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ABSTRACT
The problem of interaction selection in high-dimensional data analysis has recently received much atten-
tion. This note aims to address and clarify several fundamental issues in interaction selection for linear
regression models, especially when the input dimension p is much larger than the sample size n. We first
discuss how to give a formal definition of “importance” for main and interaction effects. Then we focus on
two-stage methods, which are computationally attractive for high-dimensional data analysis but thus far
have been regarded as heuristic.We revisit the counterexample of Turlach andprovide new insight to justify
two-stage methods from the theoretical perspective. In the end, we suggest new strategies for interaction
selection under the marginality principle and provide some simulation results.

1. Introduction

Given a dataset {(xi, yi)}ni=1, which is made up of indepen-
dent and identically distributed copies of (X,Y ), where X =
(X1, . . . ,Xp)

� is the p-dimensional vector of covariates and
Y is the response variable, a standard linear regression model
assumes

Y = β0 + β1X1 + · · · + βpXp + ε, (1)

where ε is the random error term. In complex sys-
tems, the predictors often interact and their interaction
effects may play a crucial role in model prediction and
interpretation. Historically, models with two- or higher-
order interaction terms have been considered for lin-
ear models and generalized linear models (Nelder 1977;
McCullagh and Nelder 1989; Nelder 1994; McCullagh 2002),
polynomial regression (Peixoto 1987, 1990), experimental
designs (Hamada and Wu 1992; Chipman 1996; Chipman,
Hamada, and Wu 1997), among others. A linear model with
two-way interaction effects can be expressed as

Y = β0 + β1X1 + · · · + βpXp + γ11X2
1 + γ12X1X2

+ · · · + γppX2
p + ε, (2)

where β0, β = (β1, . . . , βp)
�, γ = (γ11, γ12, . . . , γpp)

�

are unknown regression parameters. In model (2), X1,...,
Xp are main effects, X2

j (1 ≤ j ≤ p) and XjXk (1 ≤ j < k ≤ p)
are quadratic and two-way interaction effects, respectively. We
refer to all of the degree-two terms as interactions. A special
feature about model (2) is the intrinsic relationship among
regressor terms, that is, XjXk is the child of Xj and Xk, and,
Xj and Xk are parents of XjXk. This type of model structure is
known as hierarchy or the hierarchical structure.

Historically, Nelder (1977) pointed out the importance of
maintaining the hierarchical structure when identifying impor-
tant effects in interaction models. He suggested using the

CONTACT Hao Helen Zhang hzhang.work@gmail.com Department of Mathematics, University of Arizona, Tucson, AZ .

marginality principle, which requires any interaction term be
considered for selection only after its parents have entered the
model. Nelder (1994) further provided a clear explanation for
this principle as follows.

“When we fit sequences of quantitative terms such as
x1, x2, x1x2, x21, x22, . . . , we have to ask which sequences make
sense. If we fit x1 without an intercept, then the response must
go through the origin, that is, zeromust be a special point on the
x-scale where y is zero. Similarly, if x21 is fitted without an x1 term
then the turning-point must occur at the origin (not impossi-
ble, but very unlikely). For if x1 might just as well be x1 − a then
(x1 − a)2 = x21 − 2ax1 + a2 and the linear term reappears. Both
termsmust be fitted in the order x1, then x21, and we say that x1 is
f -marginal to x21. With two continuous variables x1 and x2, new
effects arise: if x1x2 is fitted without x1 and x2 then the response
surface must be centered on a col (saddlepoint) for the process
to make sense. In general, there is no reason to expect such a
centering to occur, so x1 and x2 must be fitted before x1x2.”

With the same spirit, Peixoto (1990) suggested that a well-
formulated model should be invariant under simple coding
transformations. The model f (x1, x2) = β0 + γ12x1x2 is not
invariant, since one or more linear terms can be brought into
the model after some coding transformation. For example,
the transformation x̃1 = x1 − 1 will lead to f (x̃1, x2) = β0 +
γ12x2 + γ12x̃1x2. Therefore, it is not sensible to consider the
model {1,X1X2} without X1 or X2.

In modern biological and medical research, gene–gene
interactions, also called epistatic effects, and gene–environment
interactions have been intensively studied in genome-wide asso-
ciation studies (GWAS; Evans et al. 2006; Manolio and Collins
2007; Kooperberg and LeBlanc 2008; Cordell 2009). To deal with
such large and complex datasets, variable selection has been
under rapid development over the past two decades. A compre-
hensive overview ofmodern variable selection theory andmeth-
ods was given by Fan and Lv (2010) and the book by Bühlmann
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and van de Geer (2011). Lately, research on interaction selec-
tion has been revived in the context of high-dimensional data
analysis; see the recent works by Efron et al. (2004), Yuan,
Joseph, and Zou (2009), Zhao, Rocha, and Yu (2009), Choi, Li,
and Zhu (2010), Bien, Taylor, and Tibshirani (2013), and Hao
and Zhang (2014). When the data dimension p is comparable
to or much larger than the sample size n, the problem of inter-
action selection for model (2) faces a number of challenges.
Computationally, there are a total of d = (p2 + 3p)/2 predic-
tors, and therefore the number of candidate models 2d can be
enormously large and prohibitive for standard software. Sec-
ond, to maintain the hierarchical structure in the final model,
special optimization constraints are needed during the selection
process, as suggested by several authors including Zhao, Rocha,
and Yu (2009) and Yuan, Joseph, and Zou (2009). However, con-
strained programming demands high computational cost and is
typically infeasible for large p. Furthermore, it is very challeng-
ing to study statistical inference and asymptotic properties of
an interaction selection method, since interaction effects have
much more complex covariance structures than main effects.

In this note, we first discuss some fundamental issues in
interaction selection formodel (2) in high-dimensional settings.
When p is extremely large, two-stage methods are possibly the
only feasible choices in practice. However, the lack of a theo-
retical foundation for two-stage methods has been an issue for
a long time in the literature. One goal of this note is to shed
new light, at least in some situations, on the validity of two-stage
methods. Furthermore, we discuss themarginality principle and
suggest new strategies that are feasible for high-dimensional
interaction selection. Throughout this note, we assume thatX =
(X1, . . . ,Xp)

� is a random vector following a continuous distri-
bution F , and the noise term ε follows N (0, σ 2) independent
of X with unknown variance σ 2.

2. Definition of “Importance”

We consider how to define important effects in a regression
model. The answer is simple for a standard linearmodel contain-
ing main effects only, but not so straightforward for model (2)
due to its hierarchical structure. In the following, we first discuss
the invariance principle and then suggest a proper definition of
importance for a model containing interaction terms.

2.1. Invariance Principle

In model (1), when p is large, it is common to assume that the
truemodel is sparse, that is, only a small number of variables are
relevant to the response. Intuitively, the relevance or importance
of a variable Xj is reflected by the magnitude of its regression
coefficient β j . Formally, Xj is important if and only if β j �= 0.
Variable selection aims to identify the set of important vari-
ables, that is, the support of the coefficient vector β, denoted by
S(β) = { j : β j �= 0, j = 1, . . . , p}. For convenience, we define
sign(β) = (sign(β1), . . . , sign(βp))

�.
In practice, it is common to center and rescale the predic-

tors before variable selection is conducted. For example, before a
shrinkage method like the LASSO (Tibshirani 1996) is applied,
the predictors are usually standardized to have zero mean and

unit variance so that they are on the same scale and their regres-
sion coefficients are directly comparable. Therefore, a proper
definition of “importance” should satisfy the invariance prin-
ciple with respect to the coding transformation of covariates
(Peixoto 1990). To elaborate, consider the transformation X̃ j =
a j(Xj − c j) for j = 1, . . . , p, where a j > 0 and c j are arbitrary
constants. Under this transformation, model (1) becomes

Y = β̃0 + β̃1X̃1 + · · · + β̃pX̃p + ε =
⎛⎝β0 +

p∑
j=1

β jc j

⎞⎠
+ a−1

1 β1X̃1 + · · · + a−1
p βpX̃p + ε.

It is clear that β̃ j = a−1
j β j �= 0 if and only if β j �= 0. Further-

more, sign(β̃) = sign(β). Therefore, the definitions ofS(β) and
sign(β) both satisfy the invariance principle.

For high-dimensional variable selection, a number of model
consistency criteria have been recently suggested to study
asymptotic properties of an estimator β̂, including sure screen-
ing consistency (Fan and Lv 2010), model selection consistency
(Fan and Li 2001; Zou 2006), and sign consistency (Zhao and
Yu 2006). These three types of consistency amount to, with
high probability, S(β̂) ⊃ S(β), S(β̂) = S(β), and sign(β̂) =
sign(β), respectively. Due to the invariance property of S(β)

and sign(β), these consistency properties are also invariant
under any coding transformation on predictors.

2.2. “Importance” of Interactions

We now define important main effects and important interaction
effects for model (2). First, we point out that the traditional def-
inition β j �= 0 or sign(β j) �= 0 for “important main effects” is
no longer proper for model (2), since it violates the invariance
principle. This can be illustrated with Turlach’s data-generating
process (Turlach 2004),

Y = (X1 − 0.5)2 + X2 + X3 + X4 + X5 + ε. (3)

Model (3) can be expressed in the following three different but
equivalent equations,

Y = X2
1 − 1X1 + 1

4
+ X2 + X3 + X4 + X5 + ε,

Y = X̃2
1 + 0X̃1 + X2 + X3 + X4 + X5 + ε,

with X̃1 = X1 − 0.5,

Y = X̂2
1 + 1X̂1 + 1

4
+ X2 + X3 + X4 + X5 + ε,

with X̂1 = X1 − 1,

where the last two expressions result from a simple coding trans-
formation X1 − c. In these three expressions, the coefficient of
the first main effect is−1, 0, and 1, respectively. This would lead
to three different interpretations about the effect of X1: positive,
null, or negative. Which one is correct? The answer depends on
the coding system. The cause of inconsistent interpretations is
that X2

1 is a function of X1. In general, as long as γ jk �= 0, there
always exists some linear transformation that can change the
signs of β j and βk, making them independently positive, nega-
tive, or zero. Furthermore, under model (2), neither the support
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S(β) nor sign(β) is invariant under a coding transformation. It
is problematic as the three expressions correspond to the same
model. In general, the invariance principle can be violated when
some deterministic relationship exists among predictors.

Next, we propose a proper definition for important effects in
model (2) that satisfies the invariance principle.

Definition 1. For the data-generating process (2), we say that
Xj is important if and only if β2

j + ∑p
k=1 γ 2

jk > 0, and XjXk is
important if γ jk �= 0.We define the set of importantmain effects
by T (β, γ ) = { j : β2

j + ∑p
k=1 γ 2

jk > 0, j = 1, . . . , p}. The sign
of main effects is defined as sign(β) under any parameterization
with E(Xj) = 0, j = 1, . . . , p.

We show that Definition 1 is invariant under any coding
transformation.Under the coding transformation X̃ j = a j(Xj −
c j) with a j > 0, model (2) can be expressed as

Y =
⎛⎝β0 +

p∑
j=1

β jc j +
∑

1≤ j≤k≤p

γ jkc jck

⎞⎠
+

p∑
j=1

a−1
j

(
β j +

p∑
k=1

γ jkck

)
X̃ j +

∑
1≤ j≤k≤p

γ jka−1
j a−1

k X̃ jX̃k,

where γ jk = γk j for j > k. Under the new parameterization, we
have

β̃0 = β0 +
p∑

j=1

β jc j +
∑

1≤ j≤k≤p

γ jkc jck,

β̃ j =
p∑

j=1

a−1
j

(
β j +

p∑
k=1

γ jkck

)
,

γ̃ jk = γ jka−1
j a−1

k .

It is easy to check the following facts:
(i) sign(γ̃ jk) = sign(γ jk)

(ii) β2
j + ∑p

k=1 γ 2
jk = 0,⇐⇒ β j = 0, γ jk = 0,∀ j, k. ⇐⇒

β̃ j = 0, γ̃ jk = 0,∀ j, k. ⇐⇒ β̃2
j + ∑p

k=1 γ̃ 2
jk = 0.

Throughout this article, we focus on any parameterization
obtained by a coding transformation from the original data. In
the following proposition, we show that the sign of main effects
is well-defined under Definition 1.

Proposition 1.
1. A main effect Xj is important if and only if β j �= 0 or

γ jk �= 0 for some k, under arbitrary parameterization. In
particular, S(β) ⊂ T (β, γ ).

2. If XjXk, j �= k is important, so are its parent effects Xj
and Xk. If X2

j is important, so is Xj.
3. AssumeE(Xj) = 0 for all 1 ≤ j ≤ p. Under a scale trans-

formation X̃ j = a jXj with a j > 0, we have sign(β̃ j) =
sign(β j) for j = 1, . . . , p.

“Important effects” inDefinition 1 are valid andwell-defined,
as they eliminate possible inconsistent interpretations due to a
coding transformation.More importantly, they provide us a rig-
orous framework to study theoretical properties of a variable
selection procedure.

3. Myths About Two-StageMethods

In the literature, there are twomain types of interaction selection
procedures: one-stage methods and two-stage methods. One-
stage methods select main and interaction effects simultane-
ously, subject to a hierarchical constraint. Examples include sev-
eral shrinkage methods such as Zhao, Rocha, and Yu (2009),
Yuan, Joseph, and Zou (2009), Choi, Li, and Zhu (2010), and
Bien, Taylor, and Tibshirani (2013). These methods use asym-
metric penalty functions and inequality constraints to maintain
the model hierarchy in the selection process. For the setting
p < n, these estimators possess nice theoretical properties such
as model selection consistency and oracle properties. However,
the computational cost of one-stagemethods can be very high or
even infeasible for a large p setting, as they require the solution
of large scale and complex optimization problems. In contrast,
two-stage methods are more attractive for high-dimensional
problems, especially with p 
 n, due to their scalable compu-
tational algorithms (Wu et al. 2009, 2010).

Two-stage methods are widely used in practice, for example,
in genomics data analysis. However, they are usually regarded
as heuristic procedures because their theoretical foundation is
not clearly understood. In addition, Turlach (2004) constructed
a counterexample that cast further doubt on consistency of
two-stage estimators. In the following, we will first revisit
this counterexample to better understand the mechanism of
two-stage methods and why they fail in this example. We then
discuss situations where two-stage methods can actually be
justified theoretically.

3.1. Turlach’s Counterexample

Two-stage methods keep the model hierarchy in a natural
selective manner by circumventing complex constraints on the
models, and therefore they have computational advantages over
one-stage methods. For example, Efron et al. (2004) suggested
a two-stage least angle regression (LARS) for interaction selec-
tion. At stage one, only main effects are selected from model
(1). Denote the set of selected main effects by M̂ ⊂ {1, . . . , p}.
At stage two, the two-stage LARS considers only interactions of
those main effects in M̂ and selects interaction terms based on
the following reduced model

Y = β0 +
∑
j∈M̂

β jXj +
∑

j,k∈M̂; j≤k

γ jkXjXk + ε. (4)

Since two-stage methods conduct variable selection under a
misspecified model at stage one (by intentionally leaving out
interaction effects), there has been doubt on their theoretical
validity in the literature. Furthermore, Turlach (2004) con-
structed the following counterexample for the two-stage LARS
by considering the data-generating process (3),

Y = (X1 − 0.5)2 + X2 + X3 + X4 + X5 + ε,

where X1, . . . ,X10 are independent and identically distributed
from Unif[0, 1], and they are independent of ε. Five variables,
X1, . . . ,X5, are present in model (3). Because cov(Y,X1) = 0,
the two-stage LARS algorithm by Efron et al. (2004) does not
select X1 at stage one. Consequently, the procedure will fail to
include the important quadratic term X2

1 at stage two. In the
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294 N. HAO AND H. H. ZHANG

following two subsections, we explain why two-stage methods
fail for this example and then discuss general conditions under
which two-stage methods work.

3.2. New Insight from Turlach’s Example

Based on Definition 1, the key to success for two-stage methods
is to identify all of the important main effects at stage one, so
that all of the important interactions are included for selection at
stage two. Next we use Turlach’s example to explain the working
mechanism of two-stage methods.

Without loss of generality, we first center the predictors X̃ j =
Xj − E(Xj) = Xj − 0.5, j = 1, . . . , p, and consider themodel

Y = 2 + X̃2
1 + X̃2 + X̃3 + X̃4 + X̃5 + ε. (5)

In (5), the linear term X̃1 disappears after centering. It turns out
that, no variable selection methods based on (1) can identify X1
unless by chance. To see this, let us consider the following least-
square estimator based on the entire data population,

βLS = argmin
β0,...,β5

E(Y − β0 −
5∑
j=1

β jX̃ j)
2

= argmin
β0,...,β5

(
E(2 − β0)

2 + E(X̃2
1 − β1X̃1)

2

+
5∑
j=2

E(X̃ j − β jX̃ j)
2
)

= (2, 0, 1, 1, 1, 1)�.

The second coefficient in βLS is zero, which implies that it is
unlikely to select X1 under model (1), even if the entire popu-
lation were observed. However, if we simply change (X1 − 0.5)2
to (X1 − c)2 with c �= 0.5 in (3), then two-stage methods would
be able to identify X1 successfully.

Motivated byTurlach’s example, we can establish general con-
ditions under which two-stage methods are valid. At stage one,
two-stage methods essentially estimate the parameters

(β̌0, β̌) = argmin
β0,β

E

⎛⎝Y − β0 −
p∑

j=1

Xjβ j

⎞⎠2

, (6)

instead of β. Since model (1) is misspecified, β̌ is in general not
the same as β. Assume that β̌ is unique and sparse. A neces-
sary condition for two-stage methods to work is that the set of
important main effects T (β, γ ) is contained in S(β̌), that is,
T (β, γ ) ⊂ S(β̌). If a main effect is left out of S(β̌), such as X1
in Turlach’s example, then it can be selected only by chance.

Is it possible to derive a sufficient condition to guarantee
both S(β) = S(β̌) and T (β, γ ) = S(β)? If so, then we have
T (β, γ ) = S(β) = S(β̌), which will validate two-stage meth-
ods. Hao and Zhang (2014) provided such a condition on
the distribution of data to ensure β̌ = β. Their main result is
reviewed next. Without loss of generality, assume E(Y ) = 0 and
E(Xj) = 0 for j = 1, . . . , p in model (2). Moreover, we center
all interaction terms anddenote themasZjk = XjXk − E(XjXk).

Then model (2) is equivalent to

Y = β1X1 + · · · + βpXp + γ11Z11 + γ12Z12 + · · · + γppZpp + ε.

(7)

Denote by � the covariance matrix of vector (X1, . . . ,

Xp,Z11, . . . ,Zjk, . . . ,Zpp)
�. First, it can be shown that, if the

joint distribution of (X1, . . . ,Xp)
�, say, F , is symmetric with

respect to the origin 0, then the covariance matrix� has a block
structure as

� =
(

�(1) 0
0 �(2)

)
, (8)

where �(1) and �(2) are the covariance matrices of (X1, . . . ,

Xp)
� and (Z11, . . . ,Zpp)

�, respectively. The block structure in
(8) is because all the first and third moments of the joint dis-
tribution F are zero. The following proposition shows that the
block structure of � is a sufficient condition for β̌ = β.

Proposition 2. If (8) holds, then β̌ = β. In particular, S(β) =
S(β̌).

Proof. For (7), define ω = γ11Z11 + γ12Z12 + · · · + γppZpp + ε.
Based on (8), we have cov(ω,Xj) = 0 for any 1 ≤ j ≤ p. Denote
by β∗ the true coefficient vector. Then,

β̌ = argmin
β

E

⎛⎝Y −
p∑

j=1

Xjβ j

⎞⎠2

= argmin
β

E

⎛⎝ p∑
j=1

Xjβ
∗
j + ω −

p∑
j=1

Xjβ j

⎞⎠2

= argmin
β

E

⎡⎣⎛⎝ p∑
j=1

Xjβ
∗
j −

p∑
j=1

Xjβ j

⎞⎠2

+ ω2

⎤⎦ = β∗,

where the equal sign in the last line holds because all the vari-
ables are centered and cov(ω,Xj) = 0 for all j = 1, . . . , p. �
Remark 1. Proposition 2 shows that two-stage methods can
identify S(β) successfully at stage one under some conditions,
even when the model is misspecified. One sufficient condition
is the block structure of �. Furthermore, we point out that one
condition on the data distribution to ensure the block structure
is symmetry (with respect to the origin) of the joint distribu-
tion of (X1, . . . ,Xp)

�. The block structure condition may be
restrictive from a practical perspective, but it sheds some light
on future research directions.

Next, we consider the conditions that guarantee T (β, γ ) =
S(β).

3.3. Strong Heredity Condition

Heredity conditions were first applied to experimental design
by Hamada and Wu (1992), Chipman (1996), and Chipman,
Hamada, and Wu (1997). Recently, these conditions have also
been used to study interaction selection for linear regression
models (Yuan, Joseph, and Zou 2009; Choi, Li, and Zhu 2010).
The strong heredity condition for model (2) or (7) is expressed
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as

γ jk �= 0 only if β jβk �= 0, ∀1 ≤ j, k ≤ p, (9)

and the weak heredity condition is expressed as

γ jk �= 0 only if β2
j + β2

k �= 0, ∀1 ≤ j, k ≤ p. (10)

Given any parameterization choice, the strong heredity con-
dition (9) implies β j �= 0 for any important main effect Xj
(based on Definition 1), that is, T (β, γ ) = S(β). Altogether,
Proposition 2, condition (8), and condition (9) guarantee that
T (β, γ ) = S(β) = S(β̌). Though heredity conditions (9) and
(10) seem to be restrictive, they are actually natural in many
practical settings. In the following, we provide some insight on
heredity conditions to better understand them and appreciate
their practical value.

First, the strong heredity condition is not that restrictive,
as the set of models violating the strong heredity condition is
generally “small.” The following is a simple setting that illus-
trates this. Consider model (7) with p = 2 and three effects
X1,X2,X1X2 (for simplicity, assume quadratic effects X2

1 and
X2
2 are not involved). The parameter space of the coefficients

(β1, β2, γ12)
� isR3. If the strong heredity condition is assumed,

it only excludes the subset {β1β2 = 0, γ 2
12 > 0} from R3. Since

the excluded low-dimensional subset has a zero Lebesgue mea-
sure, the strong heredity condition almost surely covers the
entire model space R3.

Second, whether a heredity condition holds depends on the
model parameterization. This is a very important fact often
overlooked in the literature. In linear regression, it is a common
practice to center and rescale the data before variable selection.
Since any coding transformation Xj → a j(Xj − c j) can lead to
a new parameterization for the coefficient vector, it is meaning-
less to discuss heredity conditions without specifying the model
parameterization. In Turlach’s example with parameterization
(5), condition (8) holds but condition (9) does not. It implies
T (β, γ ) � S(β) = S(β̌), which explains why two-stage meth-
ods may fail.

Third, the definitions of T (β, γ ) and S(β̌) are independent
of model parameterization. In other words, whether all impor-
tant main effects are in S(β̌) does not depend on model param-
eterization. Nevertheless, a good model parameterization helps
to conveniently connect these two sets via S(β).

In summary, as long as T (β, γ ) = S(β̌) holds, two-stage
methods can identify all important main effects at stage one
under standard technical conditions. Recently, the screening
and sign consistency results for two-stage methods have been
established byHao and Zhang (2014) andHao, Feng, and Zhang
(2014), respectively, in the context of forward selection and the
LASSO.

4. Interaction Selection Under Marginality Principle

4.1. Marginality Principle

For interaction selection, both the marginality principle and the
invariance principle, which were reviewed earlier, emphasize
that a final model should maintain a hierarchical structure. For

example, consider model (2) with p = 2. For simplicity, we ten-
tatively ignore the quadratic terms X2

1 and X2
2 . Based on these

two principles, we should consider five candidate models: {1},
{1,X1}, {1,X2}, {1,X1,X2}, and the full model {1,X1,X2,X1X2};
no other sub-models are sensible. Note that the marginality
principle does not exclude the case that the true data-generating
process is indeed Y = 1 + 2X1X2 + ε under a certain parame-
terization. In this case, we can fit the full model with a loss of 2
degrees of freedom, but it is risky to fit only {1,X1X2}. In short,
the marginality principle provides a good guidance for interac-
tion selection.

Next, it is worthwhile to point out the difference between
the marginality principle and heredity conditions. The former
provides a guide for variable selection in interaction models
or other hierarchical models. The selected model must satisfy
the hierarchical structure if the marginality principle is fol-
lowed. On the other hand, heredity conditions are designed to
exclude undesired data-generating processes, by putting some
restrictions on the parameter space. They depend on the model
parameterization.

For existing methods, there are two ways to ensure the hier-
archical structure during variable selection. One-stage methods
impose special penalties or inequality constrains on β and γ to
satisfy the strong heredity condition. For two-stagemethods, the
hierarchical structure is naturally preserved by their selection
schemes.

4.2. New Strategies

Section 3 discusses the theoretical foundation for two-stage
methods. In practice, two-stage methods still have their limi-
tations and can be further improved. One problem of two-stage
methods is that interaction effects are considered only aftermain
effect selection. At stage one, the noise level can be quite high
since interaction effects are treated as noise under a misspec-
ified model, and therefore it is difficult to identify weak main
effects. In the following, we propose two alternative strategies to
overcome these drawbacks.

Many variable selection procedures produce a family of can-
didate models that is naturally nested or indexed by a tuning
parameter. For example, for stepwise methods such as forward
selection and LARS, a sequence of nested models is obtained;
penalization approaches such as the LASSO produce a family
of models indexed by a tuning parameter. These methods can
be directly applied to a standard linear model (1) or an interac-
tion model (2) by ignoring the hierarchical structure. The new
strategy uses a family of dynamic candidate models {Ct} lying
between models (1) and (2), which initiates at (1) and grows
adaptively under the marginality principle. Now we sketch two
ways of implementing this strategy. For a forward selection pro-
cedure, we denote by M̂t the selected model after step t , and
let Ct be the candidate set containing all main and interaction
effects whose parents are both inM̂t . In particular, we setM̂0 =
∅ and C0 = {all main effects}. At step t + 1, a forward selection
procedure selects one new variable from Ct and adds it to M̂t
to obtain M̂t+1. The idea was proposed and studied by Hao and
Zhang (2014), resulting in a new method called iFORM. For a
penalization procedure such as LASSO, we denote by λ the tun-
ing parameter. The coordinate descent algorithm can be used
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to calculate the penalization estimator along a sequence λmax =
λ0 > λ1 > · · · > λT > 0. We let M̂t be the selected model at
step t corresponding to λt and define Ct based on M̂t in the
sameway as above. At next stepwith parameterλt+1, we conduct
the coordinate descent algorithm on the candidate model Ct to
obtainM̂t+1. This ideawas recently proposed byHao, Feng, and
Zhang (2014), and its advantageous performance over two-stage
methods was shown by numerical experiments.

5. Numerical Analysis

We present three examples to illustrate performance of two-
stage methods for interaction selection in high-dimensional
linear regression settings. Example 1 considers continuous
predictors only, and Examples 2 and 3 include categorical
predictors for both main effects and interactions. For compar-
ison, we consider three methods: two-stage forward selection
(2FS), the new forward selection algorithm under marginality
principle (iFORM) described in Section 4.2, and the oracle
(Oracle) procedure (which is the gold standard but generally
not available in practice). To select the tuning parameter, we use
the standard BIC and its extension as proposed by Chen and
Chen (2008). More examples can be found in Hao and Zhang
(2014). In all the examples, we set n = 200 and p = 1000.

Example 1. Generate X from a multivariate Gaussian
distribution with mean 0 and the autoregressive (AR) cor-
relation structure cov(Xj,Xk) = 0.5| j−k| for 1 ≤ j, k ≤ p.
Generate the response Y from model (2) with σ = 2,
β = (2, 0, 2, 0, 2, 0, 2, 0, 2, 0�

991)
�, γ13 = 1.5, γ17 = 1.7,

γ57 = 1.9, γ79 = 2.1, and the rest of the interaction effects
being zero. Therefore, the important main effects are
{X1,X3,X5,X7,X9} and the important interactions are
{X1X3,X1X7,X5X7,X7X9}.

Example 2. Generate X in the same way as in Example
1. Then we dichotomize X7 as 1 if X7 ≤ 0.2, and 0 oth-
erwise; dichotomize X9 as 1 if X9 ≤ −0.2, and 0 other-
wise. Generate Y from model (2) with σ = 2, the true β =
(2, 0, 2, 0, 2, 0, 2, 0, 2, 0�

991)
�, γ13 = γ17 = γ57 = γ79 = 4, and

the rest of the interaction effects being zero. The importantmain
effects are {X1,X3,X5,X7,X9}, and the important interaction
effects are {X1X3,X1X7,X5X7,X7X9}.

Example 3. Generate X in the same way as in Example 1. Then
we dichotomize the variables {Xj, 6 ≤ j ≤ p} as 1 if Xj ≥ −0.3
and 0 otherwise for each j. GenerateY frommodel (2) with σ =
2, β = (2, 0, 2, 0, 2, 0, 2, 0, 2, 0�

991)
�, γ13 = γ17 = γ57 = γ79 =

4, and the rest of the interaction effects are zero. The important
main effects are {X1,X3,X5,X7,X9}, and important interaction
effects are {X1X3,X1X7,X5X7,X7X9}. This dataset contains five
continuous predictors and 995 categorical predictors.

For each setting, we runM = 1000 Monte Carlo simulations
and report the average performance for each method, in terms
of correctly selecting important linear and interaction effects,
estimating nonzero regression coefficients, and making predic-
tions. In particular, to evaluate linear effect selection, we report
the probability of identifying important main effects (Cov), the

Table . Numerical results for the simulated examples.

Linear term selection Interaction selection Size and prediction

Cov Cor Inc Ext iCov iCor iInc iExt size MSE Rsq

Ex  FS . . . . . . . . . . .
iFORM . . . . . . . . . . .
Oracle . . . . . . . . . . .

Ex  FS . . . . . . . . . . .
iFORM . . . . . . . . . . .
Oracle . . . . . . . . . . .

Ex  FS . . . . . . . . . . .
iFORM . . . . . . . . . . .
Oracle . . . . . . . . . . .

percentage of correct zeros being identified (Cor0), the percent-
age of incorrect zeros being identified (Inc0), and the probabil-
ity of selecting the exact set of important main effects (Ext). For
interaction selection, we report the probability of identifying all
important interaction effects (iCov), the percentage of correct
zeros being selected (iCor0), the percentage of incorrect zeros
(iInc0), and the probability of selecting the exact set of important
interactions (iExt). We also report the average model size. To
evaluate prediction and estimation results, we report the mean
squared error (MSE) of estimated regression coefficients and the
out-of-sampleR2 (Rsq) based on a test set of sizen from the same
distribution as the training data. A larger Rsq suggests a better
prediction.

Table 1 provides a summary of numerical results for the three
examples. Overall, the two-stage FS (2FS) method works well
for continuous predictors. In Example 1, the 2FS method can
recover the exact set of important main effects with probability
61% and the exact set of important interactions with probabil-
ity 48%, which is quite good for p = 1000, d = 501, 500, and
n = 200. In the other two examples with categorical predictors,
the 2FSmethod tends tomiss some importantmain and interac-
tion effects. For example, 2FSmisses 22% of important variables
and 33% of important interactions in Example 2. By contrast,
iFORM performs markedly better than 2FS in all the examples.
In Example 1, iFORM identifies the exact set of important main
effects with probability 96% and the exact set of important inter-
actions with probability 90%. In Examples 2 and 3, iFORM can
identify important categorical predictors and their interactions
with an accuracy higher than 90%. The truemodel size is 9 for all
three examples. The final model sizes given by iFORM are 9.18,
9.48, 9.47, respectively, which are close to the true model size in
all the three cases. In summary, the performance of iFORM is
very close to that of the oracle procedure.

6. Discussion

This note aims to clarify some important issues in variable
selection for linear models with interactions. The presented
concepts and methods also apply to generalized linear models
(GLM) andmodels with higher-order interaction terms or com-
plex hierarchical structures. In practice, when choosing between
main effect models, two-way interaction models, or higher-
order interaction models, one also needs to consider the bias-
variance tradeoff. In general, adding more interaction terms
tends to reduce the modeling bias but increases the estimate
variance.
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In high-dimensional settings, many predictors tend to be
highly correlated. Hao and Zhang (2014) observed promising
performance of two-stage methods and iFORM under a vari-
ety of correlation structure settings. Quantitative predictors are
commonly encountered in real world problems. Though the the-
oretical result of Proposition 2 is established for continuous vari-
ables, our numerical results shown in Examples 2 and 3 suggest
that two-step methods still perform effectively when categori-
cal predictors are involved inmain effects and interactions. Very
recently, Gosik et al. (2017) extended iFORM to identify signifi-
cant eQTLs, which are categorical predictors with three distinct
genotypes. Their results also suggested effective performance of
iFORM in selecting quantitative predictors.
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