2024 IEEE MIT Undergraduate Research Technology Conference (URTC) | 979-8-3315-3100-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/URTC65039.2024.10937512

Efficient Task Organization with Commonsense
Knowledge for Human-Robot Collaborative Tasks

Swagnik Roychoudhury
Department of Computer Science
New York University
New York, New York
sr6474 @nyu.edu

Abstract—We present a new and innovative approach called
DISCERN (Detection Image System with Commonsense Efficient
Ranking Network) to “discern” object selection priority designed
for human-robot collaborative tasks. Our approach utilizes a
combination of standard image models, a commonsense knowl-
edge base (CSKB), a vision language model, and custom priorities
derived from human intuition to determine an optimal order
for the robot’s actions. DISCERN is a competitive solution to
extensive training or learning from human demonstrations and
works out-of-the-box with effective results and minimal resources,
hence implying low algorithmic complexity and high execution ef-
ficiency. We validated the proposed approach in a typical human-
robot collaborative home dining table cleaning task, although
they can be applied to any household setting. Experimental
results and evaluations demonstrate that the developed DISCERN
has significantly better performance than baseline methods.

Index Terms—AI & Robotics, CSK, Commonsense Reasoning,
Human-Robot Collaboration, Task Planning, Sustainable AL, XAI

I. INTRODUCTION

Countless advances in machine learning and robotics made
in the last few years have brought robots closer to achiev-
ing human-like cognition. However, the multiple processes
involved for a robot to perform a task, such as vision, task
organization, and task execution, each require extensive train-
ing and resources to function. Learning from Demonstration
(LFD), or Imitation Learning can face difficulties, including
the complexity of data collection, inability to generalize,
dependency on demonstration quality, and susceptibility to
policy drift if the data doesn’t span the full state space.

Additionally, complex algorithms in machine learning often
lack explainability, hence the reasoning for their actions can
be hard to understand. As a result, it is harder for humans
to trust robots in human-robot collaborative tasks [1]. While
recent advances in Natural Language Processing (NLP) have
enabled greater explainability in robotics via Large Language
Models (LLMs) [2], they face many challenges that make
their adoption in robots difficult, such as inaccurate outputs,
bias and misconceptions, and higher (and possibly prohibitive)
hardware and resource requirements [3].

The challenges of speed, reliability, hardware requirements,
resource consumption, data collection, bias, generalization,
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general difficulty in recurrent training, and policy drift could
potentially be solved or reduced if only robots had basic
common sense analogous to humans. Enter DISCERN, an
innovative method to “discern” object selection priority in
household robotic tasks, as illustrated in Fig. 1. DISCERN is a
novel approach that integrates image models, a commonsense
knowledge base (CSKB), a vision language model (VLM),
and custom priorities to optimize task ordering in domestic
settings. It enhances the robot’s decision-making by infusing
intuitive, commonsense-based human judgment to enhance
explainability, hence impacting XAI (explainable Al).
DISCERN deploys acquired commonsense knowledge
(CSK) [4] in line with modern-day machine intelligence [5].
CSK in DISCERN reduces the need for pre-training via LFD
or neural models that need huge training data and consume
excessive energy. This is vital in domestic settings, e.g. dorm
room/home, where resource consumption and energy effi-
ciency can be crucial. Given DISCERN’s capacity to function
with one-time training coupled with knowledge-base usage, it
has relatively low algorithmic complexity and thus low energy
consumption for model training and execution. Hence, it can
make broader impacts on Sustainable Al and Responsible Al
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Fig. 1. High-level overview of the DISCERN approach.

Commonsense
Knowledgebase

Setting up image models and linking them to CSKBs poses
unique challenges, including ensuring accurate object catego-
rization and leveraging human intuition effectively. Translating
an arbitrary feature space from an image model to a lower-
dimensional embedding using a commonsense knowledge
base in a manner that prevents leakage and misrepresentation
proved difficult, but eventually that is precisely what allowed
our robotic agent to use commonsense for household tasks.

While DISCERN makes partial use of a vision language
model, the VLM only serves as a minor and optional refine-
ment in the task ordering process. DISCERN also uses an
image model but only for basic object detection; note that the
typical number of objects in a given setting (e.g. household)
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is of the order of 100s, as opposed to millions of full images
(e.g. of scenes in households) on which excessive pre-training
may otherwise be needed to make robots function adequately.
Hence, DISCERN heads more towards optimal behavior.

II. RELATED WORKS

Previous research has focused on using imitation learning
and LfD for a robot to complete a task, e.g. IRIS [6] decom-
poses the task into parts, such that the robot imitates small
tasks and combines parts of sub-optimal solutions to achieve
successful task completions. While systems like IRIS can work
with sub-optimal data, arriving at the most efficient solution
still remains a gap. Dependency on training data means the
algorithm faces difficulty in generalizing to unfamiliar con-
texts; lack of real-time feedback necessitates further training
to improve such models. Image mining with multidisciplinary
facets has been addressed in many works, e.g. [7], [8], and
can be pertinent to robotics as well [9], [10].

Other works include terminology evolution [11] that can be
vital in making Al systems understand current contexts. More
recent work language processing has enabled the addition of
language models in task organization in household settings.
Since they are based on natural language, LLMs provide more
explainability in actions, e.g. Ocker et al. explore LLMs to
extract CSK, aiming to bridge the gap between implicit human
understanding and robotic execution by populating ontologies
with action patterns [12]. Their approach highlights challenges
in reliably extracting context-specific and actionable knowl-
edge. While LLMs can extract large volumes of general knowl-
edge, they struggle with consistency and specificity, making
it difficult to apply the extracted information effectively in
dynamic real-world scenarios.

CSK in robots enhances their ability to perform tasks by
adding cognitive reasoning [13]. For instance, Conti et al. [14]
propose a CSK-HRC framework that harnesses commonsense
knowledge in human-robot collaboration to improve robot
action planning. CSK-Detector [15] is an approach deploying
human-like common sense to categorize images in a task-
relevant manner based on the most vital objects detected
in them. The Robo-CSK-Organizer system [16] adapts CSK
to organize detected objects in pertinent locations with high
explainability. Our work DISCERN expands on such frame-
works to optimize robotic operations in dynamic environments.
It improves human-robot trust and efficiency. Hence it can
positively impact greenness, analogous to next-generation data
centers [17], making robots energy-efficient & sustainable.

III. THE DISCERN APPROACH

We propose an approach DISCERN (Detection Image Sys-
tem with Commonsense Efficient Ranking Network) to “dis-
cern” object selection priority in robotics. It works as follows.

A. Algorithm Design

The main algorithm of DISCERN has four parts. The
first part is the object detection and localization via an im-
age model. We compared ResNet50 [18], YOLO-world [19],
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DETR [20], and DETIC [21], and chose DETIC (trained with
LVIS [22]) due its advantages of mask segmentation.

The second part is context detection, object categorization,
and attribute assignment via a commonsense knowledge base.
By detecting the context of the objects and categorizing them,
we can embed an arbitrary output size from our image model
into a pre-defined set of categories, as in Fig. 2. This allows
us to assign default attributes by the object’s category without
having to hard-code the attributes for every possible object
class in our image model, which would be greatly time-
consuming and inefficient (e.g. DETIC outputs over 1200
classes). The categories used in our home dining table setup
are container (for food and drink), utensil, cookware, furniture,
and decoration. While many common sense knowledge bases
exist, such as Cyc [23] and OMCS [24], we found that
ConceptNet [25] suited our needs the best due to its logical
paths and general to specific inferences.

Image Model ? - - e -

!

Utensil

Common Sense

Decoration
Knowledge Base

Container Cookware Furniture

Fig. 2. Categorization from Image Model (input) to CSK Model (output)

Context detection discerns the environment, e.g. “kitchen”,
“bedroom” or “’bathroom”, using the objects detected by the
image model, which is important to properly assign default
attributes to each object. After pruning ConceptNet to include
only relevant nodes/edges and relations, making traversal more
efficient, we perform a modified breadth-first search (BFS) on
ConceptNet using the following edges: /r/AtLocation, /r/Has-
Context, /t/HasProperty, /t/IsA & /t/RelatedTo.

Categorization occurs similarly, although with extra con-
straints. For example, certain decorative items, such as a vase,
might be misclassified as a “container”. However, the “con-
tainer” category is reserved for food/drink-related containers,
so a vase object should be categorized as decoration. To
prevent such leaks from occurring, we also check if “food” or
“liquid” are immediate neighboring nodes before assigning the
“container” category. This ensures that only food containers
(via the “food” node) and liquid containers (via the “liquid”
node) are categorized as a “container”.

Once one of the target categories is found in our modified
BFS query, we note the depth and finish the rest of the
neighboring nodes at that depth before ending our search. Any
other targets that are found at the same depth are collected,
and the category is the mode (most found) target in the list.
This prevents misclassification due to the alphabetical traversal
of the search, as exemplified in Fig. 3.

Once we have categorized each object into one of the five
predefined categories, we assign default attributes unique to
each category. The assignable attributes can be found in the
”Robot Attributes” of Table I. All objects in the same category
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are assigned the same attributes. The distance attribute is a
placeholder for depth sensor data in future experiments and is
estimated using an elliptical distance field from the camera.

Part 3 of the algorithm is an optional state-aware refinement
of the default attributes. For each object, we input the default
attributes and an extracted image of the object into a VLM,
which then refines specific attributes according to the object’s
state. In our experiments, we used GPT4o0 as our VLM.

Finally, the objects’ attributes go through a formula de-
signed by us to mimic human-like commonsense priorities
based on size, danger to the human, distance, and other at-
tributes to finalize an order. Empirically, the formula prioritizes
objects that are heavier and larger, followed by those posing
a danger to the user, and those closer to the robot.

Objects are divided into three lists: close, far, and ignore.
Objects that are under the decoration or furniture category are
ignored, as the robot should not be touching tables, chairs,
and decorative items on/around the table. Objects that are
beyond the robot’s reach, determined by the distance to the
centroid of the object and an empirical threshold, are present
in the “far” list. Both the close and far lists are sorted
according to our common-sense mimicking formula, and the
final order constitutes the output. Fig. 4 is a visual depiction of
ordering on a sample image. Green boxes depict objects within
the robot’s reach, orange boxes represent objects outside the
robot’s reach, and red boxes are objects that should not be
touched by the robot (i.e. decorative items and furniture). Each
box is labeled with a number, which is that object’s rank in
the object priority queue as determined by our algorithm. !

B. Simulation Environment Development

The simulation for DISCERN’s execution is made with the
Unity Game Engine. It can be roughly divided into three parts.
The first part is the general scene setup. We used assets from
the Unity Asset Store to simulate a realistic home dining
setting and texturing of assets for better contrast.

TABLE I
ATTRIBUTES USED BY HUMAN AND ROBOT AGENTS

Human Attributes ‘ Robot Attributes

Size Weight Size Weight
Fragility Sharpness Fragility ~ Sharpness
Value Handedness Value Flexibility
Permanent Filled Distance

The second part is the cluster of props, where we once again
use assets from the Unity Asset Store to simulate objects that
would be found in the real world. The scene is setup as shown
in Fig. 5. We assign each prop a set of attributes, which are
later used to differentiate the time and effort needed to move
different objects. The attributes are exclusively accessed by our
human agent; the robot agent does not have access to these
attributes, and instead estimates them using our algorithm.

IDISCERN Code + Simulation: https://github.com/GOTWIC/DISCERN
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Fig. 3. The first target found is not necessarily
the most correct category. Stopping at the first
valid category can result in misclassification.
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Fig. 4. A visual representation of our algo-
rithm’s output on a sample home dining table
image (Input Image Courtesy of GPT4o0).

They are similar to those we assign to various categories in
our approach; see Table I for a full list.

Two notable attributes are the handedness and permanent
attributes. Handedness is the number of hands (one/two)
needed to clear a specific item. The permanent attribute
is a boolean value representing whether or not an item is
removable. Certain items, e.g. decorations have this value=1.

! a4

Fig. 5. Home Dining Table Simulated Fig. 6. DISCERN Output Visualized

In the third part, we include our human and robot agents.
The human agent clears the table via an intuitive method
by which humans normally clear tables - starting from the
smallest items to the largest. Depending on the handedness of
the next item, the human agent can pick up one or two items
each time (for example, a fork and a spoon can be picked up
together with one hand, but two pots cannot). In the simulation,
we set the default time for the human agent to clear an item
to be three seconds, corresponding to the approximate 6-foot
distance between the home dining table and the kitchen. Then
the default time is modified using the item’s attributes, such
as its weight and sharpness, using the values in Table II to
simulate the extra time it would take a human to move such
objects with greater care. The penalty is applied whenever the
attribute goes above the activation threshold.

Unlike the human agent, the robot agent does not have inter-
nal access (through the Unity Engine’s scripting capabilities)
to know what objects are on the table, nor their assigned
attributes, similar to the real world. The robot agent in the
simulation is only able to “take a picture” of what it sees, and
remove objects from the table. The picture is then processed
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TABLE II
TIME PENALTIES FOR HUMAN AGENT BASED ON ATTRIBUTES OF ITEMS
(PER 0.1 ATTRIBUTE INCREASE)

Attribute  Time Penalty (%)  Activation Threshold
Weight 13 0.3
Size 7 0.3
Sharpness 6 0.5
Fragility 10 0.7

through DISCERN, and the object priority order and location
of each object are returned to the robot agent. However, the
robot agent does not have a list of objects, so there is no way
to directly corroborate the output of our algorithm (bounding
boxes in 2D space) to the objects on the table (objects in 3D
Space), which is similar to a real-world robot, as localizing
objects that it detects is not an instant or obvious task.

Hence, the method by which the robot removes objects from
the table is by shooting multiple raycasts within the bounding
box returned by DISCERN, hopefully hitting the object we
would like to remove. Failure to locate an object with the
raycast is an intentional behavior meant to simulate the robot
failing to pick up an object based on the image it is looking at.
If the raycast successfully hits the object on the table, then it
is then removed from the table. If a segmentation mask of the
object is available (which DETIC supports), the robot agent
will shoot raycasts inside the segmentation mask instead. Since
the human agent has internal access to the list of props on the
table, it knows when a prop has been removed by the robot,
and updates its own priorities accordingly. If the robot agent
misses its raycast, it skips that object and attempts to remove
the next item instantly. The robot agent may miss its raycast
if the object has already been removed by the human agent.
Similar to the human agent, the robot has a removal time of
three seconds. It can only remove one object at a time (and
has no notion of handedness).

Additionally, if the robot attempts to pick up an object with
a permanent value of 1 (i.e. a decoration or furniture, either
intentionally or accidentally), then the object is not removed
but the three-second cool-down is still in effect. In real life, if
a robot tries to pick up an object it’s not supposed to, it may
need to be redirected towards something else.

The simulation ends when all objects have been removed,
and the total execution time is displayed. The human and
robot agents do not visually remove objects in our simulation
- instead, the agents are model-less and the items removed by
the agents are listed in the simulation’s user interface. Physical
models inside the simulation are purely for show.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

For the simulation, we conduct five different tests.

1) Human Agent Only

2) Robot Agent Only (Random Object Ordering)

3) Human + Robot with Random Object Priority Ordering

4) Human + Robot with Algorithmic Object Priority Or-
dering, VLM Disabled
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5) Human + Robot with Algorithmic Object Priority Or-
dering, VLM Enabled

The first two experiments seek to show comparative perfor-
mances between the human and robot agents when working
alone. While they do not prove or disprove the efficacy of our
algorithm, they can be used to: A) make sure our simulation
setup is reasonable, and B) compare the efficiency of human-
robot collaboration vs a single party. Since the robot-only
experiment may not detect every object, the simulation stops
when the robot removes all the objects it detected.

The third experiment serves as the baseline to which we
compare our algorithm. In the baseline, the robot agent takes
an image, finds the location of objects in the image, and
shoots raycasts at the objects to remove them, but does so in
random order. The fourth and fifth experiments use DISCERN
to prioritize objects and are compared to the baseline by
measuring the total time taken for the collaborative task. All
experiments are repeated five times with averages taken.

In addition to the main experiment to test our algorithm, we
test different image models in our simulation. For each model,
we measure the time it takes for the simulation to finish in both
solo and collaborative tasks, as well as note down the number
of penalties administered.

B. Results

Table III shows a comparison of the different image models.
We see that both YOLOvS and YOLO-WORLD have the
lowest number of penalties. However, both YOLO Models
miss more objects in the scene when compared to other
models. Since there are 42 objects in the scene and each object
has a fixed three-second removal time, removing all objects
takes at least 126 seconds. As both YOLO models are under
that threshold by a significant margin, their performance is
not as desirable. Since the YOLO model is unable to detect
larger objects, sparse detection means less clutter and thus
fewer raycast misses, giving YOLO a lower penalty count.

DETR performs the worst out of the four models. While its
detection capabilities are on par with DETIC, DETR’s output
results in the robot agent making significantly more mistakes
than the other models due to the quality of its bounding boxes.

DETIC performs the best out of all the models. Since it
can detect more objects than the YOLO models, it is more
useful in collaboration with the human agent. Furthermore,
due to DETIC’s mask segmentation functionality, the robot
agent is able to shoot raycasts with higher accuracy and less
error margin in a more cluttered environment. Both of these
contribute to DETIC having the fastest collaboration time.

Table IV shows the result of our five experiments. While
the robot by itself takes 37% longer than the human robot,
both agents working together (with the robot executing in
random order) finish the task 65% faster than the human alone.
However, using DISCERN, the collaborative task is 110%
faster than the human alone. When comparing DISCERN
against the baseline, DISCERN performs 27% faster.

While the VLM did not have a significant impact on the
specific simulation in which we conducted our experiments,
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TABLE III
COMPARISON OF IMAGE MODELS

Robot Only Collaborative
Model Time (s)  Penalties Time (s)  Penalties
YOLOvS5xu 109.1 2.8 51.1 2.2
YOLO-WORLD 108.6 2.8 51.3 2.8
DETR 155.9 124 79.5 134
DETIC 1353 6.6 474 3
TABLE IV
SIMULATION RUNTIMES
Experiment Avg. Time (s) Human Ct.  Robot Ct.
Human Only 99.2 42 0
Robot Only 136.2 0 38
Collaborative (Random) 60.3 29 13
Collaborative (CSK) 47.7 30 12
Collaborative (CSK+VLM) 47.4 30 12

we note that in scenarios where there are many heavy items,
the VLM will help the robot agent prioritize objects in the
same category but with different attributes.

V. CONCLUSIONS AND FUTURE WORK

We propose an approach called DISCERN to discern
robotics environments and help with effective task organiza-
tion, by integrating an image detection model and a CSKB
fine-tuned with a VLM, followed by adding custom priorities
based on our human common sense. Through simulation ex-
periments (on a home dining table), we demonstrate that DIS-
CERN significantly enhances the efficiency of robot-assisted
tasks in household environments. Our collaborative approach,
leveraging both human and robotic agents, proves 27% faster
than random object priority ordering, showcasing the potential
of commonsense knowledge integration in improving task
performance. Additionally, the inclusion of the vision language
model further refines the robot’s understanding and interaction
with objects, leading to more accurate and context-aware task
execution. These results underscore the value of combining
Al and human factors in developing robots for complex tasks
in dynamic environments [26], [27]. In the future, we plan
to explore more advanced concepts such as learning without
memorization [28], unlearning [29] in machines, and choosing
data [30] for transfers needed in such tasks. They can be useful
in our Al & robotics applications.
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