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Abstract: We consider multi-class classification problems for high-dimensional data.
Following the idea of reduced-rank linear discriminant analysis (LDA), we intro-
duce a new dimension reduction tool with a flavor of supervised principal compo-
nent analysis (PCA). The proposed method is computationally efficient and can
incorporate the correlation structure among the features. Besides the theoretical
insights, we show that our method is a competitive classification tool by simulated
and real data examples.
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1. Introduction

Targeting on cancer classification and other modern applications, many high-
dimensional classification techniques have been studied recently; see Hastie, Tib-
shirani and Friedman (2009) for an extensive introduction, and Witten and Tib-
shirani (2011), Cai and Liu (2011), Fan, Feng and Tong (2012), and Mai, Zou
and Yuan (2012) for some recent developments. Although these contemporary
classification tools can be applied to high-dimensional data, most of them rely
on strong assumptions. For example, many methods assume that the features
are independent of each other; other methods assume sparsity conditions. These
assumptions make the model simple and robust against growing dimensionality,
so classification accuracy and computational efficiency can be achieved. How-
ever, they may be too restrictive, and when violated, lead to information loss
in data analysis. Moreover, many methods target the binary classification case
and are not straightforward to use if more than two classes are present. Con-
venient and efficient classification tools for multi-class data are quite limited.
Therefore, it is desirable to develop new classification techniques that can han-
dle high-dimensional, multi-class data, and also take into account the correlation
among the features.

Many linear classification rules depend on the Mahalanobis distance. But it
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cannot be well-estimated for high-dimensional data when the number of features
is greater than the sample size, as the sample covariance is singular. Under the
assumption that features are independent, the sample covariance matrix is diag-
onal and strictly positive definite, so the Mahalanobis distance can be calculated.
That is one of the main reasons that the independence assumption is crucial in
many classification methods. For example, the nearest shrunken centroids (NSC,
Tibshirani et al. (2002)), independence rule (IR, Bickel and Levina (2004)), fea-
tures annealed independence rule (FAIR, Fan and Fan (2008)) all assume that
the features are independent of each other. Moreover, some other methods such
as regularized discriminant analysis (RDA, Guo, Hastie and Tibshirani (2007))
use a covariance estimator the sample covariance regularized towards a diagonal
matrix. Recently, new classification tools have been developed, including penal-
ized linear discriminant analysis (PLDA, Witten and Tibshirani (2011)), linear
programming discriminant rule (LPD, Cai and Liu (2011)), regularized opti-
mal affine discriminant rule (ROAD, Fan, Feng and Tong (2012)), direct sparse
discriminant analysis (DSDA, Mai, Zou and Yuan (2012)), sparse discriminant
analysis (SDA, Clemmensen et al. (2011)), multi-class sparse discriminant analy-
sis (MSDA, Mai, Yang and Zou (2015)). Roughly speaking, these sparse methods
obtain sparse models by solving penalized or constrained optimization problems,
and their efficiency relies on the sparsity level of the normal vectors to the optimal
discriminant boundaries.

Reduced-rank LDA is a classical approach to classification. It conducts di-
mension reduction by projecting the data to the centroid-spanning space and
classifies the data based on nearest centroid. Another commonly used dimension
reduction tool is PCA, which projects the data to the space spanned by the top
principal components of the total sample covariance matrix. Reduced-rank LDA
makes use of the label information (through centroids) but ignores the (within
class) covariance information. On the other hand, PCA relies on the covariance
information only and is mainly regarded as an unsupervised learning tool.

We propose a new reduced-rank LDA method combining the advantages
of the classical reduced-rank LDA and PCA. The principal components of a
weighted sum of the sample within class and between class covariance matrices
are used for dimension reduction, and standard LDA is employed to the pro-
jected data for classification. In this dimension reduction process, both label
and covariance information can be taken into account, through between class
and within class covariance, respectively. We regard it as a version of supervised
PCA. This method does not rely on the aforementioned sparsity or independence
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assumptions and offers an alternative classification tool for various applications.

For insight on our method, we consider spiked structure of the covariance
(Johnstone (2001)). Roughly speaking, a symmetric positive definite matrix is
called spiked if all of its eigenvalues are equal except for a few large ones. In
other words, it is a sum of a scalar matrix and a low rank matrix. Intuitively, the
spiked structure might be a better model than the diagonal one to approximate
the true covariance, as it can take into account strong correlation among the
features, which is not uncommon in applications.

We propose here a novel dimension reduction and classification tool that in-
corporates covariance among features and works well for high-dimensional multi-
class data. It illustrates a new supervised way to conduct PCA and is generally
applicable to both classification and regression models. Importantly, the pro-
posed method is computationally efficient and can be applied directly to such
data as gene expression data in cancer research.

The rest of the paper is organized as follows. Section 2 introduces notation
and reviews some linear classification methods from the perspective of dimension
reduction. In Section 3, we study a new reduced-rank LDA method for classifi-
cation and offer some insights about it. Numerical studies and data applications
are illustrated in Section 4, followed by a short discussion in Section 5. Proofs
are given in the Supplementary Material.

2. Linear Methods for Classification
2.1. Notation

We consider a standard setup for classification. Let X = (Xy,---,X,,)" be
a n X p matrix with each X; is a p-dimensional vector. Let Y = (Y7, ..., Yn)T be
a response vector with ¥; € {1,..., K}, 1 <14 < n, with the interpretation that X;
belongs to group k if Y; = k. Denote the index set of group k by Cr, = {i : Y; = k}
and its cardinality by ny = |Ck|, where 1 < k < K. The goal of classification
is to establish a classification rule that labels a new observation X* based on
training data.

The Gaussian assumption is often used to facilitate statistical analysis of
various methods. In the simplest setting, the data from all groups share a com-
mon covariance matrix X, (X|Y = k) ~ NM(pu, Ew), 1 < k < K. For easy
presentation, we assume that the prior probabilities 7 = P(Y = k) are equal for
all k. In practice, the prior probability can be estimated and taken into account
for most methods considered in this paper.
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For a specified strictly positive definite symmetric matrix S, the Mahalanobis

distance between two vectors u and v is

1/2
dy(u,v) = {(u —v)'S7(u— v)} .

Under the Gaussian assumption, the classification rule minimizing the expected
classification error is called the Bayes rule, which simply classifies a data point to
a group with the nearest centroid in terms of Mahalanobis distance with S = 32,

2
Y = argmin(X — pp,) ' 2,1 (X — py,) = argmin HE;UQ(X - ,u,k)H . (21)

1<k<K 1<k<K 2

A key observation from (2.1) is that if we rotate the sample space by 2;1/ 2

first, then the Bayes rule is equivalent to a nearest centroid classifier with stan-
dard Euclidian distance. It then follows that the optimal decision boundary sepa-
rating groups k and / is the affine space given by {X —(pr+pe) /232, (e — o) =
0. The normal vector to this affine space is 3,'(ur — p¢). Therefore, the
decision boundary of the Bayes rule to the whole classification problem is a
subset of the union of these affine spaces, whose normal vectors span a vector
space X,'C, where C is the vector space spanned by {uy — eti<k<i<r- Here
dim C = dim(span{py — uK}fz_ll) < K — 1, with equality when the set of cen-
troids {pg}5_, is in general linear position. By Lemma 2 in the Supplementary
Material, when p is larger than K, we lose no information in projecting the data
from R? to a small subspace X_'C for classification. Applying the Bayes rule
to the projected data and the original data are equivalent. In practice, when p
is large, it is extremely helpful to find a reasonable approximation subspace to
3. 1C to reduce the dimensionality.

Without loss of generality, we assume that the columns of X" are centered to
have mean zero as the methods considered here are translation invariant. The

within-class sample covariance matrix is

K
W= DS S (K ) (K~ )

k=11ieCy

where fi, = n,;l > icc, Xi. The between-class sample covariance matrix is
1 & 1&
- N T N T
B=—> ni(in— i) — )" =~ nufuifiy
k=1 k=1

where fi = n~! Zszl npfr = 0. The total sample covariance matrix is

T=n"'XTX=W+B.
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2.2. Simple reduced-rank linear discriminant analysis

A reduced-rank LDA (Hastie, Tibshirani and Friedman (2009)) projects the
data to the centroid-spanning subspace C = span{ fty, — fe }1<k<r<ri. The idea is
that, when calculating the (Euclidean) distances to find the closest centroid, one
can ignore the distances orthogonal to C which contribute equally to all groups.
This simple method reduces the dimensionality remarkably. The main drawback
is that it does not incorporate the covariance structure and one can lose much
information if X, is far from a scalar matrix.

2.3. Fisher’s approach and the standard LDA

Fisher’s approach is to find a subspace so the projected centroids are spread
out as much as possible with respect to the covariance. It finds the first direction
by solving

vi = argmax v ' Bv subject to v Wv = 1, (2.2)
v

provided W is not singular. When K = 2, v; is the same as the normal vector (up
to a scalar) of the decision boundary separating two groups obtained by standard
LDA. When K > 2, one can continue to solve this generalized eigenvalue problem
until step rank(B), as

vy = argmaxv ' Bv subject to v Wv =1; v! Wv; =0,
v

v = argmaxv ' Bv subject to v Wv =1; v. Wv, =0, £ <k, (2.3)
v

The covariance plays a role here through the sample pooled covariance W
and the dimension of the subspace can be pre-specified or chosen data-adaptively.

The standard LDA can be viewed as a dimension reduction technique. Roughly
speaking, it mimics the Bayes rule by plugging in estimators of the common co-
variance and centroids. It labels an observation X by Y = argmin; ;< [|[W~1/2
(X — fig)]|2. Similar to the analysis of the Bayes rule, the normal vectors of
the decision boundaries of standard LDA span a subspace W-IC c RP. 1t is
equivalent to apply standard LDA to, instead of the original data, the projected

data onto subspace w-1C.

Proposition 1. If W is nonsingular, then dim W—1C = rank(B), and wW-IiC =
span{vy}r_, where r = dim C, vy, is as defined in (2.3).

The standard LDA performs well only when the sample size is large enough
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so W~IC is a good approximation to X_,'C.

2.4. The independence rule and related approaches

LDA does not work well when p ~ n and p > n. In the context of dimension
reduction, the reason is that W-1C or W—C is no longer a good approxima-
tion to 3,'C for high-dimensional data, where W~ is a pseudo-inverse of W.
A remedy is to assume that the features are independent, which leads to the
independence rule or diagonal LDA. To apply diagonal LDA, one just uses the
diagonal part D,, = diag(W) instead of W in the standard LDA. The IR or di-
agonal LDA usually outperforms standard LDA when p > n (Bickel and Levina
(2004)).

In the spirit of Proposition 1, one can see the equivalence between the IR
and Fisher’s approach with W replaced by Dy, in (2.3), as stated in Corollary
1 in the Supplementary Material. Witten and Tibshirani (2011) imposed some
sparse assumptions on the v;’s to derive a penalized LDA (PLDA). One can also
conduct dimension reduction based on the rank of marginal discriminant power.
Two well-known approaches are the NSC (Tibshirani et al. (2002)) and the FAIR
(Fan and Fan (2008)).

2.5. Principal component analysis

PCA has been used to solve supervised learning problems, e.g., principal
component regression (Jolliffe (2002)), supervised PCA (Bair et al. (2006)), etc.
In our context, standard PCA ignores the label information and keeps the eigen-
vectors corresponding to ¢ top eigenvalues of T, where ¢ can be pre-specified or
chosen data adaptively. There is no guarantee that the top principal components
have good discrimination power. Bair et al. (2006) proposed a variant of super-
vised PCA, a two-stage procedure in which marginal statistics are used to reduce
dimension before applying standard PCA. It seems that the label information is
used only in the first stage.

3. A New Reduced-Rank Linear Discriminant Analysis Method
3.1. Method

To take advantage of existing methods and study the multi-class classification
problem in a unified manner, we consider T, = W ++B with v > 0, with W and
B the within class and between class sample covariance matrices, respectively,
and ~ is a tuning parameter. If v = 1, our proposed procedure is equivalent



A NEW REDUCED-RANK LDA METHOD 195

to the standard PCA; and if v — oo, the procedure is equivalent to the simple
reduced-rank LDA.
Consider the eigenvalue decomposition

T
U, T,U, =D,, (3.1)
where D is a diagonal matrix with diagonal entries ranked in a descending order

and U, is an orthogonal matrix. Our reduced-rank LDA procedure based on the
first ¢ principal components of T is carried out as follows.

1. Calculate T, and U, and project the data from RP” to the linear subspace
spanned by the first ¢ columns of U,.

2. Apply the standard LDA to the projected data.

This procedure allows a varying parameter v which, along with ¢, can be
chosen adaptively. The label information is taken into account through v in
dimension reduction, and so we call it supervised PCA-based LDA (SPCALDA).
The parameter v makes our procedure more flexible. For example, the qualities
of W and B to approximate their population counterparts are usually not equally
good, and ~ can serve as a weight to balance them.

3.2. Theory

To understand the proposed method, we consider a population version. De-
note by 3 and X; the population versions of between-class and total covariance
matrix, respectively. Take 3, = 3, ++vX, v > 0 with eigenvalue decomposition

U,X,Up = Do,
where Dy is a diagonal matrix with diagonal entries ranked in a descending order
and Up is orthogonal. Because v plays only a minor role here, we drop it from
Up, Do, etc. We ask when we can project the data by oracle procedure without
information loss.

Let {); }§=1 be eigenvalues of 3., in a descending order, and consider a spiked
covariance structure (Johnstone (2001)).

Spiked Condition: Ay > -+ > Ay > Agy1 = --- = A, for some integer s < p.

Theorem 1. Suppose p > s+ K — 1, s > 1, with Up = (Up1,Ups), Upy and
Up2a px (s+ K —1) and p x (p—s— K + 1) matrices, respectively. Under spiked
condition, we have

UboX o (pr — o) =0, foralll <k <{<K.
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Thus we lose no discriminant power by projecting the data toa s + K — 1
dimensional subspace spanned by the columns of Up;. We can generalize this
result further as follows. Without loss of generality, assume p = Zszl g = 0.
From the proof of Theorem 1 in the Supplementary Material, we see the conclu-
sion of Theorem 1 holds for principal components of ¥, = ¥, + Zszl Pk uk,u;,
where p = (p1,...,px) | with pp > 0, 1 < k < K. Still, when K is more than
three, it is complicated to tune K parameters.

A more general model than the Gaussian is the mixture Gaussian model
that allows each group to be distributed as mixture Gaussian with the same
covariance; see e.g. Hastie, Tibshirani and Friedman (2009), Section 12.7. Let
(XY =k) ~ g“l TN (pkt, 2o), where 1 < k < K, 1 <t < Ry, Zﬁ“l e = L.

Theorem 2. Let R = Zle Ry. Then Theorem 1 holds if we replace each K by
R.

Remark 1. The spiked condition is crucial in Theorems 1 and 2. It is employed
by Hao, Dong and Fan (2015), which aimed to sparsify the normal vector of op-
timal discriminant boundary for binary classification problems. In applications,
the spiked condition may not hold exactly, but our numerical studies show that
the procedure performs very well.

Remark 2. In practice, we work with U instead of its population version Ugp.
Although Up may be quit different from U when n < p, Uy can be similar to
U1 under some conditions. For example, when the leading eigenvalues are large
enough or their corresponding eigenvectors are sparse, Up; can be well-estimated
by U or its sparse counterpart (Johnstone and Lu (2009)).

3.3. Computation

In many applications, p is much larger than n. For example, in some gene
expression data sets, p is a few thousands or more, and n is a few hundreds or
less. So it is time-consuming to calculate the p x p matrix T, and its eigenvalue
decomposition directly. The following lemma offers a shortcut to finding Uj.

Lemma 1. We can write T, = nilAIAW where

T
AV = <X1 - .LA'JYU oy Xy — ﬂan (7”1)1/2(1:"1 - ﬂ)? ) (7”G)1/2(ﬂK - l:l‘))

is an (n+K) x p matriz. Note that iy, = fu, whenY; =k, i = n~1 Ele ngfy =
0 by our convention.

When p > n+ K we can conduct the eigenvalue decomposition for the (n +
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K) x (n+ K) matrix AWAI instead of the p x p matrix AIAw- Thus, by singular
decomposition, A, = V,YI‘UWT where I is diagonal, V,, is an (n + K) x (n + K)
orthogonal matrix, and U, is p x p orthogonal matrix identical to U, in (3.1).
For n+ K small or moderate, it is easy to find V., which consists of eigenvectors
of AWAI , and the first (n+ K') columns of U, can be obtained by standardizing
A:er’Y column-wise, as AIV7 = UWI‘T. Here, it is sufficient to consider only the
first (n + K) columns of U, because the other columns correspond to eigenvalue
0 and contain little information.

For a fixed K, suppose n < p. The computational complexities of finding
AWAI and conducting its singular decomposition are O(n?p) and O(n?), re-
spectively. The computational complexity in finding and standardizing AIV,Y is
O(n?p). The overall computational complexity is then O(n?p). Our method is
computationally efficient for analyzing high-dimensional data.

4. Numerical Studies
4.1. Simulated data examples

We compared the SPCALDA method with some other classification tools in
simulations. In particular, we considered simple reduced-rank LDA (SRRLDA),
LDA after standard PCA (PCALDA), a special case of SPCALDA with fixed
v = 1, and the independence rule (IR). We added the Bayes rule as an oracle
benchmark for comparison.

Six scenarios are reported here. For each scenario, 200 observations were
generated and equally split between four classes. Among the 200 observations,
100 were assigned to the training set, and the other 100 served as test data.
There were p = 500 features. For each class k, X ~ N (uy, X,), where py and
X, were as follows.

Scenario 1. The covariances were X,, = I,. The mean vectors were given by
p1j = 0.3 x I1<j<i2s, poj = 0.3 x li26<<250, 135 = 0.3 * los1<j<ars, paj =
0.3 * I376<j<500, With Is a vector with entries 1 for indices in S and 0
elsewhere.

Scenario 2. Again X, = I,, now with p1; ~ N(0,0.3%) when 1 < j < 125,
and p1; = 0 otherwise, pgj ~ N(0,0.3%) when 126 < j < 250, and p2j =0
otherwise, uz; ~ N(0,0.3%) when 251 < j < 375 and p3; = 0 otherwise,
paj ~ N(0,0.3%) when 376 < j < 500, and u4; = 0 otherwise.

Scenario 3. X, = (0y;) with 0;; = 1 and 0;; = 0.5 for © # j. p; = 0.21 =
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Ti<j<i25, p2; = 0.21 * [196<j<250, p3j = 0.21 * Ios1<j<37s, pa; = 0.21 %
I376<<500-

Scenario 4. 3, is the same as in Scenario 3. pu1; ~ N(O,O.212) when 1 < j <
125, and p1; = 0 otherwise, pg; ~ N(0,0.21%) when 126 < j < 250, and
p2j = 0 otherwise, us; ~ N(0,0.21%) when 251 < j < 375, and p3; = 0
otherwise, p4; ~ N(0,0.21%) when 376 < j < 500, and p4; = 0 otherwise.

To investigate the robustness of the proposed method against departures
from the Gaussian and the equal covariance assumptions, we included two more
scenarios. Scenario 5 considers a case where the data are contaminated by a
random heavy-tailed noise, and in Scenario 6 the observations from different
classes do not share a common covariance structure.

Scenario 5. X was generated as in Scenario 3. With Z is a p dimensional
random vector with entries IID from the t-distribution with 3 degrees of
freedom. We took realizations of X = X + 0.2Z as observed instead of X.

Scenario 6. X was generated as in Scenario 3. For each class k, we generated
a p-dimensional vector d; with entries IID from the standard uniform dis-
tribution, and fixed a diagonal covariance matrix A, =diag(d}). For each
class k, we had Z ~ N(0,Ay), and took realizations of X =X+ Z as
observed instead of X.

There are two tuning parameters for SPCALDA, v and ¢, and one parameter
for the PCALDA method; they were chosen by five-fold cross validation. The
fitted models were evaluated using the test set for all methods. We repeated
each experiment 100 times. The average and standard deviation of classification
error rates for each method are listed in Table 1. The SPCALDA method always
outperformed PCALDA, which indicates that it is helpful to tune the parameter
~. In the independence cases, SPCALDA is comparable with SRRLDA and IR,
but much better than them in the correlated cases. When the Gaussian assump-
tion or the equal covariance assumption is violated, we see that SPCALDA still
performs reasonably well.

4.2. Data examples

In this section, we illustrate the performance of our method using six gene
expression data sets, that have been studied in the literature. In particular,
we considered three binary data sets, Chin (Chin et al. (2006)), Chowdary
(Chowdary et al. (2006)), Gordon (Gordon et al. (2002)), and three multi-class
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Table 1. Mean (and standard errors) of classification error rates (%).

SPCALDA PCALDA  SRRLDA IR Oracle
Scenario 1 18.93(4) 26.53(4.52) 19.33 (3.94) 18.45(3.86) 2.69(1.6)
Scenario 2 19.96(3.91) 27.71(5.1)  20.46 (4.7)  19.29(4.03) 2.8 (1.75)
Scenario 3 20.73(4.32) 30 (5.64) 36.61(10.75) 63.92(5.41) 2.73(1.63)
Scenario 4 22.78(4.4)  32.26(5.82) 38.61(10.31) 64.38(7.92) 3.07(1.69)
Scenario 5 28.8 (4.82) 38.42(6.41) 43.52 (9.66) 64.38(5.8) NA
Scenario 6 38.29(5.35) 50.75(6.72) 49.44 (8.85) 64.79(6.57) NA

Table 2. Data sets used in this study.

Data set related disease # samples # features # classes data distribution
Chin breast cancer 118 22,215 2 43, 75
Chowdary breast cancer 104 22,283 2 42, 62

Gordon lung cancer 181 12,533 2 87, 94

Golub leukemia 72 7,129 3 9, 25, 38
Nakayama soft tissue tumor 86 22,283 5 15, 15, 16, 19, 21
Sun glioma 180 54,613 4 23, 26, 50, 81

data sets, Golub (Golub et al. (1999)), Nakayama (Nakayama et al. (2007)),
and Sun (Sun et al. (2006)). The three binary data sets are available in R package
datamicroarray. The data set Golub is available in R package golubEsets.
The original Nakayama data set contains 105 samples from 10 types of soft
tissue tumors. We considered a subset of 86 samples belonging to 5 tumor types
and ignored the other tumor types for which less than 7 samples were available.
Nakayama and Sun are available on Gene Expression Omnibus (Barrett et al.
(2005)) with accession numbers GDS2736 and GDS1962, respectively. We list in
Table 2 the sample size, number of features, number of classes, data distribution
among different classes, and related disease for each data set.

Besides the methods considered in Section 4.1, we included the multi-class
classification tools NSC (Tibshirani et al. (2002)), RDA (Guo, Hastie and Tibshi-
rani (2007)), PLDA (Witten and Tibshirani (2011)), and SDA (Clemmensen et al.
(2011)); these have been implemented by R packages pamr, rda, penalizedLDA,
and sparseLDA, respectively. These methods are based on various sparsity as-
sumptions.

For each of the data sets, we randomly split the data, with a 3 to 1 ratio,
into a training set and a test set. Five-fold cross-validation was conducted on the
training set to select the tuning parameters for all methods, and the classification
error rates using the test sets were recorded. In Table 3 we list the average clas-
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Table 3. Mean (and standard errors) of classification error rates (%).

SPCALDA SRRLDA  NSC PLDA RDA SDA
Chin 11.57(6.57) 12.11(6.13) 12.41(7.42) 13.87(6.79) 12.25(5.32) 10.13 (4.47)
Chowdary 4.13(3.62) 10.43(5.82) 5.19(5.03) 33.63(9.52) 4.75(3.9) 17.19 (8.26)
Gordon  0.62(1.19) 2.29(2.99) 0.79(1.08) 0.53(0.96) 1.4 (1.25) 6.02 (3.41)
Golub 5.43(5.44) 24.2(12.93) 4.6 (4.17) 7.41(5.91) 6.3 (3.74) 15.89(11.62)
Nakayama 16.37(7.05) 20.6 (8.94) 23.51(6.36) 27.6 (8.84) 15.68(7.98) 33.73 (6.89)
Sun 30.43(5.73) 31.63(6.89) 33.24(6.03) 33.21(5.89) 33.48(6.97) 33.33 (8.78)

Table 4. Mean (and standard error) of computation time per replicate (in second).

SPCA-LDA SRR-LDA  NSC PLDA RDA SDA
Chin 145 (1.03) 0.05(0.03) 3.93(0.61) 13.51(0.77) 51.17(3.27) 1.12(0.22)
Chowdary 12.09(0.25) 0.05(0.04) 3.63(0.21) 12.41(0.75) 49.52(0.43) 1.09(0.17)
Gordon  11.68(0.15) 0.04(0.02) 1.95(0.07) 6.82(0.1) 30.2 (0.44) 0.53(0.04)
Golub 2.98(0.08) 0.01(0.01) 0.71(0.04) 3.9 (0.34) 10.97(0.25) 0.22(0.03)
Nakayama 8.77(0.2) 0.06(0.02) 2.33(0.09) 27.46(0.73) 38.14(0.55) 1.75(0.22)
Sun 55.16(1.19) 0.24(0.02) 9.16(0.28) 56.3 (0.94) 162.03(2.46) 6.42(0.75)

sification error rates and their standard deviations over 25 random training/test
set splits. We omit the results of PCALDA and IR which were dominated by
SPCALDA and NSC, respectively. We see that SPCALDA performed best for
two data sets, and second best for four data sets. In particular, SPCALDA did
the best in pairwise comparisons with other methods. We list in Table 4 the
computation time for each method. All methods were reasonably fast in han-
dling contemporary high-dimensional data sets. SPCALDA offers a competitive
classification tool for high-dimensional gene expression data.

5. Discussion

Feature selection and feature extraction are two popular strategies in sta-
tistical machine learning. In the context of this paper, the sparse methods such
as NSC and SDA can conduct variable selection and model estimation simul-
taneously, and belong to the first category. Our methods, including classical
reduced-rank LDA and PCA as special cases, belong to a second. While sparse
methods can achieve model selection consistency and efficiency under various as-
sumptions, they can fail when the true model is far from sparse. Our approach
does not depend on sparse assumptions and is robust against the sparsity level
of the true model. Our data examples support the robustness of our method.
In general, we can not expect a result on model selection consistency or effi-
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ciency, but we discuss a spiked covariance condition under which our method
may achieve efficiency.

Supplementary Materials

The Supplementary Material is available on the journal web site. It contains
Corollary 1, Lemma 2, and proofs for Theorems 1 and 2.
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