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Abstract— Human-robot collaboration in manufacturing is an
increasingly important topic in the field of robotics. However, the
current collaborative robot's unresolved mechanical and stiff
behaviors make its interaction with humans extremely dull,
especially for an extended period. Such interaction patterns could
further discourage humans from collaborating with these robots.
To solve this question, this paper aims to enable collaborative
robots’ emotional ability in recognizing and responding to human
emotions through developing a visual information-based
bidirectional emotion interaction (VI-BEI) interface and testing it
in manufacturing co-assembly tasks. The developed interaction
interface enables the robot to not only recognize human emotions
visually but also provide artificial emotion feedback via 3D
simulation technology which has flexible and quick prototypes,
customization, and upgrading advantages compared to hardware
design. Specifically, this paper introduces (1) the development of a
3D digital human interface that not only monitors human facial
expressions but also produces artificial emotion feedback. (2)
integrating the 3D digital human interface to enable a
collaborative robot to express real-time emotions in addition to
performing actions during co-assembly tasks, facilitating a
friendly collaboration process. (3) validation experiments and
analysis to evaluate the effectiveness and performance of the
updated collaborative robot with facial expressions through real-
world assembly tasks. The experimental results and analysis
demonstrate the effectiveness and advantages of the current
system, as well as guide the future improvement of the developed
collaborative robots to be more empathic and friendly.

Keywords— Robotics, Bidirectional Interaction, Human-Robot
Interaction, Human/Computer Interface

I. INTRODUCTION

Human-robot collaboration [1]-[4] is an increasingly
important topic in the field of robotics. Collaborative robots are
typically designed to work closely with humans in a shared
space and have been widely used in manufacturing industries
such as automotive, food, and pharmaceutical production. The
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purpose of using collaborative robots to assist humans in dull,
repetitive, and dangerous working tasks is to improve
manufacturing efficiency and productivity [1]-[3], [5], [6].
Though current collaborative robots can assist in improving
productivity, the unresolved mechanical and stiff behaviors of
such collaborative robots make their communication and
interaction with humans extremely dull, especially for an
extended period [7]. Such mechanical and stiff interaction
patterns discourage human’s willingness to work with
collaborative robots. It further negatively impacts user
acceptance and the wide application of collaborative robots in
manufacturing areas.

To solve these questions and be inspired by human-human
collaboration, this paper aims to enable robots’ basic emotional
abilities in recognizing and responding to human emotions by a
developed visual information-based bidirectional emotion
interaction interface for collaborative robots, and uses
manufacturing co-assembly tasks as working scenarios to test
the developed system. The developed emotion based
bidirectional interaction interface enables the robot not only to
recognize human emotions visually but also to provide artificial
emotion feedback via 3D simulation technology. The benefit of
using 3D simulation technologies lies in their flexible and quick
prototypes, customization, and upgrading advantages compared
to hardware. This configuration further benefits the study of
effective facial expressions in a friendly human-robot
interaction. Specifically, our work includes the following three
parts. First, the development of a 3D digital human that not only
monitors human facial expressions but also produces artificial
emotion feedback. Second, integrating the 3D digital human
interface enables a collaborative manufacturing robot to express
real-time emotions in addition to performing actions during co-
assembly tasks. It facilitates a friendly collaboration process.
Third, validation experiments and analysis to evaluate the
effectiveness and performance of the updated collaborative
robot with facial expressions through real-world assembly tasks.
The experimental results and analysis demonstrate the
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effectiveness and advantages of the current system, as well as
guide the future improvement of the developed collaborative
robots to be more empathic and friendly.

The contributions of our work can be summarized as follows:

(1) Development of a visual system that allows the robot to
monitor and promptly recognize human facial expressions. This
enables the robot to perceive different human emotions visually,
similar to humans. (2) Development and integration of a 3D
digital human to enable the collaborative robot to generate
artificial emotions in addition to collaborative actions. This
further enhances an empathic interaction process. (3) Integration
and testing of the developed robot with emotional expression
ability into real-world co-assembly tasks. This enables
exploration of the actual applications of the developed robotics
system and provides a guide on the future development of
empathic and friendly robots. (4) Combining the flexible and
rapid prototypes, customization, and upgrading advantages of
3D technology with robotics hardware to enhance an easier
study of emotion factors that can improve human-robot
collaboration.

II. RELATED WORKS

A. Visual Information Based Human Emotion Identification

In the study of human emotion identification, the initial step
involves representing different emotions in forms that are
analyzable and computable [8]. One of the most important
approaches is the discrete representation model, which classifies
emotions into distinct categories. According to Ekman’s basic
emotion theory [9], human emotions can be classified as six
fundamental emotions: fear, anger, joy, sadness, disgust, and
surprise. Similarly, Tomkins et al. [10] categorized emotions
into seven types based on varying intensities. This includes
interest-excitement, surprise-startle, enjoyment-joy, anger-rage,
distress-anguish, shame-humiliation, and fear-terror.

After representing human emotions in a form that can be
analyzed and computed, human emotion identification methods
can further calculate different emotions. For human emotion
identification, camera-based emotion recognition is one of the
popular methods due to it is flexible and easy to implement. For
camera-based emotion recognition, two main features have been
used for emotion recognition: facial expressions [11]-[14] and
body gestures [15], [16]. For facial expressions, Teixeira et al.
[17] constructed a spatiotemporal convolutional neural network
for predicting continuous emotional values of valence and
arousal using facial expression data. Faria et al. [18] extracted
simple features of facial landmarks distances and angles for
discrete emotion identification based on facial expression
recognition. Then, a dynamic probabilistic classification model
was built to output seven discrete emotional statuses (angry,
fearful, disgusted, happy, sad, surprised, and neutral). Other
research uses human body gestures for emotion identification.
For example, Sun et al. [19] developed a long short-term
memory recurrent neural network (LSTM_RNN) model to
calculate human emotions based on body pose. Yan et al. [20]
integrated features from facial expressions and body gestures for
motion recognition. Piana et al. [21] use three-dimensional
motion data captured by Kinect for human emotion
identification. These camera-based methods are easy to use, and

Emotion via facial expression |

Artificial emotions via facial

kexpression and gaze synthesil

Figure 1. System overview

further enhance fast and real-time emotion recognition for
collaborative robots.

B. Facial Expression Based Artificial Emotion Synthesis and
Eye Tracking

Facial expression and eye tracking are very important in
human-human communication. Humans are good at expressing
their emotions via facial expressions and showing their interest
by gazing into other’s eyes. Inspired by this, multiple research
projects have been done for synthesizing facial expressions and
enabling eye-tracking functions for robots to enhance a friendly
human-robot interaction process. Currently, there are two main
methods to realize this: hardware/mechanical simulation and
software simulation.

For the hardware/mechanical simulation, the robot’s face is
designed with groups of mechanical actuators and soft materials
that simulate the muscle movements and skin appearance. The
robotics facial expressions are further simulated by controlling
these actuators. Classical examples of such robots include
Sophia robot [22] and Affetto robot [23]. However, the uncanny
valley effect [24]-[27] is always the main challenge that makes
such robots very hard to be widely accepted by users.

An alternative approach is to use software simulation
technology to mimic facial expressions. In this method, virtual
human models can be built and animated for integration with the
robot system. For example, the Baxter robot [28] is a very classic
example that uses 2D animation to mimic a simple face with
eyebrows and eyes to enhance the interaction ability of a
manufacturing robot. Nao robot [29]-[31] is another example
that uses light color changes to simulate some emotions via eyes.
Compared to hardware simulation, the software simulation-
based method has the advantages of flexible and quick
prototypes, customization, and upgrading. The uncanny valley
effect can be easily and quickly noticed and corrected in this
approach by adjusting the simulation results. Hence, this paper
chooses to use 3D simulation technology to synthesize artificial
emotions for the robot.

III. SYSTEM OVERVIEW

To enable collaborative robots’ basic emotional ability, this
paper aims to integrate visual information-based bidirectional
emotion interaction (VI-BEI) in the process of human-robot
collaboration. Manufacturing co-assembly is used as a working
context to assess the developed system. Fig. 1 shows the system
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overview demonstrating how the developed VI-BEI interface
contributes to the human-robot co-assembly tasks.

The human-robot co-assembly includes three important
components: the human worker, the collaborative robot, and
assembly tasks. The collaborative robot designed in this paper
includes two parts: a Franka Emika Panda robot, and a 3D
simulated virtual head with the ability to express synthesized
emotions. In the collaborative assembly tasks, the robot will be
responsible for picking up assembly tools in the necessary order
and delivering them to the human. The human will be
responsible for finishing the rest of the assembly tasks. In
addition to delivering the tool to the human, the robot’s
interaction abilities are further enhanced by the developed VI-
BEI interface. This interface also enables the robot to monitor
human emotions through visual information streaming via a
webcam. Based on the integrated facial expression recognition
algorithm, the robot will be able to identify human emotions.
Moreover, the robot also can express its own artificial emotions
in the form of 3D synthesized visual feedback via the VI-BEI
interface. Specifically, this feedback includes 3D facial
expressions based on recognized human emotions as well as eye
gaze synthesis for an empathic and friendly interaction with
humans.

IV. METHODS AND MATHEMATICAL MODELS

A. Facial Expression Based Emotion Recognition

To realize the goal in this paper, the robot needs to be able
to see and recognize human emotions. This paper integrated the
Viola-Jones object detection framework [32] for quick human
face detection through a web camera. The integral images and
Haar-like feature-based AdaBoost learning enable the Viola-
Jones object detection framework to perform quick detection
tasks that satisfy our experimental needs.

Once a face is detected, the system needs to further identify
what emotion the human could be feeling at the time. For facial
expression identification, this system implements a lightweight
DeepFace framework [33], [34] integrated with the Facenet512
recognition model. The Facenet512 has the best recognition
accuracy compared to the other recognition models provided in
the DeepFace framework. The Facenet512 is built using a
convolutional neural networks (CNN) architecture. CNN is a
neural network with multiple layers that is trained to predict
accurate results in machine learning problems. The input images
first go through the convolution layer, where they pass through
multiple convolution filters to find certain features in the image.
The equation for the convolution of one pixel in the next layer
is as shown:

net(t,j) = (x * w)[t, j]
= ZmZn =x[m,n]w[t—m,j—n], (1)

where net(t, j) is the output on the following layer, x is the
input image and w is the filter matrix. From there, the image
goes through a nonlinearity layer to adjust the output from the
previous layer. Using the Rectified Linear Unit (ReLU), to
further improve the training of the neural network by
conventionally being used as an activation function, the output
is either saturated or limited depending on the situation, using
the following equations:

Figure 2. Example of the developed armature for controlling
facial animation.

ReLU(x) = max(0, x), )
;—x(x) = {1if x > 0;0 otherwise}, 3)

To create a fully connected layer, the output from the
nonlinearity layer must go through the pooling layer, basically
similar to reducing the resolution.

B. 3D Digital Human-Based Artificial Emotion Synthesis

To give the user a method of communication and interaction
with the system, a 3D interactive digital human is created. It is
controlled based on Blender’s armature system where the
assigned bones can be moved around in the 3D space to affect
the mesh of the head model. The mathematical representation of
the bones in the armature can be described as a set. The set
consists of multiple sets for specific controls and can be
represented as

_ head th jeyes jeyelids ; eyebrows
F = {bfee, b, b, b, b}, (4)

where b/*®* i € M denotes the ith controlling bone for the
head region; b/"***", j € N denotes the jth controlling bone of
eyes

mouth region; b,” ", k € K represents the kth controlling bone

of eye regions; bf Y e”ds, l € T indicates the Ith controlling bone
of eyelid regions; and b&"™"*  m € N denotes the m th

controlling bone for eyebrow regions.

Each control region in the set F consists of multiple sets of
bones b, v € {head, mouth, eyes, eyelids, eyebrows}, and
u is the index of the bone. The location of each bone is
dependent on its values in the 3D space and any transformations
influenced by it can be calculated by the following equation:

by, =H- <§> (%)
f

where the (X, y, z) indicates the 3D coordinates of the b[{ ,H =
Or - W - Il , where ©7 is the translation matrix, ¥, is the
scaling matrix, and I is the rotation matrix.

To bring life to the interactive digital human, some poses and
animation needed to be made so the virtual face could express
emotions as a response to the user. To do so, the 3D armature
was used to manipulate the various parts of the face. The
armature consists of a set of bones that are used for controlling
the animation. By changing the location and rotation of the
armature in the areas of head, mouth, eyes, eyelids, and
eyebrows, different facial expressions can be crafted by having
images of human faces or a mirror handy to use as reference.
Simply bending the cheeks up or down can help create more
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complex facial reactions. The location of the eyebrows and the
extent to which the eyelids are open can create different
confused or annoyed expressions. The overall head angle can
also change how a facial expression can be perceived. Fig. 2
shows the designed armature structure inside the 3D digital
human, where each visible bone has a different level of control
over the mesh of the 3D model. Some bones are specifically
made to control other bones as well, like a control bone for the
eyes, eyelids, lips, and the head as a whole.

C. Eye Gaze Synthesis for the 3D Digital Human

Eye contact plays an important role in communication. It
helps people to establish trust, express interest, and convey
emotions and intentions. Inspired and motivated by this, we
developed functions to enable the robot’s eye contact with
humans for friendly and empathic human-robot interaction via
3D eye gaze synthesis for the integrated 3D digital human.

This is realized by enabling the eyes of the robot to trace a
key point K9%%¢ () = (x9%%¢(t), y9%%¢(t)) on the human face
in the 2D camera view. The key point is located on the human
nose and near the human eyes. With human moves, this key
point will move as well. To measure the extent of this movement,

Kgaze(t)
yoaze(t) =

webcam feed window. The eye gaze direction G"°P°¢(t) of the

robot then can be calculated based on movements of the key

point V99%€(¢):
Grobot(t) =y (beye

kmax

, where L is the dimension(s) of the

_ pevye
bk,min

) £ V() = bmins (6)

k,min’

eye

where y is the ratio factor for correcting directions, b and

k;max
brein are the maximum and minimum movement extent of the
controlling bones of the eye regions indicated in Equation (4).
The above Equation (6) builds a map between the movements of
human eyes and head defined by K9%¢(t) and changes in the

robot’s eyes gaze defined by GT°P°¢(t).
V. EXPERIMENTS

A. Experimental Setup

The developed robotics system runs two parallel programs
for the VI-BEI interface and robot arm control. The VI-BEI
interface is developed by Blender and Python with libraries
installed such as math, mathutils, OpenCV, and Deepface. This
setup allows the robot not only to recognize human emotions
visually but also to provide artificial emotion feedback via 3D
simulation technology.

The collaborative robot used in the experiments was a Franka
Emika Panda robot which is a seven-axis robot arm with a 6.61b
payload and 85cm of reach. The robot arm used in this
experiment is mounted on a workbench to collaborate with a
human worker in assembling a TV monitor stand. Three
common tools were used for finishing the assembly task: a
screwdriver, pliers, and an Allen wrench.

To test how well the designed robot can react to the human
in the collaborative assembly task of putting together part of a
TV stand, the following three scenarios were proposed: (1) the
robot hands each tool promptly to complete the task at hand, (2)
the robot delays in handing the tools which irritate the human

[N
Figure 3. Experimental setup

and can cause the task to fail, (3) the robot intentionally hands
the incorrect tools, leading to the human becoming angry and
the task failing.

To achieve a realistic result, we set up a timer for limiting
each task based on how long they would normally take without
assistance. Fig. 3 displays an example of an experimental setup
which includes a web camera for human face monitoring, a
screen for visual feedback display (recognized human emotions
and synthesized robot emotions) display, a collaborative robot
arm, and the assembly task.

B. Experimental Results

The human works with the robot to complete the assembly
task of putting together part of a TV stand. The robot hands the
tools the human needs in a certain order. The designed
collaboration starts with the human waiting for the tool they
need to be passed over by the robot. The robot then picks up the
requested tool and gives it to the human. The human then
completes the current part of the assembly task and responds to
the interactive digital human. Later, the tool is returned to its
starting position. This cycle will repeat until the assembly task
is fully completed. This collaborative pattern is repeated for
each proposed scenario, where at first the tools are passed along
promptly, then it experiences some delays and issues with
handing the tools in the remaining scenarios.

Fig. 4 shows examples of recorded results. For each picture,
the recognized real-time emotion is highlighted in the webcam
feed on the left and the facial expression feedback of the robot
depending on the average recognized emotion is shown on the
right. The eye gaze synthesis is based on the position of the
center of the recognized human’s face (Equation (6)) in the
camera feed. In each instance, the human worker starts patiently
waiting for the robot to hand them the necessary tools for the
job. In Fig. 4(al) to Fig. 4(a3), the robot hands the human
worker a tool they need promptly, allowing them to complete
their task and be ready to repeat the process in Fig. 4(a4) to Fig.
4(a5). During this period, the robot gathered that the human
worker was mostly happy with the help it offered, and it
returned happy facial expressions as a response to the human
through the 3D digital human. For Fig. 4(b1) to Fig. 4(b3), the
robot was delayed in handling the tool and the human worker
fell behind schedule because of it. This resulted in the human
being upset about the delay in their task and impatient to finish,
as seen in Fig. 4(b4) to Fig. 4(b5). The robot saw this and first
returned a comforting smile trying to return a friendly
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(c1)

(c2) (c3)

(c4) (c5)

Figure 4. Three experiment scenarios where (a) the robot hands each tool in a timely manner to complete the task at hand and resulting in a happy
response from the human, (b) the robot delays in handing the tools which irritates the human and can cause the task to fail, (c) the robot intentionally
hands the incorrect tools. leading to the human becoming angrvy and the task failing.

expression. While the human was working on their task, the
robot noted that the human felt fearful, and worried about not
finishing on time. It returned a similar fearful face, worried if
the human was okay as seen in Fig. 4(b4). This enables the
robot to show empathy. In Fig 4(c1) to Fig 4(c2), the robot was
heavily delayed in grabbing the tool, and ended up grabbing the
wrong tool, which irritated the human as seen in Fig. 4(c3). Fig.
4(c3) also shows that the robot displayed a fearful facial
expression when recognizing the human was angry. This ended
up repeating, as seen in Fig 4(c4) to Fig. 4(c5), each time the
robot was worried and tried to return mostly comforting facial
expressions.

C. Experimental Analysis and Comparison

The experimental results have demonstrated the
effectiveness of our developed system in recognizing human
facial emotions and making corresponding responses via the
integrated visual information-based bidirectional emotion
interaction (VI-BEI) interface. The performance of the
developed VI-BEI system is shown in Table 1. The emotion
recognition speed is 0.01s, facial emotion recognition accuracy
is 99.65%. The fastest speed of the virtual feedback via 3D
animation simulation is 0.2 time/s depending on the current
configuration (Intel® Core™ 15-9300H @ 2.4GHz, Intel® UHD
Graphics 630, NVIDIA GeForce GTX 1650, 12GB RAM) of
the computer we used. We also believe the current version of
this proposed system can be further improved by upgrading

Table 1. System Performance

Metrics Performance
Emotion recognition speed 0.01s
Emotion recognition accuracy 99.65%!!
Virtual feedback rate 0.2 time/s

[ Performance of the Facenet512

computational hardware. Due to the camera being placed in a
fixed place, sometimes, it cannot read the human’s emotions
when the human is turning away. We believe this issue can be

improved by introducing a multimodal human emotion
recognition method.

Compared to the manufacturing robot Baxter [28] which only
can generate very simple facial expressions, our system uses a
3D digital human who can make complex facial expressions.
Moreover, Baxter cannot communicate with the person it is
assisting, it is limited to where it is placed and the task it is
trained to do. Since few manufacturing robots consider emotion,
we further compared our system with other robots designed for
social service. For example, the NAO robot can communicate
verbally, move around, and recognize people and objects, while
it is currently limited to expressing simple emotions via
changing the light color of eyes and some body gestures. In
addition, NAO is only a social companion robot and cannot lift
heavy parts compared to a heavy-duty arm like the Franka
Emika used in the experiment [35]. There is also the Sophia
robot [22], one that can be used in a more social setting and looks
very similar to a human being. This similarity could make some
people uncomfortable as it is pushing into the uncanny valley,
where people’s positive look on a robot can shift to repulsion the
more the robot looks and acts like a human [36]. Our developed
interactive 3D digital human has been designed to avoid
uncanny valley effects by a cartoonish character.

VI. CONCLUSION & FUTURE WORK

In this paper, a visual information-based bidirectional
emotion interaction (VI-BEI) interface has been developed and
integrated into the traditional collaborative robot system to
enable the robot’s basic emotional ability in recognizing and
responding to human emotions through visual information.
Three manufacturing co-assembly scenarios have been used as
the collaborative context to test the effectiveness of the
developed interactive interface in this paper. The experimental
results have demonstrated the developed robot’s ability to
promptly recognize human workers’ emotions as well as express
its own artificial emotions for a friendly and empathic
collaboration process. Future works will be focused on
improving emotion recognition, especially for when a person
looks away as well as adding voice control over the robot into
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the system. Another future work will be improving the current
3D facial expression synthesis system for more accurate facial
expressions. All of this is to enhance a more friendly and
empathic human-robot interaction.
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