-
xedf !

A 6 *
>max 0. x+ B/ |x|,-1 =0 xI,
xe)? ! ! Vi !

where we use Lemma 5 and condition on £. Therefore, it holds
that 0" %, + ~dB? |5 |°o . = 6" x* conditioned on &.
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Then, also note that, with Lemma 2 and the substitution
BA <~ %E,BIA, it holds that x, = ¥, %, is in the set,

N NZE
{x €X: (A,x +— ﬂ;“||x||;°dazoo) < gt} U (X NvB),
t

which is a subset of ). Therefore, it holds that x; € ). The
rest of Theorem 1 then applies with the substitution ,3,9 <«
Vd ,Bf This results in ROFUL being an optimistic algorithm
(in the sense of Definition 1) with K4 — 2D SAb vd and Ky
28pV/d

QT. |

B. UNION OF NORM BALLS

In this section, we consider the case where X; is convex and
G, is the union of a finite number of norm balls, i.e.

G = UD,- where D; ={zeR":
ieT

lzllp, = 1}

where || - ||p; is a norm for all i € Z. Equivalently, we can say
that D; is a compact, convex, and symmetric set that contains
0 and has a nonempty interior.

For this setting, we use ROFUL with the following compu-
tation to find X; in line 2:

max
(i, J.p.& . ©)ETX[d? x{=1,1)

S, j.p.§. %) = max <9T+§~/_ﬁzvtp )
ENABL i)
fvt,j X

f(i’j’p’§7€)7

(22)

<1

st [Arxlip, —

—12

We use v, p/ to denote the pth row of V, . Then, we

compute y; in line 3:

_2 —
.
Yy = max — — . 23)
’ (f2+zcﬁﬁ;4||v Pl DSA)

We use the notation C := max;ez max;ep; ||z[lco. Solving (22)
requires solving 4|Z|d* convex programs. Now, we state the
regret guarantees obtained by using (22) with ROFUL.

Theorem 4: Playing ROFUL (Algorithm 1) with the max-
imizer of (22) for &% in line 2 and (23) in place of line 3 is
an optimistic algorithm (in the sense of Definition 1) with
_ 25d

Same as in the previous séctlon, the key difficulty in prov-
ing Theorem 4 is to establish an equivalent form of the feasible
set that allows for analysis. Reusing notation, we define the
feasible set in (22) as,

Ky = ZDSACI and K

j/f = U U X € X[ .
i€ ee{—1,1)
Jjeld]
. aph _
A x|, — g[ﬁt vt,;/2x <l¢, (24

1/2

where v, | il/ % is the ith row of vV, /
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We will then give an equivalent formulation of this set.
Lemma 6: It holds that yf defined in (25) is equal to,

We=JjxeX Ax+ £,B, ||x||V_1D ND; # {
ieZ
(25
To prove this lemma, we first state the following fact, which
gives us a closed-way to check the satisfaction of the norm
constraint.
Fact 1: For arbitrary norm || - ||+ and y € R", it holds that

”n”nnl lx —ylly = max([lylls — 1,0)
i<

Proof: We denote the minimizer as x,. If |ly[|+ < I, then
choosing x, = y minimizes as the norm is non-negative. If
llyll+ > 1, then it holds for any feasible x that,

Ivlle = lly —x+xll+ < lly = xll+ + llxlly < lly — xlls + 1.

This implies that the objective is lower bounded by [|y|+ — 1

for any feasible x which is attained by choosing x, = ﬁ [ |

With this in hand, we prove Lemma 6 in the following.

Proof of Lemma 6: We show that the condition that defines
(25) is equivalent to the condition that defines (24). First, note
that when x = 0 it is immediate, so we take x # 0 for the rest
of the proof. In particular,

LW
A+ —=BLIXI52 D O Di # 0
i 1
VZ ]
= 3w edx+ —BIKILD: : Jwlp, <1
i t
= min lwlp, <1
weA,x+{—?ﬂ;‘||xn3iID
t
\/_
<= min Azx+—ﬁt xlyziyln <1
yeD; ri t
Jd ) —A;x
= — xS min | ———— —y| <1
ri 7 eDi | L gh | o0
t V—]
Di
\/—
— max (IIAtXIID,——ﬁt 72, 0) <1
. Vd
= NAxlp, — — B Il < 1
ri t
. Vdpl
< min <||A,x||Di—uvt 2] <1,
ge(-1,1) ri K
Jeld]

where we use Fact 1 in the third-to-last line. The condition in
the last line is the same as in (24). |
Finally, we prove Theorem 4 in the following.
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Proof of Theorem 4: First note that, similar to Lemma 5, it
holds for any x € R that,

lelly,-1Boo S Vil 1 Boo
t

Vd Vdc
S — 7D © ——lIxl)% 1 Boo
ri t r t
And therefore,
Vi =UJbtr e & - Aix + B xlly, 1 Boo) N D # 0)
i€l
A Vd
cUbre o (A + B == IIxlI}2. D | N D; # )

il i '

=
ﬂc

cJwex:

ieT

f1ev

Then, using similar reasoning as in (21), it holds that élTi, +
VB! %115 = 07} conditioned on €.

Then, by applying Lemma 2 with the substitution g/ <
bvdc
7

||x||oo 113300) ND; # 0}

ﬂ;“, we know that x; = y;%; is in the set,

aVd

C
{xe X (Atx+/31 —II ||°°115%oo> c Qt} U@wBNA),

which is a subset of )¥. Therefore, x; € ). The rest of
Theorem 1 then applies with the substitution B¢ « Vd Be.
This results in ROFUL being an optimistic algorithm (in the

sense of Definition 1) with K4 = 22 SACI and Ky 25"“[ i |

C. CONVEX SETS

In this section, we consider the case where both X, and G,
are convex. To handle this setting, we use OptPess with the
following calculation for x;:

f(p, &),

(p»()e X{ 11}

A
f(p.§) = max (67 +evd (ﬂf’ + M)

—1/2
i)

(26)

s.t. (At + en/dpA

1/2
ekv”/)xegt

V(k, j.§) € [n] x [d] x {=1, 1}

We use v, ;/ % to denote the pth row of Vt_l/ 2. Solving this
requires 2d convex programs, where each program has 2dn
constraints. We give the regret guarantees in the following.
Theorem 5: Playing the maximizer of (26) in each round
is an optimistic algorithm (in the sense of Definition 1) with

Ky = M and Ky = 2+/d and therefore enjoys regret of
O(nd3/2JT).

112

Same as in the previous section, we will establish an equiv-
alent form of the feasible set in (26), which we denote as,

V= ﬂ {xeXz Ax + Envdpy, ]/2xek Egt},
keln]
se{—1,1}
Jeld]

1/2

where v , 2 is the jth row of V,”/~. Then, we state another

form that allows for easier analysis.
Lemma 7: It holds that,

V) =tr € & - A+ nvdBlIxI7 B1 € G
1
Proof: Tt holds that,
Ax+nVdpl x5 B € G,

27)

— A,x—i—n\/_ﬁ, max v, sz)[B%l c G

se{—1,1},jeld]

— A,x—l—n\/_ﬁ,év UzXBlEQz, VE, j

xex C Gy,

where the second line uses the fact that we can write ||z||co =
maxge(—1,1),jeld] £2j> and the last line holds because for con-
vex set D, it holds that By C D <= ey,...,e, € D. To see
that B, C D <= ey,..., e, € D, first note that = is imme-
diate, and then <= holds because B; = conv(ey, ..., e,) and
therefore any b € B is convex combination of ey, ..., e, and
therefore must be in D given convexity. |

With this, we then give the proof of Theorem 5.

Proof of Theorem 5: First, note that the 5)tp C y;’ as it holds
forall x € yf that,

— Atx+n\/c_iﬁ,$v;j V&, j. Kk,

Arx + B Il -1 Boo S Ax + VBV xllooBos
< Apx+ndpr v PxllocB € G

Gj}fgyt‘

It follows that all chosen actions satisfy x;
Also, it holds that,

f(p &)

R 2nSgDBAN
<9tr+§\/g<ﬁf+”+ﬁt) v,,;/z)x

(P, C)e

= max

xedy

peld]
ce{=1.1}

R 2nSgDBA
=max 0, x +Vd (ﬂ,ﬁ + —ef i ) (B[l
PASN A t

Then, note that the steps of Theorem 2 apply with the substitu-
tion ¢ < /dp? and B < nv/dp?. This immediately gives
that Ky = 22 SA”I and Ky = 2Vd. [ |

D. FINITE STAR-CONVEX ACTION SET

In this section, we consider the case where A} is a finite star-
convex set, i.e.,

X = U {vug v € [0, v},

kelK]
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where uy, ..., ug € R4 and Vi, ..., vk € Ry. We assume that
the constraint set can be represented as a functional inequality,
ie. G, = {x € R": g,(x) <0} where g; : R* — R is continu-
ous. Furthermore, we assume that g;(0) < 0 and will specify
that g; is either convex or concave.

When g; is concave, we use ROFUL. In particular, to cal-
culate %; in ROFUL (line 2), we use,

- AT 0
/?elf}?] (O, e + By Mgl 1), (28)
where
iy = max {M € [0, vl :
min g (A + nﬂ?llukllv—nw)) < 0} . (29)
weey,...,ep t

For each k, fi; can be solved by root-finding, where each
step of the root-finding requires n evaluations of g;. Note that
root-finding algorithms such as bisection are guaranteed to
converge linearly given that g;(0) < O.

Proposition 2: When g; is concave, playing ROFUL
(Algorithm 1) with (28) in place of line 3 is an optimistic
algorithm (in the sense of Definition 1) with K4 = ZD# and
Ky = ZD%.

Proof: First, note that a vertex of a polytope is always a
minimizer of a concave function, and therefore we can rewrite
(29) with,

= min g (u(Au +np; uell,-1w)) < 0
weB t
= w@ue+nplugll, 1B NG # 0.
Therefore, Theorem 1 applies with 84 < nf4. |

When g; is convex, we use OptPess (Algorithm 2), where
the action x; in line 1 is calculated with:

N 28¢D
mw%fw%ﬁ+9ﬂﬁmwv,(m

kelK] r

where

Mj = max {M € [0, v ] -

yeees

For each k, ; can be calculated with root-finding, where each
step requires n evaluations of g;.

Proposition 3: When g, is convex, playing OptPess (Algo-
rithm 2) with (30) in place of line 1 is an optimistic algorithm
(in the sense of Definition 1) with K4 = @ and Ky = 2.

Proof: Follows from the fact that g; is convex, and there-
fore a vertex is a maximum. |
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VIl. NUMERICAL EXPERIMENTS
In this section, we give numerical experiments in a series of
toy settings and also in a smart grid demand response setting.

A. TOY SETTINGS
We consider toy settings where the constraint set is either
(a) union of cones (b) union of norm balls or (c) convex.
For all settings, we take n =2,d =2, X=2B, A =1, n, ~
N(0,0.17) and ¢ ~ N(0, 0.1). Therefore, the feasible set is
Y={x e X:Ax € G} = XN G. The constraint in each setting
is:

a) Union of cones: G = (R_+1)U(—-R_ —1)

b) Union of norm balls: G = (1.18Bs) U (1.59B))

0 1 1.2
¢) Comvex:G={xeR":| /3 —1|x<|12
-3 -1 1.2

In each of these settings, we implement the applicable al-
gorithm from Section VI as summarized in Table 1.

The results are shown in Fig. 1. The top row of Fig. 1 shows
the played actions, where the color indicates the round in
which the action was played, and  shows the optimal action.
We downsample the played actions so that every twentieth
action is shown. The bottom row of Fig. 1 shows the regret
at each round, where the dashed line is the mean over 10 trials
with different realizations of the noise {¢, 1/};¢[7], and the
shaded region indicates the standard deviation.

B. APPLICATION TO DEMAND RESPONSE IN THE SMART
GRID
In this section, we show how our algorithms can be used
for demand response in the smart grid. Demand response
is a class of mechanisms where an aggregator (or other
electricity-supplying entity) modifies the electricity demand
of customers via interventions. In particular, we consider day-
ahead real-time pricing, which is a popular demand response
mechanism. In each day (t) of day-ahead real-time pricing,
the aggregator chooses a vecctor of prices (p;) to be applied
to each user in the following day. We consider a realistic
model where the aggregator does not know how users will
respond to prices a priori and instead has to learn users’ price
response in real-time by choosing prices and observing the
resulting demand. In particular, we model the user’s demand
as a stochastic and parametrically-linear function of price, i.e.
7 = A¢(p:) + n; where p; € Py is the vector of prices and
¢ P — R? is a known feature map. Therefore, without loss
of generality, we work in the space of actions x; = ¢(p;) €
X, = ¢(P;) as we can always map these back to prices. In
choosing these prices, the aggregator aims to maximize an
objective (e.g. customer satisfaction or operating costs), which
we model as a stochastic linear function y; = 0Tx, +¢. At
the same time, the aggregator aims to ensure that the cus-
tomers’ demand satisfies the grid constraints (G) due to the
nodal voltage limits and line power limits.

As a proof-of-concept, we demonstrate our approach in a
demand response setting with the 22-bus distribution system
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FIGURE 1. The played actions (top row) and the resulting regret (bottom row) for each type of constraint: (a) union of cones, (b) union of norm balls and

(c) convex.

from [34], which we access via the MATPOWER soft-
ware [48]. Since power flow constraints are known to be
non-convex and highly irregular [29], we approximate the
constraints by using a convex subset of the true feasible set,
which is known as a convex restriction [24]. Convex restric-
tions provide a tractable way to approximate power flow
constraints, while also ensuring that the true constraints are
satisfied. Many different convex restrictions of power flow
constraints have been proposed in the literature, e.g. [24], [32],
[44]. We use the convex restriction from [44] and assume
that the power factor of each node is fixed as the nominal
power factor given in the test distribution system. Therefore,
the constraint set can be written as,

G={zeR": |Mdiag(2)ll < 1/4},
where M € R™" is defined as,
M= (W'Y 'W diag(1 — pj).

Here | - | denotes the element-wise complex magnitude, and
denotes the complex conjugate. The notation p is the vector
of nominal power factors at each of the nodes, Yy is the
admittance matrix of the buses, and W is the diagonal matrix
of zero-load voltages. See [44] for the exact equations for Y1,
and W.

In our simulations, we consider d = 3 features, and take
X=2B,A = (0.13)1, n, ~ N0, 0.017) and ¢, ~ A0, 0.01).
We sample 6 ~ U(S N Ry) in each trial. We use the ROFUL
algorithm for constraint sets that are the union of norm balls
(see Section VI-B). Since the constraint set is a norm (i.e. the
union of N = 1 norm balls), we calculate y with the exact
equation (line 3 in Algorithm 1) as a root-finding problem
instead of the lower bound specified in (23). The resulting
regret is shown in Fig. 2, where the line indicates the average
of 10 trials and the shading indicates the standard deviation.
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FIGURE 2. Regret of ROFUL in demand response pricing problem.

VIiil. CONCLUSION

In this work, we study the problem of stochastic linear bandits
under general safety constraints. We present two different
algorithms for this setting, and give efficient versions of these
algorithm for several special cases. Furthermore, we give sim-
ulation results that demonstrate how our algorithms can be
used to efficiently and safely choose dynamic pricing signals
in the smart grid.

An interesting direction for future work is to identify ad-
ditional special cases that enjoy efficient implementations
beyond those in Table 1. This would expand the possible ap-
plications of our algorithms. Another direction for future work
is to perform a more detailed study on the effectiveness of our
algorithms for dynamic pricing in the smart grid. For example,
we could consider a larger distribution network and different
power flow approximations, beyond the ones we consider in
this paper.

APPENDIX
A. CHANCE-CONSTRAINED FORMULATION

In this section, we show how our problem setting (as defined
in Section II) can be extended to handle chance-constraints on
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the noisy feedback z; = Ax; + n;, rather than just constraints
on the expected feedback Ax;. In particular, we specify that
the constraint needs to hold for all possible distributions on
¢, where the set of possible distributions is specified by the
conditionally-subgaussian assumption (Assumption 2). After
formulating the problem with chance-constraints, we show
that our original setting (Section II) subsumes this model, and
therefore that our previous results are applicable.

We consider a setting where the learner needs to ensure
high-probability satisfaction of the noisy constraint term z; =
Ax; + n; under all possible distributions for 7;, i.e.

inf P,(Ax, +m, € G)>1-8, Vie[l]l, (1)
PeP

where G, is the constraint set, P, is the conditional distribution
of n; given F; and P is the set of possible conditional distri-
butions. Since 7, is assumed to be conditionally-subgaussian
(Assumption 2), we can specify P as the set of distributions
on IR” such that for all P € P,’

E,~p[n] =0,
P (Inil < 0/10g(2/8),Vi € [n]) = 1 =34,

for any § € (0, 1). Therefore, for a given §’, we can equiva-
lently state (31) as,

Ax; € G; = {zeRd:z+a\/m Ooggt}

=G, © (04/10g(2/8")Boy),

(32)

which matches the constraint satisfaction requirement in
Section II, provided that the stated assumptions on G; are
satisfied.

In order to measure the performance of the learner in this
setting, we compare her performance to a “bechmark learner”
that knows the parameters 6, A, but does not know the realiza-
tion of the noise terms 71, ..., 7 Or €1, ..., €r. Therefore, in
each round, the benchmark learner plays the action x;* which
solves the chance-constrained optimization problem,

* . T
X; = argmax,cy, 0 x

s.t. inf Ppop(Ax +n€G)>1-6
PieP

_ T
= arg maxxeXhAxegtH X.

We can then define the (psuedo) regret as the cumulative
difference in reward between the benchmark learners’ and the
learners’ actions,

T
Rr =Y _0T(f —x),

t=1

which matches the definition in (1).

"The o in (32) does not necessarily match the o, in Assumption 2. How-
ever, the existence of each constant implies the existence of the other [42,
Proposition 2.5.2].
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B. PROOF OF PROPOSITION 1
Before stating the proof, we first give the so-called elliptic
potential lemma.

Lemma 8 (Elliptic Potential Lemma, Lemma 11 [1]): Let
Assumption 1 hold. If A > max(l1, D2), then it holds for all
T € N that,

' T
; Il < 2dlog (1 N m) |

Using this, we then state the proof of Proposition 1 in the
following.
Proof of Proposition 1: Under event &, it holds that,

T
Rr =Y 0705 —x)

t=1

T
< D (KB + KBl (a)
=1
t T
< (KaB7 +KoB7) D Illy (b)
t=1
T
< (KaBt +KoBp) [T Y Inl2 ©
=1 !
A 0 r
S(KAﬁT—i-KgﬂT)\/ZdTlOg <1+m>, (d)

where (a) uses the UCB property in Definition 1, (b) uses the
fact that B, B¢ are increasing in ¢, (c) uses Cauchy-Schwarz,
and (d) uses Lemma 8. |

C. CONVEX VERSION OF PESSIMISTIC SET
In this section, we show that the pessimistic set can be for-
mulated in a convex way when used with the OptPess. This is
shown in the following proposition.

Proposition 4: 1f X; and G, are convex, then the following
set is convex,

Wi=tre X Ax+Blxl, 1B SG). (33)

Furthermore, playing OptPess with )V « yf results in the
same guarantees as Theorem 2.

Proof: First, we show that )—)," is convex. In particular,
consider z = vx + (1 —v)y for any x,y € )_if and v € [0, 1].
First, note that z € A; by convexity. Then, it holds that,

Az + Bzl -1 Boo

€ Az + Bl Wlxlly 1 + (4= llylly-1)Boo

= Aiz+ VB Ixlly, 1Boo ® (1 = 0)llylly -1Boo

= v(Ax + B Ixlly,1Boo) @ (1 = v)(Ary + [yl -1Boo)
CvG ® (1 -v)G =G,

Therefore, z € J¥ and thus ) is convex.
Then, we show that the regret guarantees of OptPess are
unchanged with J¥ < )¥. This holds because the proof of
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Theorem 2 only uses the fact that ))lp D) j)f , and therefore the
regret guarantees apply. [ |
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