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Interaction Screening for Ultrahigh-Dimensional Data
Ning HAO and Hao Helen ZHANG

In ultrahigh-dimensional data analysis, it is extremely challenging to identify important interaction effects, and a top concern in practice is
computational feasibility. For a dataset with n observations and p predictors, the augmented design matrix including all linear and order-2
terms is of size n × (p2 + 3p)/2. When p is large, say more than tens of hundreds, the number of interactions is enormous and beyond
the capacity of standard machines and software tools for storage and analysis. In theory, the interaction-selection consistency is hard to
achieve in high-dimensional settings. Interaction effects have heavier tails and more complex covariance structures than main effects in a
random design, making theoretical analysis difficult. In this article, we propose to tackle these issues by forward-selection-based procedures
called iFOR, which identify interaction effects in a greedy forward fashion while maintaining the natural hierarchical model structure. Two
algorithms, iFORT and iFORM, are studied. Computationally, the iFOR procedures are designed to be simple and fast to implement. No
complex optimization tools are needed, since only OLS-type calculations are involved; the iFOR algorithms avoid storing and manipulating
the whole augmented matrix, so the memory and CPU requirement is minimal; the computational complexity is linear in p for sparse models,
hence feasible for p � n. Theoretically, we prove that they possess sure screening property for ultrahigh-dimensional settings. Numerical
examples are used to demonstrate their finite sample performance. Supplementary materials for this article are available online.

KEY WORDS: Forward selection; GWAS; Heredity condition; Sure screening.

1. INTRODUCTION

Ultrahigh-dimensionality is a significant feature of data col-
lected in contemporary scientific research, owing to rapid
advances of technologies and computer power. Big data are
abundant in many areas including biology, genetics, medicine,
finance, social science, environmental science, and so on. One
major challenge in dealing with big datasets is that, the num-
ber of predictors p is much larger than the sample size n. In
this article, we allow p to be as large as O(exp(nξ )) for some
ξ ∈ (0, 1/2), which is described as nonpolynomial (NP) dimen-
sionality in Fan and Song (2010). To extract useful information
from such data and build an interpretable model with high-
prediction power, variable selection or screening must be em-
ployed. A variety of variable selection methods have been de-
veloped and in common use, such as the LASSO (Tibshirani
1996), SCAD (Fan and Li 2001), Dantzig selector (Candes and
Tao 2007), elastic net (Zou and Hastie 2005), minimax concave
penalty (MCP) (Zhang 2010), and others (Zou 2006; Zou and Li
2008). Many methods possess favorable theoretical properties
such as model selection consistency (Zhao and Yu 2006) and
oracle properties (Fan and Lv 2011). When p is much larger
than n, sure screening is a more realistic goal to achieve than
oracle properties or selection consistency (Fan and Lv 2008;
Wang 2009). Sure screening assures that all important variables
are identified with a probability tending to 1, hence achieving
effective dimension reduction without information loss and pro-
viding a reasonable starting point for low-dimensional methods
to be applied.

Most existing methods for variable selection are designed for
selecting main effects only. However, main effects may not be
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sufficient to characterize the relationship between the response
and predictors in complex situations, where predictors work to-
gether. Interaction models provide a better approximation to the
response surface, improve prediction accuracy, and bring new
insight on the interplay between predictors. They are useful in
social, political, and economic problems to identify nontriv-
ial interactions between covariates in modeling election results,
product sales, social networks, stock market changes. One in-
teresting application is to study the effects of combinations of
various behaviors and exposures on disease rates, commonly
needed in bioassay and epidemiology. In genome-wide asso-
ciation studies (GWAS), there is growing interest to identify
the interaction (epistatic) effects of single-nucleotide polymor-
phisms (SNPs) (Evans et al. 2006; Manolio and Collins 2007;
Kooperberg and LeBlanc 2008; Cordell 2009), since gene–gene
interactions may provide critical insight on the complex biolog-
ical pathways that underpin human diseases. A common class
of linear models considering two-way interactions assume

Y = β0 + β1X1 + · · · + βpXp + β11X
2
1 + β12X1X2

+ · · · + βppX2
p + ε, (1.1)

where Y is the response, X1, . . . , Xp are covariates, and ε is the
error. Marginality principle (Nelder 1977, 1994; McCullagh and
Nelder 1989; McCullagh 2002) or heredity conditions (Hamada
and Wu 1992; Chipman 1996; Chipman, Hamada, and Wu 1997)
are generally employed to characterize the hierarchical structure
between main and interaction effects. In particular, the strong
heredity condition is

βk� �= 0 ⇒ βkβ� �= 0,

that is, XkX� is important only if its both parents Xk and X� are
important. The weak heredity is

βk� �= 0 ⇒ β2
k + β2

� �= 0,

that is, XkX� is important only if at least one of Xk and X� is
important.
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Interaction selection for (1.1) has lately drawn much atten-
tion in the literature. Recent works include Efron et al. (2004),
Turlach (2004), Yuan, Joseph, and Lin (2007), Yuan, Joseph, and
Zou (2009), Zhao, Rocha, and Yu (2009), and Choi, Li, and Zhu
(2010), among others. In particular, Efron et al. (2004), Turlach
(2004), and Yuan, Joseph, and Lin (2007) considered enforcing
the strong heredity principle in the LARS; Yuan, Joseph, and
Zou (2009) incorporated the structural relationship by imposing
linear inequality constraints on coefficients; Zhao, Rocha, and
Yu (2009) introduced the composite absolute penalties (CAP)
to achieve hierarchy in variable selection. Choi, Li, and Zhu
(2010) employed a special reparameterization of regression co-
efficients to enforce the heredity constraint. These procedures,
except Efron et al. (2004), can be described as joint analysis,
as they consider main and interaction effects in (1.1) altogether
and make a global search over all candidate models. When p
is small or moderate, joint analysis is effective in identifying
important interaction effects. Some joint-analysis methods can
produce consistency selection results under the strong heredity
condition for a fixed p (Yuan, Joseph, and Zou 2009; Choi, Li,
and Zhu 2010). However, joint-analysis methods become infea-
sible if p is very large. Two major limiting factors are memory
requirement and computational cost. Joint analysis typically
requires to store the entire augmented design matrix of size
n × (p2 + 3p)/2. Take an example of n = 200, p = 10,000,
where the total number of entries is ≈ 1010 and beyond the
capacity of standard software such as R and MATLAB. Since
sophisticated programming tools are needed to handle complex
penalty structures (Zhao, Rocha, and Yu 2009; Choi, Li, and Zhu
2010) or multiple inequality constraints (Yuan, Joseph, and Zou
2009), joint analysis implementation can be extremely expen-
sive. Furthermore, it is not clear whether selection consistency
would still hold in ultrahigh-dimensional settings.

An alternative interaction selection tool is two-stage analysis:
first select main effects only (by intentionally leaving interac-
tion terms out), then select interactions of main effects which
are previously identified. When the data dimension is very large,
two-stage approaches are possibly only feasible choices for
practitioners (Wu et al. 2009; Wu et al. 2010). Despite their
computational advantages over joint analysis, two-stage proce-
dures have been criticized for their theoretical validity, even for
low-dimensional data with p < n (Turlach 2004).

Motivated by the above practical and theoretical concerns, we
propose new greedy-type model selection procedures for high-
dimensional interaction selection, study their numerical proper-
ties and performance, and provide rigorous theoretical justifica-
tions. In particular, we consider interaction-selection procedures
featured withFORward selection, which are referred to as iFOR.
Forward selection (FS) is a classical variable selection method in
linear regression and it builds the model sequentially by adding
one variable at a time. FS is easy to implement as it involves
only simple OLS-type operations. Though the local search is
suboptimal, it is a necessary compromise when dealing with
high dimensionality for the sake of computation. In this article,
we propose two algorithms: iFORT and iFORM. The iFORT
is a two-stage procedure: at the first stage, it selects only main
effects (all quadratic terms and interactions ignored) by FS; at
the second stage, interaction terms generated under the hered-
ity condition are considered. The iFORM, on the other hand,

selects main effects and interactions altogether in an iterative
fashion. Compared to join-analysis procedures, the iFOR meth-
ods can incorporate the strong or weak heredity condition in a
much simpler fashion. Their implementation does not require
the storage of the entire augmented matrix, making them feasible
for large problems. The memory and computational complexity
are shown to be linear in p. In one simulation example with
p = 10,000 and n = 400, it takes iFOR fewer than 30 sec to
complete the selection process. Numerical examples suggest
promising performance of iFOR in terms of effective coverage.
In additional to the new algorithms and numerical results, an-
other major goal of this work is to investigate theoretical proper-
ties of iFOR estimators and understand their asymptotic behav-
iors. By rigorously analyzing the covariance structure between
main effects and interaction terms, we prove that the iFORT has a
sure screening property for ultrahigh-dimensional settings. This
is the first theoretical justification of two-stage approaches.

The rest of this article is organized as follows. Section 2 intro-
duces the basic model setup and the new procedures: iFORT and
iFORM, under the strong heredity condition. Major theoretical
results are presented in Section 3. Section 4 extends the iFOR
to the context of the weak heredity condition. Numerical results
are demonstrated in Sections 5 and 6. Final remarks are given
in Section 7. All technical proofs are relegated to the Appendix.

2. METHODOLOGY

2.1 Model Setup and Notations

Given n IID observations (x1, Y1), . . . , (xn, Yn), we consider
a regression model with linear and second-order terms

Yi = β0 + x�
i β (1) + z�

i β (2) + εi, 1 ≤ i ≤ n, (2.1)

where Yi is a real-valued response, xi = (Xi1, . . . , Xip) is
a p-dimensional vector, the vector zi = (X2

i1, Xi1Xi2, . . . ,

Xi1Xip,X2
i2, Xi2Xi3, . . . , X

2
ip)� contains quadratic and two-

way interaction terms, β0 is the intercept, β (1) and β (2) are,
respectively, regression coefficients of linear effects and order-2
effects, and εi is the noise with mean zero and finite variance σ 2.
The length of zi or β (2) is q = (p + p2)/2. The entire param-
eter vector is β = (β (1)�,β (2)�)�. Throughout this article, we
assume that E(Xij ) = 0, var(Xij ) = 1, E(Yi) = 0, var(Yi) = 1
in (2.1) for i = 1, . . . , n and j = 1, . . . , p. We also assume that
all the quadratic effects and two-way interactions are centered,
that is, zi = (. . . , XikXi� − E(XikXi�), . . .)�. This eliminates
the need of the intercept term β0 in (2.1).

For convenience, denote ([x�
i ])ni=1 as the design matrix con-

taining only linear effects, and ([x�
i , z�

i ])ni=1 as the augmented
design matrix. Define the index sets of linear and order-2 terms
as

P1 = {1, 2, . . . , p}, P2 = {(k, �) : 1 ≤ k ≤ � ≤ p}.
In (2.1), any term βj �= 0 or βjk �= 0 is regarded as relevant;
the corresponding predictor can be a linear, or quadratic, or
interaction effect. We define the nonzero linear and order-2
effects as

T1 = {j : βj �= 0, j ∈ P1},
T2 = {(j, k) : βjk �= 0, (j, k) ∈ P2}.
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The fullmodel isF = P1 ∪ P2 and the truemodel T = T1 ∪ T2.
For any model M, use |M| to denote its model size, that is,
the number of predictors contained in M. We have |P1| = p,
|P2| = q, and |F | = d = p + q. We assume |T1| = p0 and
|T2| = q0, and then the true model size |T | = d0 = p0 + q0. In
the literature, variable selection for (2.1) has been studied by pe-
nalized least squares using the augmented matrix

(
[x�

i , z�
i ]
)n
i=1

as the covariates and conducting variable selection under hered-
ity principles. They work quite well when p is moderate. But
when p is big, their implementation becomes infeasible since
the full model size d increases quadratically in p. For exam-
ple, p = 50 and d = 1325, p = 500 and d = 125, 750, and
p = 5000 and d = 12, 507, 500.

Next we give a review of the FS solution path algorithm
(Wang 2009), which is closely related to the interaction selection
algorithms under consideration. For each 1 ≤ k ≤ n, we use Sk

to denote the index of selected variables at the end of the kth
step. Let RSSM be the residual sum of squares (RSS) using
model M to fit the data.

2.1.1 Forward Selection (FS). Initial step: Set k = 0 and
S0 = ∅.
Iterative step: set k = k + 1. If k > n, stop. Otherwise, given

Sk−1, for every j ∈ P1\Sk−1, construct a candidate model
Mj,k−1 = Sk−1 ∪ {j}. Compute the RSSMj,k−1 for each j. Find
ak = arg minj∈P1\Sk−1 RSSMj,k−1 and update Sk = Sk−1 ∪ {ak}.
Repeat this step until stop.

The FS algorithm produces a solution path consisting of
n-nested models S1 ⊂ · · · ⊂ Sn, where Sk = {a1, . . . , ak} for
1 ≤ k ≤ n. When p � n, the FS automatically terminates after
n steps when RSS reduces to zero. Since the solution path of
the FS depends only on the subspaces spanned by the predictor
vectors (column vectors in the design matrix), centering and
standardization does not change the solution path. Wang (2009)
showed the screening consistency of the FS for main-effect se-
lection under the ultrahigh-dimensional setup.

One straightforward way of extending the FS to the interac-
tion selection is to apply FS directly to model (2.1), ignoring
the hierarchical structure. We name this procedure FS2 to distin-
guish it from the usual FS for main effect selection. Based on our
empirical experience, FS2 works well for small and moderate
p in sparse settings. In Section 3, we prove that FS2 has a sure
screening property for interaction selection under some regular-
ity conditions. However, similar to joint-analysis methods, the
implementation of FS2 requires to store the entire augmented
design matrix or call the features repeatedly during computation,
making it difficult for high-dimensional data analysis.

2.2 New Methods: iFOR

We propose two forward-selection-based algorithms for in-
teraction selection. The new algorithms naturally incorporate
the marginality or heredity principles (Yuan, Joseph, and Zou
2009; Zhao, Rocha, and Yu 2009; Choi, Li, and Zhu 2010),
without invoking complex constraints or optimization tools as
done in joint analysis. Throughout this section, we use C to de-
note the candidate index set which consists of all the terms to
be considered for selection in the immediately following step.

We first describe the two-stage approach (iFORT) algorithm.
At Stage 1, only main effects are selected by FS, while all of the

order-2 terms left out of the model. Denote the selected main-
effect set by M̂. At Stage 2, we expand M̂ by adding all the
two-way interactions within M̂ and then implement FS on the
expanded set while forcing M̂ to stay in the final model.

2.2.1 Two-Stage iFOR (iFORT).

Stage 1. Define C = P1. Implement FS on C. The result-
ing solution path is {S (1)

t , t = 1, 2, . . .}, and the se-
lected main effects are M̂ = {j1, . . . , jt1}.

Stage 2. Update C = M̂ ∪ {(k, l) : k ∈ M̂ and l ∈ M̂}. Im-
plement FS on C by forcing-in M̂. Denote the so-
lution path by {S (2)

t1+t , t = 1, 2, . . .}.
The iFORT is simple, fast, and feasible to implement for

high-dimensional data analysis. It does not require complex
optimization tools, and the strong heredity condition is auto-
matically satisfied in the final true model by forcing-in M̂. If
the model is sparse, the number of important linear effects p0
would be small, so the number of terms considered at Stage 2
would be much smaller than (p2 + p)/2. Theoretical properties
of iFORT are studied in Section 3.

The iFORT separately selects main effects and order-2 terms
at two stages. Alternatively, one may select them altogether
under the marginality principle, and this leads to another new
algorithm iFORM. The main idea of the iFORM is to apply FS
to a submodel of model (2.1) indexed by a dynamic candidate
set C. At step t, we use St , Mt , and Ct , respectively, to represent
the index set of all selected effects, selected main effects, and
current candidate set. Initially, C = P1, that is, all the main
effects. Then the candidate set C grows gradually by adding two-
way interactions between the main effects already in the model.
In other words, we update Ct by defining Ct = P1 ∪ {(k, �) :
k, � ∈ Mt }.

2.2.2 iFOR Under Marginality Principle (iFORM).

Step 1. (Initialization) Set S0 = ∅, M0 = ∅ and C0 = P1.
Step 2. (Selection) In the tth step with given St−1, Ct−1, and

Mt−1, forward regression is used to select one more
predictor from Ct−1\St−1 into the model. We add the
selected one intoSt−1 to getSt . We also update Ct and
Mt if the newly selected predictor is a main effect.
Otherwise, Ct = Ct−1 and Mt = Mt−1.

Step 3. (Solution path) Iterating Step 2, we get a solution
path {St : t = 1, 2, . . . D}.

In the above algorithm, D is chosen as a reasonable upper
bound of d0 (the total number of important effects), to terminate
the procedure. A direct advantage of the iFORM is that it allows
the interactions to enter the model early, making it easier to
select weak relevant main effects. Moreover, when we decide
the optimal model along the solution path, we only need to use
model size selection criteria, say BIC, once, while for iFORT,
we have to use BIC twice which may cause additional error
in practice even if the solution path is correct. Our empirical
experience also suggests the iFORM has better finite sample
performance. The screening consistency of iFORM is shown in
Section 3.3.

To select the optimal model from the FS path, we consider
the use of BIC. There are two types of BIC proposed in the
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literature, the standard BIC

BIC1(M̂) = log σ̂ 2
M̂ + n−1|M̂| log(n),

and the BIC specially designed for high-dimensional data (Chen
and Chen 2008)

BIC2(M̂) = log σ̂ 2
M̂ + n−1|M̂|(log(n) + 2 log d∗),

where d∗ is the number of predictors in the full model. The
only difference between two BICs is the extra term 2 log d∗ in
BIC2. Chen and Chen (2008) derived BIC2 by controlling the
false discovery rate (FDR) and showed that it is selection con-
sistent if d∗ = O(nξ ) for some ξ > 0. Wang (2009) showed its
selection consistency for FS under ultrahigh-dimensional setup
d∗ = O(exp(nξ )). Since we deal with the ultrahigh-dimensional
data, we use BIC2 for iFORM and the first stage of iFORT. At
the second stage of iFORT, since the number of candidate pre-
dictors is already dramatically reduced after the first stage, BIC1
is more appropriate. Section 5 demonstrates their effective per-
formance, in terms of coverage, false discovery control, and
prediction accuracy.

2.3 Computational Complexity and Practical Issues

We show that the computational complexity of iFOR proce-
dures is linear in p, which explains their feasibility for p � n.
The FS algorithm described in Section 2.1 is equivalent to the
following procedure. At each step, the response is regressed on
the most correlated covariate, and the residual is calculated and
used as the new response in next step. After the most correlated
covariate (say, X1) is selected, all other covariates are regressed
on X1, and then the covariates are substituted by the correspond-
ing normalized residuals, which are used as the new covariates
in next step. Note that the computation complexity of each step
is O(nm), where n is the sample size and m is the number of
predictors in the candidate set. First, the absolute correlations
between the response and all covariates in the current candidate
set are calculated at each step, so the complexity is O(nm). Once
the most correlated covariate is selected, the response and all
other covariates are regressed on it, whose cost is also O(nm).
For the iFORT and iFORM algorithms, the number of steps to
build the whole solution path is at most n, so the number of main
effects selected is not larger than n. This implies that, at each
step, there are at most p + n(n + 1)/2 predictors in the candi-
date set, that is, m ≤ p + n(n + 1) holds for any step. Therefore,
the overall complexity is nO(n(p + n(n + 1)) = O(n2p + n4),
which is linear in p.

The parameter D controls the length of the solution path for
the iFORM. Since the final model is chosen based on BIC by
comparing all the models along the path, the final model select
results is not sensitive to the exact value of D as long as it
is reasonably large. In practice, though d0 is unknown, it is
reasonable to assume that d0 is much smaller than n in high-
dimensional sparse regression problems (Fan and Lv 2008).
In our numerical study, we have tried D = n/2, n/3, n/4 and
obtained the same results since D > d0. In general, we suggest
D = n/2.

3. THEORETICAL RESULTS

We study theoretical properties of iFOR. In literature, a long-
term concern about two-stage methods is their theoretical valid-
ity, as the main effect selection at Stage 1 is conducted under
a misspecified working model. In Section 3.1, we first prove
that the iFORT is able to capture all important main effects
under ultrahigh-dimensional settings. This fundamental result
provides rigorous justifications for two-stage methods. In Sec-
tion 3.2, we prove that iFORT can identify all important interac-
tions consistently with probability tending to one under heredity
conditions. The screening consistency of iFORM is shown in
Section 3.3.

3.1 Screening Consistency of iFORT for Main Effects

Recall the true model T = T1 ∪ T2, where T1 ⊂ P1 and T2 ⊂
P2. For any square matrix A, denote its smallest and largest
eigenvalues, respectively, by λmin(A) and λmax(A). Denote the
covariance matrices of main linear effects and interactions (i.e.,
all degree 2 monomials), respectively, by �(1) and �(2). The
total covariant matrix is �. The following regularity conditions
are needed.

(C1). Normality: Xi1, . . . , Xip are jointly normal and
marginally standard normal. εi ∼ N (0, σ 2) is indepen-
dent of Xi1, . . . , Xip.

(C2). Covariance matrix: We assume that there exist two
constants 0 < τmin < τmax < ∞, such that 2τmin <

λmin(�(1)) ≤ λmax(�(1)) < τmax/2.
(C3). Signal strength: We assume that ||β|| ≤ Cβ for some

positive constant Cβ and βmin ≥ νβn−ξmin , where βmin =
minκ∈T |βκ | and ξmin > 0.

(C4). Dimensionality and sparsity: There exist positive con-
stants ξ , ξ0, and ν such that log p ≤ νnξ , d0 ≤ νnξ0 , and
ξ + 6ξ0 + 12ξmin < 1, ξ < 1

2 .

Remark 3.1. Conditions (C1) to (C4) are standard in the lit-
erature of ultrahigh-dimensional inference (Fan and Lv 2008;
Zhang and Huang 2008). The normality assumption (C1) is ex-
tensively used in the past literature to facilitate proof (Fan and
Lv 2008; Zhang and Huang 2008; Wang 2009). (C2) requires the
design matrix of main effects to be well-behaved. (C1) and (C2)
together assure the Sparse Riesz Condition (Zhang and Huang
2008); see the proof in Appendix for more details. (C3) requires
that the smallest signal should not decay too fast, otherwise they
cannot be consistently identified; see (Fan and Peng 2004) for
more discussions. (C4) allows the dimension p to diverge with
n at an exponential rate, or the NP dimensionality (Fan and Lv
2008). Intuitively, one would expect that stronger conditions are
needed to develop theory for interaction selection due to their
heavier tails. However, to our satisfaction, conditions (C1) to
(C4) are comparable to those used in the main-effect selection
literature (Fan and Lv 2008; Wang 2009). The only difference
is ξ < 1

2 in (C4) while ξ < 1 is used in Wang (2009), due to
heavier tails of interaction terms. Note if X1j ’s are sub-Gaussian
with E(eaX2

1j ) < b for positive constants a and b, typically, we
can only bound a product term by E(e2aX1j X1k ) < b2.

Theorem 3.1. (sure screening of main effects) Define K =
2τmaxνC2

βτ−2
minν

−4
β . Under conditions (C1)-(C4), the first stage
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of iFORT is screening consistent for the main effects. For t1 ≥
Kνn2ξ0+4ξmin ,

P
(
T1 ⊂ S (1)

t1

)
→ 1 as n → ∞. (3.1)

Next we give insight on why screening consistency (3.1) still
holds for selection under a misspecified model. A key observa-
tion is Lemma 1 in Appendix, which says, under (C1),

� =
(

�(1) 0
0 �(2)

)
.

The block structure of � guarantees that ignored important in-
teraction terms have minimal affects to the procedure at Stage 1.
Imagining if there are some nonzero terms on the right top cor-
ner of �, we have to put some strong and complicated conditions
on � to guarantee screening consistency.

Remark 3.2. In general, as long as � has a block structure,
Theorem 1 holds even without normality. Here (C1) is used as
a convenient and sufficient condition to assure the covariance
block structure. There are other weaker but sufficient conditions
(C1)′ or (C1)′′, which can replace (C1):

(C1)′. Xi1, . . . , Xip are sub-Gaussian marginally, and their
joint distribution is symmetric with respect to 0.

(C1)′′. Xi1, . . . , Xip are sub-Gaussian marginally, and their
joint distribution has varnished third moments.

3.2 Screening Consistency of iFORT for Interaction
Effects

After Stage 1, the iFORT essentially reduces the main effect
dimensionality from p to t1 = o(n 1

3 ), which is significant if p �
n. Using (C4), it is straightforward to show 2ξ0 + 4ξmin < 1

3 .
Next we study the asymptotic behaviors of iFORT for interaction
selection under the strong heredity:

(H1). Strong heredity condition: βk� �= 0 ⇒ βkβ� �= 0.

Under (H1), the interaction selection of iFORT at Stage 2 does
not need to deal with high-dimensional predictors any more,
since the number of selected main effects is o(n 1

3 ). Even if we
include all interactions within the selected model at Stage 1, the
final model has cardinality o(n 2

3 ). Corollary 1 gives the funda-
mental result: the iFORT is screening consistent for interaction
selection under the heredity condition for ultrahigh-dimensional
settings.

Corollary 3.1. (sure screening of interactions) Conditional
on (3.1) and (H1), for t2 ≥ Kνn2ξ0+4ξmin ,

P
(
T ⊂ S (2)

t1+t2

)
→ 1 as n → ∞.

Remark 3.3. The strong heredity is necessary to ensure the
consistency of two-stage procedures for screening interaction
terms. Otherwise, if X1X2 is important but neither X1 nor X2,
then the main effects are not guaranteed to be identified at Step
1, and consequently, their interaction X1X2 might not be consid-
ered at the second step. We also point out that the strong heredity
condition is actually not that strong with a simple illustration.
Consider the case p = 2, where the full model space (for sim-
plicity, ignoring two quadratic terms) can be represented by the

parameter set (β0, β1, β2, β12)� in R4. The strong heredity con-
dition covers the entire R4 except for a couple of subsets, such
as {β0 = 0, β2

1 + β2
2 + β2

12 > 0} and {β1β2 = 0, β2
12 > 0}. The

excluded subsets have zero mass in R4, so the strong heredity
condition is met by most models. This implies that the iFORT
methods work for a generic model.

3.3 Screening Consistency of FS2 and iFORM

Naively, we can use any one-stage variable selection tool to fit
(1.1) directly (as long as computation is feasible), ignoring the
hierarchical structure. Though the model consistency or screen-
ing consistency result (Zhao and Yu 2006; Wang 2009; Fan and
Lv 2011) could be generalized to the context of interaction se-
lection, the extension of earlier proofs is not straightforward due
to the heavy tails of interaction effects. Actually, all the existing
proof technique would require some regularity conditions on
the eigenvalues of �(2). Next, we establish the screening con-
sistency of FS2 under conditions that are related only to �(1).

(C2a). Covariance matrix: Assume that there exist two
constants 0 < τmin < 1

4 < 1 < τmax < ∞, such that√
τmin < λmin(�(1)) ≤ λmax(�(1)) <

√
τmax/4.

(C4a). Dimensionality and sparsity: There exist positive con-
stants ξ , ξ0, and ν, such that log p ≤ νnξ , d0 ≤ νnξ0 ,
and ξ + 6ξ0 + 12ξmin < 1

2 .

There is no essential difference between (C2a) and (C2).
(C2a) is used only for easy presentation. (C4a) is slightly
stronger than (C4). Note that under (C1) and (C2a), the pop-
ulation and sample covariance matrices � and �̂ can be well
controlled because �(2) can be explicitly represented by �(1).
See Lemma 3 in the appendix. On the other hand, the screening
consistency result below strongly depends on the normality con-
dition (C1) since there is no easy way to capture the structure
of �(2) by �(1) without normality condition.

Theorem 3.2. Under conditions (C1), (C2a), (C3), and (C4a),
FS2 is screening consistent. For t ≥ Kνn2ξ0+4ξmin ,

P
(
T ⊂ SFS2

t

) → 1 as n → ∞.

The screening consistency of iFORM is implied in the proof
of Theorem 2, as iFORM is similar to FS2 but with a restrictive
candidate set each step.

Corollary 3.2. Under conditions (C1), (C2a), (C3), (C4a),
and (H1), iFORM is screening consistent. For t ≥ Kνn2ξ0+4ξmin ,

P(T ⊂ St ) → 1 as n → ∞.

4. EXTENSIONS TO WEAK HEREDITY

In some real applications, the weak heredity provides a useful
alternative for the underlying model structure. Under the weak
heredity, for a two-way interaction effect to be active, at least
one of the parent effects need to be effective. In this section, we
generalize the iFOR algorithms described in Section 2 to satisfy
the weak heredity condition. Similar to the strong heredity sit-
uation, both iFOR algorithms under the weak heredity are easy
to implement.

(H2). Weak heredity condition: βk� �= 0 ⇒ β2
k + β2

� �= 0.
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4.1 iFORT Under Weak Heredity (iFORT-w)

Stage 1. Define C = P1. Implement FS on C. The result-
ing solution path is {S (1)

t , t = 1, 2, . . .}, and the se-
lected main effects are M̂ = {j1, . . . , jt1}.

Stage 2. Update C = M̂ ∪ {(k, l) : k ∈ M̂ or l ∈ M̂}. Im-
plement FS on C by forcing-in M̂. Denote the so-
lution path by {S (2)

t1+t , t = 1, 2, . . .}.

For the iFORM extension, after selecting any new linear term,
we need to expand the candidate set by including all of its
interactions with the other linear effects. Denote by Mt the
index set of selected linear effects at Step t. Under the weak
heredity condition, we update Ct as

Ct = P1 ∪ {(k, �) : k or � ∈ Mt }.

For each t, we use St , Mt , and Ct to represent the index set of
selected model, selected main effects and candidates set at Step
t, respectively.

4.2 iFORM Under Weak Heredity (iFORM-w)

The iFORM-w algorithm is the same as the iFOR algorithm
given in Section 2.2.2, except for the rule of updating Ct .

Remark 4.1. The weak heredity condition is slightly more
flexible than the strong heredity condition, and generally
chooses a larger model. In practice, the weak heredity is more
useful to identify important interactions with one weak parent
effect (Yuan, Joseph, and Zou 2009). With regard to the com-
putation speed, since the candidate set size at each step is larger
than in the strong heredity case, the iFORT-w and iFORM-w
are slower than the iFORT and iFORM.

5. NUMERICAL STUDIES

5.1 Experiments and Setup

We demonstrate performance of the iFOR methods in various
p � n scenarios, including the regression settings with indepen-
dent predictors, predictors with autoregressive (AR) correlation
structure, compound symmetry (CS) correlation, and more com-
plex settings as considered in Fan and Song (2010). We consider
forward-based joint analysis (FS2), and the proposed forward-
based procedures iFORT, iFORM, iFORT-w, iFORM-w. In the
literature, there are other two-step procedures which are not
based on forward selection such as Mendel (Wu et al. 2009)
and screen-and-clean (Wu et al. 2010). For comparison, we
also include two such procedures, iMART1 and iMART2. The
iMART1 screens main effects based on marginal correlation at
Step 1, that is, those that exceed a threshold are retained as
candidate predictors, and then conducts the LASSO penalized
regression on the expanded dictionary consisting of all the can-
didate predictors and their pairwise interaction terms at Step 2.
The iMART2 first screens main effects by marginal correlation,
then screens the pairwise products of the main effect candidates
by pairwise correlation, and then implements the LASSO to
obtain the final model. The standard BIC is used to select the
tuning parameter of LASSO. The oracle (ORACL) procedure
is also presented as the gold standard, which is generally not
available in practice.

Recall that the full model is F = P1 ∪ P2, |P1| = p, |P2| =
q. The true model is T = T1 ∪ T2, |T1| = p0, |T2| = q0. We
run M = 100 Monte Carlo simulations and report their aver-
age performance in selecting linear effects and interactions,
estimating coefficients, and making predictions. For the mth
replication, let β̂

(m) denote the fitted regression coefficients,
T̂ (m)

1 and T̂ (m)
2 respectively denote the selected linear ef-

fects and interactions. To evaluate linear effect selection, we
report

1. Coverage probability (Cov)
∑M

m=1 I (T1 ⊂ T̂ (m)
1 )/M ,

2. Percentage of correct zeros (Cor0)
∑M

m=1
∑p

j=1 I (β̂(m)
j =

0, βj = 0)/[M(p − p0)],
3. Percentage of incorrect zeros (Inc0):

∑M
m=1∑p

j=1 I (β̂(m)
j = 0, βj �= 0)/[Mp0].

4. Exact selection probability (Ext)
∑M

m=1 I (T1 = T̂ (m)
1 )/M .

For interaction selection, we report

1. Coverage probability (iCov)
∑M

m=1 I (T2 ⊂ T̂ (m)
2 )/M ,

2. Percentage of correct zeros (iCor0)
∑M

m=1∑
(j,k)∈P2

I (β̂(m)
jk = 0, βjk = 0)/[M(q − q0)],

3. Percentage of incorrect zeros (iInc0)∑n
m=1

∑
(j,k)∈P2

I (β̂(m)
jk = 0, βjk �= 0)/[Mq0].

4. Exact selection probability (iExt)
∑M

m=1 I (T2 =
T̂ (m)

2 )/M .

The overall model selection is measured by the model size∑M
m=1 |T̂ (m)

1 ∪ T̂ (m)
2 |/M . For estimation, we report the squared

root of mean-squared error (RMSE)
∑M

m=1[
∑p

j=1(β̂(m)
j −

βj )2 + ∑
(j,k)∈P2

(β̂(m)
jk − βjk)2)]1/2/M . For the prediction error,

we report the out-of-sample R2 (Rsq):

100% ×

⎧⎪⎨⎪⎩1 −
∑n

i=1

[
Y ∗

i − x∗
i β̂

(1) − z∗
i β̂

(2)]2

∑n
i=1(Y ∗

i − Ȳ ∗)2

⎫⎪⎬⎪⎭ ,

where the test data (X∗
i , Y

∗
i ), i = 1, . . . , n are generated inde-

pendently from the same distribution as the training set, and
Ȳ ∗ = 1

n

∑n
i=1 Y ∗

i . A larger Rsq suggests a better prediction. The
standard error of Rsq is reported as well. We also report the
average computation time.

5.2 Simulation Results

In all the examples, we generate the response Y from model
(2.1) with σ = 2, 3, 4.

Example 5.1. (Independent predictors) Let (n, p, p0, q0) =
(100, 500, 4, 4). X’s are iid from MVN(0, Ip). The true β(1) =
(3, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0490), so T1 = {1, 3, 6, 10}. The im-
portant interaction set T2 = {(1, 3), (1, 6), (3, 10), (6, 10)} with
coefficient 2.

Example 5.2. (Autoregressive correlation) Consider the same
setup as Example 1, except that X follows MVN with mean 0
and cov(Xj,Xk) = 0.5|j−k| for 1 ≤ j, k ≤ p.

Example 5.3. (High dimensional: AR) Let (n, p, p0, q0) =
(400, 5000, 10, 10). We generate X from MVN with mean
0 and cov(Xj,Xk) = 0.5|j−k|. The true β(1) = (3, 3, 3,
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Table 1. Results of Example 1, (n, p, p0, q0) = (100, 500, 4, 4), independent predictors

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
FS2 0.34 1.00 0.55 0.34 0.22 1.00 0.73 0.14 3.32 5.27 30.00 4.25
iMART1 0.71 1.00 0.07 0.42 0.71 1.00 0.17 0.29 10.02 2.39 77.21 2.07
iMART2 0.69 1.00 0.08 0.67 0.06 1.00 0.45 0.06 8.24 3.55 67.29 1.74
iFORT-w 0.84 1.00 0.06 0.82 0.77 1.00 0.17 0.60 7.48 1.63 81.99 2.12
iFORT 0.84 1.00 0.06 0.82 0.84 1.00 0.11 0.63 7.71 1.35 84.57 1.84
iFORM-w 0.98 1.00 0.01 0.98 0.90 1.00 0.08 0.60 8.13 1.05 88.24 1.32
iFORM 1.00 1.00 0.00 0.96 0.99 1.00 0.00 0.99 8.07 0.63 91.89 0.25
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 0.59 92.03 0.22

σ = 3
FS2 0.03 1.00 0.83 0.03 0.01 1.00 0.95 0.01 1.06 6.91 4.93 2.18
iMART1 0.59 1.00 0.12 0.30 0.53 1.00 0.29 0.13 11.20 3.48 56.91 2.98
iMART2 0.58 1.00 0.12 0.56 0.06 1.00 0.53 0.04 8.46 4.08 53.72 2.16
iFORT-w 0.63 1.00 0.17 0.62 0.22 1.00 0.61 0.17 5.22 3.86 54.64 2.45
iFORT 0.63 1.00 0.17 0.60 0.63 1.00 0.29 0.48 6.45 2.62 65.52 2.73
iFORM-w 0.69 1.00 0.16 0.69 0.24 1.00 0.59 0.13 5.39 3.72 56.16 2.54
iFORM 0.98 1.00 0.01 0.95 0.74 1.00 0.14 0.74 7.52 1.48 79.31 1.08
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 0.89 83.61 0.43

σ = 4
FS2 0.01 1.00 0.90 0.01 0.00 1.00 0.98 0.00 0.67 7.13 0.39 1.72
iMART1 0.49 1.00 0.15 0.28 0.34 1.00 0.44 0.05 11.63 4.49 39.12 2.73
iMART2 0.46 1.00 0.15 0.43 0.05 1.00 0.59 0.04 8.50 4.60 41.03 2.10
iFORT-w 0.41 1.00 0.33 0.41 0.02 1.00 0.90 0.01 3.36 5.17 33.99 2.15
iFORT 0.41 1.00 0.33 0.38 0.40 1.00 0.50 0.29 5.02 4.00 44.46 2.89
iFORM-w 0.22 1.00 0.50 0.22 0.03 1.00 0.90 0.03 2.53 5.67 25.92 2.28
iFORM 0.67 1.00 0.19 0.67 0.15 1.00 0.64 0.15 4.72 3.93 48.14 2.46
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 1.19 73.97 0.63

3, 3, 2, 2, 2, 2, 2, 04990). The nonzero interaction set is T2 =
{(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (6, 8), (6, 10), (7, 8), (7, 9),
(9, 10)}, and their coefficients are (2, 2, 2, 2, 2, 1, 1, 1, 1, 1).

Example 5.4. (High dimensional: AR) We increase the di-
mension p = 10,000 in Example 3.

Example 5.5. (High dimensional: FS2010) We use the same
setup as in Example 4, except that X has a more complex co-
variance structure as considered in Fan and Song (2010). First,
we generate Xj, j = 1, . . . , 50 independently from the standard
normal distribution. Then we define

Xk =
s∑

j=1

Xj (−1)j+1/5 + √
25 − s/5εk, k = p − 50, . . . , p,

with s = 10 and {εk}50
k=p−49 follow the standard normal

distribution.

Example 5.6. (Weak heredity) We use the same setup as
in Example 3, except the nonzero interaction set T2 = {(1, 2),
(1,13), (2,3), (2,15), (3,4), (6,10), (6,18), (7,9), (7,18), (10,19)}
and the corresponding coefficients (2, 2, 2, 2, 2, 1, 1, 1, 1, 1).
Note that the weak heredity condition holds here.

Three additional examples, Examples 7 to 9, are listed in
the online available supplementary material due to the page
limit. In particular, the compound symmetry (CS) correlation

is considered in Examples 7 and 9. The numerical results are
summarized in the following Tables 1–6 and Tables S1–S3 in
the supplementary material.

We first summarize the results for Examples 1–5, where
the strong heredity condition holds. All the methods perform
reasonably well in most of the settings, including the high-
dimensional cases with p = 5000 and p = 10,000, as long as
the noise level is not too high. Overall speaking, the iFORM is
the best among all the methods in terms of both model selec-
tion and prediction performance. The iFORM method has the
smallest RMSE, the largest out-of-the-sample R2, and the high-
est exact coverage probability for main effects and interactions.
When σ = 2, the iFORM’s performance is quite close to the
ORACL procedure. The performance of iFORT is sensitive to
the dimensionality and noise level. In particular, when p is large
and the noise level is high, it may miss some important main
effects in Stage 1, although the result may be improved by using
less aggressive selection criteria such as AIC and standard BIC.
On the other hand, iFORM consistently gives higher coverage of
important main effects and interactions than iFORT, which sup-
ports our motivation for the dynamic selection procedure. The
FS2 has the worst performance, and it fails to run when p is 5000
or larger. Both iMART1 and iMART2 are reasonably fast and
perform well, sometimes quite competitive in prediction. But
when the covariance structure is complex, their performance is
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Table 2. Results of Example 2, (n, p, p0, q0) = (100, 500, 4, 4), AR(0.5) correlation

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
FS2 0.55 1.00 0.31 0.55 0.43 1.00 0.52 0.24 5.14 3.76 58.43 3.77
iMART1 0.81 1.00 0.05 0.65 0.81 1.00 0.12 0.29 10.43 2.08 82.71 2.11
iMART2 0.80 1.00 0.05 0.80 0.11 1.00 0.41 0.10 7.96 3.23 75.54 1.54
iFORT-w 0.71 1.00 0.11 0.71 0.65 1.00 0.25 0.55 7.04 2.29 79.69 2.18
iFORT 0.71 1.00 0.11 0.71 0.71 1.00 0.20 0.58 7.28 1.96 81.80 2.08
iFORM-w 0.96 1.00 0.01 0.94 0.83 1.00 0.11 0.50 8.18 1.30 89.02 1.22
iFORM 0.98 1.00 0.01 0.90 0.98 1.00 0.02 0.94 8.05 0.73 92.45 0.70
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 0.61 93.36 0.18

σ = 3
FS2 0.14 1.00 0.60 0.14 0.03 1.00 0.91 0.02 2.18 6.19 26.54 2.83
iMART1 0.75 1.00 0.07 0.46 0.59 1.00 0.21 0.11 11.95 3.15 70.70 1.95
iMART2 0.73 1.00 0.07 0.71 0.09 1.00 0.45 0.07 8.01 3.62 67.01 1.52
iFORT-w 0.58 1.00 0.18 0.58 0.21 1.00 0.60 0.19 5.21 3.93 59.93 2.27
iFORT 0.58 1.00 0.18 0.57 0.58 1.00 0.32 0.46 6.51 2.91 67.35 2.53
iFORM-w 0.68 1.00 0.15 0.68 0.29 1.00 0.54 0.20 5.77 3.59 62.39 2.32
iFORM 0.92 1.00 0.04 0.86 0.64 1.00 0.19 0.62 7.28 1.82 79.30 1.59
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 0.91 86.18 0.36

σ = 4
FS2 0.03 1.00 0.76 0.03 0.00 1.00 0.97 0.00 1.24 6.91 11.72 2.24
iMART1 0.67 1.00 0.10 0.41 0.41 1.00 0.31 0.01 12.01 4.00 56.82 1.98
iMART2 0.67 1.00 0.09 0.67 0.05 1.00 0.50 0.03 7.94 4.03 57.53 1.53
iFORT-w 0.29 1.00 0.33 0.29 0.02 1.00 0.89 0.02 3.34 5.33 41.31 1.82
iFORT 0.29 1.00 0.33 0.29 0.27 1.00 0.56 0.22 4.97 4.41 48.54 2.40
iFORM-w 0.24 1.00 0.41 0.24 0.02 1.00 0.89 0.02 3.01 5.62 35.73 2.10
iFORM 0.61 1.00 0.18 0.60 0.15 1.00 0.59 0.15 4.99 3.88 55.68 2.08
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 8.00 1.21 77.73 0.54

Table 3. Results of Example 3, (n, p, p0, q0) = (400, 5000, 10, 10), AR correlation

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
iMART1 1.00 1.00 0.00 1.00 0.69 1.00 0.04 0.69 19.66 1.00 97.76 0.05
iMART2 0.99 1.00 0.00 0.99 0.02 1.00 0.34 0.02 16.89 2.29 95.17 0.20
iFORT-w 0.00 1.00 0.33 0.00 0.03 1.00 0.29 0.03 14.13 5.51 90.89 0.35
iFORT 0.00 1.00 0.33 0.00 0.00 1.00 0.57 0.00 14.80 6.45 86.86 0.55
iFORM-w 1.00 1.00 0.00 1.00 0.93 1.00 0.01 0.62 20.28 0.88 97.91 0.03
iFORM 1.00 1.00 0.00 1.00 0.98 1.00 0.00 0.37 20.74 0.82 97.93 0.03
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.79 97.94 0.03

σ = 3
iMART1 1.00 1.00 0.00 1.00 0.31 1.00 0.10 0.25 19.40 1.49 95.30 0.08
iMART2 1.00 1.00 0.00 1.00 0.02 1.00 0.34 0.02 16.90 2.37 93.00 0.21
iFORT-w 0.00 1.00 0.36 0.00 0.00 1.00 0.37 0.00 13.14 5.97 87.35 0.42
iFORT 0.00 1.00 0.36 0.00 0.00 1.00 0.60 0.00 13.98 6.78 83.70 0.59
iFORM-w 1.00 1.00 0.00 1.00 0.22 1.00 0.14 0.11 19.12 1.70 95.34 0.07
iFORM 1.00 1.00 0.00 1.00 0.37 1.00 0.10 0.15 19.90 1.52 95.50 0.06
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.00 95.79 0.05

σ = 4
iMART1 1.00 1.00 0.00 0.98 0.01 1.00 0.14 0.08 19.66 1.89 92.26 0.14
iMART2 0.97 1.00 0.00 0.97 0.01 1.00 0.36 0.01 16.84 2.56 89.96 0.23
iFORT-w 0.00 1.00 0.40 0.00 0.00 1.00 0.48 0.00 11.50 6.68 82.31 0.41
iFORT 0.00 1.00 0.40 0.00 0.00 1.00 0.66 0.00 12.72 7.38 79.12 0.59
iFORM-w 0.85 1.00 0.02 0.85 0.00 1.00 0.27 0.00 17.57 2.53 91.47 0.17
iFORM 0.94 1.00 0.01 0.94 0.02 1.00 0.22 0.01 18.81 2.24 91.97 0.13
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.24 92.91 0.09
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Table 4. Results of Example 4 with ultrahigh-dimensional data, (n, p, p0, q0) = (400, 10,000, 10, 10)

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
iMART1 0.98 1.00 0.00 0.98 0.54 1.00 0.06 0.54 19.44 1.13 97.63 0.88
iMART2 0.97 1.00 0.00 0.97 0.01 1.00 0.34 0.01 16.84 2.32 94.95 0.21
iFORT-w 0.00 1.00 0.35 0.00 0.00 1.00 0.29 0.00 13.98 5.67 90.50 0.34
iFORT 0.00 1.00 0.35 0.00 0.00 1.00 0.60 0.00 14.55 6.67 86.35 0.54
iFORM-w 1.00 1.00 0.00 0.99 0.95 1.00 0.01 0.68 20.29 0.85 97.91 0.04
iFORM 1.00 1.00 0.00 0.97 0.99 1.00 0.00 0.47 20.66 0.82 97.92 0.03
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.79 97.94 0.03

σ = 3
iMART1 0.98 1.00 1.00 0.98 0.25 1.00 0.11 0.22 19.25 1.55 95.23 0.09
iMART2 0.97 1.00 0.00 0.97 0.02 1.00 0.36 0.02 16.86 2.46 92.78 0.22
iFORT-w 0.00 1.00 0.38 0.00 0.00 1.00 0.40 0.00 12.63 6.22 86.65 0.41
iFORT 0.00 1.00 0.38 0.00 0.00 1.00 0.65 0.00 13.57 7.09 82.92 0.59
iFORM-w 1.00 1.00 0.00 0.99 0.16 1.00 0.16 0.13 18.78 1.77 95.20 0.08
iFORM 1.00 1.00 0.00 0.98 0.35 1.00 0.11 0.18 19.63 1.58 95.39 0.07
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.01 95.78 0.06

σ = 4
iMART1 0.97 1.00 1.00 0.97 0.12 1.00 0.16 0.07 19.66 2.01 92.05 0.13
iMART2 0.97 1.00 0.00 0.97 0.02 1.00 0.36 0.02 16.91 2.59 89.85 0.25
iFORT-w 0.00 1.00 0.42 0.00 0.00 1.00 0.52 0.00 11.03 6.91 81.24 0.48
iFORT 0.00 1.00 0.42 0.00 0.00 1.00 0.68 0.00 12.56 7.50 78.78 0.63
iFORM-w 0.83 1.00 0.02 0.83 0.00 1.00 0.29 0.00 17.44 2.63 91.35 0.14
iFORM 0.97 1.00 0.00 0.97 0.01 1.00 0.23 0.01 18.43 2.26 91.90 0.13
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.25 92.91 0.09

Table 5. Results of Example 5, (n, p, p0, q0) = (400, 10,000, 10, 10), FS2010 correlation

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
iMART1 0.30 1.00 0.09 0.29 0.03 1.00 0.18 0.24 19.56 2.33 88.90 0.54
iMART2 0.30 1.00 0.09 0.30 0.00 1.00 0.38 0.00 16.69 2.95 85.97 0.55
iFORT-w 0.68 1.00 0.07 0.64 0.75 1.00 0.09 0.73 18.87 1.70 91.59 0.59
iFORT 0.68 1.00 0.07 0.64 0.68 1.00 0.11 0.30 19.48 1.78 91.17 0.67
iFORM-w 1.00 1.00 0.00 0.89 1.00 1.00 0.00 0.90 20.39 0.72 95.12 0.05
iFORM 0.98 1.00 0.01 0.90 0.98 1.00 0.02 0.98 19.98 0.86 94.46 0.47
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.70 95.13 0.05

σ = 3
iMART1 0.28 1.00 0.10 0.21 0.03 1.00 0.20 0.10 20.78 2.66 82.91 0.76
iMART2 0.28 1.00 0.10 0.28 0.00 1.00 0.39 0.00 17.40 3.17 79.98 0.69
iFORT-w 0.60 1.00 0.08 0.60 0.21 1.00 0.24 0.20 17.20 2.40 84.39 0.62
iFORT 0.60 1.00 0.08 0.59 0.60 1.00 0.13 0.29 19.08 2.11 85.32 0.68
iFORM-w 0.96 1.00 0.01 0.93 0.32 1.00 0.15 0.31 18.89 1.60 87.99 0.33
iFORM 0.96 1.00 0.01 0.89 0.64 1.00 0.07 0.63 19.57 1.29 88.67 0.51
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.87 89.98 0.10

σ = 4
iMART1 0.22 1.00 0.13 0.11 0.01 1.00 0.27 0.00 21.06 3.24 74.74 0.76
iMART2 0.22 1.00 0.13 0.22 0.00 1.00 0.43 0.00 17.77 3.61 71.77 0.75
iFORT-w 0.34 1.00 0.13 0.34 0.00 1.00 0.48 0.00 14.35 3.49 73.68 0.66
iFORT 0.34 1.00 0.13 0.32 0.33 1.00 0.21 0.13 17.77 2.85 76.51 0.68
iFORM-w 0.86 1.00 0.04 0.86 0.00 1.00 0.44 0.00 15.83 2.80 77.78 0.53
iFORM 0.91 1.00 0.02 0.91 0.02 1.00 0.34 0.02 16.85 2.41 79.46 0.47
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.07 83.61 0.15
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Table 6. Results of Example 6 for the weak heredity case, (n, p, p0, q0) = (400, 5000, 10, 10)

Linear term selection Interaction selection Size and prediction

Cov Cor0 Inc0 Ext iCov iCor0 iInc0 Iext size RMSE Rsq sdR

σ = 2
iMART1 1.00 1.00 0.00 0.92 0.00 1.00 0.56 0.00 16.04 3.68 90.86 0.13
iMART2 1.00 1.00 0.00 0.93 0.00 1.00 0.67 0.00 13.79 3.82 89.99 0.17
iFORT-w 0.04 1.00 0.20 0.04 0.06 1.00 0.24 0.06 15.83 3.95 93.62 0.28
iFORT 0.04 1.00 0.20 0.04 0.00 1.00 0.65 0.00 13.53 5.36 87.11 0.33
iFORM-w 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.91 20.09 0.76 97.80 0.03
iFORM 0.96 1.00 0.00 0.96 0.00 1.00 0.60 0.00 14.61 3.71 90.73 0.12
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.75 97.81 0.03

σ = 3
iMART1 0.99 1.00 0.00 0.87 0.00 1.00 0.57 0.00 16.58 3.84 88.33 0.17
iMART2 1.00 1.00 0.00 0.85 0.00 1.00 0.67 0.00 13.93 3.87 87.74 0.19
iFORT-w 0.00 1.00 0.24 0.00 0.00 1.00 0.34 0.00 14.51 4.49 89.96 0.33
iFORT 0.00 1.00 0.24 0.00 0.00 1.00 0.68 0.00 12.94 5.70 84.02 0.36
iFORM-w 1.00 1.00 0.00 1.00 0.21 1.00 0.15 0.19 18.66 1.60 94.85 0.07
iFORM 0.79 1.00 0.03 0.79 0.00 1.00 0.63 0.00 14.12 3.96 88.00 0.19
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 0.97 95.42 0.06

σ = 4
iMART1 0.96 1.00 0.00 0.67 0.00 1.00 0.59 0.00 17.42 4.03 85.09 0.20
iMART2 1.00 1.00 0.00 0.67 0.00 1.00 0.67 0.00 14.30 3.96 84.62 0.22
iFORT-w 0.00 1.00 0.29 0.00 0.00 1.00 0.48 0.00 12.60 5.37 84.16 0.44
iFORT 0.00 1.00 0.29 0.00 0.00 1.00 0.72 0.00 11.91 6.30 79.57 0.43
iFORM-w 0.86 1.00 0.02 0.86 0.00 1.00 0.30 0.00 17.06 2.38 90.77 0.14
iFORM 0.48 1.00 0.08 0.48 0.00 1.00 0.68 0.00 13.05 4.47 83.94 0.29
ORACL 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 20.00 1.20 92.26 0.09

not very good. This can be seen in Example 5, and Examples 7
and 8 in the supplementary material.

In Example 6, the weak heredity condition holds, and there-
fore we expect that the iFOR under the weak heredity constraint
should perform better than those under the strong heredity. The
results in Table 6 confirm this pattern: iFORM-w (or iFORT-w)
gives better performance than iFORM (or iFORT) in terms of
both model selection and prediction accuracy. Since the strong
heredity methods make an incorrect model structure assumption,
they suffer by missing some important interactions. For exam-
ple, if σ = 2, iFORM-w is the only method showing a high
exact selection probability (91%) for important interactions.

Finally, we illustrate the quality of the solution path by the
hit-rate plot. In each plot, the x-axis denotes the solution path
steps {1, 2, . . . , S}, and the y-axis represents the “hit rate” which
is defined as the percentage of important terms recovered up to
step s. Denote the true model size by d0. The ideal hit plot (given
by ORACL) should show a linearly increasing trend with slope
1/d0 within the first d0 steps and then stays at 1 afterward. For the
graph clarity, we only draw the hit rates for the strong heredity
methods. Figure 1 plots the hit-rates for Examples 1 and 2
with the moderate p = 500. Here d0 = 8, so we choose S = 20.
Based on Figure 1, the iFORM has the highest hit rate among all,
very close to the oracle. For σ = 2 and 3, its hit rate is more than
95% after 20 steps; for the more difficult case σ = 4, iFORM
still achieves approximately 90% hit rate. The iFORT is slightly
worse than iFORM, with rates 90%, 80%, 70%, respectively,
for σ = 2, 3, 4. The FS2 has the lowest hit rate, only 20% when
σ = 4. Figure 2 plots the hit rates for the large p. Since d0 = 20,

we choose S = 40. The FS2 is not shown in Figure 2, because
it fails to run. Again, iFORM has the highest hit rate among all
(except the oracle). The iFORT is slightly worse, about 80% hit
rate in most cases.

Table 7 summarizes the average computation time (seconds
per run) for each procedure. The machine we used equips Intel
Core (TM) i7-2600 CPU @ 3.40GHZ with 4.00 GB ram. Since
the time difference is small for varying σ , we only present
the results for σ = 2. When p is moderately large, the FS2
is slowest, taking 16.40 sec in average for Example 1. The
iFORT and iFORM are the fastest, taking 0.04 and 0.08 sec in
Example 1, which is more than 100 times faster than FS2. The
weak heredity methods are slower than their strong heredity
counterparts. When p is large, the FS2 fails to run, while the
iFOR procedures are still amazingly fast. When p = 5000, it
takes 11.39 (and 16.06) sec for iFORT (and iFORM). When
p = 10,000, it takes 22.13 (and 29.17) sec for iFORT (and
iFORM). The weak heredity methods now take significantly
more time. Overall, the iFORM appears the most promising in
terms of both performance and speed.

6. REAL DATA ANALYSIS

We analyze two real datasets, the inbred mouse microarray
gene expression dataset (Lan et al. 2006) and the supermarket
data (Wang 2009). The inbred mouse microarray dataset con-
tains 60 mouse arrays, with 31 from female mice and 29 from
male mice, respectively. Each array measures the expression val-
ues of 22,690 genes. The response is a continuous phenotypic
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Figure 1. The hit-rate plots for the moderate p for ORACL, iFORM, iFORT, and FS2.

variable measured by real-time RT-PCR, stearoyl-CoA desat-
urase 1 (SCD1). The supermarket dataset collects daily sale
information of a major supermarket located in northern China,
with n = 464 and p = 6398. The response Y is the number of
customers per day, and the predictors X are sale volumes of
various products. The supermarket manager is interested in the
relationship between the number of customers and the sale vol-
ume of certain products. For convenience, the response and all
predictors are centered to zero and standardized to have a unit
variance prior to the analysis.

The proposed methods are applied to both datasets. To as-
sess the prediction performance of the procedures, we randomly
sample n1 observations to form the training set, and use the re-
maining n − n1 observations as the test data to compute the
out-of-sample R2 for the final model. We use n1 = 50 in the
inbred mouse data analysis and use n1 = 400 for the supermar-
ket data analysis. The results are summarized in Table 8. It is
observed that the iFOR methods give similar performance for
both datasets.

7. DISCUSSION

In this article, we tackle the important problem of interac-
tion selection for ultrahigh-dimensional data. The task is both
computationally and theoretically challenging. We propose a
new class of procedures, called iFOR, and study their numerical
and theoretical properties. One major advantage of the proposed
methods is their computation feasibility. The code is simple and
fast. Theoretically we show that the iFOR can discover all rel-
evant interactions consistently, even if the dimension increases
exponentially fast with the sample size. Our numerical examples
suggest that the new methods, especially iFORM, give promis-
ing performance for ultrahigh-dimensional data.

We use the extended BIC (Chen and Chen 2008) to select
a final model from the solution path in this work. Since the
motivation of the extended BIC is to control FDR, it tends to
be conservative in real-data analysis. It would be interesting
to study the performance of other selection criteria such as
AIC and cross-validation for iFOR methods in the future. Other

Table 7. Average computation time (in seconds) for σ = 2

Example n p (p0, q0) FS2 iFORT iFORT-w iFORM iFORM-w

1 100 500 (4, 4) 16.40 0.04 0.36 0.09 0.51
2 100 500 (4, 4) 16.29 0.04 0.34 0.08 0.50
3 400 5000 (10, 10) – 11.39 80.66 16.06 126.21
4 400 10,000 (10, 10) – 22.13 144.29 29.17 209.65
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Figure 2. The hit-rate plots for large p for ORACL, iFORM, iFORT, and FS2.

works of interest include the generalization of the iFOR to other
loss functions in GLM or nonparametric regression, and how
to improve computational efficiency of penalized methods with
the iFOR ideas.

In practice, higher-order interactions are useful to uncover
multiway relationships among predictors for complex problems
where two-way interactions are not sufficient. The proposed
methods can be readily extended to selecting higher-order in-
teractions, by including higher-order products of predictors in
the candidate set. No essential change is needed in the compu-
tational algorithm, except that the enlarged candidate set will
demand extra time. When considering higher order interaction
models, one should tune the model properly to avoid the over-
fitting. The interpretation of higher order interactions should be
cautious as well. The topic is worth a full investigation.

Table 8. Prediction performance: The average out-of-sample R2 for
iFOR methods

Dataset iFORT iFORT-w iFORM iFORM-w

Inbred mouse
data

60.73 (1.15) 58.46 (1.37) 60.22 (1.15) 60.31 (1.28)

Supermarket
data

88.91 (0.17) 88.42 (0.19) 88.66 (0.18) 86.61 (0.22)

APPENDIX A: TOTAL COVARIANCE MATRIX

In this section, we work on the total covariance matrix � and show
it is determined by the covariance matrix �(1) of main effects under the
Gaussian assumption (C1).

Let us temporarily ignore the index labeling the order of observa-
tions, and denote by Xj for 1 ≤ j ≤ p the main effects and Zjk =
XjXk − E(XjXk) for (j, k) ∈ P2 the interactions. Let �(1) = (σij ) de-
note covariance matrix of the main effects X1, . . . , Xp . The first two
lemmas help us to characterize the total covariance matrix �.

Lemma A.1. Under the normality condition (C1), for ∀j , k, �,
cov(Xj , Zk�) = 0, which implies

� =
(

�(1) 0
0 �(2)

)
.

Proof. cov(Xj , Zk�) = cov(Xj , XkX�) = E(XjXkX�) − E(Xj )E
(XkX�) = 0. The conclusion still holds if the joint density of X1, . . .,
Xp is symmetric with respect to the original point 0. �

Lemma A.2. Under the normality condition (C1),

cov(Zij , Zk�) = cov(XiXj , XkX�) = σikσj� + σi�σjk. (A.1)
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Proof. This lemma follows directly from the following useful for-
mula (Bar and Dittrich 1971):

E(XiXjXkX�) = E(XiXj )E(XkX�) + E(XiXk)E(XjX�)
+ E(XiX�)E(XjXk) − 2E(Xi)E(Xj )E(Xk)E(X�).

�
Let A = (Aij ) be an N × N matrix. In linear algebra, a K × K

submatrix is called a principal submatrix if it is of the form AI =
(A�i�j

), where I is an index set I = {1 ≤ �1 < · · · < �K ≤ N}. Here
with slight abuse of this conception, we allow arbitrary order for the
index set I. For example, let I = {2, 1} and

AI =
(

A22 A21
A12 A11

)
is still called a principal submatrix in this article.

Based on the formula (A.1), we can decompose �(2) to a sum �
(2)
1 +

�
(2)
2 . In fact, we have

Lemma A.3. Both �
(2)
1 and �

(2)
2 are principal submatrices of �(1) ⊗

�(1).

Proof. The Kronecker product (Laub 2005) �(1) ⊗ �(1) is a p2 × p2

matrix whose rows and columns are both indexed by the set P1 × P1.
The entry corresponding to the index (ij, k�) is σijσk�. By formula
(A.1), both �

(2)
1 and �

(2)
2 are p(p+1)

2 × p(p+1)
2 principal submatrices of

�(1) ⊗ �(1). �
Lemma A.4. Under the conditions (C1) and (C2a), we have

2τmin < λmin(�) ≤ λmax(�) < τmax/2. (A.2)

Proof. By Laub (2005) Theorem 13.12, the eigenvalues of �(1) ⊗
�(1) are λiλj , 1 ≤ i, j ≤ p, if the eigenvalues of �(1) are λ1, . . . , λp .
Therefore, under condition (C2a), we have

τmin < λmin(�(1) ⊗ �(1)) ≤ λmax(�(1) ⊗ �(1)) < τmax/4.

By Lemma A.3, the eigenvalues of �
(2)
1 and �

(2)
2 are also bounded by

τmin and τmax/4, so

2τmin < λmin(�(2)) ≤ λmax(�(2)) < τmax/2.

It is straightforward to get (A.2). �

APPENDIX B. A BERNSTEIN INEQUALITY
AND ITS APPLICATION

In this section, we study a Bernstein-type inequality and its applica-
tions in bounding the eigenvalues of submatrices of sample covariance
matrix �̂, which is crucial in the proofs of theorems. For any index set
M, �̂M denotes the principal submatrix corresponding to M.

Lemma B.1. Let W1, . . . ,Wn be independent random variables with
mean zero and variances bounded by σ 2 ≥ 1. Assume for some 0 <

α < 1,

E
(|Wi |3(1−α)et |Wi |α ) ≤ A, for all 1 ≤ i ≤ n, 0 ≤ t ≤ T .

(B.1)

Then for x > ( 2A

T 2 )
1

1−α ,

P

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ ≥ x

)

≤ 2 exp
{
− x2

2(nσ 2 + x2−α/T )

}
+

n∑
i=1

P(|Wi | ≥ x). (B.2)

Proof. Let W ∗
i = Wi · I(−∞,x](Wi). Then

P

(
n∑

i=1

Wi ≥ x

)
≤ P

(
n∑

i=1

W ∗
i ≥ x

)
+

n∑
i=1

P(Wi ≥ x). (B.3)

For W ∗
i ≥ 0, we have

etW∗
i ≤ 1 + tW ∗

i + t2

2
W ∗2

i +
∞∑

k=3

t k

k!
|Wi |kα+3(1−α)x(k−3)(1−α). (B.4)

Note that (B.4) is true also for W ∗
i < 0 because of the monotonicity of

function f (u) = eu − 1 − u − u2/2. �
It is easy to get E|Wi |kα+3(1−α) ≤ k!A

T k from (B.1). Moreover, we
have E(W ∗

i ) ≤ 0, var(W ∗
i ) ≤ σ 2 from definition. Taking expectation of

(B.4),

E(etW∗
i ) ≤ 1 + t2σ 2

2
+

∞∑
k=3

2A

T 2x1−α

1
2

(
x1−α

T

)k−2

t k

≤ 1 + t2σ 2

2
+ t2

2

∞∑
k=3

(
tx1−α

T

)k−2

≤ 1 + t2σ 2

2(1 − tx1−α/T )
, (B.5)

when |tx1−α/T | < 1.
Let t = x

nσ 2+x2−α/T
. By Markov inequality

P

(
n∑

i=1

W ∗
i ≥ x

)
≤ e−txE(et

∑n
i=1 W∗

i )

≤ e−tx

n∏
i=1

E(etW∗
i )

≤ e−tx

(
1 + t2σ 2

2(1 − tx1−α/T )

)n

≤ exp
{
− x2

nσ 2 + x2−α/T

}
×
(

1 + 1
2n

x2

nσ 2 + x2−α/T )

)n

≤ exp
{
− x2

2(nσ 2 + x2−α/T )

}
.

Therefore,

P

(
n∑

i=1

Wi ≥ x

)
≤ exp

{
− x2

2(nσ 2 + x2−α/T )

}
+

n∑
i=1

P(Wi ≥ x).

Apply the same technique to −W ∗
i and combine the results, we can get

(B.2).
The following is the Lemma 1 in Wang (2009), which is useful in

the proof of Theorem 1.

Lemma B.2. Under condition (C1) and (C2), for m = o(n 1
3 − 1

3 ξ ),
M ⊂ P1,

P
(

τmin ≤ min
|M|≤m

λmin(�̂M) ≤ max
|M|≤m

λmax(�̂M) ≤ τmax

)
→ 1. (B.6)

Furthermore, under condition (C4), (B.6) holds for m =
O(n2ξ0+4ξmin ) = o(n 1

3 − 1
3 ξ ).

Lemma B.3. Let W1, . . . , Wn be independent random variables with
zero mean such that E(eT0|Wi |α ) ≤ A0 for constants T0 > 0, A0 > 0, and
0 < α < 1. Then, for a sequence an → ∞ with an = o(n

α
2(2−α) ), there

exist constants c1, c2, such that

P
(|W1 + · · · + Wn| >

√
nan

) ≤ c1 exp
(−c2a

2
n

)
. (B.7)
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Proof. The condition E(eT0|Wi |α ) ≤ A0 implies var(Wi) ≤ σ 2,
E(|Wi |2eT |Wi |α ) ≤ A and E(|Wi |3(1−α)eT |Wi |α ) ≤ A for some constants
σ 2, T and A. By Lemma B.1, we have

P

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ ≥ x

)
≤ 2 exp

{
− x2

2(nσ 2 + x2−α/T )

}
+

n∑
i=1

P(|Wi | ≥ x).

Let x = √
nan. Then

exp
{
− x2

2(nσ 2 + x2−α/T )

}
= exp

{
− na2

n

2(nσ 2 + n
2−α

2 a2−α
n /T )

}

= exp
{
− a2

n

2σ 2 + o(1)

}
.

On the other hand, by Markov inequality

P(|Wi | ≥ x) = P
(
W 2

i eT |Wi |α ≤ x2eT xα ) ≤ Ax−2 exp{−T xα}
≤ A

na2
n

exp
{ − T a2

n/o(1)
}
.

Hence,
∑n

i=1 P(|Wi | ≥ x) ≤ A

a2
n

exp{−T a2
n/o(1)}. And (B.7) is easily

obtained. �

Remark B.1. We are interested in the case that Wi = XijXikXi�,
where Xij , Xik , Xi� are joint normal and marginally standard normal.
It is easy to see that Wi satisfies E(e 1

4 |Wi |
2
3 ) ≤ √

2 and var(Wi) ≤ 30.
Therefore, (B.7) holds for c1 = 3, c2 = 1/61 when n is sufficiently
large.

To show Theorem 2, we have to obtain an analog of Lemma B.2 for
arbitrary submodel M. We start from a generalization of Lemma A3
in Bickel and Levina (2008).

Lemma B.4. Let W1, . . . , Wn be independent random variables with
zero mean such that E(eT0|Wi |α ) ≤ A0 for constants T0 > 0, A0 > 0, and
0 < α ≤ 1. Then there exist constants c3, c4, for 0 < ε ≤ 1

P (|W1 + · · · + Wn| > nε) ≤ c3 exp(−c4n
αε2). (B.8)

Proof. The condition E(eT0|Wi |α ) ≤ A0 implies var(Wi) ≤ σ 2,
E(|Wi |2eT |Wi |α ) ≤ A and E(|Wi |3(1−α)eT |Wi |α ) ≤ A for some constants
σ 2, T and A. When α < 1, by Lemma B.1,

P

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ ≥ x

)
≤ 2 exp

{
− x2

2(nσ 2 + x2−α/T )

}
+

n∑
i=1

P(|Wi | ≥ x).

Let x = nε. Then

exp
{
− x2

2(nσ 2 + x2−α/T )

}
= exp

{
− n2ε2

2(nσ 2 + n2−αε2−α/T )

}
= exp

{
− nαε2

2nα−1σ 2 + 2ε2−α/T

}
≤ exp

{
− nαε2

o(1) + 2/T

}
.

On the other hand, by Markov inequality

P(|Wi | ≥ x) = P
(
W 2

i eT |Wi |α ≤ x2eT xα ) ≤ Ax−2 exp{−T xα}
≤ A

n2ε2 exp{−T nαεα}.

Hence,
∑n

i=1 P(|Wi | ≥ x) ≤ A

nε2 exp{− 1
2 T nαεα} exp{− 1

2 T nαεα} ≤
o(1) exp{− 1

2 T nαε2}. And (B.8) is easily obtained. �

When α = 1, E(eT0|Wi |) ≤ A0 implies
∑∞

k=0
1
k! T

k
0 E(|Wi |k) ≤ A0. So

E(|Wi |k) ≤ 1
2 k!( 1

T0
)k−2 2A0

T 2
0

for k ≥ 2. By Bernstein’s inequality, Lemma

2.2.11 in van der Vaart and Wellner (1996), we have

P

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ ≥ nε

)
≤ 2 exp

{
− n2ε2

2(2nA0/T 2
0 + nε/T0)

}
≤ 2 exp

{
− nε2

4A0/T 2
0 + 2/T0

}
.

LemmaB.5. Under condition (C1) and (C2), for 0 < ε < 1, we have

P

(∣∣∣∣∣
n∑

s=1

(XsiXsj − σij )

∣∣∣∣∣ ≥ nε

)
≤ C1 exp(−C2nε2)

P

(∣∣∣∣∣
n∑

s=1

(XsiXsjXsk − 0)

∣∣∣∣∣ ≥ nε

)
≤ C3 exp(−C4n

2
3 ε2)

P

(∣∣∣∣∣
n∑

s=1

(XsiXsjXskXs� − σijσk� − σikσj� − σi�σjk)

∣∣∣∣∣ ≥ nε

)
≤ C5 exp(−C6n

1
2 ε2), (B.9)

where C1, . . . , C6 are constants.

Proof. We show the last inequality here. The first two are similar.
Let Ws = XsiXsjXskXs� − σijσk� − σikσj� − σi�σjk .

E
(

e
1
4 |Ws |

1
2
)

= E
(

e
1
4 |XsiXsj XskXs�−σij σk�−σikσj�−σi�σjk | 1

2
)

≤ E
(

e
1
4 |XsiXsj XskXs�|

1
2 + 1

4 |σij σk�+σikσj�+σi�σjk | 1
2
)

≤ e

√
3

4 E
(

e
1
4 |XsiXsj XskXs�|

1
2
)

≤ e

√
3

4 E

(
e

1
4

X2
si

+X2
sj

+X2
sk

+X2
s�

4

)

≤ e

√
3

4 E
([

e
X2

si
4 + e

X2
sj
4 + e

X2
sk
4 + e

X2
s�
4

]/
4
)

=
√

2e

√
3

4 .

The inequality follows directly from the last lemma. �

Lemma B.6. Under conditions (C1) and (C2a), for m = o(n 1
6 − 1

3 ξ ),

P
(

τmin ≤ min
|M|≤m

λmin(�̂M) ≤ max
|M|≤m

λmax(�̂M) ≤ τmax

)
→ 1. (B.12)

Furthermore, under condition (C4), (B.12) holds for m =
O(n2ξ0+4ξmin ) = o(n 1

6 − 1
3 ξ ).

Proof. The proof is similar to Lemma 1 in Wang (2009), where
the inequality (B.9) plays a crucial role. The inequality (B.9) implies
P(|�̂(1)

ij − �
(1)
ij | > ε) ≤ C1 exp(−C2nε2) for ∀1 ≤ i, j ≤ p. Since the

distribution of interactions have heavier tails, we have

P
(|�̂κγ − �κγ | > ε

) ≤ C7 exp(−C8n
1
2 ε2), (B.13)
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for ∀κ, γ ∈ P1 ∪ P2. For example, if κ = (i, j ), γ = (k, �) ∈ P2,

|�̂κγ − �κγ |

=
∣∣∣∣ 1
n

n∑
s=1

(XsiXsj − �̂ij )(XskXs� − �̂k�) − (σikσj� + σi�σjk)
∣∣∣∣

=
∣∣∣∣ 1
n

n∑
s=1

XsiXsjXskXs� − �̂
(1)
ij �̂

(1)
k� − (σikσj� + σi�σjk)

∣∣∣∣
≤
∣∣∣∣ 1
n

n∑
s=1

XsiXsjXskXs� − (σijσk� + σikσj� + σi�σjk)
∣∣∣∣

+∣∣�̂(1)
ij �̂

(1)
k� − σijσk�

∣∣
≤
∣∣∣∣ 1
n

n∑
s=1

XsiXsjXskXs� − (σijσk� + σikσj� + σi�σjk)
∣∣∣∣

+∣∣�̂(1)
ij (�̂(1)

k� − σk�)| + |(�̂(1)
ij − σij )σk�

∣∣
≤
∣∣∣∣ 1
n

n∑
s=1

XsiXsjXskXs� − (σijσk� + σikσj� + σi�σjk)| + |�̂(1)
k� − σk�

∣∣∣∣
+∣∣�̂(1)

ij − σij

∣∣
Therefore,

P
(|�̂κγ − �κγ | > ε

)
≤ P

(∣∣∣∣ 1
n

n∑
s=1

XsiXsjXskXs� − (σijσk� + σikσj� + σi�σjk)
∣∣∣∣ >

ε

3

)
+ P

(
|�̂(1)

k� − σk�| >
ε

3

)
+ P

(
|�̂(1)

ij − σij | >
ε

3

)
≤ C5 exp(−C6n

1
2 (ε/3)2) + 2C1 exp(−C2n(ε/3)2)

≤ C7 exp(−C8n
1
2 ε2). �

Let v = (v1, . . . , vp, v11, . . . , vpp)� be a p + p(p + 1)/2 dimen-
sional vector and vM be the subvector corresponding to index set
M ⊂ P1 ∪ P2 = F . Recall �M is the principle submatrix correspond-
ing to M. By Lemma 4, we have

2τmin < min
M⊂F

inf
||vM||=1

v�
M�MvM ≤ max

M⊂F
sup

||vM||=1
v�
M�MvM < τmax/2.

To show (B.12), it suffices to show

P

(
max

|M|≤m
sup

||vM||=1
|v�

M(�̂M − �M)vM| > ε

)
→ 0, (B.14)

for arbitrarily small positive number ε. The left-hand side of (B.14) is
bounded by ∑

|M|≤m

∑
κ,γ∈F

P
(∣∣�̂κγ − �κγ

∣∣ >
ε

m

)
. (B.15)

Note that the number of possible models with sizes smaller than m is
less than (p + p(p + 1)/2)m ≤ p2m when p ≥ 3. Applying (B.13), we
can bound (B.15) further

(B.15) ≤ p2m(p2)2C7 exp(−C8n
1
2 ε2/m2) (B.16)

= C7 exp((2m + 4) log p − C8n
1
2 ε2/m2) (B.17)

≤ C7 exp
(

2mνnξ

(
1 − 1

2
C8ν

−1ε2n
1
2 −ξm−3

))
, (B.18)

which converges to zero when n → ∞ and m = o(n 1
6 − 1

3 ξ ).

Remark B.2. Beyond normality. Lemmas B.2, B.3, B.6 play im-
portant roles in the proofs of Theorems 1 and 2. A key assumption is
E(eT0|Wi |α ) ≤ A0 where Wi is (higher) product of predictors. It is easy to
see that the condition still holds, using the argument of Lemma B.5, if
the marginal distributions of X is sub-Gaussian. In particular, Theorem
1 is still true if condition (C1′) holds and Theorem 3.2 is still true if

(C1′ ′) holds and the total covariance matrix � has bounded eigenvalues
asymptotically.

APPENDIX C: PROOFS OF THEOREM 1 AND 2

With slight abuse of notations, we denote byX the total design matrix
including main and interaction effects. For any index setM ⊂ F ,X(M)
is the submatrix of X whose columns correspond to M; β (M) is the
subvector of β corresponding to M. If M = {j}, we simply use Xj

and βj .
We first overview the general strategy (in the context of FS2) and

then give proofs for theorems. The goal is to show that all important
predictors in the candidate pool are selected within a number of steps,
for FS2 and the first stage of iFORT. By the nature of FS, the predictors
are selected sequentially, one at each step. Therefore, we divide the
whole procedure into a sequence of stages, each of which consists of
several steps, starting immediately after one important term is selected
and ending when the next predictor is identified. If we can show that
the length of each stage is less than some integer L, then after d0L

steps, all important predictors would have been selected.
Assume that stage T is the earliest stage among all that lasts longer

than L steps, and T < d0. Working within stage T , we omit the stage-
label T , and denote by St the index set of all selected predictors up to
step t of stage T . Define

�(t) = RSS(St ) − RSS(St+1),

where RSS(St ) is the residual sum of squares of Y regressed on the
predictor space spanned by St . A key step is to show that

n−1�(t) ≥ 2L−1(1 − o(1)) for all 1 ≤ t ≤ L. (C.1)

Therefore, we have n−1||Y||2 ≥ ∑L

t=1 n−1�(t) ≥ 2(1 − o(1)) → 2,
which contradicts with the fact var(Y ) = 1. Then we can conclude
that every stage contains less than L steps.

The inequalities of type (C.1) are obtained in the following proofs,
which lead to Theorems 1 and 2. We illustrate Theorem 3.2 first,
because it is technically more straightforward.

Proof of Theorem 3.2. Given the regularity conditions and Lemma
B.6, the proof of Theorem 2 is similar to that of Theorem 1 in
Wang (2009). Let K = 2τmaxνC2

βτ−1
minν

−4
β and L = Knξ0+4ξmin . Note

that |St | < d0L ≤ Kνn2ξ0+4ξmin , so the eigenvalues of �M can be con-
trolled by Lemma B.6. Following (B.1) and (B.2) in Wang (2009), we
have

�(t)
1
2 ≥ max

j∈T

∣∣∣∣H(t)
j Q(St )X(T )β (T )

∣∣∣∣ − max
j∈T

∣∣∣∣H(t)
j Q(St )ε

∣∣∣∣, (C.2)

where Q(St ) = In − H(St ) = In − X(St )(X�
(St )X(St ))−1X�

(St ), H(t)
j =

X(t)
j X(t)�

j ||X(t)
j ||−2 and X(t)

j = (In − H(St ))Xj .
Following the procedure leading to (B.7) in Wang (2009), we have,

with probability tending to 1,

max
j∈T

∣∣∣∣H(t)
j Q(St )X(T )β (T )

∣∣∣∣2 ≥ τ−1
maxν

−1C−2
β τ 2

minν
4
βn1−ξ0−4ξmin . (C.3)

Similar to (B.8) in Wang (2009),

max
j∈T

∣∣∣∣H(t)
j Q(St )ε

∣∣∣∣2 ≤ τ−1
minn

−1 max
j∈T

max
|M|≤m∗(X

�
j Q(M)ε)2, (C.4)

where m∗ ≤ T L ≤ d0L. Given X, X�
j Q(M)ε is a normal random vari-

able with mean 0 and variance ||Q(M)Xj ||2 ≤ ||Xj ||2. So (C.4) is further
bounded by

≤ τ−1
minn

−1 max
j∈T

||Xj ||2 max
j∈T

max
|M|≤m∗ χ 2

1 ,

where χ 2
1 represents a chi-square random variable with one degree of

freedom. By Lemma B.6, n−1 maxj∈T ||Xj ||2 ≤ τmax with probability

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f A

riz
on

a]
 a

t 1
1:

31
 0

2 
O

ct
ob

er
 2

01
4 



1300 Journal of the American Statistical Association, September 2014

tending to 1. Moreover, the total number of combinations for j ∈ T
and |M| ≤ m∗ is no more than (p2)m∗+2 = p2m∗+4. Therefore,

max
j∈T

max
|M|≤m∗ χ 2

1 ≤ 2(2m∗ + 4) log p

≤ 5d0Lνnξ

≤ 5Kν2nξ+2ξ0+4ξmin

with probability tending to 1. Finally, we have

n−1�(t) ≥ n−1
((

τ−1
maxν

−1C−2
β τ 2

minν
4
βn1−ξ0−4ξmin

) 1
2

− (
τ−1

minτmax5Kν2nξ+2ξ0+4ξmin
) 1

2
)2

≥ τ−1
maxν

−1C−2
β τ 2

minν
4
βn−ξ0−4ξmin

× Big(1 − 2
(
τ 2

maxν
3C2

βτ−3
minν

−4
β 5Knξ+3ξ0+8ξmin−1) 1

2
)

= 2L−1(1 − o(1)).

Proof of Theorem 3.1. Because we concentrate on only main effects
in the first stage of iFORT, similar to (C.2), we have

�(t)
1
2 ≥ max

j∈T1

∣∣|H(t)
j Q(St )X(T1)β (T1)

∣∣| − max
j∈T1

∣∣|H(t)
j Q(St )(X(T2)β (T2) + ε)

∣∣|.
(C.5)

The first term on the right-hand side can be bounded as

max
j∈T1

∣∣∣∣H(t)
j Q(St )X(T1)β (T1)

∣∣∣∣2 ≥ τ−1
maxν

−1C−2
β τ 2

minν
4
βn1−ξ0−4ξmin . (C.6)

Similar to (C.4),

max
j∈T1

∣∣|H(t)
j Q(St )(X(T2)β (T2) + ε)

∣∣|2
≤ τ−1

minn
−1 max

j∈T1
max

|M|≤m∗

(
X�

j Q(M)(X(T2)β (T2) + ε)
)2

≤ 3τ−1
minn

−1 max
j∈T1

max
|M|≤m∗

((
X�

j X(T2)β (T2)
)2 + (

X�
j H(M)X(T2)β (T2)

)2

+ (X�
j Q(M)ε)2) , (C.7)

where m∗ ≤ T L ≤ p0L.
For the first term in (C.7),

(
X�

j X(T2)β (T2)
)2 =

(∑
κ∈T2

X�
j Xκβ (κ)

)2

≤ q0

(
max
κ∈T2

|X�
j Xκ |

)2

||βT2 ||2.

Therefore,

3τ−1
minn

−1 max
j∈T1

max
|M|≤m∗

(
X�

j X(T2)β (T2)
)2

≤ 3τ−1
minn

−1q0Cβ max
j∈T1

max
κ∈T2

(
X�

j Xκ

)2
. (C.8)

By Lemma B.3, Remark 1 and Bonferroni inequality,

P
(

max
j∈T1

max
κ∈T2

(
X�

j Xκ

)
>

√
n20

√
log n

)
≤ p0q03 exp(−400 log n/61)

≤ exp(2 log ν + 2ξ0 log n − 2 log n) → 0.

Thus (C.8) can be bounded by 1200τ−1
minCβνnξ0 log n with probability

tending to 1.
For the second term,(

X�
j H(M)X(T2)β (T2)

)2

=
(∑

κ∈T2

X�
j X(M)(X�(

M)
X(M)

)−1
X�

(M)Xκβ (κ)

)2

≤ q0

(
max
κ∈T2

X�
j X(M)

(
X�

(M)X(M)
)−1

X�
(M)Xκ

)2

||βT2 ||2.

Therefore,

3τ−1
minn

−1 max
j∈T1

max
|M|≤m∗

(
X�

j H(M)X(T2)β (T2)
)2

≤ 3τ−1
minn

−1q0Cβ max
j∈T1

max
|M|≤m∗ max

κ∈T2

(
X�

j X(M)(X�
(M)X(M))−1X�

(M)Xκ

)2

≤ 3τ−1
minn

−1q0Cβ max
j∈T1

max
|M|≤m∗ max

κ∈T2

(∣∣∣∣X�
j X(M)(X�

(M)X(M))−1∣∣∣∣
∞m∗

× max
�∈M

|X�
� Xκ |

)2

≤ 3τ−1
minn

−1q0Cβm∗2 max
j∈T1

max
|M|≤m∗

∣∣∣∣X�
j X(M)(X�

(M)X(M))−1∣∣∣∣2
∞ max

κ∈T2

× max
�∈P1

(
X�

� Xκ

)2
, (C.9)

where || · ||∞ denote the vectorized infinity norm. By Lemma B.2,

∣∣∣∣X�
j X(M)

(
X�

(M)X(M)
)−1∣∣∣∣

∞ ≤
∥∥∥∥∥X�

j X(M)

n

∥∥∥∥∥
2

∥∥∥∥∥∥
(
X�

(M)X(M)

n

)−1
∥∥∥∥∥∥

2

≤ τmaxτ
−1
min,

with probability tending to one. By Lemma B.3,

P
(

max
κ∈T2

max
�∈P1

(
X�

� Xκ

)
>

√
n
√

100νnξ

)
≤ pq03 exp

(
−200νnξ

61

)
≤ 3 exp

(
νnξ + log ν + ξ0 log n − 100

61
νnξ

)
→ 0.

Thus, with probability tending to 1, (C.9) is further bounded by

300τ 2
maxτ

−3
minCβm∗2ν2nξ0+ξ ≤ 300τ 2

maxτ
−3
minCβν4K2n5ξ0+8ξmin+ξ . (C.10)

Following the same steps after (C.4), the third term in (C.7) can be
controlled by,

15τ−1
minτmaxKν2nξ+2ξ0+4ξmin . (C.11)

Finally, combining all results, we have

�(t)
1
2 ≥ (τ−1

maxν
−1C−2

β τ 2
minν

4
βn1−ξ0−4ξmin )

1
2 − (1200τ−1

minCβνnξ0 log n

+ 300τ 2
maxτ

−3
minCβν4K2n5ξ0+8ξmin+ξ

+15τ−1
minτmaxKν2nξ+2ξ0+4ξmin )

1
2

≥ n
1
2 (τ−1

maxν
−1C−2

β τ 2
minν

4
βn−ξ0−4ξmin )

1
2 × (1 − A1 − A2 − A3)

1
2 ,

where A1 = 1200τ−3
minτmaxC

3
βν2ν−4

β n2ξ0+4ξmin−1 log n, A2 = 300τ 3
maxτ

−5
min

C3
βν−4

β ν5K2n6ξ0+12ξmin+ξ−1, A3 = 15τ−3
minτ

2
maxKν3C2

βν−4
β nξ+3ξ0+8ξmin−1.

Therefore,

n−1�(t) ≥ 2L−1(1 − o(1)).

SUPPLEMENTARY MATERIALS

Additional numerical experiments (Examples 7–9) to illus-
trate performance of the iFOR methods for interaction selection
under various settings.

[Received June 2012. Revised October 2013.]
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