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Abstract—This letter investigates parameter estimation
in quantum systems that undergo dynamical evolution.
Optimal control problems are formulated to maximize the
information, about an unknown parameter, extracted by a
given quantum measurement apparatus. This letter intro-
duces the concept of “admissible controls”—control laws
that do not depend on the unknown parameter they elicit.
For scalar parameter estimation in unital quantum systems
interrogated by binary measurements, this letter derives a
necessary and sufficient condition on quantum measure-
ment operators so that an information maximizing control
law is admissible. When the admissibility condition is satis-
fied, it is shown that the resulting optimal control problem
may be solved using well-established techniques.

Index Terms—Quantum parameter estimation, Fisher
information, quantum control, statistical inference,
control-enhanced parameter estimation.

I. INTRODUCTION

INFERRING a parameterized quantum state by optimally
controlling its dynamical evolution, a new problem at the

intersection of statistical inference and control, is investigated
in this letter. At a prescribed time instant, the quantum state is
measured using the physical apparatus that is available to the
experimenter. The goal is to extract as much information about
the unknown parameter as possible from the measurement out-
comes. To this aim, optimal control theory is used to maximize
the information extraction at the time of measurement. In
general, information maximizing control laws may depend
on the particular parameter that they elicit. However, such
a control law would be like a point estimator (in statistical
inference) that depends on the parameter it aims to infer, which
is absurd [1, pp. 211, 311]. Motivated by this observation, we
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introduce the concept of “admissible” control laws that do not
depend on the unknown parameter. This letter establishes a
foundation for optimally controlling the dynamical evolution
of a quantum state to maximize the information extracted by
a given quantum measurement apparatus.
Inference and control play a central role in quantum

engineering and enable many beyond-classical capabilities
in sensing, communications, localization, and synchroniza-
tion [2], [3], [4], [5], [6]. Prior works have studied the problem
of controlling information extraction in both classical [7], [8]
and quantum systems [9], [10], [11], [12], [13]. In partic-
ular, [9], [10], [11], [12], [13] considered scenarios where
the parameter dependence of a quantum state arises from
its dynamical evolution, and control laws for information
extraction were numerically generated using Pontryagin’s
maximum principle [10], [11] or gradient ascent pulse engi-
neering (GRAPE) [12], [13]. While parameter dependence of
a quantum state is a recurring theme, a characterization of the
parameter dependence of information maximizing control laws
is missing in the literature.
This letter puts forth a scenario where a quantum state is

initially dependent on an unknown parameter and then evolves
under known dynamics. The foundation established here can
address a broad class of control-enhanced quantum parameter
estimation problems. For scalar parameter estimation in unital
quantum systems interrogated by binary measurements,1 we:
• develop time-dependent Fisher information analysis for

density operators that are characterized by an unknown
parameter;

• derive a necessary and sufficient condition on the
measurement operators so that information maximizing
control laws are admissible; and

• show that, when the admissibility condition is met,
information maximizing control laws can be designed
using well-established techniques.

Our analysis allows for general time-local non-Markovian
quantum dynamics [16].
Notation: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. For
example, a random variable and its realization are denoted by
x and x. The probability mass function (PMF) or probability
density function (PDF) of a random variable x is denoted
px(x). The symbol Ex{·} denotes the expectation with respect
to the random variable x. The set of linear operators and

1Binary quantum measurements are relevant, among others, for qubit-based
systems [14, p. 15] and for quantum communication systems [15, p. 316].
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density operators on a Hilbert space H are denoted L(H)
and D(H), respectively. Operators are denoted using bold
uppercase letters. The adjoint of a linear operator A ∈ L(H)
is denoted A†. The anti-commutator and commutator of A
and B ∈ L(H) are denoted !A,B"

±
= AB ± BA with

+ or −, respectively. The Hilbert-Schmidt inner product on
L(H) is denoted 〈A,B〉 = tr{A†B}. The adjoint of a linear
operator O : L(H) → L(H) with respect to the Hilbert-
Schmidt inner product is denoted O‡.2 The notation A ! B
means that A − B is positive semidefinite. The imaginary
unit

√
−1 is denoted ı. The symbol

∼∀ means “for almost all.”
A dot, as in

.
Ξθ(t), denotes the derivative with respect to

time t.

II. FISHER INFORMATION ANALYSIS

The state of a finite d-dimensional quantum system may
be represented by a density operator, which is a positive
semidefinite, unit-trace linear operator on a complex Hilbert
space H of dimension d < ∞. To begin, consider a time-
independent state3 which is parameterized by an unknown
scalar θ ∈ R written as

Ξθ = 1
d I + θZ ∈ D(H) (1)

where I ∈ L(H) is the identity operator, I/d is the maximally
mixed state, and Z ∈ L(H) is an arbitrary non-zero, traceless,
self-adjoint operator. Note that, like the density in (1), all
density operators on H may be written as the sum of the
maximally mixed state and a traceless operator. Parameterized
states of the form (1) appear in many applications [17], [18]
and include depolarized states as well as two-qubit Werner
states. For Ξθ to be a valid density operator it must be positive
semidefinite; hence, there is only a finite range of values that
the parameter θ may take.
Lemma 1: The operator Ξθ is positive semidefinite if and

only if

θ ∈
[ −1

dλd
,

1

d |λ1|

]
(2)

where λd and λ1 are the largest and smallest eigenvalues of
Z, respectively. ✷
Proof: Since Z is non-zero, self-adjoint, and traceless, its

smallest and largest eigenvalues satisfy λ1 < 0 < λd.
4

Given (1), the eigenvalues of Ξθ are exactly of the form
1
d +θ λi where λi is the i-th eigenvalue of Z [19, p. 55]. The
statement of the lemma follows. "

Henceforth the parameter space, denoted Θ, is allowed to
be a subinterval of that in (2). This letter considers quantum
measurement systems represented by binary positive operator-
valued measures (POVMs) [20]. In contrast to classical
measurement, a quantum measurement will generally alter
the state such that successive measurements using the same

2The Hilbert space of the operators O : L(H) → L(H) equipped with
the Hilbert-Schmidt inner product is known as a Liouville space.

3In the following, the term “quantum state” and corresponding “density
operator” will be used interchangeably.

4This can be proved using the spectral theorem and the fact that the trace
of an operator is the sum of its eigenvalues.

POVM system provide no additional information regarding
the state prior to measurement. Thus, once the state Ξθ
is measured, one must prepare an identical state before
another measurement containing information about θ can be
made.
Definition 1 (Binary POVM): A binary POVM system is

a set of non-zero, self-adjoint linear operators {M , I −M}
on H with 0 # M # I . The result of measuring the
state Ξθ using this system is a random variable y = ±1
where

P{ y = +1 |Ξθ} = tr{M Ξθ}, and (3a)
P{ y = −1 |Ξθ} = tr{ (I −M)Ξθ} (3b)

according to Born’s rule. ✷

A. Analysis for Time-Independent Quantum States
The Fisher information—a key quantity in statistical infer-

ence that is used to determine the fundamental limits of point
estimators—is defined below.
Definition 2 (Fisher Information): The Fisher infrmation

about ϑ contained in a random variable x with PMF or PDF
px(x;ϑ) is

Jϑ = Ex{(x;ϑ)} (4)

where (x;ϑ) = [ ∂
∂ϑ ln px(x;ϑ)]

2 for each x in the support of
px( · ;ϑ). ✷

The Fisher information about θ contained in y (obtained
via measuring Ξθ with the POVM system {M , I −M}) is
given by (5), which is presented at the bottom of the page.
Employing the Hilbert-Schmidt inner product of two operators
and the fact that tr{Z} = 0, the Fisher information in (5) can
be rewritten as

Jθ =
〈M ,Z〉2

am + θ bm〈M ,Z〉 − θ2〈M ,Z〉2
(6)

where
am $ 1

d tr{M} (1− 1
d tr{M}) ∈ (0, 1/4) (7a)

bm $ 1− 2
d tr{M} ∈ (−1, 1) . (7b)

The information inequality [1] states that, under appropriate
regularity conditions, the mean-square error of any unbiased
estimator θ̂(y) of θ satisfies

Ey{(θ̂(y)− θ)2} % 1

Jθ
. (8)

The importance of having a large Fisher information Jθ is evi-
dent from (8). Optimal control offers a way to systematically
increase the information and hence reduce the lower bound on
the estimation error.

B. Analysis for Time-Dependent Quantum States
In general, the state Ξθ(t) of the quantum system is a

function of time. Our goal in this section is to extend the prior
Fisher information analysis to the time-dependent setting. At
the initial time t = t0, the state is written as before

Ξθ(t0) =
1
d I + θZ (9)

and the evolution of the state is described by the Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) equation [21]

Jθ =
tr2{MZ}

1
d tr{M}+ θ tr{MZ}

+
tr2{(I −M)Z}

1
d tr{I −M}+ θ tr{(I −M)Z}

(5)
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.
Ξθ(t) = −ı !H(u(t), t),Ξθ(t)"−

+
Nl∑

k=1

Lk(t)Ξθ(t)L
†
k(t)−

1
2!L†

k(t)Lkt),Ξθ(t)"+

$ F (Ξθ(t), u(t), t) (10)
for all t % t0. At any point in time, H(u(t), t) ∈ L(H)
denotes the system’s Hamiltonian (which is self-adjoint) and
Lk(t) ∈ L(H) for k ∈ {1, 2, . . . , Nl} denote noise operators,
where Nl ∈ N. While the time-independent GKSL equation is
generally used to model Markovian noise, the time-dependent
form shown in (10) can be used to model non-Markovian
noise [16].5 The time-varying Hamiltonian is

H(u(t), t) = H f(t) + u(t)Hc(t) (11)
where H f(t) ∈ L(H) is the free Hamiltonian, Hc(t) ∈ L(H)
is the control Hamiltonian, and u(t) ∈ R is a control input.
The set of allowable controls U is an arbitrary open subset
of the space of all regulated functions6 from the time interval
[t0, tf ] into R, with tf > t0. The free Hamiltonian describes
unitary evolution over which one has no control, whereas
the control Hamiltonian describes unitary evolution which can
be actively adjusted to alter the behavior of the system. The
Hamiltonian and noise operators are well-behaving functions
of time so as to ensure existence and uniqueness of solutions
to (10).
Denote the solution to the GKSL equation as Ξθ(t) $

Φ(t; t0,Ξθ(t0), u(·)) for t % t0, where Φ(t; t0, · , u(·)) is
known as the state transition map. Note that (10) is linear in
the state; therefore, the state transition map is linear and

Ξθ(t) =
1
d Φ(t; t0, I, u(·)) + θΦ(t; t0,Z, u(·)) . (12)

The GKSL equation preserves the trace, therefore
tr{Φ(t; t0,Z, u(·))} = tr{Z} = 0 for all t % t0 [21, p. 121].
Using this fact, Fisher information analysis may be conducted
as before, which results in the time-dependent Fisher
information (13) at the bottom of the page.
Let us turn our attention to the class of unital quantum

systems. Recall, a map Ψ : L(H) → L(H) is unital if it
maps the identity to itself, i.e., Ψ(I) = I .
Definition 3: The quantum system described by (10) is said

to be unital if the state transition map Φ(t; t0, · , u(·)) is a
unital map at all times t % t0. ✷

Lemma 2: The quantum system (10) is unital if and only
if one of the following equivalent statements hold:
1) The maximally mixed state 1

dI is a steady state of the
GKSL equation (10).

2) The following equality holds for almost all t % t0:
Nl∑

k=1

Lk(t)L
†
k(t) =

Nl∑

k=1

L†
k(t)Lk(t) . (14)

✷

5The presentation in [16] has additional terms known as “decoherence
rates” in the GKSL equation. These may be absorbed by the noise operators
{Lk(·) : k = 1, 2, . . . , Nl} for notational simplicity.

6A function u : [t0, tf ] → R is regulated if it has (i) left and right limits
at each point t ∈ (t0, tf) and (ii) one-sided limits at end points t0 and tf .

Proof: Unitality is equivalent to the identity I being a steady
state of (10); however, since (10) is linear in the state, this
is equivalent to the maximally mixed state 1

dI being a steady
state. This proves that the first statement is equivalent to (10)
being unital. Let us now prove equivalence of the second
statement. The solution to the GKSL equation is

Ξθ(t) = Ξθ(t0) +

∫ t

t0

[
−ı !H(u(s), s),Ξθ(s)"−

+
Nl∑

k=1

Lk(s)Ξθ(s)L
†
k(s)− 1

2!L†
k(s)Lk(s),Ξθ(s)"+

]
ds (15)

for t % t0. Under the hypothesis that I/d is a steady state, the
integral solution starting from the initial condition Ξθ(t0) =
I/d yields

0 =

∫ t

t0

Nl∑

k=1

[
Lk(s)L

†
k(s)−L†

k(s)Lk(s)
]
ds (16)

for any t % t0. This proves that (14) holds for almost all t % t0.
The reverse direction follows similarly. "
Remark 1: Closed quantum systems are unital. In this case

Lk(t) = 0 for all k ∈ {1, 2, . . . , Nl} and t % t0; the
corresponding GKSL equation is known as a Liouville–von
Neumann equation [21, pp. 110–111]. ✷
In unital quantum systems a major simplification of the

time-dependent Fisher information (13) occurs. Defining
Z(t) $ Φ(t; t0,Z, u(·)),

Jθ(t) =
〈M ,Z(t)〉2

am + θ bm〈M ,Z(t)〉 − θ2〈M ,Z(t)〉2
(17)

where am and bm are given in (7a) and (7b), respectively.
The Fisher information can be increased if one is allowed to

alter the POVM [22, p. 234]. However, in many experimental
setups the physical apparatus that implements the POVM is
fixed, making information extraction challenging. We propose
alleviating this problem by controlling the time evolution of
the system to effectively alter the measurement performed
by the fixed physical apparatus. The extent to which control
can increase the information extraction is determined by the
controllability of the system.

III. INFORMATION MAXIMIZING CONTROL

Suppose that the state Ξθ(t) is measured using the binary
POVM {M , I − M} at some predetermined measurement
time tf > t0. One may seek to determine a control law
which maximizes the Fisher information, or equivalently
minimizes

J−1
θ (tf) =

am
〈M ,Z(tf)〉

2 +
θ bm

〈M ,Z(tf)〉
− θ2 . (18)

This task may be written as the following optimal control
problem

P1(θ) : minimize
u(·)∈U

J−1
θ (tf) +

∫ tf

t0

K1(u(t), t) dt (19a)

subject to
.
Z(t) = F (Z(t), u(t), t), (19b)
Z(t0) = Z, t ∈ [t0, tf ] (19c)

Jθ(t) =
〈M ,Φ(t; t0,Z, u(·))〉2

1
d 〈M ,Φ(t; t0, I, u(·))〉+ θ 〈M ,Φ(t; t0,Z, u(·))〉

+
〈M ,Φ(t; t0,Z, u(·))〉2

1
d 〈I −M ,Φ(t; t0, I, u(·))〉 − θ 〈M ,Φ(t; t0,Z, u(·))〉

(13)

Authorized licensed use limited to: MIT. Downloaded on September 27,2024 at 01:02:32 UTC from IEEE Xplore.  Restrictions apply. 



2286 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

where K1(·, ·) : R × [t0, tf ] → R characterizes the control
cost. This cost is allowed to be quite general but will adhere
to the following regularity conditions:
1) K1(·, ·) is continuously differentiable with respect to its

first argument;
2) for any u(·) ∈ U the function K1(u(·), ·) is integrable

on the time interval [t0, tf ]; and,
3) for all fixed t ∈ [t0, tf ], gt(µ) $ ∂K1(µ, t)/∂µ : R→R

is invertible and gt(0) = 0.
The first two conditions are standard in optimal control
literature [23, pp. 73, 113] whereas the third condition is used
in the proof of the next result. Note in P1(θ) that the inverse
of the Fisher information represents a terminal cost whereas
the control cost is a running cost. One possible choice is to
consider K1(u(t), t) = κ

2 |u(t)|2 where κ > 0 may be tuned
to balance the terminal and running costs. Then, the integral of
K1(u(·), ·) over the domain [t0, tf ] is proportional to the squared
norm

‖u(t)‖2 $
∫ tf

t0

|u(t)|2 dt (20)

on U , which is the energy of the control signal. A control law
u(·) ∈ U is said to be non-zero energy (NZE) if ‖u(·)‖ > 0.

A. Admissibility of Optimal Controls
In general an optimal control law which solves P1(θ),

denoted by u(t) = µ%
θ(t), will depend on the unknown

parameter θ since J−1
θ (tf) is parameter-dependent. However,

a control law that depends on the parameter it elicits would
be like a point estimator that depends on the parameter it
aims to infer, which is absurd [1, pp. 211, 311].7 Motivated
by this observation, we define admissible control laws
below.
Definition 4: A control law µθ : [t0, tf ] → R for regulating

Jθ(·) is said to be admissible if it does not depend on θ. ✷
The following theorem provides a necessary and sufficient

condition for information maximizing controls, i.e., controls
which solve P1(θ), to be admissible.

Theorem 1: Any NZE optimal control law µ%
θ(·) ∈ U which

solves P1(θ) is admissible if and only if bm = 0, i.e.,

tr{M} =
d

2
. (21)

✷
Proof: If bm = 0, then the admissibility of µ%

θ(·) follows
immediately from (18) and (19a) with bm = 0. This proves the
sufficiency of the condition (21). Proving the necessity of (21)
involves two steps: (i) constructing the necessary conditions
for optimal control in a Hilbert space, see, e.g., [23, pp. 112–
117]8; and (ii) showing that bm = 0 if the necessary conditions
for optimal control hold simultaneously for any two different
values θ = θ1 and θ = θ2 in Θ. The Hamiltonian functional
hc : L(H)× L(H)× R× [t0, tf ] → R corresponding to the
optimal control problem P1(θ) is

9

hc(Z(t),Λ(t), u(t), t)

=K1(u(t), t)+〈Λ(t), F (Z(t), u(t), t)〉 . (22)

7A point estimator is first and foremost a statistic, and the analytical
expression of a statistic cannot be a function of an unknown parameter.

8The presentation in [23] is a more general treatment in Banach spaces;
however, quantum mechanical problems are always formulated in Hilbert
spaces. For a tutorial on necessary conditions for optimal control of quantum
systems in finite dimensions see [24].

9This is not to be confused with the Hamiltonians of the quantum system.

The operator Λ(t) is known as the costate. Suppose that a
NZE optimal control µ%

θ(t) and optimal state trajectory Z%(t)
exist which solve P1(θ). Then, the objective (19a) evaluated
along the optimal control and state trajectory is finite, implying
via (18) that 〈M ,Z%(tf)〉 += 0. By continuity there exists
a neighborhood of µ%

θ(t) in U such that 〈M ,Z(tf)〉 += 0
for any control law in this neighborhood. Let us apply
the necessary conditions for optimal control within this
neighborhood where J−1

θ (tf) is continuously differentiable
with respect to Z(tf). The necessary conditions involve the
costate variable Λ%(t) which solves the following final value
problem: {

Λ̇
%
(t) = −F ‡(Λ%(t), µ%

θ(t), t)
Λ%(tf) = ∇Z

!
(tf )

J−1
θ (tf)

(23)

where ∇Z
!
(tf )

J−1
θ (tf) denotes the gradient of J−1

θ (tf) with
respect to Z%(tf). Supplemental calculations for (23) are given
in the Appendix. It can be shown that

∇Z(tf )J
−1
θ (tf)=

[ −2am
〈M ,Z(tf)〉

−bmθ
] 1

〈M ,Z(tf)〉
2 M .

(24)
The necessary conditions state that the optimal control law
satisfies ∂hc(Z

%(t),Λ%(t), µ%
θ(t), t)/∂µ

%
θ(t) = 0 for almost all

t ∈ [t0, tf ]. Using the regularity conditions on K1(·, ·), this
means that the optimal control is

µ%
θ(t) = g−1

t

(
〈Λ%(t), ı !Hc(t),Z

%(t)"
−
〉
)

(25)

for almost all t ∈ [t0, tf ], where gt(µ) = ∂K1(µ, t)/∂µ.
Suppose that the optimal control law (25) is admissible,

which completely determines Z%(t), irrespective of θ, via the
GKSL equation and the initial conditionZ%(t0) = Z. Consider
any two different values θ = θ1 and θ = θ2 in Θ. With the
control and state fixed, existence and uniqueness of solutions
to (23) determines the costate Λ%

1(t) when θ = θ1 and Λ%
2(t)

when θ = θ2. These costates satisfy the following boundary
conditions:

Λ%
1(tf) =

[ −2am
〈M ,Z%(tf)〉

− bmθ1
] 1

〈M ,Z%(tf)〉
2 M (26a)

Λ%
2(tf) =

[ −2am
〈M ,Z%(tf)〉

− bmθ2
] 1

〈M ,Z%(tf)〉
2 M . (26b)

The terms in brackets must be non-zero. To prove this, suppose
the contrary. Then Λ%

1(t) or Λ%
2(t) (or both) is zero for

all time since the dynamics (23) are linear in the costate.
Consequently, using the regularity conditions on K1(·, ·), the
optimal control (25) is zero for almost all t ∈ [t0, tf ] and thus
‖µ%

θ(·)‖ = 0. However, this is a contradiction since the control
law µ%

θ(·) is NZE. This proves that the terms in brackets
in (26a) and (26b) are non-zero.
To prove that bm = 0 is necessary for the same control law

µ%
θ(·) to be optimal for both cases θ = θ1 and θ = θ2, suppose

the contrary: bm += 0. Defining Λ%
1−2(t) $ Λ%

1(t)−Λ%
2(t),

Λ%
1−2(tf) =

bm(θ2 − θ1)

〈M ,Z%(tf)〉
2M (27)

which is non-zero since the parameters were assumed distinct.
Applying the linearity of the dynamics (23) in the costate, it
follows that

Λ%
1−2(t)=bm(θ2 − θ1)

[ −2am
〈M ,Z%(tf)〉

−bmθ1
]−1

Λ%
1(t) (28)

for all t ∈ [t0, tf ]. On the other hand, recalling (25) and the
fact that µ%

θ(·) is optimal for both θ1 and θ2, it follows that
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〈Λ%
1(t), !Hc(t),Z

%(t)"
−
〉

= 〈Λ%
2(t) , !Hc(t),Z

%(t)"
−
〉, ∼∀t ∈ [t0, tf ] (29)

and subsequently that

〈Λ%
1−2(t), !Hc(t),Z

%(t)"
−
〉=0 ,

∼∀t ∈ [t0, tf ] . (30)

Combining this with (28) proves that
〈Λ%

1(t), !Hc(t),Z
%(t)"

−
〉 = 0 for almost all t ∈ [t0, tf ].

However, using (25) and the regularity conditions on K1(·, ·)
this means that the control is zero for almost all t ∈ [t0, tf ]
and consequently ‖µ%

θ(·)‖ = 0. This is a contradiction since
µ%
θ(·) is NZE. It is therefore necessary that bm = 0, and the

theorem is proven. "
A few remarks are in order regarding Theorem 1.
1) Though the optimal control is admissible if bm = 0,

the Fisher information Jθ(tf) still depends on θ as seen
in (17). Therefore the performance of an estimator of θ
may well depend on the unknown parameter.

2) The theorem also applies to control laws corresponding
to local optima of problem P1(θ) since the proof
relies only on necessary conditions for locally optimal
control [25]. This is relevant for computing control laws.

3) The theorem does not specify the sensitivity of optimal
control laws to changes in θ when bm += 0. Such
sensitivity would depend on the dynamics F , param-
eter space Θ, control cost K1, and constants am
and bm.

Suppose that M is a projection (implying that I −M is a
projection), which is frequently the case in quantum systems.
Then, the spectrum of M contains only ones and zeros, thus
the trace of M equals the rank of M . We have the following
corollary to the admissibility condition of Theorem 1.
Corollary 1: Let M be a projection. Any NZE optimal

control law µ%
θ(·) ∈ U which solves P1(θ) is admissible if

and only if

rankM =
d

2
. (31)

✷
Notably the condition in this corollary cannot occur in

systems of odd dimension, but there is still hope of satisfying
the more general condition (21). On the other hand, many
systems arising in quantum information applications are of
even dimension: e.g., any system comprised of n qubits is of
dimension 2n.

B. Design of Admissible Optimal Control
The prior section proved that an information maximizing

control law is admissible if and only if bm = 0. If bm = 0 then
the expression for the inverse of the Fisher information (18)
is significantly simpler, and minimizing J−1

θ (tf) is equivalent
to making 〈M ,Z(tf)〉

2 as large as possible. This corresponds
to concentrating the probability mass on one of the outcomes
y = +1 or y = −1. Minimizing J−1

θ (tf) can be formulated as
the optimal control problem

P2 : minimize
u(·)∈U

−〈M ,Z(tf)〉
2 +

∫ tf

t0

K2(u(t), t) dt (32a)

subject to Ż(t) = F (Z(t), u(t), t) , (32b)

Z(t0) = Z, t ∈ [t0, tf ] (32c)
whereK2(·, ·) : R×[t0, tf ] → R characterizes the control cost
and is potentially different than K1(·, ·) in problem P1(θ).

Fig. 1. Control laws solvingP2 for varying levels γ of dephasing noise.

This control problem is well-posed: control laws which solve
the problem are admissible by construction. Techniques to
solve P2 are well-known [26].

C. Case Study: Qubit Subject to Dephasing Noise
Consider a parameter estimation problem involving a qubit

(d = 2) subject to dephasing noise, as appears in many practi-
cal scenarios [27]. The free Hamiltonian, control Hamiltonian,
and noise operator can be modeled respectively by

H f =
ωq

2 P z , Hc = P x and L =
√
γ P z . (33)

In (33), ωq > 0 is the qubit frequency and γ % 0 is
the strength of the dephasing noise. The Pauli operators are
denoted P x, P y , and P z . Using the fact that P z = P †

z ,
Lemma 2 shows that the quantum system described by (33) is
unital. For d = 2, any projective measurement system satisfies
tr{M} = d/2 = 1. Then, Theorem 1 or Corollary 1 shows
that optimal control laws which solve P1(θ) are admissible.
Consider the particular projective measurement system

M =

[
1 0
0 0

]
and I −M =

[
0 0
0 1

]
. (34)

Suppose that the initial state of the qubit is Ξθ(t0) = I/2 +
θP y (the only requirement is that Z in (9) is traceless).
According to Lemma 1, the range of possible θ values is
[−1/2, 1/2]. Take the parameter space Θ to be this entire
interval. For any θ ∈ Θ, the Fisher information (6) at
time t0 is zero. That is, no information regarding θ may be
obtained by measuring Ξθ(t0) with the projective measure-
ment system (34). Moreover, it can be shown that Jθ(tf) = 0
for any tf % t0 if no control is applied. Thus, if there is any
hope of inferring θ ∈ Θ, control is essential.
Since the admissibility condition (21) or (31) is satisfied,

maximization of Jθ(tf) at some time tf > t0 translates to
solving problem P2. As an example, suppose that t0=0 s,
tf = 5 s, ωq = 2 Hz, and K2(u(t), t) = κ

2 |u(t)|2 with
κ = 0.01. The optimization problem is solved computa-
tionally by employing the gradient method [23, p. 147].10

Control laws generated for four different values of dephasing

10The gradient method uses the same ideas as the necessary conditions for
optimal control employed in the proof of Theorem 1, which makes it a natural
computational method to use in this context.
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noise strength γ are displayed in Figure 1. In all cases the
Fisher information Jθ(tf) is non-zero, which demonstrates the
efficacy of control-enhanced quantum parameter estimation.
Notice that as the dephasing noise strength γ increases,
the maximized Fisher information Jθ(tf) decreases and the
control transforms from an almost-periodic signal to a damped
oscillation. For large noise levels, we find that the control
exerts high-energy upfront and quickly moves Z(t) to the
null-space of the noise contribution in (10), i.e., the space of
A ∈ L(H) such that LAL† − 1

2!L†L,A"
+
= 0.

IV. CONCLUSION

This letter established a foundation for optimally controlling
the dynamical evolution of a quantum state to maximize the
information, about an unknown parameter, extracted by a
given quantum measurement apparatus. Inspired by notions
from statistical inference, the concept of admissible control
laws was introduced. For the class of unital quantum systems
interrogated by binary measurements, we derived a necessary
and sufficient condition on the POVM operators such that
information maximizing control laws are admissible. This
condition concerns the trace of the POVM operators. When
such condition is satisfied, it was shown that information max-
imizing control laws can be designed using well-established
techniques. The utility of this methodology was demonstrated
on a dephasing qubit system.

APPENDIX

THEOREM 1 SUPPLEMENTARY CALCULATIONS

Following [23, p. 115], the costate associated with an
optimal state trajectory Z%(·) and optimal control µ%

θ(·)
satisfies
Λ̇%(t) = −∇Z

!
(t)hc(Z

%(t),Λ%(t), µ%
θ(t), t) ∀ t ∈ [t0, tf ](35)

subject to the terminal condition Λ%(tf) = ∇Z
!
(tf )

J−1
θ (tf).

The right-hand side of (35) becomes
−∇Z

!
(t)〈Λ

%(t), F (Z%(t), µ%
θ(t), t)〉 (36)

since K1(µ
%
θ(t), t) that appears in the Hamiltonian

functional (22) is not a function of Z%(t). At any given time
t ∈ [t0, tf ], the operator F is a linear operator mapping L(H)
into itself. Applying the definition of the adjoint with respect
to the Hilbert-Schmidt inner product

〈Λ%(t), F (Z%(t), µ%
θ(t), t)〉

= 〈F ‡(Λ%(t), µ%
θ(t), t),Z

%(t)〉 (37)
and subsequently

Λ̇%(t) = −F ‡(Λ%(t), µ%
θ(t), t) . (38)
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