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ABSTRACT
Quadratic regression (QR)models naturally extend linearmodels by considering interactioneffects between
the covariates. To conductmodel selection inQR, it is important tomaintain thehierarchicalmodel structure
between main effects and interaction effects. Existing regularization methods generally achieve this goal
by solving complex optimization problems, which usually demands high computational cost and hence are
not feasible for high-dimensional data. This article focuses on scalable regularization methods for model
selection inhigh-dimensionalQR.Wefirst consider two-stage regularizationmethods andestablish theoret-
ical properties of the two-stage LASSO. Then, a new regularization method, called regularization algorithm
under marginality principle (RAMP), is proposed to compute a hierarchy-preserving regularization solu-
tion path efficiently. Both methods are further extended to solve generalized QRmodels. Numerical results
are also shown to demonstrate performance of the methods. Supplementary materials for this article are
available online.

1. Introduction

Statistical models involving two-way or higher-order interac-
tions have been studied in various contexts, such as linear mod-
els and generalized linear models (Nelder 1977; McCullagh
and Nelder 1989), experimental design (Hamada and Wu 1992;
Chipman, Hamada, and Wu 1997), and polynomial regression
(Peixoto 1987). In particular, a quadratic regression (QR)model
formulated as

Y = β0 + β1X1 + · · · + βpXp + β1,1X2
1

+β1,2X1X2 + · · · + βp,pX2
p + ε (1)

has been considered recently to analyze high-dimensional data.
In (1), X1, . . . , Xp are main effects, and order-2 terms XjXk (1 ≤
j ≤ k ≤ p) include quadratic main effects ( j = k) and two-way
interaction effects ( j �= k). A key feature of model (1) is its hier-
archical structure, as order-2 terms are derived from the main
effects. To reflect their relationship, we call XjXk the child of Xj
and Xk, and Xj and Xk the parents of XjXk.

Standard techniques such as ordinary least squares can be
applied to solve (1) for a small or moderate p. When p is
large and variable selection becomes necessary, it is suggested
that the selected model should keep the hierarchical structure.
That is, interaction terms can be selected into the model only if
their parents are in the model. This is referred to the marginal-
ity principle (Nelder 1977). In general, a direct application of
variable selection techniques to (1) cannot automatically ensure
the hierarchical structure in the final model. Recently, several
regularization methods (Yuan, Joseph, and Zou 2009; Zhao,
Rocha, and Yu 2009; Choi, Li, and Zhu 2010; Bien, Taylor, and
Tibshirani 2013) have been proposed to conduct variable selec-
tion for (1) under the marginality principle by designing special
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forms of penalty functions. Thesemethods are feasible when p is
a few hundreds or less, and the resulting estimators have oracle
properties when p = o(n) (Choi, Li, and Zhu 2010). However,
when p is much larger, these methods are not feasible since their
implementation requires storing and manipulating the entire
O(p2) × n designmatrix and solving complex constrained opti-
mization problems. The memory and computational cost can
be extremely high and prohibitive. Very recently, interaction
screening for high-dimensional settings has drawn much atten-
tion, and a variety of interaction screening approaches have been
proposed for regression and classification problems, including
Hao and Zhang (2014), Fan et al. (2015), and Kong et al. (2016).
By contrast, the purpose of this work is to develop scalable inter-
action selection approaches under a penalized framework for
high-dimensional data analysis.

In this article, we study regularization methods on model
selection and estimation for QR and generalized quadratic
regression (GQR) models under the marginality principle. The
main focus is the case p � n, which is a bottleneck for the
existing regularization methods. We study theoretical proper-
ties of a two-stage regularization method based on the LASSO
and propose a new efficient algorithm, RAMP, which produces
a hierarchy-preserving solution path. In contrast to existing reg-
ularization methods, these procedures avoid storing O(p2) × n
design matrix and sidestep complex constraints and penalties,
making them feasible to analyze data with many variables. In
particular, our R package RAMP runs well on a desktop for data
with n = 400 and p = 104 and it takes less than 30 sec (with
CPU 3.4 GHz Intel Core i7 and 32GB memory) to fit the QR
model and get the whole solution path. The main contribution
of this article is threefold. First, we establish a variable selec-
tion consistency result of the two-stage LASSO procedure for

©  American Statistical Association

http://www.tandfonline.com
https://doi.org/10.1080/01621459.2016.1264956
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2016.1264956&domain=pdf&date_stamp=2018-07-19
mailto:hzhang.work@gmail.com
http://www.tandfonline.com/r/JASA
http://www.tandfonline.com/r/JASA


616 N. HAO, Y. FENG, AND H. H. ZHANG

QR and offer new insights on stage-wise selection methods. To
our best knowledge, this is the first selection consistency result
for high-dimensional QR. Second, the proposed algorithms are
computationally efficient and will make a valuable contribution
to interaction selection tools in practice. Third, our methods
are extended to interaction selection in GQRmodels, which are
rarely studied in literature.

We define notations used in the article. Let X = (x1, . . . ,
xn)� be the n × p design matrix of main effects and y =
(y1, . . . , yn)� be the n-dimensional response vector. The linear
term index set is M = {1, 2, . . . , p}, and the order-2 index set
is I = {( j, k) : 1 ≤ j ≤ k ≤ p}. The regression coefficient vec-
tor β = (β0,β

�
M,β�

I )�, where βM = (β1, . . . , βp)
� and βI =

(β1,1, β1,2, . . . , βp,p)
�. For a subsetA ⊂ M, useβA for the sub-

vector of βM indexed in A, and XA for the submatrix of X
whose columns are indexed in A. In particular, X j is the jth
column of X. We treat the subscripts ( j, k) and (k, j) as iden-
tical, that is, β j,k = βk, j . Let c1, c2, . . . and C1, C2, . . . be posi-
tive constants that are independent of the sample size n. They
are locally defined and their values may vary in different con-
text. For a vector v = (v1, . . . , vp)

�, ‖v‖ = √∑p
j=1 v

2
j and ‖v‖1 =∑p

j=1 |v j|. For a matrix A, define ‖A‖∞ = maxi
∑

j |Ai j| and
‖A‖2 = sup‖v‖2=1 ‖Av‖2 as the standard operator norm, that is,
the square root of the largest eigenvalue of A�A.

The rest of the article is organized as follows. Section 2 con-
siders two-stage regularization methods for model selection in
QR and studies theoretical properties of the two-stage LASSO.
Section 3 proposes RAMP to compute the entire hierarchy-
preserving solution path efficiently. Section 4 extends the pro-
posed methods to generalized QR models. Section 5 presents
numerical studies, followed by a discussion. Technical proofs are
in the Appendices.

2. Two-Stage RegularizationMethod

Variable selection and estimation via penalization is popular
in high-dimensional analysis. Examples include the LASSO
(Tibshirani 1996), SCAD (Fan and Li 2001), elastic net (Zou and
Hastie 2005), minimax concave penalty (MCP; Zhang 2010),
among many others. Properties such as model selection con-
sistency and oracle properties have been verified (Zhao and Yu
2006; Wainwright 2009; Fan and Lv 2011). A general penalized
estimator for linear models is defined as

(β̂0, β̂M) = argmin
(β0,βM )

1
2n

‖y − 1β0 − XβM‖2 +
p∑

j=1

Jλ(β j),

(2)

where y is the response vector, X is the design matrix, Jλ(·) is a
penalty function, and λ ≥ 0 is a regularization parameter. The
penalty J(·) and λ may depend on index j. For easy presenta-
tion, we use same penalty function and parameter for all j unless
stated otherwise.

We consider the problem of variable selection for QR
model (1). Define X◦2 = X ◦ X as an n × p(p+1)

2 matrix
consisting of all pairwise column products. That is,
for X = (X1, . . . ,Xp), X◦2 = X ◦ X = (X1 � X1,X1 �

X2, . . . ,Xp � Xp), where � denotes the entry-wise product
of two column vectors. For an index set A ⊂ M, define

A◦2 = A ◦ A = {( j, k) : j ≤ k; j, k ∈ A} ⊂ I , and A ◦ M =
{( j, k) : j ≤ k; j or k ∈ A} ⊂ I . We use X◦2

A as a short notation
for (XA)◦2, a matrix whose columns are indexed byA◦2.

Two-stage regularization methods for interaction selection
have been considered by Efron et al. (2004); Wu et al. (2009),
among others. However, their theoretical properties are not
clearly understood. In the following, we first illustrate the gen-
eral two-stage procedure for interaction selection.

Two-Stage Regularization Method:
Stage 1: Solve (2). Denote the selected model by Â = { j :

β̂ j �= 0, j = 1, . . . , p}.
Stage 2: Solve

β̂ = argmin
β

1
2n

‖y − 1β0 − XÂβÂ − X◦2
Â βÂ◦2‖2 +

∑
α∈Â◦2

Jλ(βα).

At Stage 1, only main effects are considered for selection,
with all the order-2 terms being left out of the model. Denote
the selected set by Â. At Stage 2, we expand Â by including all
the two-way interactions of those main effects within Â and fit
the new model. To keep the hierarchical structure, we do not
penalize main effects at Stage 2, that is, set Jλ(·) = 0 for j ∈ Â.
To keep the hierarchy, it is also possible to use other methods
(Yuan, Joseph, and Zou 2009; Zhao, Rocha, and Yu 2009; Choi,
Li, and Zhu 2010; Bien, Taylor, and Tibshirani 2013) at Stage 2.

One main advantage of this two-stage regularization proce-
dure is its simple implementation. Existing R packages lars
and glmnet can be directly used to carry out the procedure.
Stage 1 serves as a dimension reduction step prior to Stage 2, so
the two-stage method avoids estimatingO(p2) parameters alto-
gether, making the procedure feasible for very large p.

In spite of its computational advantages, theoretical proper-
ties of two-stage regularization methods are seldom studied in
literature. A commonly raised concern is whether the important
main effects can be consistently identified at Stage 1, when all
order-2 terms are left out of the model on purpose. Next, we
focus on the two-stage LASSOmethod and investigate its selec-
tion behavior at Stage 1. In particular, we establish the main-
effect selection consistency result of the two-stage LASSO for
QR under some regularity conditions.

The LASSO is a special case of (2) by using the �1 penalty

(β̂0L, β̂L) = argmin
(β0,βM )

1
2n

‖y − 1β0 − XβM‖2 +
p∑

j=1

λ|β j|.

In the following, we show that the LASSO solution β̂L is sign
consistent at Stage 1, that is, sign(β̂L) = sign(βM)with an over-
whelming probability for a properly chosen tuning parameter.
This result provides critical theoretical insight about the two-
stage LASSO estimator.

Consider a sparse quadratic model with a Gaussian design.
Assume that xi, 1 ≤ i ≤ n, are independent and identically dis-
tributed (iid) fromN (0, �), and

yi = β0 + x�
i βM + (x�

i )◦2βI + εi, (3)

where ε = (ε1, . . . , εn)
� ∼ N (0, σ 2I) is independent of

{xi}ni=1. Without loss of generality, we further center yi and
(x�

i )◦2 and write

yi = x�
i βM + u�

i βI + εi, (4)
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where yi is the centered response and u�
i = (x�

i )◦2 − E(x�
i )◦2 is

a p× (p+ 1)/2 row vector with all centered order-2 terms. Let
yMi = x�

i βM and yIi = u�
i βI . yM = (yM1,, . . . , yMn)

�, yI =
(yI1,, . . . , yIn)�, U = (u1, . . . ,un)�. Set τ 2 = var(yIi). Define
ωi = u�

i βI + εi and ω = (ω1, . . . , ωn)
�, which is treated as

noise at Stage 1. Denote by �AB the submatrix of � with row
index A and column index B. As illustrated in Hao and Zhang
(2017), the support and sign of the coefficient vector βM for
a QR model depend on its parameterization because a coding
transformation can change the support ofβM. Therefore, we fol-
lowHao and Zhang (2017) and define the index set of important
main effects by S = { j : β2

j + ∑p
k=1 β2

j,k > 0}. Let s = |S| and
T = {(k, �) : βk,� �= 0}. It follows this definition that T ⊂ S◦2.
Moreover, tomake sign(βM)well-defined, we require thatmain
effects are centered in (3). We refer to Hao and Zhang (2017) for
further explanations on thewell-definedness of sign and support
of the coefficient vector βM for a QR model.

Define �Sc|S = �ScSc − �ScS (�SS )−1�SSc where Sc =
M − S . Let �min(A) be the smallest eigenvalue of A and
ρu(A) = maxi Aii. Assume the following technical condi-
tions:
(C1) (Irrepresentable Condition) ‖�ScS (�SS )−1‖∞ ≤ 1 −

γ , γ ∈ (0, 1].
(C2) (Eigenvalue Condition) �min(�SS ) ≥ Cmin > 0.

Theorem 1. Consider the quadratic model with a randomGaus-
sian design (4). Suppose that (C1) and (C2) hold. Consider the
family of regularization parameters

λn(φp) =
√

φpρu(�Sc|S )

γ 2

4(σ 2 + τ 2) log(p)
n

(5)

for some φp ≥ 2. If for some fixed δ > 0, the sequence (n, p, s)
and regularization sequence {λn} satisfy

n
2s log(p− s)

> (1 + δ)
ρu(�Sc|S )

Cminγ 2

(
1 + 2(σ 2 + τ 2)Cmin

λ2
ns

)
,

(6)

then the following holds with probability greater than
1 − c1 exp(−c2 min{s, log(p− s), n

1
2 }).

1. The LASSO has a unique solution β̂L with support con-
tained within S .

2. Define the gap

g(λn) = c3λn

∥∥∥�
− 1

2
SS

∥∥∥2

∞
+ 20

√
σ 2s
Cminn

+ 9‖βI‖2
√
s

Cminn
1
3

.

(7)

Then if βmin = min j∈S |β j| > g(λn), then sign(β̂L) =
sign(βM).

Furthermore, given (5), an alternative condition to (6) making
the above results hold is

n
2s log(p− s)

>
1 + δ′

1 − 1
φp

ρu(�Sc|S )

Cminγ 2 (8)

for some δ′ > 0.
Remark 1. Conditions (C1) and (C2) are commonly used to
show the model selection consistency of the LASSO estimator

in the literature. Conditions (6) and (7) are key requirements on
dimensionality and minimal signal strength βmin, respectively.
The normality assumption is used here to facilitate the proof and
comparisons to existing results in linear regression. In the sup-
plementarymaterial, we establish Theorem 1, which extends the
consistency result to non-Gaussian designs. Other extensions of
theoretical results are discussed in Section 6.

Remark 2. The result in Theorem 1 generalizes Theorem 3 by
Wainwright (2009) that is established in the context of linear
regression. Theorem 1 implies that the two-stage LASSO can
identify important main effects at Stage 1. The validity of the
two-stage LASSO is then guaranteed, as the index set of impor-
tant interactions T ⊂ S◦2. That is, all important interaction
effects can be included at Stage 2. Given Theorem 1, the interac-
tion selection consistency result at Stage 2 can be obtained under
some mild conditions on the matrix X◦2

S , since the data dimen-
sionality has been greatly reduced. One can also apply existing
methods, for example, Choi, Li, and Zhu (2010) at Stage 2, for
which selection consistency has been established.

3. Regularization Path Algorithm under Marginality
Principle (RAMP)

For linear regression models, regularization solution-path algo-
rithms provide state-of-the-art computational tools to imple-
ment variable selection with high-dimensional data. Popular
algorithms include least angle regression (LARS; Efron et al.
2004), its extensions (Park and Hastie 2007; Wu 2011; Zhou
and Wu 2014), and coordinate decent algorithm (CDA; Fried-
man et al. 2007; Wu and Lange 2008; Friedman, Hastie, and
Tibshirani 2010; Yu and Feng 2014). These computational
tools can be used to implement two-stage methods for fitting
QR. However, by the nature of two-stage approach, the whole
solution-path highly depends on the selection result at Stage 1,
which is obtained under considerably high noise level if inter-
action effects are strong. Therefore, it is desirable to develop a
seamless path algorithm that can select main and interaction
effects simultaneously subject to hierarchy. To achieve this, we
propose a regularization algorithm under marginality principle
(RAMP) via the coordinate descent to compute the solution path
while preserving the model hierarchy along the path.

We first review the coordinate decent algorithm for the stan-
dard LASSO. Consider

min
1
2n

n∑
i=1

(
yi − β0 − x�

i βM
)2 + λ‖βM‖1.

There exists a penalty parameter λmax such that the minimizer
β̂L = 0 if λ ≥ λmax. As λ decreases from λmax to 0, the LASSO
solution β̂L = β̂λ changes from 0 to the least-square estimator (if
it exists). Usually, a sequence of values {λk}Kk=1 between λmax and
ζλmax is set, with 0 < ζ < 1, and a solution path β̂λk

is calculated
for each λk. For a fixed k, using β̂λk−1

as the initial value, the CDA
solves the optimization problem by cyclically minimizing each
coordinate β j until convergence. Define Mk = supp{β̂λk

}, that
is, the active set for each λk.

In the following, we propose a coordinate descent algorithm
to fit the quadratic model under regularization that obeys the
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marginality principle.Given a tuning parameterλ, the algorithm
computes the �1 regression coefficients ofmain effects and inter-
actions subject to the heredity condition. At step k − 1, denote
the current active main effect set as Mk−1 and the interaction
effect set as Ik−1. Define Hk−1 as the parent set of Ik−1, that is,
it contains the main effect that has at least one interaction effect
(child) in Ik−1. SetHc

k−1 = M − Hk−1.
Regularization Algorithm under Marginality Principle

(RAMP):
Initialization: Set λmax = n−1 max |X�y| and λmin = ζλmax

with some small ζ > 0. Generate an exponentially decay-
ing sequence λmax = λ1 > λ2 > · · · > λK = λmin. Initialize the
main effect setM0 = Ø and the interaction effect set I0 = Ø.

Path-building: Repeat the following steps for k = 1, . . . ,K.
Given Mk−1, Ik−1,Hk−1, add the possible interactions among
main effects in Mk−1 to the current model. Then with respect
to (β0,β

�
M,β�

M◦2
k−1

)�, we minimize

1
2n

n∑
i=1

(
yi − β0 − x�

i βM − (
x�
i
)◦2
Mk−1

βM◦2
k−1

)2

+ λk‖βHc
k−1

‖1 + λk‖βM◦2
k−1

‖1, (9)

where the penalty is imposed on the candidate interaction effects
and Hc

k−1, which contains the main effects not enforced by the
strong heredity constraint. RecordMk, Ik, andHk according to
the solution. Add the corresponding main effects from Ik into
Mk to enforce the heredity constraint, and calculate the OLS
based on the current model.

Different from two-stage approaches, RAMP allows at each
step the interaction effects M◦2

k−1 to enter the model for selec-
tion. Following the same strategy, we propose a weak hierarchy
version of RAMP, denoted by RAMP-w, as a flexible relaxation.
The main difference is that we use the setMk−1 ◦ M instead of
M◦2

k−1 in (9) and solve the optimization problem with respect to
(β0,β

�
M,β�

Mk−1◦M)�. In this way, an interaction term can enter
the model for selection immediately after one of its parents has
been selected at a previous step. Therefore, RAMP-w is particu-
larly useful in the scenariowhen only one parent of an important
effect is strong. Both RAMP and RAMP-w are implemented in
our R package RAMP, which is available on the CRAN website
for researchers to use. Moreover, other penalty options such as
SCAD and MCP are also included in the RAMP package.

Figure 1 illustrates two hierarchy-preserving solution paths
obtained by the RAMP under strong and weak heredity con-
straints, respectively. In this toy example, n = 500, p = 100,
and Xi j

iid∼ N (0, 1), and Y = X1 + 3X6 + 4X1X3 + 5X1X6 + ε,
where ε ∼ N (0, 1). Without the marginality principle, X1X6
would be the most significant predictor as it has the highest
marginal correlation with Y . On the other hand, RAMP with
the strong heredity selects X1 and X6 before picking up X1X6 on
the solution path. Note that RAMP does not select X1X3 until at
a very late stage on the solution path due to the strong heredity
assumption. Under the weak heredity, RAMP-w is able to select
in sequenceX6,X1X6,X1, andX1X3. The reason is that afterX6 is
selected, X1X6 is immediately added into the candidate interac-
tion set and then successfully selected, even beforeX1 is selected.
Similarly,X1X3 is picked up by the algorithm after one of its par-
ents X1 has been selected.

4. Extension to Generalized QRModels

4.1. Generalized Quadratic Regression

A standard generalized linear model (GLM) assumes that the
conditional distribution of y given X belongs to the canonical
exponential family with density

fn(y,X,β) =
n∏

i=1

f0(yi; θi) =
n∏
i=1

{
c(yi) exp

[
yiθi − b(θi)

φ

]}
,

where φ > 0 is a dispersion parameter, β = (β1, . . . , βp)
� are

the regression coefficients, and

θ = (θ1, . . . , θn)
� = Xβ. (10)

The function b(θ) is twice continuously differentiable with a
positive second-order derivative. In sparse high-dimensional
modeling, β is a long vector with a small number of nonzero
entries. In the context of QR, the design matrix is (X,X◦2). A
natural generalization of GLM is to modify (10) as

θ = (θ1, . . . , θn)
� = XβM + X◦2βI . (11)

In the literature, there are very few computational tools available
to fit high-dimensional GQRmodels. Next, we illustrate how the
aforementioned algorithms can be used for GQR.

Figure . Two hierarchy-preserving solution paths for a toy example produced by the RAMP and RAMP-w, respectively. Left panel: strong hierarchy. Right panel: weak
hierarchy.
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4.2. Two-Stage RegularizationMethods

For high-dimensional data, the penalized likelihood method is
commonly used to fit GLM. Given the systematic component
(10), the penalized likelihood estimator is defined as

argmin
β

Qn(β) = argmin
β

−�n(β) +
p∑

j=1

Jλ(|β j|),

where �n(β) = log fn(y;X,β) = 1
n (y�Xβ − 1�b(Xβ)) is the

log-likelihood up to a scalar, Jλ(·) is a penalty function, and
λ ≥ 0 is the regularization parameter.

For GQR with systematic component (11), we propose the
two-stage approach as follows. At Stage 1, only main effects are
selected by the penalization method with order-2 terms being
left out. Denote the selected main-effect set by Â. At Stage 2, we
expand Â by adding all the two-way interactions (children) of
those main effects (parents) within Â and solve

argmin
β

Qn(β, Â) = argmin
β

−�n(β, Â) +
∑

α∈Â◦2

Jλ(βα),

where

�n(β, Â)

= 1
n

[
yT

(
XÂβÂ + X◦2

Â βÂ◦2
) − 1�b

(
XÂβÂ + X◦2

Â βÂ◦2
)]

.

At Stage 2, we intentionally do not impose penalty on main
effects in Â, so that all the selected main effects at Stage 1 will
stay in the finalmodel. This will assure the hierarchical structure
of main effects and interactions in the final model.

4.3. New Path Algorithm for Generalized QR

The RAMP proposed in Section 3 can be easily extended to fit
the GQR. The major difference is to replace the penalized least
squares by the penalized likelihood function at each step. The
CDA algorithm is used to minimize the penalized likelihood
function iteratively.

RAMP Algorithm for GQR:
Initialization: Set λmax = n−1 max |X�y| and λmin = ζλmax

with 1 > ζ > 0. Generate an exponentially decaying sequence
λmax = λ1 > λ2 > · · · > λK = λmin. Initialize the main effect
setM0 = Ø and the interaction effect set I0 = Ø.

Path-building: Repeat the following steps for k = 1, . . . ,K.
Given Mk−1, Ik−1,Hk−1, add the possible interactions among
main effects in Mk−1 to the current model. Then with respect
to (β0,β

�,β�
M◦2

k−1
)�, we maximize

�n(β,Mk−1) − λk‖βHc
k−1

‖1 − λk‖βM◦2
k−1

‖1,
where

�n(β,Mk−1) = 1
n

[
yT

(
XMk−1βMk−1

+ X◦2
Mk−1

βM◦2
k−1

)
− 1�b

(
XMk−1βMk−1

+ X◦2
Mk−1

βM◦2
k−1

)]
.

Calculate Mk, Ik, and Hk according to the solution. Add the
main effects from Ik intoMk to enforce the heredity constraint,
and calculate the MLE based on the current model.

5. Numerical Studies

5.1. Simulation Examples

We consider data-generating processes with varying signal-to-
noise ratios, different covariate structures, error distributions,
and heredity structures. In particular, Example 1 is a QR model
under a p � n settings with strong heredity considered by Hao
and Zhang (2014). Example 2 is a high-dimensional logistic
regressionmodel with interaction effects. Examples 3 and 4 con-
sider QR models with the weak and strong heredity structures,
respectively, where we consider a relatively small p to make the
comparison possible with the hierarchical lasso (Bien, Taylor,
and Tibshirani 2013). Example 5 considers a QR model with
a heavy tail error distribution to demonstrate the robustness of
our methods.

For comparison, we consider RAMP and two two-stage
methods, that is, two-stage LASSO (2-LASSO) and two-stage
SCAD (2-SCAD). We also include existing methods iFORT and
iFORM (Hao and Zhang 2014), the hierarchical lasso (Bien,
Taylor, and Tibshirani 2013), and the benchmark method
ORACLE for which the true sparse model is
known.

When computing the solution paths of two-stage methods
andRAMP,we choose the tuning parameter by EBICwith γ = 1
(Chen and Chen 2008). We also implemented other parame-
ter tuning criteria including AIC, BIC, and GIC (Fan and Tang
2013), and observed that the EBIC tends to work the best among
most of the simulation settings that we considered. For brevity,
we report only the results for EBIC.

Let S = { j : β j �= 0} and T = {( j, k) : β j,k �= 0} with cardi-
nality s = |S| and t = |T |. For each example, we runM = 100
Monte Carlo simulations for each method and make a compar-
ison. For the mth simulation, denote the estimated subsets as
Ŝ (m) and T̂ (m), the estimated coefficient vector as β̂

(m)
, themain

effects and interaction effects as β̂ (m)
j and β̂

(m)

j,k .We evaluate vari-
able selection and model estimation performance based on the
following criteria.

� Main effects coverage percentage (main.cov):
M−1 ∑M

m=1 I(S ⊂ Ŝ (m)).
� Interaction effects coverage percentage (inter.cov):
M−1 ∑M

m=1 I(T ⊂ T̂ (m)).
� Main effects exact selection percentage (main.exact):
M−1 ∑M

m=1 I(S = Ŝ (m)).
� Interaction effects exact selection percentage (inter.exact):
M−1 ∑M

m=1 I(T = T̂ (m)).
� Model size (size):M−1 ∑M

m=1(|Ŝ (m)| + |T̂ (m)|).
� Root mean squared error (RMSE): {M−1 ∑M

m=1
[
∑p

j=0(β̂
(m)
j − β j)

2 + ∑p
j=1

∑p
k= j(β̂

(m)

j,k − β j,k)
2]}1/2.

Example 1. Set (n, p, s, t ) = (400, 5000, 10, 10). Generate the

covariates {xi}ni=1
iid∼ N (0,�) with � jk = 0.5| j−k| and gener-

ate the response y by model (1). S = {1, 2, . . . , 10} with the
true regression coefficients βS = (3, 3, 3, 3, 3, 2, 2, 2, 2, 2)�.
The set of important interaction effects is T =
{(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (6, 8), (6, 10), (7, 8), (7, 9),
(9, 10)} with the corresponding coefficients (2, 2, 2, 2, 2, 1,
1, 1, 1, 1).
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Table . Selection and estimation results for Example .

Main effects Interaction effects

σ Coverage Exact Coverage Exact Size RMSE

RAMP  . . . . . .
 . . . . . .
 . . . . . .

-LASSO  . . . . . .
 . . . . . .
 . . . . . .

-SCAD  . . . . . .
 . . . . . .
 . . . . . .

iFORT  . . . . . .
 . . . . . .
 . . . . . .

iFORM  . . . . . .
 . . . . . .
 . . . . . .

ORACLE  . . . . . .
 . . . . . .
 . . . . . .

To have different signal-to-noise ratio situations, we con-
sider σ ∈ {2, 3, 4}. The results are summarized in Table 1. With
regard to model selection, the proposed RAMP has a high cov-
erage percentage in selecting both main effects and interaction
effects. The 2-LASSO tends tomiss some importantmain effects
while picking up somenoise variables, ending upwith the largest
model size on average. On the other hand, the 2-SCAD has a
high exact selection percentage with a low coverage percent-
age for the interaction effects. Compared to RAMP, the iFORM
tends to have a lower coverage on interaction effects. The iFORT
is the worst in terms both variable selection and model estima-
tion.With regard to parameter estimation, RAMPhas the small-
est root mean square error (RMSE) when σ = 3 and 4.

Example 2. We consider a logistic regression model with

log
P(Y = 1|X )

P(Y = 0|X )
= β1X1 + 3X6 + 3X10 + 3X1X6 + 3X6X10,

where (n, p, s, t ) = (400, 2000, 3, 2) and X iid∼ N (0, Ip). For
different signal-to-noise ratios, we vary the coefficient β1 ∈
{1, 2, 3}.

The results are summarized in Table 2, which lead to the
following observations. When the signal is strong (β1 = 2, 3),

RAMP, 2-LASSO and 2-SCAD perform similarly in select-
ing main effects; while RAMP and 2-SCAD is much better in
selecting interactions than 2-LASSO. When the signal is weak
(β1 = 1), 2-LASSO and 2-SCAD fail to identify the correctmain
effects most of time, which in turn leads to low coverage of
important interaction effects. On the other hand, RAMP per-
forms reasonably well in terms of selecting bothmain effects and
interaction effects.With regard to RMSE, RAMPoutperforms 2-
LASSO and 2-SCAD in all scenarios. Note that the iFORT and
iFORMare omitted in this example, as they do not handle binary
responses.

In the next two examples, we compare RAMP and hierNet
algorithms for both strong and weak hierarchy scenarios.

Example 3. Set (n, p, s, t ) = (400, 100, 10, 10). Generate the
covariates {xi}ni=1

iid∼ N (0,�) with � jk = 0.5| j−k| and gener-
ate the response y by model (1). S = {1, 2, . . . , 10} with the
true regression coefficients βS = (3, 3, 3, 3, 3, 2, 2, 2, 2, 2)�.
The set of important interaction effects is T = {(1, 2),
(1, 13), (2, 3), (2, 15), (3, 4), (6, 10), (6, 18), (7, 9), (7, 18),
(10, 19)} with the corresponding coefficients (2, 2, 2, 2,
2, 1, 1, 1, 1, 1).

In this example, the strong heredity does not hold while the
weak heredity is satisfied. Note that we take p to be relatively
small due to the heavy computational cost of hierNet (Bien,
Taylor, and Tibshirani 2013). Here, we compare RAMP and
RAMP-w (RAMP with the weak heredity constraint) with
hierNet-s and hierNet-w, and the results are summarized in
Table 3. As expected, when applying RAMP with strong hered-
ity (RAMP), it alwaysmisses some important interaction effects.
However, the RAMP with weak heredity (RAMP-w) success-
fully recovers the important interaction effects with a high pro-
portion, especially when the error variance is small. Comparing
with the hierNet, the RAMP-w in general selects a much smaller
model with a smaller RMSE. In particular, the computation time
of hierNet is much longer than RAMP for both the strong and
weak versions.

Example 4. Set (n, p, s, t ) = (400, 200, 10, 10). The rest setup is
same as Example 1.

In this example, we consider the case where the strong hered-
ity holds and compare RAMP and RAMP-w with hierNet-s and
hierNet-w. From Table 4, it is clear that RAMP outperforms

Table . Selection and estimation results for Example .

Main effects Interaction effects

β1 Coverage Exact Coverage Exact Size RMSE

RAMP  . . . . . .
 . . . . . .
 . . . . . .

-LASSO  . . . . . .
 . . . . . .
 . . . . . .

-SCAD  . . . . . .
 . . . . . .
 . . . . . .

ORACLE  . . . . . .
 . . . . . .
 . . . . . .
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Table . Selection and estimation results as well as average computing time (in seconds) per replicate for Example .

Main effects Interaction effects

σ Coverage Exact Coverage Exact Size RMSE Time

RAMP  . . . . . . .
 . . . . . . .
 . . . . . . .

RAMP-w  . . . . . . .
 . . . . . . .
 . . . . . . .

hierNet-s  . . . . . . .
 . . . . . . .
 . . . . . . .

hierNet-w  . . . . . . .
 . . . . . . .
 . . . . . . .

Table . Selection and estimation results as well as average computing time (in seconds) per replicate for Example .

Main effects Interaction effects

σ Coverage Exact Coverage Exact Size RMSE Time

RAMP  . . . . . . .
 . . . . . . .
 . . . . . . .

RAMP-w  . . . . . . .
 . . . . . . .
 . . . . . . .

hierNet-s  . . . . . . .
 . . . . . . .
 . . . . . . .

hierNet-w  . . . . . . .
 . . . . . . .
 . . . . . . .

RAMP-w in terms of both the coverage percentage and the exact
selection percentage for interaction effect. This is not surprising
as the RAMP-w searches for additional interaction effects com-
pared with RAMP. In addition, the RMSE of RAMP is the small-
est among the four methods throughout all noise levels. Both
hierNet-s and hierNet-w have very good coverage percentage
but with almost zero exact selection percentage for both main
effects and interaction effects. As a result, they select a large
number of noise variables in the final model. Note that the com-
putation time for hierNet-s is over 4 hr for a single replicate.
As a result, we omit the comparison with hierNet for the other
higher-dimensional examples.

Example 5. We use the same setting as in Example 1 except for
the error distribution, which is changed to a t distribution with
degrees of freedom 3.

This example is designed to examine the robustness of proposed
methods under heavy tail error distributions. For brevity, we
report only the performance of the vanilla RAMP with strong
heredity enforced. It is clear from Table 5 that under the heavy

Table . Selection and estimation results for Example .

Main effects Interaction effects

σ Coverage Exact Coverage Exact Size RMSE

RAMP  . . . . . .
 . . . . . .
 . . . . . .

tail error distribution, RAMP has a similar performance as in
Example 1.

5.2. Real Data Example: Supermarket Data

We consider the supermarket dataset analyzed by Wang (2009)
and Hao and Zhang (2014). The dataset contains the daily sale
information of a major supermarket located in northern China,
with n = 464 and p = 6398. The total number of interaction
effects is about 2.0 × 107. The responseY is the number of cus-
tomers on a particular day with the predictor X measuring sale
volumes of a selection of products. The supermarket manager
would like to find out which products are most informative in
predicting the response, which would be useful to design pro-
motions around those products.

Here, we randomly split the data into a training set (n1 =
400) and a test set (n2 = 64) to evaluate the prediction perfor-
mance of different methods. We also compare the performance
of RAMP with the regular LASSO without taking interaction
effects into account. Because of the issue of tuning parameter
selection, we report the results using different tuning methods
including AIC, BIC, EBIC (Chen and Chen 2008), andGIC (Fan
and Tang 2013) for both RAMP and the LASSO.

For each random split, we calculate the number of selected
variables, the number of selected interaction effects, and the
out-of-sample R2 on the test set. The average performance over
100 random splits is presented in Table 6. When we use BIC,
EBIC, and GIC, RAMP selects a model with higher out-of-
sample R2 values than the LASSO. When using more stringent
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Table . Mean selection and prediction results on the supermarket dataset over
 random splits. The standard errors are in parentheses.

RAMP LASSO

Size Size.Inter R2 Size Size.Inter R2

AIC .(.) .(.) .(.) .(.) .(.) .(.)
BIC .(.) .(.) .(.) .(.) .(.) .(.)
EBIC .(.) .(.) .(.) .(.) .(.) .(.)
GIC .(.) .(.) .(.) .(.) .(.) .(.)

tuning parameter criteria like the EBIC and GIC, it is observed
that the RAMP performs significantly better than the LASSO.
For example, when GIC is used, RAMP selects 30 variables on
average with around 3 of them being interaction effects, and
has an average out-of-sample R2 value of 90.08, which is much
higher than the corresponding LASSO results. It is clear that by
using RAMP with the inclusion of possible interaction effects,
we can obtain a more interpretable model with a reasonably
good prediction performance. Moreover, from Table 8 in Hao
and Zhang (2014), the out-of-sample R2 values with the asso-
ciated standard error for iFORT and iFORM are 88.91 (0.17)
and 88.66 (0.18), respectively, both of which are outperformed
by RAMP with any tuning parameter selection method.

6. Discussion

We study regularization methods for interaction selection sub-
ject to the marginality principle for QR and GQR models. One
main advantage of these algorithms is their computational effi-
ciency and feasibility for high- and ultra-high dimensional data.
In particular, a key feature of RAMP is that it can selectmain and
interaction effects simultaneously while still keeping the hierar-
chy structure. The strategy of RAMP can be used to extend other
algorithms, for example, LARS, to build the entire solution path
when fitting the regularized QR models. All algorithms con-
sidered in this article use the hierarchy structures. Such struc-
tures are natural for quadratic models (Nelder 1977; Hao and
Zhang 2017). Nevertheless, in certain applications, some main
effects may not be strong enough to be selected first without
incorporating the interaction effects. Other approaches (Yuan,
Joseph, and Zou 2009; Zhao, Rocha, and Yu 2009; Choi, Li, and
Zhu 2010; Bien, Taylor, and Tibshirani 2013) can be applied in
this scenario, as these methods keep the hierarchy in different
ways. However, a drawback is that most of these algorithms are
relatively slow when p is large. Recently, there have been stud-
ies on interaction selection, which do not rely on the strong or
weak hierarchy. Based on the idea of sure independence screen-
ing (Fan and Lv 2008; Fan, Feng, and Song 2011; Cheng et al.
2014), Jiang and Liu (2014) proposed Sliced Inverse Regres-
sion for Interaction Detection (SIRI) for screening interaction
variables; Fan et al. (2016) introduced a new approach called
interaction pursuit for interaction identification using screen-
ing and variable selection. It would be interesting to incorporate
these screening-based methods into our path algorithm to han-
dle general scenarios.

We demonstrate theoretical properties of the two-stage
LASSO method for QR. As a referee pointed out, selection con-
sistency results on the LASSO often rely on the irrepresentable

condition, which is not realistic in applications. To extend cur-
rent results, it is desirable to investigate a broad range of penalty
functions for GQR, for example, under frameworks similar to
Fan and Lv (2011) and Fan and Lv (2013).

AnRpackageRAMP has been developed and is available from
the CRAN website.

Appendix A: Proof of Theorem 1

The main results are shown in Appendix A, and a related lemma is
put in Appendix B.

Proof of Theorem 1. We will apply the primal-dual witness (PDW)
method and use (W1), (W2), etc., to denote the formula (1), (2),
. . . inWainwright (2009). Recall in our article, the n-vector ω is the
imaginary noise at Stage 1, which is the sum of the Gaussian noise ε

and the interaction effects (u�
1 βI , . . . , u�

n βI )�, and hence it is not
independent of the design matrix X.

Part I: Verifying strict dual feasibility.
The goal is to show that, with overwhelming probability, under

condition (6), inequality |Zj| < 1 holds for each j ∈ Sc, where Zj is
defined in (W10). For every j ∈ Sc, conditional onXS , (W37) gives
a decomposition Zj = Aj + Bj where

Aj = E�
j

{
XS

(
X�
SXS

)−1 žS + �X⊥
S

(
ω

λnn

)}
Bj = � jS (�SS )−1žS ,

where E�
j = X�

j − � jS (�SS )−1X�
S ∈ R

n with Ei j ∼ N (0,
[�Sc|S ] j j).

Condition (C1) implies

max
j∈Sc

|Bj| ≤ 1 − γ .

Conditioned onXS andω,Aj is Gaussian with mean zero and vari-
ance var(Aj) ≤ ρu(�Sc|S )Mn, where

Mn = 1
n
ž�
S

(
X�
SXS
n

)−1

žS +
∥∥∥∥�X⊥

S

(
ω

λnn

)∥∥∥∥2

2
.

�

The following lemma, proved in Appendix B, generalizes
Lemma 4 in Wainwright (2009).

Lemma A.1. For any ε ∈ (0, 1
2 ), define the event T (ε) = {Mn >

Mn(ε)}, where

Mn(ε) =
(
1 + max

{
ε,

8
Cmin

√
s
n

})(
s

Cminn
+ 2(σ 2 + τ 2)

λ2
nn

)
.

Then P(T (ε)) ≤ C1 exp(−C2 min{√nε2, s}) for someC1,C2 > 0.
By Lemma A.1,

P
(
max
j∈Sc

|Zj| ≥ 1
)

≤ P
(
max
j∈Sc

|Aj| ≥ γ

)
≤ P

(
max
j∈Sc

|Aj| ≥ γ | T c
(ε))

)
+C1 exp(−C2 min{√nε2, s}). (A.1)



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 623

Note that the goal is to show the probability in (A.1) is exponentially
decayed. Conditional on T c

(ε), var(Aj) ≤ ρu(�Sc|S )Mn(ε), so

P
(
max
j∈Sc

|Aj| ≥ γ | T c
(ε))

)
≤ 2(p− s) exp

(
− γ 2

2ρu(�Sc|S )Mn(ε)

)
.

The assumptions of Theorem 1 imply s
n = o(1) and 1

λ2
nn

= o(1),
so Mn(ε) = o(1). Therefore, it suffices to show that the decaying
rate of the exponential term dominates p− s. It is easy to check that
(6) can guarantee that max j∈Sc |Zj| < 1 holds with probability at
least 1 − c1 exp(−c2 min{s, log(p− s), n

1
2 }).

Now we show the sufficiency of the alternative condition (8). In
particular, we show (5) and (8) imply (6), which is equivalent to

n
1 + δ

> 2s log(p− s)
ρu(�Sc|S )

Cminγ 2

(
1 + 2(σ 2 + τ 2)Cmin

λ2
ns

)
.

Plugging in (5), we have

n
1 + δ

> 2s log(p− s)
ρu(�Sc|S )

Cminγ 2

+ 2s log(p− s)
ρu(�Sc|S )

Cminγ 2

2(σ 2 + τ 2)Cmin

λ2
ns

= 2s log(p− s)
ρu(�Sc|S )

Cminγ 2 + n
φp

log(p− s)
log p

. (A.2)

Following the same argument after (W40) in Wainwright (2009),
(A.2) is implied by (8) for φp ≥ 2.

Part II: Sign consistency.
To show sign consistency, we need to show that (W13) holds.

That is,

sign(β j + � j) = sign(β j), for all j ∈ S, (A.3)

where

� j = e�
j

(
X�
SXS
n

)−1 [
1
n
X�
S ω − λnsign(βS )

]
.

From definition, we have

max
j∈S

|� j| ≤ F1 + F2 ≤ F1 + (F2,1 + F2,2),

where

F1 = λn
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∞
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∥∥∥∥∥
(
X�
SXS
n

)−1 1
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(
X�
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)−1 1
n
X�
S yI

∥∥∥∥∥
∞

(W41) and a correction version of (W42) give upper bounds of
tail probability of F1 and F2,1, respectively. That is,

P
(
F1 > c3λn

∥∥∥�
− 1

2
SS
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∞

)
≤ 4 exp(−c2 min{s, log(p− s)}), (A.4)

P

⎛⎝F2,1 ≥ 20

√
σ 2s
Cminn

⎞⎠ ≤ 4 exp(−c1s). (A.5)

Now we work on the addition term F2,2. By (W60),

P
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(
1
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1
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�
j (Xk � X�) is a sample third moment, so by Lemma B.5 in Hao

and Zhang (2014),

P
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Therefore, we have
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Overall,

P
(
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)
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)
.

Setting ε = s
1
2

n
1
3
, we have

P
(
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√
s

Cminn
1
3

)
≤ c8 exp(−c9s). (A.6)

Combining (A.4), (A.5), and (A.6), we have that with probability
greater than 1 − c′1 exp(−c′2 min{s, log(p− s)}),

max
j∈S

|� j| ≤ c3λn
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− 1

2
SS

∥∥∥2
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+ 20

√
σ 2s
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√
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= g(λn).

Therefore, (A.3) holds when βmin > g(λn). �

Appendix B: Proof of Lemma A.1

Proof of Lemma A.1. The first summand of Mn can be controlled
exactly the same way as in Wainwright (2009), that is,

1
n
ž�
S

(
X�
SXS
n

)−1

žS ≤
(
1 + 8

Cmin

√
s
n

)
s

nCmin

with probability at least 1 − 2 exp(−s/2).
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Turning to the second summand, we observe that �X⊥
S
is an

orthogonal projection matrix and ω = ε + yI , so

∥∥∥∥�X⊥
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λnn
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2
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λ2
nn2
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.

Note that ‖ε‖22/σ 2 ∼ χ2
n , by (W54a),

P
(‖ε‖22

n
≤ (1 + ε)σ 2

)
≤ exp

(
−3nε2

16

)
. (B.1)

Moreover,

‖yI‖22 − nτ 2 =
n∑

i=1

(
u�
i βI

)2 − τ 2,

is a sum of mean zero-independent random variables. Define B =
(Bjk) is the coefficient matrix with Bjk = β j,k/2, ( j �= k) and Bj j =
β j, j .

For each i, we can write

u�
i βI = x�

i Bxi − E
(
x�
i Bxi

) = e�
i Aei − tr(A),

where ei ∼ N (0, I), A = (�)
1
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The moment generating function M(t ) of the quadratic form
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where {λ j}sj=1 are eigenvalues of A with ascending order. From
(B.2), we have

E(e�
i Aei) = tr(A), var
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and
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By Lemma B.4 in Hao and Zhang (2014),

P

(∣∣∣∣∣
n∑
i=1

(Wi − 1)

∣∣∣∣∣ > nε

)
≤ c1 exp

(
−c2n

1
2 ε2

)
,

for some positive constants c1, c2. That is,
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(B.1) and (B.3) imply
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And the conclusion of Lemma A.1 follows. �

Supplementary Material

In the supplementary materials, we illustrate a generalization of Theorem 1
and its proof.

Acknowledgments

Ning Hao and Yang Feng contribute equally to this work. The authors are
grateful to the editor, AE, and referees for their helpful suggestions.

Funding

The authors are partially supported by NSF grants DMS-1309507 (Hao
and Zhang), DMS-1308566 and DMS-1554804 (Feng), DMS-1418172 and
NSFC 11571009 (Zhang).

References

Bien, J., Taylor, J., and Tibshirani, R. (2013), “A Lasso for Hierarchical Inter-
actions,” The Annals of Statistics, 41, 1111–1141. [615,616,619,620,622]

Chen, J., and Chen, Z. (2008), “Extended Bayesian Information Criteria for
Model Selection with Large Model Spaces,” Biometrika, 95, 759–771.
[619,621]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 625

Cheng, M.-Y., Honda, T., Li, J., and Peng, H. (2014), “Nonparametric
Independence Screening and Structure Identification for Ultra-High
Dimensional Longitudinal Data,” The Annals of Statistics, 42, 1819–
1849. [622]

Chipman, H., Hamada, M., and Wu, C. F. J. (1997), “A Bayesian Variable-
Selection Approach for Analyzing Designed Experiments with Com-
plex Aliasing,” Technometrics, 39, 372–381. [615]

Choi, N. H., Li, W., and Zhu, J. (2010), “Variable Selection with the Strong
Heredity Constraint and its Oracle Property,” Journal of the American
Statistical Association, 105, 354–364. [615,616,617,622]

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle
Regression,” The Annals of Statistics, 32, 407–451. [616,617]

Fan, J., Feng, Y., and Song, R. (2011), “Nonparametric Independence
Screening in Sparse Ultra-High Dimensional Additive Models,” Jour-
nal of the American Statistical Association, 106, 544–557. [622]

Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized
Likelihood and its Oracle Properties,” Journal of the American Statis-
tical Association, 96, 1348–1360. [616]

Fan, J., and Lv, J. (2008), “Sure Independence Screening for Ultrahigh
Dimensional Feature Space,” Journal of the Royal Statistical Society,
Series B, 70, 849–911. [622]

——— (2011), “Nonconcave Penalized Likelihood with np-
Dimensionality,” IEEE Transactions on Information Theory, 57,
5467–5484. [616,622]

Fan, Y., Kong, Y., Li, D., and Lv, J. (2016), “Interaction Pursuit with Feature
Screening and Selection,” arXiv:1605.08933. [622]

Fan, Y., Kong, Y., Li, D., and Zheng, Z. (2015), “Innovated Interaction
Screening for High-Dimensional Nonlinear Classification,”The Annals
of Statistics, 43, 1243–1272. [615]

Fan, Y., and Lv, J. (2013), “Asymptotic Equivalence of Regularization meth-
ods in Thresholded Parameter Space,” Journal of the American Statisti-
cal Association, 108, 1044–1061. [622]

Fan, Y., and Tang, C. Y. (2013), “Tuning Parameter Selection in High
Dimensional Penalized Likelihood,” Journal of the Royal Statistical Soci-
ety, Series B, 75, 531–552. [619,621]

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007), “Path-
wise Coordinate Optimization,” Annals of Applied Statistics, 1,
302–332. [617]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for
Generalized Linear Models via Coordinate Descent,” Journal of Statis-
tical Software, 33, 1–22. [617]

Hamada, M., and Wu, C. F. J. (1992), “Analysis of Designed Experiments
with Complex Aliasing,” Journal of Quality Technology, 24, 130–137.
[615]

Hao, N., and Zhang, H. H. (2014), “Interaction Screening for Ultra-High
Dimensional Data,” Journal of the American Statistical Association, 109,
1285–1301. [615,619,621,623,624]

——— (2017), “A Note on High Dimensional Linear Regression with Inter-
actions,” The American Statistician, to appear. [617,622]

Jiang, B., and Liu, J. S. (2014), “Variable Selection for General IndexModels
via Sliced Inverse Regression,” The Annals of Statistics, 42, 1751–1786.
[622]

Kong, Y., Li, D., Fan, Y., and Lv, J. (2016), “Interaction Pursuit in High-
Dimensional Multi-Response Regression via Distance Correlation,”
The Annals of Statistics, 45, 897–922. [615]

McCullagh, P., and Nelder, J. (1989), Generalized Linear Mod-
els(Monographs on Statistics and Applied Probability), Boca Raton, FL:
Chapman and Hall. [615]

Nelder, J. A. (1977), “A Reformulation of Linear Models,” Journal of the
Royal Statistical Society, Series A, 140, 48–77. [615,622]

Park, M. Y., and Hastie, T. (2007), “L1-Regularization Path Algorithm for
Generalized Linear Models,” Journal of the Royal Statistical Society,
Series B, 69, 659–677. [617]

Peixoto, J. L. (1987), “Hierarchical Variable Selection in Polynomial Regres-
sion Models,” The American Statistician, 41, 311–313. [615]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267–288. [616]

Wainwright, M. J. (2009), “Sharp Thresholds for High-Dimensional and
Noisy Sparsity Recovery Using-Constrained Quadratic Programming
(lasso),” IEEE Transactions on Information Theory, 55, 2183–2202.
[616,617,622,623]

Wang, H. (2009), “Forward Regression for Ultra-High Dimensional Vari-
able Screening,” Journal of the American Statistical Association, 104,
1512–1524. [621]

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., and Lange, K. (2009), “Genome-
Wide Association Analysis by Lasso Penalized Logistic Regression,”
Bioinformatics, 25, 714–721. [616]

Wu, T. T., and Lange, K. (2008), “Coordinate Descent Algorithms for Lasso
Penalized Regression,” Annals of Applied Statistics, 2, 224–244. [617]

Wu, Y. (2011), “An Ordinary Differential Equation-Based Solution Path
Algorithm,” Journal of Nonparametric Statistics, 23, 185–199. [617]

Yu, Y., and Feng, Y. (2014), “Apple: Approximate Path for Penalized Likeli-
hood Estimators,” Statistics and Computing, 24, 803–819. [617]

Yuan, M., Joseph, V. R., and Zou, H. (2009), “Structured Variable Selec-
tion and Estimation,” Annals of Applied Statistics, 3, 1738–1757.
[615,616,622]

Zhang, C.-H. (2010), “Nearly Unbiased Variable Selection under Minimax
Concave Penalty,” Annals of Statistics, 38, 894–942. [616]

Zhao, P., Rocha, G., and Yu, B. (2009), “The Composite Absolute Penal-
ties Family for Grouped and Hierarchical Variable Selection,” Annals
of Statistics, 37, 3468–3497. [615,616,622]

Zhao, P., and Yu, B. (2006), “On Model Selection Consistency of Lasso,”
Journal of Machine Learning Research, 7, 2541–2563. [616]

Zhou, H., and Wu, Y. (2014), “A Generic Path Algorithm for Regularized
Statistical Estimation,” Journal of the American Statistical Association,
109, 686–699. [617]

Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via
the ElasticNet,” Journal of the Royal Statistical Society, Series B, 67, 301–
320. [616]


	Abstract
	1.Introduction
	2.Two-Stage Regularization Method
	3.Regularization Path Algorithm under Marginality Principle (RAMP)
	4.Extension to Generalized QR Models
	4.1.Generalized Quadratic Regression
	4.2.Two-Stage Regularization Methods
	4.3.New Path Algorithm for Generalized QR

	5.Numerical Studies
	5.1.Simulation Examples
	5.2.Real Data Example: Supermarket Data

	6.Discussion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Lemma A.1
	Supplementary Material

	Acknowledgments
	Funding
	References

