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Abstract— Human-robot collaboration in manufacturing is an 

increasingly important topic in the field of robotics. However, the 
current collaborative robot's unresolved mechanical and stiff 
behaviors make its interaction with humans extremely dull, 
especially for an extended period. Such interaction patterns could 
further discourage humans from collaborating with these robots. 
To solve this question, this paper aims to enable collaborative 
robots’ emotional ability in recognizing and responding to human 
emotions through developing a visual information-based 
bidirectional emotion interaction (VI-BEI) interface and testing it 
in manufacturing co-assembly tasks. The developed interaction 
interface enables the robot to not only recognize human emotions 
visually but also provide artificial emotion feedback via 3D 
simulation technology which has flexible and quick prototypes, 
customization, and upgrading advantages compared to hardware 
design. Specifically, this paper introduces (1) the development of a 
3D digital human interface that not only monitors human facial 
expressions but also produces artificial emotion feedback. (2) 
integrating the 3D digital human interface to enable a 
collaborative robot to express real-time emotions in addition to 
performing actions during co-assembly tasks, facilitating a 
friendly collaboration process. (3) validation experiments and 
analysis to evaluate the effectiveness and performance of the 
updated collaborative robot with facial expressions through real-
world assembly tasks. The experimental results and analysis 
demonstrate the effectiveness and advantages of the current 
system, as well as guide the future improvement of the developed 
collaborative robots to be more empathic and friendly. 

Keywords— Robotics, Bidirectional Interaction, Human-Robot 
Interaction, Human/Computer Interface 

I. INTRODUCTION 
Human-robot collaboration [1]–[4] is an increasingly 

important topic in the field of robotics. Collaborative robots are 
typically designed to work closely with humans in a shared 
space and have been widely used in manufacturing industries 
such as automotive, food, and pharmaceutical production. The 

purpose of using collaborative robots to assist humans in dull, 
repetitive, and dangerous working tasks is to improve 
manufacturing efficiency and productivity [1]–[3], [5], [6]. 
Though current collaborative robots can assist in improving 
productivity, the unresolved mechanical and stiff behaviors of 
such collaborative robots make their communication and 
interaction with humans extremely dull, especially for an 
extended period [7]. Such mechanical and stiff interaction 
patterns discourage human’s willingness to work with 
collaborative robots. It further negatively impacts user 
acceptance and the wide application of collaborative robots in 
manufacturing areas.  

To solve these questions and be inspired by human-human 
collaboration, this paper aims to enable robots’ basic emotional 
abilities in recognizing and responding to human emotions by a 
developed visual information-based bidirectional emotion 
interaction interface for collaborative robots, and uses 
manufacturing co-assembly tasks as working scenarios to test 
the developed system. The developed emotion based 
bidirectional interaction interface enables the robot not only to 
recognize human emotions visually but also to provide artificial 
emotion feedback via 3D simulation technology. The benefit of 
using 3D simulation technologies lies in their flexible and quick 
prototypes, customization, and upgrading advantages compared 
to hardware. This configuration further benefits the study of 
effective facial expressions in a friendly human-robot 
interaction. Specifically, our work includes the following three 
parts. First, the development of a 3D digital human that not only 
monitors human facial expressions but also produces artificial 
emotion feedback. Second, integrating the 3D digital human 
interface enables a collaborative manufacturing robot to express 
real-time emotions in addition to performing actions during co-
assembly tasks. It facilitates a friendly collaboration process. 
Third, validation experiments and analysis to evaluate the 
effectiveness and performance of the updated collaborative 
robot with facial expressions through real-world assembly tasks. 
The experimental results and analysis demonstrate the 
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effectiveness and advantages of the current system, as well as 
guide the future improvement of the developed collaborative 
robots to be more empathic and friendly. 

The contributions of our work can be summarized as follows: 
(1) Development of a visual system that allows the robot to 
monitor and promptly recognize human facial expressions. This 
enables the robot to perceive different human emotions visually, 
similar to humans. (2) Development and integration of a 3D 
digital human to enable the collaborative robot to generate 
artificial emotions in addition to collaborative actions. This 
further enhances an empathic interaction process. (3) Integration 
and testing of the developed robot with emotional expression 
ability into real-world co-assembly tasks. This enables 
exploration of the actual applications of the developed robotics 
system and provides a guide on the future development of 
empathic and friendly robots. (4) Combining the flexible and 
rapid prototypes, customization, and upgrading advantages of 
3D technology with robotics hardware to enhance an easier 
study of emotion factors that can improve human-robot 
collaboration. 

II. RELATED WORKS 

A. Visual Information Based Human Emotion Identification 
In the study of human emotion identification, the initial step 

involves representing different emotions in forms that are 
analyzable and computable [8]. One of the most important 
approaches is the discrete representation model, which classifies 
emotions into distinct categories. According to Ekman’s basic 
emotion theory [9], human emotions can be classified as six 
fundamental emotions: fear, anger, joy, sadness, disgust, and 
surprise. Similarly, Tomkins et al. [10] categorized emotions 
into seven types based on varying intensities. This includes 
interest-excitement, surprise-startle, enjoyment-joy, anger-rage, 
distress-anguish, shame-humiliation, and fear-terror. 

After representing human emotions in a form that can be 
analyzed and computed, human emotion identification methods 
can further calculate different emotions. For human emotion 
identification, camera-based emotion recognition is one of the 
popular methods due to it is flexible and easy to implement. For 
camera-based emotion recognition, two main features have been 
used for emotion recognition: facial expressions [11]–[14] and 
body gestures [15], [16]. For facial expressions, Teixeira et al. 
[17] constructed a spatiotemporal convolutional neural network 
for predicting continuous emotional values of valence and 
arousal using facial expression data. Faria et al. [18] extracted 
simple features of facial landmarks distances and angles for 
discrete emotion identification based on facial expression 
recognition. Then, a dynamic probabilistic classification model 
was built to output seven discrete emotional statuses (angry, 
fearful, disgusted, happy, sad, surprised, and neutral). Other 
research uses human body gestures for emotion identification. 
For example, Sun et al. [19] developed a long short-term 
memory recurrent neural network (LSTM_RNN) model to 
calculate human emotions based on body pose. Yan et al. [20] 
integrated features from facial expressions and body gestures for 
motion recognition. Piana et al. [21] use three-dimensional 
motion data captured by Kinect for human emotion 
identification. These camera-based methods are easy to use, and 

further enhance fast and real-time emotion recognition for 
collaborative robots. 

B. Facial Expression Based Artificial Emotion Synthesis and 
Eye Tracking 
Facial expression and eye tracking are very important in 

human-human communication. Humans are good at expressing 
their emotions via facial expressions and showing their interest 
by gazing into other’s eyes. Inspired by this, multiple research 
projects have been done for synthesizing facial expressions and 
enabling eye-tracking functions for robots to enhance a friendly 
human-robot interaction process. Currently, there are two main 
methods to realize this: hardware/mechanical simulation and 
software simulation. 

For the hardware/mechanical simulation, the robot’s face is 
designed with groups of mechanical actuators and soft materials 
that simulate the muscle movements and skin appearance. The 
robotics facial expressions are further simulated by controlling 
these actuators. Classical examples of such robots include 
Sophia robot [22] and Affetto robot [23]. However, the uncanny 
valley effect [24]–[27] is always the main challenge that makes 
such robots very hard to be widely accepted by users.  

An alternative approach is to use software simulation 
technology to mimic facial expressions. In this method, virtual 
human models can be built and animated for integration with the 
robot system. For example, the Baxter robot [28] is a very classic 
example that uses 2D animation to mimic a simple face with 
eyebrows and eyes to enhance the interaction ability of a 
manufacturing robot. Nao robot [29]–[31] is another example 
that uses light color changes to simulate some emotions via eyes. 
Compared to hardware simulation, the software simulation-
based method has the advantages of flexible and quick 
prototypes, customization, and upgrading. The uncanny valley 
effect can be easily and quickly noticed and corrected in this 
approach by adjusting the simulation results. Hence, this paper 
chooses to use 3D simulation technology to synthesize artificial 
emotions for the robot. 

III. SYSTEM OVERVIEW 

To enable collaborative robots’ basic emotional ability, this 
paper aims to integrate visual information-based bidirectional 
emotion interaction (VI-BEI) in the process of human-robot 
collaboration. Manufacturing co-assembly is used as a working 
context to assess the developed system. Fig. 1 shows the system 

 
Figure 1. System overview 
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overview demonstrating how the developed VI-BEI interface 
contributes to the human-robot co-assembly tasks. 

The human-robot co-assembly includes three important 
components: the human worker, the collaborative robot, and 
assembly tasks. The collaborative robot designed in this paper 
includes two parts: a Franka Emika Panda robot, and a 3D 
simulated virtual head with the ability to express synthesized 
emotions. In the collaborative assembly tasks, the robot will be 
responsible for picking up assembly tools in the necessary order 
and delivering them to the human. The human will be 
responsible for finishing the rest of the assembly tasks. In 
addition to delivering the tool to the human, the robot’s 
interaction abilities are further enhanced by the developed VI-
BEI interface. This interface also enables the robot to monitor 
human emotions through visual information streaming via a 
webcam. Based on the integrated facial expression recognition 
algorithm, the robot will be able to identify human emotions. 
Moreover, the robot also can express its own artificial emotions 
in the form of 3D synthesized visual feedback via the VI-BEI 
interface. Specifically, this feedback includes 3D facial 
expressions based on recognized human emotions as well as eye 
gaze synthesis for an empathic and friendly interaction with 
humans. 

IV. METHODS AND MATHEMATICAL MODELS 

A. Facial Expression Based Emotion Recognition 
To realize the goal in this paper, the robot needs to be able 

to see and recognize human emotions. This paper integrated the 
Viola-Jones object detection framework [32] for quick human 
face detection through a web camera. The integral images and 
Haar-like feature-based AdaBoost learning enable the Viola-
Jones object detection framework to perform quick detection 
tasks that satisfy our experimental needs. 

Once a face is detected, the system needs to further identify 
what emotion the human could be feeling at the time. For facial 
expression identification, this system implements a lightweight 
DeepFace framework [33], [34] integrated with the Facenet512 
recognition model. The Facenet512 has the best recognition 
accuracy compared to the other recognition models provided in 
the DeepFace framework. The Facenet512 is built using a 
convolutional neural networks (CNN) architecture. CNN is a 
neural network with multiple layers that is trained to predict 
accurate results in machine learning problems. The input images 
first go through the convolution layer, where they pass through 
multiple convolution filters to find certain features in the image. 
The equation for the convolution of one pixel in the next layer 
is as shown: 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡, 𝑗𝑗) = (𝑥𝑥 ∗ 𝑤𝑤)[𝑡𝑡, 𝑗𝑗]    

=  ∑ ∑ =𝑛𝑛𝑚𝑚 𝑥𝑥[𝑚𝑚,𝑛𝑛]𝑤𝑤[𝑡𝑡 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛],                        (1)  

where 𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡, 𝑗𝑗)  is the output on the following layer, 𝑥𝑥  is the 
input image and 𝑤𝑤 is the filter matrix. From there, the image 
goes through a nonlinearity layer to adjust the output from the 
previous layer. Using the Rectified Linear Unit (ReLU), to 
further improve the training of the neural network by 
conventionally being used as an activation function, the output 
is either saturated or limited depending on the situation, using 
the following equations:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥),                           (2) 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥) =  {1 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0; 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒},        (3) 

To create a fully connected layer, the output from the 
nonlinearity layer must go through the pooling layer, basically 
similar to reducing the resolution. 

B. 3D Digital Human-Based Artificial Emotion Synthesis 
To give the user a method of communication and interaction 

with the system, a 3D interactive digital human is created. It is 
controlled based on Blender’s armature system where the 
assigned bones can be moved around in the 3D space to affect 
the mesh of the head model. The mathematical representation of 
the bones in the armature can be described as a set. The set 
consists of multiple sets for specific controls and can be 
represented as  

𝐹𝐹 =  �𝑏𝑏𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑏𝑏𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ, 𝑏𝑏𝑘𝑘
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑏𝑏𝑙𝑙

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑏𝑏𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�,         (4) 

where  𝑏𝑏𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖 ∈ 𝑀𝑀  denotes the 𝑖𝑖 th controlling bone for the 
head region; 𝑏𝑏𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ, 𝑗𝑗 ∈ 𝑁𝑁 denotes the 𝑗𝑗th controlling bone of 
mouth region; 𝑏𝑏𝑘𝑘

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑘𝑘 ∈ Κ represents the 𝑘𝑘th controlling bone 
of eye regions; 𝑏𝑏𝑙𝑙

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑙𝑙 ∈ Τ  indicates the 𝑙𝑙th controlling bone 
of eyelid regions; and 𝑏𝑏𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑚𝑚 ∈ 𝑁𝑁  denotes the 𝑚𝑚 th 
controlling bone for eyebrow regions.  

Each control region in the set 𝐹𝐹 consists of multiple sets of 
bones 𝑏𝑏𝜇𝜇𝜈𝜈 , 𝜈𝜈 ∈ {ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}, and 
𝜇𝜇  is the index of the bone. The location of each bone is 
dependent on its values in the 3D space and any transformations 
influenced by it can be calculated by the following equation: 

𝑏𝑏𝜇𝜇𝜈𝜈, = 𝑯𝑯 ⋅ �
𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�,                                    (5) 

where the (x, y, z) indicates the 3D coordinates of the 𝑏𝑏𝜇𝜇𝜈𝜈, 𝑯𝑯 =
Θ𝑇𝑇 ∙ Ψ𝑆𝑆 ∙ Π𝑅𝑅 , where Θ𝑇𝑇  is the translation matrix, Ψ𝑠𝑠  is the 
scaling matrix, and Π𝑅𝑅 is the rotation matrix. 

To bring life to the interactive digital human, some poses and 
animation needed to be made so the virtual face could express 
emotions as a response to the user. To do so, the 3D armature 
was used to manipulate the various parts of the face. The 
armature consists of a set of bones that are used for controlling 
the animation. By changing the location and rotation of the 
armature in the areas of head, mouth, eyes, eyelids, and 
eyebrows, different facial expressions can be crafted by having 
images of human faces or a mirror handy to use as reference. 
Simply bending the cheeks up or down can help create more 

 
Figure 2. Example of the developed armature for controlling 

facial animation. 

Authorized licensed use limited to: Montclair State University. Downloaded on August 19,2025 at 21:39:32 UTC from IEEE Xplore.  Restrictions apply. 



complex facial reactions. The location of the eyebrows and the 
extent to which the eyelids are open can create different 
confused or annoyed expressions. The overall head angle can 
also change how a facial expression can be perceived. Fig. 2 
shows the designed armature structure inside the 3D digital 
human, where each visible bone has a different level of control 
over the mesh of the 3D model. Some bones are specifically 
made to control other bones as well, like a control bone for the 
eyes, eyelids, lips, and the head as a whole.  

C. Eye Gaze Synthesis for the 3D Digital Human 
Eye contact plays an important role in communication. It 

helps people to establish trust, express interest, and convey 
emotions and intentions. Inspired and motivated by this, we 
developed functions to enable the robot’s eye contact with 
humans for friendly and empathic human-robot interaction via 
3D eye gaze synthesis for the integrated 3D digital human.  

This is realized by enabling the eyes of the robot to trace a 
key point 𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = (𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡), 𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡)) on the human face 
in the 2D camera view. The key point is located on the human 
nose and near the human eyes. With human moves, this key 
point will move as well. To measure the extent of this movement, 
𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = 𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡)

𝐿𝐿
 , where L is the dimension(s) of the 

webcam feed window. The eye gaze direction 𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) of the 
robot then can be calculated based on movements of the key 
point 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡): 

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝛾𝛾 ∗ (𝑏𝑏𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑏𝑏𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒 ) ∗ 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) − 𝑏𝑏𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,   (6) 

where 𝛾𝛾 is the ratio factor for correcting directions, 𝑏𝑏𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒  and 

𝑏𝑏𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒  are the maximum and minimum movement extent of the 

controlling bones of the eye regions indicated in Equation (4). 
The above Equation (6) builds a map between the movements of 
human eyes and head defined by 𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) and changes in the 
robot’s eyes gaze defined by 𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡). 

V. EXPERIMENTS 

A. Experimental Setup 
The developed robotics system runs two parallel programs 

for the VI-BEI interface and robot arm control. The VI-BEI 
interface is developed by Blender and Python with libraries 
installed such as math, mathutils, OpenCV, and Deepface. This 
setup allows the robot not only to recognize human emotions 
visually but also to provide artificial emotion feedback via 3D 
simulation technology.  

The collaborative robot used in the experiments was a Franka 
Emika Panda robot which is a seven-axis robot arm with a 6.6lb 
payload and 85cm of reach. The robot arm used in this 
experiment is mounted on a workbench to collaborate with a 
human worker in assembling a TV monitor stand. Three 
common tools were used for finishing the assembly task: a 
screwdriver, pliers, and an Allen wrench.  

To test how well the designed robot can react to the human 
in the collaborative assembly task of putting together part of a 
TV stand, the following three scenarios were proposed: (1) the 
robot hands each tool promptly to complete the task at hand, (2) 
the robot delays in handing the tools which irritate the human 

and can cause the task to fail, (3) the robot intentionally hands 
the incorrect tools, leading to the human becoming angry and 
the task failing.  

To achieve a realistic result, we set up a timer for limiting 
each task based on how long they would normally take without 
assistance. Fig. 3 displays an example of an experimental setup 
which includes a web camera for human face monitoring, a 
screen for visual feedback display (recognized human emotions 
and synthesized robot emotions) display, a collaborative robot 
arm, and the assembly task.  

B. Experimental Results 
The human works with the robot to complete the assembly 

task of putting together part of a TV stand. The robot hands the 
tools the human needs in a certain order. The designed 
collaboration starts with the human waiting for the tool they 
need to be passed over by the robot. The robot then picks up the 
requested tool and gives it to the human. The human then 
completes the current part of the assembly task and responds to 
the interactive digital human. Later, the tool is returned to its 
starting position. This cycle will repeat until the assembly task 
is fully completed. This collaborative pattern is repeated for 
each proposed scenario, where at first the tools are passed along 
promptly, then it experiences some delays and issues with 
handing the tools in the remaining scenarios. 

Fig. 4 shows examples of recorded results. For each picture, 
the recognized real-time emotion is highlighted in the webcam 
feed on the left and the facial expression feedback of the robot 
depending on the average recognized emotion is shown on the 
right. The eye gaze synthesis is based on the position of the 
center of the recognized human’s face (Equation (6)) in the 
camera feed. In each instance, the human worker starts patiently 
waiting for the robot to hand them the necessary tools for the 
job. In Fig. 4(a1) to Fig. 4(a3), the robot hands the human 
worker a tool they need promptly, allowing them to complete 
their task and be ready to repeat the process in Fig. 4(a4) to Fig. 
4(a5). During this period, the robot gathered that the human 
worker was mostly happy with the help it offered, and it 
returned happy facial expressions as a response to the human 
through the 3D digital human. For Fig. 4(b1) to Fig. 4(b3), the 
robot was delayed in handling the tool and the human worker 
fell behind schedule because of it. This resulted in the human 
being upset about the delay in their task and impatient to finish, 
as seen in Fig. 4(b4) to Fig. 4(b5). The robot saw this and first 
returned a comforting smile trying to return a friendly 

 
Figure 3. Experimental setup 
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expression. While the human was working on their task, the 
robot noted that the human felt fearful, and worried about not 
finishing on time. It returned a similar fearful face, worried if 
the human was okay as seen in Fig. 4(b4). This enables the 
robot to show empathy. In Fig 4(c1) to Fig 4(c2), the robot was 
heavily delayed in grabbing the tool, and ended up grabbing the 
wrong tool, which irritated the human as seen in Fig. 4(c3). Fig. 
4(c3) also shows that the robot displayed a fearful facial 
expression when recognizing the human was angry. This ended 
up repeating, as seen in Fig 4(c4) to Fig. 4(c5), each time the 
robot was worried and tried to return mostly comforting facial 
expressions.  

C. Experimental Analysis and Comparison  
The experimental results have demonstrated the 

effectiveness of our developed system in recognizing human 
facial emotions and making corresponding responses via the 
integrated visual information-based bidirectional emotion 
interaction (VI-BEI) interface. The performance of the 
developed VI-BEI system is shown in Table 1. The emotion 
recognition speed is 0.01s, facial emotion recognition accuracy 
is 99.65%. The fastest speed of the virtual feedback via 3D 
animation simulation is 0.2 time/s depending on the current 
configuration (Intel® CoreTM i5-9300H @ 2.4GHz, Intel® UHD 
Graphics 630, NVIDIA GeForce GTX 1650, 12GB RAM) of 
the computer we used. We also believe the current version of 
this proposed system can be further improved by upgrading 

computational hardware. Due to the camera being placed in a 
fixed place, sometimes, it cannot read the human’s emotions 
when the human is turning away. We believe this issue can be 

improved by introducing a multimodal human emotion 
recognition method. 

Compared to the manufacturing robot Baxter [28] which only 
can generate very simple facial expressions, our system uses a 
3D digital human who can make complex facial expressions. 
Moreover, Baxter cannot communicate with the person it is 
assisting, it is limited to where it is placed and the task it is 
trained to do. Since few manufacturing robots consider emotion, 
we further compared our system with other robots designed for 
social service. For example, the NAO robot can communicate 
verbally, move around, and recognize people and objects, while 
it is currently limited to expressing simple emotions via 
changing the light color of eyes and some body gestures. In 
addition, NAO is only a social companion robot and cannot lift 
heavy parts compared to a heavy-duty arm like the Franka 
Emika used in the experiment [35]. There is also the Sophia 
robot [22], one that can be used in a more social setting and looks 
very similar to a human being. This similarity could make some 
people uncomfortable as it is pushing into the uncanny valley, 
where people’s positive look on a robot can shift to repulsion the 
more the robot looks and acts like a human [36]. Our developed 
interactive 3D digital human has been designed to avoid 
uncanny valley effects by a cartoonish character. 

VI. CONCLUSION & FUTURE WORK 

In this paper, a visual information-based bidirectional 
emotion interaction (VI-BEI) interface has been developed and 
integrated into the traditional collaborative robot system to 
enable the robot’s basic emotional ability in recognizing and 
responding to human emotions through visual information. 
Three manufacturing co-assembly scenarios have been used as 
the collaborative context to test the effectiveness of the 
developed interactive interface in this paper. The experimental 
results have demonstrated the developed robot’s ability to 
promptly recognize human workers’ emotions as well as express 
its own artificial emotions for a friendly and empathic 
collaboration process. Future works will be focused on 
improving emotion recognition, especially for when a person 
looks away as well as adding voice control over the robot into 

 
Figure 4. Three experiment scenarios where (a) the robot hands each tool in a timely manner to complete the task at hand and resulting in a happy 

response from the human, (b) the robot delays in handing the tools which irritates the human and can cause the task to fail, (c) the robot intentionally 
hands the incorrect tools, leading to the human becoming angry and the task failing. 

Table 1. System Performance  
Metrics Performance 

Emotion recognition speed 0.01s 
Emotion recognition accuracy 99.65%[1] 

Virtual feedback rate 0.2 time/s 
[1] Performance of the Facenet512 
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the system. Another future work will be improving the current 
3D facial expression synthesis system for more accurate facial 
expressions. All of this is to enhance a more friendly and 
empathic human-robot interaction. 
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