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Abstract—Ubiquitous sensing from wearable devices in
the wild holds promise for enhancing human well-being,
from diagnosing clinical conditions and measuring stress
to building adaptive health promoting scaffolds. But the
large volumes of data therein across heterogeneous con-
texts pose challenges for conventional supervised learning
approaches. Representation Learning from biological sig-
nals is an emerging realm catalyzed by the recent advances
in computational modeling and the abundance of publicly
shared databases. The electrocardiogram (ECG) is the pri-
mary researched modality in this context, with applications
in health monitoring, stress and affect estimation. Yet, most
studies are limited by small-scale controlled data collection
and over-parameterized architecture choices. We introduce
WIIdECG, a pre-trained state-space model for representa-
tion learning from ECG signals. We train this model in a
self-supervised manner with 275000 10 s ECG recordings
collected in the wild and evaluate it on a range of down-
stream tasks. The proposed model is a robust backbone for
ECG analysis, providing competitive performance on most
of the tasks considered, while demonstrating efficacy in
low-resource regimes.

Index Terms—Electrocardiography, ubiquitous comput-
ing, self-supervised learning, state-space models.

I. INTRODUCTION

RTIFICTAL Intelligence (AI) has made significant inroads
into human-centered signal modeling, notably in the fields
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Fig. 1. Our proposed model extracts vector representations from input,
single-lead ECG signals, and can be used both as a backbone encoder
and feature extractor across multiple different sensing tasks.

of behavioral analysis [1] and health [2]. This progress benefits
primarily from the algorithmic development of deep learning
models and the substantial effort in curating publicly-shared
datasets [3]. The rapid advances of deep learning in various
application domains, such as computer vision (CV), speech,
and natural language processing (NLP) are critically dependent
on the availability of large datasets, allowing for designing and
training large-scale neural networks. Within the medical domain
of biosignal analysis, supervised learning algorithms have been
employed to improve diagnostic performance and accelerate
biomarker detection in many areas, including dermatology [4],
ophthalmology [5], as well as in psychology, physical health and
well-being [6], [7].

Driven by successful applications in multiple fields within
health and well-being, Al technologies are increasingly de-
manded in ubiquitous modeling of human states in everyday
settings. Studies have been employing either mobile phones
and questionnaires [8], [9] or wearable sensors paired with
phones [10], [11], [12] to track human states including stress [8],
depression [9] and physical activity [10]. Of particular interest
is the assessment of workplace stress and behavior patterns [13].
However, a significant portion of research has focused on
modeling physiological responses to external stimuli in con-
strained interaction environments. These approaches typically
consider signals derived from cardiac activity, respiration pat-
terns, body temperature, electrodermal activity and even neural
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(brain) activity [14]. Cardiac activity, particularly the electro-
cardiogram (ECG), has been a prominent modality choice due
to its well-recognized signal patterns and clinically-validated
significance [15], [16]. While it requires low-cost recording
equipment, ECG offers enormous diagnostic potential and hence
has been densely researched, notably through the creation of
shared databases and data-driven modeling approaches.

However, the transition from monitoring in clinical settings to
sensing in the wild introduces novel challenges toward compre-
hending cardiac activity across diverse living contexts. Unlike
text or image domains where abundant large datasets have
enabled large (foundation) self-supervised models [17], the state
of the art in biosignal models lags behind. One practical issue
related to data acquisition is the need for long-term recording
capabilities and the resulting cost of obtaining and monitoring
an ambulatory data collection [18]. This has challenged the
creation of datasets with high-quality recordings from a large
number of participants and diverse backgrounds. Furthermore,
the intricacy of extracting meaningful insights from vast and
heterogeneous ECG recordings demands methods that can learn
and infer from these data in self-supervised ways. Such methods
are also motivated by the need to address inherent biases and
subject heterogeneity in bio-behavioral responses that hinder
model performance and reliability. Another critical challenge
is engineering models that can adeptly capture the structure and
temporal dependencies of ECG activity without the need of scal-
ing to large and over-parameterized models [19]. Such models
increase the risk of overfitting and are not practical for mobile
deployment. This involves striking a delicate balance between
model complexity and efficiency. Given the multifaceted nature
of these challenges, there is an imminent need for developing
methodologies toward practical, robust, and reliable solutions to
perform ubiquitous ECG analysis.

[I. CONTRIBUTIONS

This study addresses those challenges by proposing a frame-
work to pre-train a model on large-scale public data to ex-
tract general-purpose vector representations for the ECG signal
(Fig. 1). Our contributions can be summarized as follows:

® QOur model, called WildECG, is trained on TILES [20],
one of the largest publicly available biosignal data collec-
tions recorded in the wild, manifesting a wide range of
variability and subject heterogeneity.

® To minimize the impact of noisy and biased data annota-
tions, WildECG is trained in a self-supervised manner to
identify distortions automatically induced on ECG sam-
ples at training time. This enables us to test performance
on a variety of downstream tasks related to ECG.

® Our model incorporates a lightweight architecture based
on state-space models that are efficient in modeling se-
quences with long temporal dependencies. By using a
small number of parameters, WildECG further reduces the
risk of overfitting and is suitable for mobile deployment.
This is particularly important for user privacy and data
security by handling all computations locally.

In sum, the proposed framework offers an efficient way to
extract robust ECG representations that perform competitively
across multiple downstream tasks, including human interaction
modeling, affect recognition, and disease prediction. WildECG
outperforms multiple architectures and training algorithms,
while retaining discriminative information in low-resource set-
tings and during minimal fine-tuning.

[ll. BACKGROUND
A. Electrocardiography

Electrocardiography is a non-invasive technique for recording
the electrical activity of the heart. The resulting signal, called
the electrocardiogram (ECG), provides information about the
functioning and structure of the heart, including the timing and
regularity of its rhythm, significant underlying conditions or
abnormalities, along with psychological states such as stress
or emotional arousal. ECG has a characteristic structure that
consists of specifically documented signatures: the P wave, the
R peak and broadly the QRS complex, and the T wave, each of
which corresponds to a distinct phase of the cardiac cycle. In
addition to these waves, one can also identify intervals on the
ECG that hold disease information, e.g., PR and QT intervals,
as well as the RR interval which is used to calculate heart rate
and heart rate variability [21], [22], [23], [24].

ECG is acquired through electrodes that are placed on the sur-
face of the skin, usually at the chest or the wrists. The most com-
mon sensor configurations include 12-lead, 3-lead, or single-lead
placements. The latter configuration, applied through wearable
straps or wristbands, is a practical choice for measurements
made in naturalistic settings, due to the ease of placement and
minimal interference with the subject. To facilitate applications
in both clinical and naturalistic domains, we restrict our study
to single-lead ECG data.

B. Self-Supervised Learning

Self-supervised learning (SSL) is an emerging machine learn-
ing paradigm that provides an effective way to learn meaningful
data representation without the need to acquire explicit labels. In
contrast to supervised learning, which relies on labeled data, SSL
leverages the intrinsic structure and relationships within the data
to create pseudo-labels or tasks to learn from. As such, it holds
several advantages over conventional supervised approaches for
our task, as it avoids the need for annotations in large quantities,
that would also constrain the scope of the model.

Most researchers distinguish two main types of SSL frame-
works: 1) generative and 2) contrastive [25], [26], [27], [28],
[29], [30]. The generative models (e.g., autoencoders) learn
representations by reconstructing or generating the original data
using masked or corrupted data as input, which defines their pre-
text task. Contrastive methods, on the other hand, train a model
by contrasting the representations of semantically same data
(e.g., two augmented views, positive samples) to other distant
data (negative samples). Additional variants of SSL have also
been proposed in the literature, including predictive [25], [28],
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[29], property-based [27] or pretext learning [30] objectives, as
well hybrid [27], [28] or cross-modal [26], [30] types.

Several promising approaches to SSL have been imple-
mented, primarily in natural language processing (NLP) [31],
[32] and computer vision [33], [34]. In the context of time series
data, SSL has been used to learn representations for various tasks
such as anomaly detection [35], frequency coupling [36], and
masking [37]. Self-supervised learning of biosignals and ECG
has already shown promising results in health applications and
behavioral analysis [38]. We include a comprehensive review of
related studies below.

C. Self-Supervised Learning on Biosignals

Authors of [35] used six signal transformations as pretext
tasks to obtain ECG representation for downstream evaluation
on affect recognition. They validated their obtained representa-
tion on four publicly available datasets. The results of this study
in terms of model performance should be however interpreted
with care since the introduced approach does not account for
subject-specific biases in the training splits that could cause
information leakage. In such an approach it is possible that two
near-in-time samples will end up in training and test sets. The
physiology across two near-in-time/consecutive samples (two
10-second long signal chunks) might be constant, especially in
response to steady/constant/invariable stimuli.

In their analysis, the authors report that 1) the signal trans-
formation parameters should be selected in such a way that the
transformed signals are not too similar or too different from
the original signal, because the model is unable to learn the
representation, and that the most helpful transformations are
scaling and time-warping; 2) multiple proxy tasks build better
representation than a single proxy task; 3) the most prominent
proxy-tasks are scaling and time-warping; 4) the representation
learned on multiple datasets performs better than the represen-
tation learned on a single dataset.

Among other studies, Kachuee et al. [39] used ECG lead I sig-
nal of healthy and dysfunctional heart to recognize myocardial
infarction. Their single-lead ECG SSL approach achieved results
similar to a 12-lead ECG supervised approach. Dissanayake
et al. [40] focused on representation of low-frequency signals
from wearable devices. They utilized SimCLR [34] and sim-
plified Inception [41] architectures in their pretext contrastive
task. Their model performed competitively to the state-of-the-art
results on publicly available datasets. Notably, their ablation
studies showed that the model based on the representation is
resistant to the loss of a large amount of training data, as well as
to the loss of signal chunks.

Deldari et al. [42] proposed a cross-modal, contrastive, self-
supervised learning approach to tackle several activity- and
affect-related classification tasks. Using up to five modalities,
their method outperformed several other approaches. According
to their ablation analyses, as low as 10% of the labels in the
downstream task is adequate for the model to provide satisfac-
tory results. Zhang et al. [36] used contrastive learning with
the assumption that time- and frequency-based embeddings are
located near each other in the time-frequency space. On the

other hand, [43] applied masking and attention to force the
model to focus on relevant parts of the ECG signal. To build
the signal representation, they trained on six public datasets and
achieved competitive results on the AMIGOS [44] dataset for
binary arousal and valence classification.

Recently, Wu et al. [45] introduced a multimodal SSL ap-
proach, based on transformers and common signal transfor-
mations, to recognize emotions from electrodermal activity,
blood volume pulse, and temperature signals. Separate tem-
poral convolutional encoders are used for each modality to
extract low-level features. Then, a shared transformer-based
encoder containing multi-head attention blocks combines these
features to capture the complementary aspects of multimodal
signals. The ablation studies showed that lack of electroder-
mal activity signal was reducing model performance the most,
while temperature was less crucial. Jungo et al. [46] discovered
that a multimodal transformer-based SSL model outperforms
other techniques for imputing missing biobehavioral signals
that change more frequently (but not in the case of mono-
tonic signals). However, signals collected in naturalistic settings
appear more challenging for the method than signals from
in-lab studies. Ma et al. [47] also utilized transformer-based
SSL, but their objective was a noninvasive blood pressure
estimation. They designed seven transformations to learn the
model hemodynamic information about the photoplethysmo-
gram and four temporal-spatial transformations. Their model
performed competitively to the SOTA, approaching clinical
standards.

D. State-Space Models

State-space models (SSM) are a recently introduced category
of deep neural networks [48] that were proposed to efficiently
model long-term sequences, i.e., signals with either long dura-
tion or high sampling rate. Hence, the ECG modality constitutes
apromising candidate for adopting a state-space model architec-
ture. SSMs draw intuition from both convolutional and recurrent
network architectures. The continuous-time SSM converts a 1-D
input signal «(¢) into a latent state =(¢) before projecting it onto
a 1-D output y(2):

2'(t) = Az(t) + Bu(t)
y(t) = Ca(t) + Du(t) )

For discrete-time sequences that are sampled at step A, (1) can
be mapped to the recurrence shown in (2), using the bilinear
method [49] to convert A into an approximation A:

Tk = Azg_1+ Bug yp = Czg + Dug
A=(I-A/2-A)7 T +A/2-A)
B=(I-A/2-A)'AB )

Here D = 0 [50]. Equation (2) is a sequence-to-sequence map
and the recurrence allows the discrete SSM to be computed like

a recurrent network with hidden state A. Equation (2) is also
equivalent to a discrete convolution with kernel K, as shown
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in [50]:
K:(CB,CE,CAZB,...), y=K=xu 3)

Thus, SSMs can be viewed as special cases of convolutional and
recurrent layers, inheriting their learning efficiency. Gu et al. [50]
also contributed an efficient way of evaluating K .

The Structured State Space for Sequence Modeling (S4)
architecture was proposed in [50] to model sequences more
efficiently than standard SSMs, also showing the capacity to
capture long-range temporal dependencies. S4 is a particular
instantiation of the SSM, where matrix A is parameterized as a
diagonal plus low-rank (DPLR) that allows faster repeated com-
putations. To capture long-range dependencies, S4 initializes A
as HiPPO [51], so that the state x; can memorize the history of
the input uy. At the same time, HiPPO preserves the DPLR form,
as shown in [50]. Hence, the core S4 module is a linear, 1-D
sequence mapping, however it handles high-dimensional fea-
tures by defining independent copies of itself, and then mixing
features with a position-wise linear layer. Nonlinear activations
and dropouts in-between these layers provide the non-linearity
of the whole architecture.

IV. METHOD

A. Pre-Processing

We adopt a universal approach in processing all ECG data
used in pre-training and fine-tuning sessions. The following
steps aim to alleviate the impact of discrepancies in different data
collections, typically coming from the performed task, sampling
rate, equipment noise, subject-specific and other artifacts. First,
ECG signals are downsampled to 100 Hz and smoothed with a
moving average kernel to remove powerline interference [52].
The specific sampling frequency provides a balance between
preserving relevant information and reducing computational re-
quirements. The majority of ECG datasets are recorded at 100 Hz
or higher, and it has been reported [53], [54] that downsampling
to 100 Hz does not compromise model performance. Next,
we apply a high-pass Butterworth filter at 0.5 Hz. Finally, we
perform subject-wise, z-score normalization. The signals are
then segmented into non-overlapping windows of 10 seconds.
During pre-training, where each sample is initially 15 seconds,
10-second samples are randomly extracted during training.

B. Signal Transformations

We base our proxy task for pre-training on predicting various
signal transforms applied to ECG samples. To this end, we have
implemented a Python module of ECG-tailored transformations
that we share publicly.! The ECG-augmentations library [55]
currently includes versatile transforms of multi-lead ECG sig-
nals. Implemented augmentations include:

® Masking: We support random masking or masking of PR
and QRS intervals, whereas the user can also specify the
ratio of intervals to be masked. Detection of R peaks is
done using the NeuroKit2 library [52].

![Online]. Available: https://github.com/klean2050/ecg-augmentations

® Cropping: Random (r) crop of an ECG sub-sequence
given the desired length A: s’ = s[r : r + A].

® Noise: We support both additive white noise and random
wander, with adjustable signal-to-noise ratio (SNR).

® Permutation: Each ECG signal is divided into m < 10
segments, which are shuffled, i.e., by randomly perturbing
their temporal order. Each segment has a set minimum
length of 10% the total signal length.

® Time Warping: Randomly selected segments of the orig-
inal ECG are stretched or squeezed along the temporal
axis, through interpolation. The output signal is cropped
or zero-padded when stretched or squeezed, respectively.

® Scaling: The ECG magnitude is multiplied by a random
scalar 0 < a < 5: §'[n] = —as[n],n=0,...,N.

® [nverting: Implemented by negating the input signal along

the temporal axis: s'[n] = s[N —n],n=0,...,N.
® Reversing: Simply implemented by scaling the input sig-
nal using @ = —1: §'[n] = —s[n],n =0,...,N.

C. Pre-Training Objective

Most SSL studies apply either masked sample reconstruction
or contrastive learning objectives to pre-train their respective
models. Since there is no established training algorithm for
physiological signals, WildECG considers elements from both
SSL approaches. Our objective aims to identify which signal
transformations are applied to a sample ECG, where each signal
is augmented randomly using at most four out of all the available
transforms. Each transform is selected based on a set probability,
so it is possible that some samples are input without any aug-
mentation. We formulate this task as a multi-label classification
task with nine classes (eight possible transformations plus the
original signal).

This task draws from both predominant SSL approaches. Our
first motivation comes from masked reconstruction objectives
by including masking augmentations in our pre-training frame-
work. These include both masking of random signal patches and
of specific ECG intervals. Second, we follow the contrastive
learning paradigm in the sense of modeling the impact of in-
duced augmentations in the data. However, we intentionally
choose to predict applied transformations over the conventional
contrastive approach, in which we would identify the similarity
of two distorted samples of the same input. The reason is that
the latter objective would focus on invariant ECG features that
are primarily subject-dependent. On the other hand, identifying
distortions is intuitive for our scope, since the model focuses
on ECG abnormalities that could potentially hold diagnostic
information.

D. Model Architecture

Our proposed model inherits the S4 model as the backbone
architecture, as it features critical elements that are desirable
in ECG analysis. As mentioned before, S4 has demonstrated
promising performance in modeling long-range sequences with
dependencies over thousands of timesteps, which is a current
limitation of state-of-the-art models like the Transformer [56]
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Fig. 2. The architecture of the proposed ECG backbone model, follow-
ing a simple version of the original S4 [50]. The model consists of six S4
blocks, connected through residual connections. Linear classifiers are
attached on top for both pre-training and fine-tuning tasks.

TABLE |
OVERVIEW OF THE STUDY'S DATASETS

Dataset ECG Setting # Subjects  # Classes
TILES [20] 24-h monitoring 200 N/A
PTB-XL [59] clinical acquisition 18869 5
LUDB [60] clinical acquisition 200 2
WESAD [61] activity engagement 15 3
CASE [62] video watching 30 *
AVEC-16 [21] dyadic interaction 27 *
SWELL-KW [22] workplace stress 25 2

* Denotes regression.

architecture. ECG is a sequence of that type, with its sam-
pling rate ranging from 100 to 1000 Hz. Also, S4 is implicitly
a continuous-time model, making it well-suited to waveform
signals. Indeed, prior work [57] has shown that variants of
S4 provide excellent performance in classifying cardiovascular
conditions based on controlled ECG data.

Here we employ a simplified version of the original S4,
consisting of alinear encoder, six S4 blocks, and a linear decoder.
Each block consists of a Layer Normalization module, the K es-
timation module, a GELU [58] activation, Dropout and an output
projector. The blocks are connected with residual connections,
as shown in Fig. 2. The input and output dimension is set to
256 and dropout layers of 20% are applied. For the pre-training
phase, we adjust a linear layer to the decoder output and replace
it during fine-tuning.

V. EXPERIMENTS

The training of the proposed framework consists of 2 stages:
First, we pre-train our model using the large ECG database from
the TILES study. Then, we fine-tune our model in each of the
downstream tasks, in 2 modes: either tuning all parameters (full
model), or just the classification head (projector).

Below we share details about the datasets used in this study
(see Table I). Our experimentation covers 7 public ECG datasets
and targets settings where the 1-lead ECG modality is prominent

and the evaluation criteria are clearly defined. We thus omitted
datasets such as DEAP [63], AMIGOS [44], or DREAMER [64]
as EEG-oriented, and also medical datasets that depend heavily
on full, 12-lead ECG recordings.

A. Pre-Training: TILES Dataset

Tracking Individual Performance with Sensors (TILES) [20],
[65] is a research project that has collected multimodal datasets
for the analysis of stress, task performance, behavior, and other
factors pertaining to professionals in a high-stress workplace
environment. Biological, environmental, and contextual data
were collected from hospital nurses, staff, and medical residents
both in the workplace and at home over a ten week period. Labels
of human experiences, such as stress, anxiety, and affect, were
collected using psychologically validated questionnaires which
were administered at different times.

In the present study, we use the ECG data from the publicly
available TILES 2018 dataset [20] to pre-train a general-purpose
ECG model. Each participant had their ECG recorded for 15
seconds every 5 minutes during their work hours, for a total
of 10 weeks. There were 213 participants in total, 200 of whom
had agreed to wear a bioshirt that enabled high quality ECG data
collection, making the aggregate number of samples conducive
to pre-train a large ECG representation model. Since ECG was
recorded in an ubiquitous manner, we apply a quality check
by measuring the shape distance of heartbeats to the average
heartbeat for each 15-second session. All days for which the
total detection rate is lower than 90% are discarded, leading to
approximately 275,000 ECG samples from 168 individuals for
the following experiments.

B. Fine-Tuning: Ubiquitous Sensing

1) AVEC-16 Multimodal Affect Recognition Sub-Challenge:
The multimodal affect recognition sub-challenge (MASC) of
AVEC-16 [21] stems from the REmote COLlaborative and Af-
fective interactions (RECOLA) dataset [66]. RECOLA included
continuous multimodal recordings during dyadic interactions
via video conferences. The complete dataset contains audio,
visual, and physiological information from 27 French-speaking
participants. The single-channel ECG data used in this work
were sampled at 250 Hz and subsequently filtered using a
band-pass filter at 3-27 Hz. The labels are continuous ratings
for arousal and valence at 40 ms intervals, throughout the first
five minutes of the complete recordings.

2) SWELL-KW: This dataset [22] aimed at analyzing em-
ployees’ emotional states and workplace stress under three sce-
narios: normal, in which participants performed various office
tasks for 45 minutes, time-pressure, in which participants had
only 30 minutes to complete the same tasks, and inferruption,
in which they were also interrupted by emails and messages.
ECG signals were collected from 25 participants using the TMSI
MOBI device at a sampling rate of 2048 Hz. At the end of each
scenario, participants were asked to report their valence, arousal,
and also other states, such as stress.

3) WESAD: The dataset for WEarable Stress and Affect De-
tection (WESAD) [61] contains ECG data from 15 participants.
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RespiBAN Professional sensors were used to collect ECG at a
sampling rate of 700 Hz. The goal was to study four different
affective states (neutral, stressed, amused, and meditated). First,
20 minutes of neutral condition data were collected, during
which participants were asked to do normal activities. Then
participants watched 11 funny video clips (amusement) and went
through public speaking and arithmetic tasks (stress). Finally,
they went through a guided meditation session of 7 minutes.
Upon completion of each trial, labels for the affect states were
collected using 9-scale PANAS.

C. Fine-Tuning: Controlled Sensing

1) PTB-XL: The PTB-XL dataset [59] is a set of 21799
clinical, full 12-lead ECGs from 18869 patients of 10 s length.
The raw waveform data were annotated by up to two cardiolo-
gists, who assigned potentially multiple ECG statements to each
record. The waveform data underlying the PTB-XL ECG dataset
were collected with devices from Schiller AG over the course
of nearly seven years between October 1989 and June 1996.
In total 71 different ECG statements conform to the SCP-ECG
standard and cover diagnostic, form, and rhythm statements.
The dataset is complemented by extensive metadata on demo-
graphics, infarction characteristics, diagnostic statements, and
annotated signal properties.

2) LUDB: The Lobachevsky University Electrocardiography
Database (LUDB) [60] is a 12-lead ECG dataset with annotated
boundaries and peaks of P, T and QRS waves. It consists of 200
10-second ECG signals at 500 Hz, representing different mor-
phologies, out of which we only use the first lead, to comply with
our framework. The ECG records were collected from healthy
volunteers and patients of the Nizhny Novgorod City Hospital
during 2017-2018. The patients had various cardiovascular
diseases while some of them had pacemakers. Cardiologists
annotated each record with the corresponding diagnosis. For this
study, we consider the task of identifying sinus rhythm against
a super-set of different abnormalities.

3) CASE: The Continuously Annotated Signals of Emotion
(CASE) dataset [62] contains data from 30 participants collected
in laboratory conditions. During the experiment, participants
watched a series of 8 video stimuli and continuously annotated
their emotions in a two-dimensional arousal-valence space using
a joystick interface developed by the researchers. Additionally,
a two-minute long blue-screen video served as an in-between
resting phase. The 1-lead ECG data were collected at 1000 Hz
using Thought Technology SA9306 sensors, and affect annota-
tions were collected at 20 Hz.

D. Implementation Details

We pre-train WildECG for 100 epochs on the TILES data
using a batch size of 256 samples and an AdamW optimizer
with a 0.001 learning rate. A linear layer is used to map the
ECG embeddings to the transform classes. We checkpoint the
resulting model of the last epoch and apply it to a set of
downstream tasks to evaluate the learned representations. For
each task, the respective ECG data are extracted and processed
akin to the TILES data (see Section IV-A), whereas the additive

TABLE I
OvERVIEW OF COMPARABLE STUDIES ON ECG MODELING

Study Dataset Features Classifier Evaluation
[21] AVEC-16 ECG statistics Linear SVM Arousal: 0.271
[21] AVEC-16 ECG statistics Linear SVM Valence: 0.153
[61] WESAD HR, HRV LDA 0/1 Stress: 0.813
[61] SWELL HR, HRV LDA 0/1 Stress: 0.560
[67] AVEC-16 ECG statistics Linear SVM Arousal: 0.118
[67] AVEC-16 ECG statistics Linear SVM Valence: 0.085
[68] WESAD Spectrogram 2D-CNN 0/1 Stress: 0.794
[69] WESAD 1-lead raw ECG  Transformer (/1 Stress: 0.697
[69] SWELL 1-lead raw ECG  Transformer (/1 Stress: (L.588
[70] WESAD 1-lead raw ECG ECGNet 0/1 Stress: 0.857
[70] SWELL 1-lead raw ECG ECGNet 0/1 Stress: 0.688
[71] WESAD HR, HRV RBF SVM 0/1 Stress: 0.818
[72]* SWELL Multimodal Kernel SVM (/1 Stress: 0.641

Tasks on regression are CCC, Classification F1-macro (*Accuracy).

TABLE Il
DownSTREAM PERFORMANGE ON AVEC-16 DATASET (EVAL SPLIT)

Model Training  Arousal CCC  Valence CCC
Linear SVM [21] - 0.271 0.153
Linear SVM [67] - 0.118 0.085
Baseline S4 full model 0.328 0.162
WildECG (ours)  full model 0.356 0.303
WildECG (ours) projector 0.346 0.289

linear layer is replaced by a 2-layer MLP classifier that maps the
pre-trained embeddings to the target space.

We evaluate each task with 5-fold cross-validation in pri-
marily subject-agnostic settings. Subject-agnostic refers to the
setting where test splits do not contain samples from sub-
jects of the training splits, whereas mixed-subject denotes the
opposite. We use a batch size of 256 samples in all experi-
ments except LUDB (32 samples). The learning rate is tuned
to each dataset separately, within {0.0001, 0.0005,0.001}. All
datasets are trained for a maximum of 200 epochs with early
stopping based on validation loss. Model checkpoints are se-
lected based on the highest Fl-macro or correlation coeffi-
cient in cross-validation, and lowest validation loss for PTB-
XL and AVEC-16, which have specified validation and test
splits.

VI. RESULTS

Below we present the downstream evaluation of WildECG.
Our objective is to highlight the performance of the proposed
model when employed both as a backbone and as a feature
extractor, compared to training supervised classifiers. Wherever
possible, we compare our model with available studies, a sum-
mary of those is shown in Table II.

A. Ubiquitous Sensing

AVEC-16: Table III includes results for the AVEC-16
dataset, quantified using the Concordance Correlation Coeffi-
cient (CCC). S4 persistently outperforms the scores reported
from all prior studies, which rely on knowledge-based ECG
features and conventional classifier architectures. For arousal
estimation, WildECG achieves a state-of-the-art CCC of 0.356
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TABLE IV
DownsTREAM PERFORMANCE ON WESAD DATASET (3-WAy ACTIVITY)

Model Training Mixed-subject Subject-agnostic
Accuracy Fl-macro Accuracy Fl-macro
AdaBoost [61] - - - 0617(-) 0525(-)
LDA [61] - - - 0663(-) 0560(-)
ID-CNN [35] projector *  0.969 ( - ) 0963 (-) - -
Baseline 54 full model 0.956 (0.031) 0.955 (0.032) 0.489 (0.089) 0.410 (0.097)

WildECG (ours) full model 0.978 (0.028) 0.978 (0.028) 0.644 (0.044) 0.592 (0.058)
WildECG (ours) projector  0.742 (0.044) 0.721 (0.064) 0.600 (0.089) 0.524 (0.075)

* Pre~training includes WESAD., Standard deviation among folds is included in
parentheses. The bold values indicate the best numerical result.

TABLE V
DownsTREAM PERFORMANCE ON WESAD DATASET
(STRESS VS NORMAL—SUBJECTAGNOSTIC)

Model Training Accuracy Fl-macro
LDA [61] - 0.854 0.813
2D-CNN [68] full model  0.824 0.794
Transformer [69] full model  0.804 0.697
ECGNet [70] full model  0.908 0.857
SVM [71] - 0.811 0.818
Baseline S4 full model  0.900 0.899
WildECG (ours) full model  0.967 0.966
WildECG (ours)  projector 0.900 0.891

The bold values indicate the best numerical result.

when fully fine-tuned and 0.346 when only the projector is
trained. In both cases it outperforms the S4 variant that is trained
from scratch. Similar results are obtained for valence, where our
proposed model surpasses 0.3 CCC.

WESAD: Table IV presents detailed results for WESAD,
evaluated in both mixed-subject and subject-agnostic settings.
Here, the objective is to identify the type of activity the subject
performs out of three scenarios: baseline, stress, and amusement.
For the mixed-subject setting, we compare our performance
with Sarkar and Etemad [35] where we observe marginal im-
provements of 1% to 1.5% in F1-macro. We should note that
the results are close to absolute correct accuracy, which is
attributed to the temporal correlation that each subject and each
recording inherits. This is evident by observing the drop of 23-25
percentage points (pp) when we freeze the pre-trained encoder,
as well as the drop of more than 30 pp that the subject-agnostic
setting induces. Nonetheless, WildECG outperforms the litera-
ture in obtained F1-macro, reaching 59.2%, with an accuracy of
64.4%. In this case, the pre-training mechanism is critical, since
the S4 baseline cannot reach an accuracy better than random
chance.

In addition to evaluating the 3-way condition in WESAD,
we also assess the binary task of stress versus the two other
conditions and report related results in Table V. WildECG
achieves very high accuracy, reaching 96.6% F1-macro and
outperforming all previous studies by a large margin. Both
frozen and fully fine-tuned models outperform convolutional
networks and transformer encoders, achieving 11-17% better
F1-macro despite having fewer parameters.

SWELL-KW: Finally, we present our results on SWELL-KW
in Table VI. Here we only share results for the subject-agnostic

setting, since the mixed-subject one quickly overfits to perfect
100% accuracy, with similar results shown in [35]. For SWELL-
KW, we evaluate three different binary cases: valence and
arousal estimation, both binarized at the mean of the obtained
values, and stress, as indicated again by the activity performed
by the subject. For this task, N refers to the normal condition
whereas T" and I represent the stress conditions. WildECG
performs on par with the S4 trained from scratch, with smaller
variations among folds in arousal. However, most studies evalu-
ate their methods on the latter task of stress estimation, achieving
more than 75% accuracy and close to 69% F1-macro. Our mod-
els provide competitive performance with these studies, with the
pre-trained model reaching state-of-the-art 71.1% F1-macro.

B. Controlled Sensing

Here we report our performance scores for the datasets de-
scribed in Section V-C. We begin with the CASE dataset which
incorporates target variables of affect. Table VII contains results
for regression on arousal (A), valence (V), and anxiety (N)
levels, where anxiety is defined as N = A(1 — V), as proposed
in [71]. The prediction results show strong performance for
WildECG, which outperforms both the S4 baseline and the
frozen variant with a substantial margin in both subject-agnostic
and mixed-subject settings. While the baseline shows higher
performance for arousal, WildECG is better on valence, gaining
0.21 CCC from baseline S4. This difference is also reflected
and magnified in the anxiety measures. We further observe that,
even though WildECG embeddings on their own offer limited
performance improvements, our method leads to more consistent
predictions in all tasks, with substantially lower variance than
the baseline. To the best of our knowledge, no previous study
provides continuous estimates of affect variables from ECG in
CASE.

Although our system is not trained on clinical settings and
data, we evaluate its performance as an out-of-distribution task
on PTB-XL, one of the largest clinical ECG testbeds that
is publicly available. Unfortunately, there is no extensive re-
search assessing single-lead ECG systems for disease diagnosis.
Moreover, many studies in cardiology report prominent disease
biomarkers on several leads of a clinical ECG recording [73],
[74]. With that premise, we compare our single-lead results with
12-lead ECG systems (Table VIII). An S4 architecture similar
to ours recently reported state-of-the-art performance [57] for
12-lead PTB-XL. Here we effectively benchmark the perfor-
mance drop of 1-lead S4 to 10% AUROC, reaching 83.2%. We
also demonstrate that when pre-trained on TILES, our model can
improve upon this baseline by about 1.3 ppin AUROC and 2.3 pp
in F1-macro. We also highlight that, possibly due to the scale of
the dataset, the frozen model substantially under-performs in this
5-way classification task, with a 13% drop in F1-macro. Further,
in Table IX, we evaluate our model in LUDB, a much smaller
medical dataset of various cardiac conditions. Despite the low-
resource setting, WildECG distinguishes between healthy and
non-healthy recordings, with a mean accuracy of 91.5% and
F1-macro of about 90%, demonstrating data efficiency.
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TABLE VI
DownsTREAM PERFORMANCE ON SWELL-KW DATASET FOR THE SUBJECT-AGNOSTIC SETTING (BINARY CLASSIFICATION)

Model Training Valence > mean Arousal > mean Stress (N vs T/T)
Accuracy Fl-macro Accuracy F1-macro Accuracy Fl-macro
Kernel SVM  [72] - - - - - 0.641 (-) -
Transformer [69] full model - - - - 0581 (=) 0.588(-)
Deep ECGNet [70]  full model - - - - 0755 (-) 0688 (-)
S4 baseline full model  0.598 (0.098) 0.560 (0.105)  0.743 (0.153) 0.731 (0.148)  0.680 (0.075) 0.643 (0.107)
WildECG (ours) full model  0.629 (0.050) 0.623 (0.050)  0.751 (0.064) 0.704 (0.077)  0.660 (0.080) 0.637 (0.094)
WildECG (ours) projector  0.607 (0.118) 0.560 (0.157)  0.731 (0.088) 0.698 (0.089) 0.740 (0.102) 0.711 (0.127)

Standard deviation among folds is included in parentheses. * Not only ECG. The bold values indicate the best numerical result.

TABLE VI
DownsTREAM PERFORMANCE ON CASE DATASET (REGRESSION TASK)

Model Training Mixed-subject Subject-agnostic
Arousal CCC  Valence CCC  Anxiety CCC  Arousal CCC  Valence CCC  Anxiety CCC
Bascline S4 full model  0.249 (0.121)  0.231 (0.133)  0.292 (0.168)  0.198 (0.085)  0.162 (0.066)  0.310 (0.159)
WildECG (ours)  full model  0.391 (0.047)  0.439 (0.081) 0.565 (0.089) 0.253 (0.064) 0.351 (0.086) 0.424 (0.049)
WildECG (ours) projector 0.226 (0.098) 0.114 (0.066) 0.219 (0.112) 0.202 (0.034) 0.123 (0.053) 0.205 (0.058)

Standard deviation among folds is included in parentheses. The bold values indicate the best numerical result.

TABLE VIII
DownsTREAM PERFORMANCE ON PTB-XL DATASET (Sup-DiaG Task)

Model Training AUROC Fl-macro
12-lead LSTM [54] full model  0.927 -
12-lead Inception-1D [54]  full model 0.921 -
12-lead Transformer [57] full model 0.887 -
12-lead S4 [57] full model  0.931 -
1-lead 54 baseline full model 0.832 0.457
WildECG (ours) full model 0.845 0.480
WildECG (ours) projector 0.815 0.346

The bold values indicate the best numerical result.

TABLE IX
DownsTREAM PERFORMANCE ON LUDB DATASET (BINARY TASK)

Model Training Accuracy Fl1-macro

1-lead 54 baseline  full model 0.770 (0.040) 0.618 (0.141)
WildECG (ours) full model  0.915 (0.064)  0.894 (0.082)
WIldECG (ours) projector 0.855 (0.062)  0.792 (0.094)

Standard deviation among folds is included in parentheses. The bold values
indicate the best numerical result.

VII. DISCUSSION
A. Pre-Training Settings and Complexity

Our proposed framework incorporates several design parame-
ters that contribute to positive experimental performance. In this
section, we conduct a close inspection of each of these design
elements by probing and comparing alternative approaches in
the literature. Specifically, we compare WildECG to a network
that uses a 1D ResNet [19] backbone, in order to assess the
additive value of the selected architecture. ResNets have shown
to be superior to other modeling approaches in a recent review
on ECG signals [75]. We create two versions, a ResNet-large
of 14.7 M parameters that includes 10 residual blocks and an
input size of 64 filters, and a ResNet-small of 923 K parameters

B wildecG @ ResNet-small @® ResNet-large
WESAD - o—eo 1N
SWELL - oo
rre-xL {1 00—l
LUDB o——=n
0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1 macro
AVEC-A { 0@ O
wecv{ @&—ol
CASE-A - —en
CASE-V |
0.20 0.25 0.30 0.35 0.40 0.45
cce
B wildEcg @ Contrastive
WESAD - o—N
SWELL - [}
rrexL1 @l
LUDB - o—1H
0.4 05 0.6 0.7 0.8 0.9 10
F1 macro
AVEC-A [ -
AVECY | @ i
CASE-A o——H
CASE-V - o—H
0.20 0.25 0.30 0.35 0.40 0.45
cce
Fig. 3. Top two plots: Backbone architecture comparison. Bottom two

plots: Pre-training algorithm comparison. V denotes valence and A
arousal. WESAD, SWELL refer to the binary experiment. Classification
tasks are measured with F1 macro and regression tasks with CCC.

by reducing filter sizes to 1/4 of ResNet-large. We note that
WildECG holds 313 K parameters in total. Both networks are
trained like WildECG and the obtained results are in Fig. 3 (top).
We observe that our proposed S4 model clearly outperforms both
ResNet variants, except for SWELL-KW where the accuracy
is similar. On the other hand, increasing the parameters of the
ResNet model provides limited benefits to performance boost.
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Fig. 4. Low-resource model performance for AVEC-16, WESAD, and

SWELL-KW: Ubiquitous sensing. Horizontal axis is not drawn to scale.

We further compare the ECG representations of our pre-
training algorithm with those obtained using one of the standard
contrastive learning approaches [34]. For this purpose, we train
an identical to WildECG network with the alternative objective.
The results on the same downstream tasks are shown in Fig. 3
(bottom). The chosen objective shows clear advantages over the
contrastive one, as seen by the persistently improved perfor-
mance in most evaluation cases. These results support our choice
of pre-training objective as it is more suitable as and intuitive to
ECG signal analysis. In future work, it is worth investigating
tuning the baseline contrastive objective in order to reduce
subject bias in the representations, for which Cheng et al. [76]
have provided proof of concept by configuring subject-specific
negative pairing.

B. Low-Resource Scenarios

Thus far we have quantified our model’s superiority against
other architecture choices and across diverse applications.
Herein we evaluate WildECG in low-resource settings, where
we randomly restrict the number of training samples in each of
the downstream tasks. Figs. 4 and 5 contain a respective graph
for each dataset, with the horizontal axis denoting the percentage
of the training samples that were actually used. In this section,
we include the same subset of labels that we used previously.
We observe that WildECG achieves small or even negligible
performance loss in most cases compared to the baseline S4
network. For AVEC16, we are able to retain state-of-the-art
performance even with 5% of the training data, while the base-
line fails to converge. Similarly, model pre-training alleviates
the performance drop for WESAD and PTB-XL, whereas for
LUDB the baseline never reaches performance substantially
above chance. As mentioned earlier, SWELL-KW is associated
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0.3 0.3
o o
5] 8
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Fig. 5. Low-resource model performance for CASE, PTB-XL, and

LUDB: Controlled sensing. Horizontal axis is not drawn to scale.

with unnoticeable performance differences between WildECG
and the S4 baseline, while our model does exhibit smaller
variance in its predictions.

C. Method Interpretability

Although the proposed model shows state-of-the-art perfor-
mance across different tasks, it is still unclear how the ECG
is processed within the model and whether the derived repre-
sentations have any feature-wise or semantic correspondence,
which is critical for adoption in clinical practice. The field of
explainable AI [77] has already made substantial progress in
deciphering what deep learning models can learn. For the scope
of this study, we provide post-hoc interpretability measures
by mapping the high-dimensional ECG embeddings to a 2D
space and analyzing between-sample distances. To reduce the
dimensionality we use the t-SNE algorithm [78]. Since the
TILES dataset incorporates a relatively large number of samples,
we randomly select 10% of its data (every 10th sample of each
subject) to avoid over-plotting.

We first investigate whether WildECG incorporates subject-
specific biases in its representations. To that end, we provide
t-SNE visualizations colored by subject ID, in Fig. 6. As for the
pre-training data, due to the number of samples TILES embed-
dings appear rather mingled, without visible clusters. However,
the mean euclidean distance for intra-subject samples is found to
be lower than the mean inter-subject distance, i.e., 7.02 +1.24
vs. 10.55 & 2.59, respectively; p-value 1.77 - 10~27 for paired
t-Student test. This indicates that samples related to the same
subject are closer to each other rather than to samples from other
subjects. On the other hand, for CASE, WESAD, and SWELL-
KW, the embeddings form well-separated, participant-related
clusters. This comes in spite of the subject-wise standardization
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Fig. 6. T-SNE visualizations of WildECG embeddings on the 2D space
for TILES (downsampled to 10%), CASE, WESAD and SWELL-KW
datasets, colored by subject ID to reveal subject-specific bias.
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Fig. 8. Distribution of heart rate values in 2D t-SNE space for WIldECG
embeddings of TILES (downsampled), CASE, WESAD, and SWELL-
KW samples. Brighter colors indicate higher heart rate.

and implies that the model indeed learns strong subject- or
sensor-specific characteristics from the ECG. As for WESAD,
each participant typically expands two clusters, grouped by heart
rate value of the respective ECG. As shown in Fig. 7, these
clusters indeed correspond to the stress and no-stress activities
performed and in some cases form super-clusters across subjects.

Next, we focus on whether the WildECG representations
retain cardiac information, in this case heart rate (HR). Ground
truth HR values were obtained from the filtered 10-second ECG
samples using the NeuroKit2 [52] library. The mean HR values
were grouped into bins of 10 within the acceptable range of
human HR [79], i.e., from 40 to 210 bpm. In Fig. 8, for TILES
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Fig. 9. Average Euclidean distance of within-participant samples with

respect to: Absolute heart rate difference for TILES (downsampled),
stimuli for CASE, and activity for WESAD and SWELL-KW. Colors in-
dicate distances between samples with same or different labels.

dataset we observe a left-to-right transition from low to higher
HR values. On the contrary, CASE embeddings, which reflect
strong subject biases (Fig. 6), do not present any generalized HR
patterns. The transition across HR levels happens though within
subject-specific clusters. Visualization for WESAD shows that
the mixed-subjects’ groups represent higher mean HR values,
which are also associated with stress activity (Fig. 7). A similar
pattern is also present in SWELL-KW, where samples from
different subjects related to higher HR values and stress activity
are close to each other.

To assess the model’s capability of capturing physiology that
is characteristic of the context (activity or stimulus) we compute
the Euclidean distance between high-dimensional embeddings
of different context (Fig. 9). For each subject, we determine
the average distance between samples with the same label and
the average distance between samples with different labels.
The most notable difference between within-context and across-
context samples can be observed for WESAD and SWELL-KW,
where samples related to stressful activities are distant from
other activities. As for CASE, the distinction between within-
scary sample distance and distance to other-context samples
is not significant, but remains noticeable. Further analysis of
TILES data reveals that samples with similar HR values are
situated closer to each other, while those with more significant
differences in HR are positioned farther apart. This observation
verifies that WildECG embeddings effectively preserve the car-
diac information.

D. Limitations and Challenges

A robust and general-purpose representation model for the
ECG is an important step towards expanding scientific research
and clinical translation, notably for broad dissemination of smart
and ubiquitous health applications. Equal importance however
should be given to the limitations of these models, from the
methodological aspects of evaluation, to fundamental questions
regarding the applicability of physiological measures in esti-
mating complex human conditions. Computational modeling of
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human behavior and physiology currently lacks standardized
protocols and metrics that would ensure the reproducibility and
validity of the obtained results. Consequently, our study also
diverged from other comparable studies on how each dataset is
set up for evaluation. However, we hope that it contributes a
cohesive and comprehensive testbed for studies of similar scope
to evaluate their approaches.

An important characteristic of physiological signals that in-
fluences the evaluation protocol is the inter-subject variability,
which challenges the application of transfer learning. Indeed,
multiple studies report that machine learning models trained
on a specific dataset rarely generalize to other datasets and
settings [70], [80]. Even within a single dataset, subject bias
could prevent evaluation on unseen subjects [35]. In our study,
we demonstrate that pre-training with a large-scale ECG dataset
in a self-supervised way can help alleviate these issues. However,
our feature visualizations reveal that the learned features still
reflect such biases, e.g., by forming subject-specific clusters.
Hence, adopting specialized objectives to eliminate this bias is
an important direction for future work.

Taking a step back, it is crucial to underscore the limitations
of standalone measures like the ECG to solely estimate the range
of human conditions. It is well known that emotional states are
heavily influenced by the social and environmental context [81],
[82], in a way that a single-dimensional signal cannot reflect.
We highlight that models like WildECG should be adopted in a
holistic perspective that takes into consideration multiple views
of human behavior and contextual information. For example,
fusing information from multiple physiological and behavioral
signal measures like electrodermal activity, speech [21], and
human activity [72] has provided better performance than using
ECG alone on the same datasets. Incorporating WildECG in
a multimodal sensing framework is another direction of future
work to be pursued.

VIII. CONCLUSION

Ubiquitous sensing and monitoring are already transforming
digital health and well-being with new, on-demand services.
Hence there is an unmet need to address challenges related to
the analysis of the resulting human bio-behavioral states. In this
study, we propose WildECG, a versatile Al framework for ECG
representation learning. By utilizing a large, diverse corpus of
biosignals collected in the wild, along with a state-of-the-art
state-space network and pre-training algorithm, we demonstrate
competitive performance on the tasks of estimating human af-
fect, dimensional emotion, stress levels, as well as pathological
markers. We further quantify the contributions of our design
factors and verify model robustness in low-resource settings.
The conducted qualitative analysis reveals that WildECG in-
deed incorporates explainable and tractable insights related to
the ECG structure and features that could prove beneficial for
researchers as well as clinicians.

At the same time, the potential of ubiquitous sensing in
digital health and well-being is advancing rapidly. As the field
continues to expand, several directions for future research could
emerge from the proposed framework. Despite the competitive
performance demonstrated by WildECG, there is still room to

further investigate the model biases and hence its generaliza-
tion across populations, demographics, and cultural contexts.
Research could also develop adaptive learning techniques to
fine-tune large models to personalized needs, especially since
the lightweight architecture of WildECG can be easily deployed
in mobile devices and run offline. Lastly, a promising direction is
the combination of pre-trained ECG representations with other
behavioral modalities. Several technical challenges are to be
addressed in this realm, most importantly the sparsity of target
information across signals.
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