LOCAL TOPOLOGICAL ORDER AND BOUNDARY ALGEBRAS

COREY JONES!, PIETER NAAIJKENS?, DAVID PENNEYS?, AND DANIEL WALLICK?,
WITH AN APPENDIX BY MASAKI IZUMI*

ABSTRACT. We introduce a set of axioms for locally topologically ordered quantum spin systems in
terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code
and Levin-Wen type models. For a locally topologically ordered spin system on Z*, we define a local
net of boundary algebras on Z*~!, which provides a mathematically precise algebraic description
of the holographic dual of the bulk topological order. We construct a canonical quantum channel
so that states on the boundary quasi-local algebra parameterize bulk-boundary states without
reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of
Ogata [Ann. H. Poincaré 25, 2024] that the bulk cone von Neumann algebra in the Toric Code is of
type 11, and we show that Levin-Wen models can have cone algebras of type III. Finally, we argue
that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes
the bulk topological order in (241)D, and can also be used to characterize the topological order of
boundary states.
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1. INTRODUCTION

In 2+1 dimensions, topologically ordered spin systems display a number of interesting phenom-
ena, from non-trivial braiding statistics of quasi-particles to robust error correction properties. The
most widely studied class of topological spin systems are exactly solvable with commuting projector
Hamiltonians [Kit06, LWO05]. These have the property that the useful error correction features of
the system are present in the local ground state spaces, which has led to these systems being called
local topological order.

In this article, we propose an axiomatization for local topological order (LTO) in terms of nets
of projections in the quasi-local algebra (Definition 2.10). Our axioms are stronger than previous
axiomatizations of topological quantum order (the ‘TQO conditions’) [BHM10, BH11], but we show
that our stronger axioms hold for the Levin—-Wen models [LW05] and Kitaev’s Toric Code [Kit03].!
The primary motivation for our stronger axiomatization is that LTOs in our sense give rise to a local
net of boundary algebras (Construction 2.28). These are nets of C*-algebras defined on a lattice
in one spatial dimension lower than the original LTO. In general, the local boundary algebras do
not factorize as tensor products of algebras assigned to sites, and thus carry important topological
information about the bulk system. In general, they do not embed as unital subalgebras of the
original quasi-local algebra.

The first main result of our paper is that Kitaev’s Toric Code model and the Levin-Wen models
satisfy our axiomatization. This provides a new proof (in the case of the Levin-Wen model) for the
quantum error correction properties for these classes [Kit03, CDH"20, QW20]. We also identify
the boundary nets as fusion categorical nets. Such nets first emerged from subfactor theory [EK98,
PV15], and have recently also found use in applications to topological phases of matter [LDV22,
LDOV23, Kaw20, Kaw21, Jon24] and have connections to conformal field theory [BG17, HLOT22,
VLVD™"22, Hol23].

Theorem A. The Toric Code and Levin-Wen models satisfy the LTO axioms (LTO1)-(LTO4).
The boundary nets are fusion categorical nets over the lattice Z.

Our primary motivation for the stronger axiomatization of local topological order is that the
resulting boundary net gives us a powerful tool to rigorously analyze the entire system in at least
two ways.

(1) States on the boundary algebra correspond to states on the bulk-boundary system which
restrict to the canonical ground state in the bulk. This gives a Hamiltonian-free approach
to boundary states.

(2) The boundary algebra of an LTO can be viewed as a discrete algebraic quantum field theory
in one dimension lower, holographically dual to the bulk theory. The topological order of the
bulk should then be algebraically characterized by the category of DHR bimodules of the
net of boundary algebras (see Conjecture 6.4), giving a precise mathematical formulation
of topological holography in the sense of [[W23, CW23|.

Lour stronger axioms were recently shown to hold for Kitaev’s Quantum Double model in [CHK'24] and for
twisted quantum double models in [CGR24].
2



With a concrete description of the boundary nets in hand given by Theorem A, we can explicitly
study boundary states and their relation to topological order. There are several salient boundary
states to investigate. Of particular interest are the canonical boundary states, obtained from
the LTO axioms by simply ‘compressing’ (that is, projecting the observables down to a suitable
subspace) the canonical bulk ground states. We show that these states can be viewed as equilibrium
states (or more properly, KMS states) for natural locally representable 1-parameter automorphism
groups. We use this to prove the following surprising theorem.

Theorem B. For a Levin-Wen model over a fusion category C, the canonical boundary state is a
factor state on the quasi-local algebra of the boundary. The corresponding factor is of type Il if
and only if all simple objects in C are invertible (d. =1 for all ¢ € Irr(C)); otherwise, it is of type
I11.

In the approach to the superselection theory of topologically ordered spin systems introduced
in [Naall, FN15], a fundamental role is played by the cone algebras. These are the von Neumann
algebras constructed from completing (in the weak or strong operator topology) the C*-algebras
assigned to an infinite cone in the GNS representation of the bulk ground state. Ogata showed that
for Kitaev quantum double models, the cone algebras with rough edges are type Iy, [Oga24].? As
an application of our previous theorem, we have the following result.

Corollary C. For Levin-Wen models over the fusion category C, the cone algebras are of type Il
if and only if all simple objects in C are invertible (d. =1 for all ¢ € Irr(C) ); otherwise they are of
type I1I.

This should be contrasted with the conformal nets or local algebras in algebraic quantum field
theory, which are generically type III independent of the corresponding category of superselection
sectors. In the appendix, authored by Masaki Izumi, the analysis of the type III case is refined
to obtain the type III). We note that the type of the von Neumann algebra is of relevance in the
context of embezzlement of entanglement [vLSWW24]. In particular, any normal state on a type
III;-factor is a so-called universal embezzler.

One of the main motivations for studying the boundary nets is topological holography. Recall that
anyonic excitations in the Levin-Wen model for C are described by the quantum double/Drinfeld
center Z(C). If the boundary algebra is truly a holographic dual of the bulk theory, it should
recover the topological order. We show this for (2+1)D Levin-Wen models based on a fusion
category C and for Kitaev’s Toric Code model on the plane.® For a net of algebras § over Z",
there is braided tensor category DHR(F) of DHR bimodules [Jon24], inspired by the Doplicher—
Haag-Roberts theory of superselection sectors (see [Haa96, HMO06] for an introduction). For nets of
algebras § built from a fusion category C, DHR(F) = Z(C). Our characterization of the boundary
algebras in the Levin-Wen and Toric Code models leads to the following corollary:

Corollary D. Let § be the boundary net of the Levin-Wen model over the fusion category C
(respectively the boundary net for the Toric Code). Then DHR(F) = Z(C) (with C = Hilbgy(Z/2)
for the Toric Code model).

This result immediately leads to an interesting observation in light of Corollary C, given that
inequivalent fusion categories can have the same Drinfeld center Z(C). In particular, there are
two Levin-Wen models that yield the Drinfeld double D(G) topological order for a finite group G:
C = Hilbgy(G) and C = Rep(G). The first is pointed (all simple objects are invertible), but the
second is only pointed when G is abelian. Thus, the type of the cone algebras is specific to the

2Ogata only claims the result for abelian quantum double models, but the result can be obtained in the more
general setting by combining her proof with remarks made in [FN15].
3This is was also recently proven for Kitaev’s Quantum Double model in [CHK ' 24].
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model, and does not only depend on the bulk topological order. We come back to this point later
in Remark 4.10.

Finally, we can use the above to give a categorical analysis of the superselection theory of bound-
ary states. Given a boundary state ¢ on the boundary net B, its superselection category, called
the ‘boundary order,” is the category of representations of the boundary quasi-local algebra that
are quasi-contained in the GNS representation of ¢ restriced to the algebras of operators localized
outside any sufficiently large interval (see Definition 6.8). The superselection category naturally
forms a module category over DHR(28), and choosing the GNS representation as a distinguished
object, taking internal end produces a W*-algebra object A, internal to the unitary tensor cate-
gory DHR(®B) in the sense of [JP17]. We say the boundary order of a state ¢ is topological if A,
is a Lagrangian algebra object [DMNO13, Defn. 4.6]). This is the case we expect to match with
‘gapped boundaries’ in the usual sense [KK12]. We show that for the boundary state associated to
the vacuum in Levin-Wen type models built from the fusion category C, this algebra is indeed the
canonical Lagrangian algebra in DHR(F) = Z(C).

The examples we consider in this paper are mostly restricted to 2D topological order, but we note
that our nets of boundary algebras work in arbitrary dimensions. In higher dimensions, topological
order is characterized by a braided fusion n-category rather than simply a braided fusion category
[JF22]. Thus the tensor category of DHR bimodules at the boundary is not sufficient to fully
characterize the topological order. However, we expect that the category of DHR bimodules has a
higher categorical generalization, which we plan to pursue in future work.

In §2, we introduce the basic setup and our local topological order axioms. We use these axioms
to show that we have a canonical state in the bulk, and a quantum channel from boundary to bulk
states. The reader mostly interested in applications to physical systems may wish to skip over these
operator-algebraic constructions at first reading, and jump straight to §3 and §4, where we discuss
the Toric Code and Levin-Wen examples. In §5 we take a closer look at states on the boundary
algebra, and study the type of the von Neumann algebra generated by the ‘canonical’ boundary
state. Finally, details on the bulk-boundary correspondence are given in §6.

Acknowledgements. The authors would like to thank Dave Aasen, Sven Bachmann, Jeongwan
Haah, Peter Huston, Theo Johnson-Freyd, Kyle Kawagoe, Brent Nelson, David Pérez-Garcia and
Shuqi Wei for helpful conversations. Corey Jones was supported by NSF grant DMS 2100531.
David Penneys and Daniel Wallick were supported by NSF grant DMS 2154389.

2. NETS OF ALGEBRAS AND LOCAL TOPOLOGICAL ORDER

In this section, we work with nets of C*-algebras on square lattices, i.e., Z* for some ¢. The meth-
ods here work in greater generality, but passing to more general lattices would require substantially
more space and heavier notation. We therefore restrict to the simpler case for clarity.

2.1. Nets of algebras and nets of projections.

Definition 2.1 (Nets of algebras). Suppose £ is the Z‘ lattice. An ¢D (local) net of algebras’
on L in the (unital) ambient C*-algebra 2 (called the quasi-local algebra) is an assignment of a
C*-subalgebra 2A(A) C 2 to each bounded rectangle A C £ such that

(N1) 2(0) = Clg,

(N2) if A C A, then A(A) C A(A),

(N3) if AN A =0, then [2A(A),20(A)] =0, and

(N4) U, A(A) is norm dense in 2.

4A local net of algebras such that 2A(A) is finite dimensional for all A could be called an abstract spin system,
cf. the following Example 2.4 of a (concrete) quantum spin system where the local algebras 2(A) are tensor products
of full matrix algebras.
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The first and second conditions above are equivalent to the data of a functor from the poset of
rectangles in £ ordered by inclusion to the poset of unital C*-subalgebras of 2 ordered by inclusion.

We will only be considering nets of algebras which satisfy the locality condition (N3), and will
subsequently drop the adjective ‘local’.

Remark 2.2. In some circumstances, we are not concerned with all /D rectangles, but only rect-
angles A which are sufficiently large, meaning there is a global constant r > 0 such that A contains
a closed rf-cube. An assignment of C*-subalgebras 21(A) C 2 for sufficiently large rectangles A
satisfying (N2), (N3), and (N4) can be canonically augmented to a net of algebras for all rectangles
by defining A(A) := Cly whenever A is not sufficiently large.

Definition 2.3. Let £ be the Z¢ lattice, and write Aut, (L) for its group of translation symmetries,
where we write A — g+ A for g € Aut,(L£). A net of algebras A — 2(A) is called translation
invariant if there is an Aut, (£)-action on 2 by unital *-automorphisms such that g-2(A) = 2A(g+A)
for all g € Aut(L).

Example 2.4. The canonical example of a net of algebras on a lattice is a quantum spin system. We
take the lattice £ = Z¢, and at each site/vertex, we view a copy of C?. For each bounded rectangle
A C L, we define A(A) := @, cp Ma(C). When A C A, we have obvious inclusions 2A(A) C A(A).
The quasi-local algebra 2( is the colimit of this directed system in the category of C*-algebras.
Observe that 2 carries a canonical action of Z¢ = Auttr(Ze), and translation invariance means with
respect to this canonical action.

Example 2.5. We define a 1D net I — F(I) from a unitary tensor category C and a choice of
object X € C. For any interval I C Z with n points, we set §(I) := End¢(X™). If I C J, there
are natural inclusions §(/) — §(J) given by tensoring with idx on the left and/or right depending
on the relative position of I and J. The quasi-local algebra § is the colimit in the category of
unital C*-algebras, and we identify §(I) with its image in this colimit. That is, we regard §(I) as
a C*-subalgebra of §.

When C is a unitary fusion category, we call nets constructed in this way fusion categorical
nets. We will see such nets arise as the net of boundary algebras for Levin-Wen models (see §4,
Remark 4.9) and the Toric Code (in §3, Construction 3.8). We note that if X strongly generates the
fusion category (i.e., there exists an n such that every simple is isomorphic to a direct summand of
X™), then the net of algebras § satisfies weak algebraic Haag duality by [Jon24, Prop. 4.3], which
allows one to define and identify its category of DHR bimodules; we refer the reader to §6 below
for more details.

A natural equivalence relation between nets of algebras on a lattice is bounded spread isomor-
phism. Many interesting properties, such as the category of DHR bimodules that we introduce later,
are preserved under bounded spread isomorphism. This seems to be a good notion of equivalence
for discrete nets, so we include it here.

Definition 2.6 (Bounded spread isomorphism). Suppose we have two nets of algebras, A — 2A(A)
in A and A — B(A) in B, on the same lattice £ = Z*. A unital *-algebra isomorphism ¥ : 2 — B
is said to have bounded spread if there is an s > 0 such that W(2A(A)) € B(AT*) and U~H(B(A)) C
2A(AT®) for all rectangles A, where A™* is the smallest rectangle containing A and all points of
distance at most s.

Notation 2.7. Suppose £ is the Z¢ lattice. We write OA for the vertices (or sites) at the boundary
of a rectangle A. We say that a rectangle A surrounds A by s > 0 if
e ACA,

e JA N OA is either empty or an (£ — 1)D rectangle, and
5



e Every vertex v € A\ A is contained in some closed s‘-cube contained entirely in A\ A.

If OA NOA = (), we say A completely surrounds A by s > 0, and we denote this by A <, A. If
0A N JA is non-empty, we denote this by A €5 A. Here are two examples where s = 2 and £ = 2:

OANOA
A<y A AEy A

Definition 2.8. Suppose we have a translation-invariant net of algebras A — 2A(A) C 2 on the
lattice £ = Z*. By convention, whenever A is not sufficiently large, 2A(A) = Clg(, and thus for the
empty rectangle, (@) := Clg.

A net of projections on L is an assignment of a non-zero orthogonal projection py € 2A(A)
associated to every rectangle A in £ ordered by reverse inclusion, i.e., A C A implies pao < pp. A
net of projections is called translation invariant if g - pn = pgqa for all rectangles A.

2.2. Local topological order axioms. In this section, we assume 2 is a translation invariant net
of algebras and p = (py) is a translation invariant net of projections on £ = Z.
The following algebras play an important role in the local topological order conditions below.

Definition 2.9. Given s > 0 and subsets A and A of £ with A €; A, we define

B(AEs A) = {:UpA|x € paA(A)pa and zpar = parx whenever A €, A’ with OANIA" = HA N GA} .

Observe that B(A €5 A) is a unital x-algebra with unit pa. Similar algebras were considered for
annular regions in [Haal6, KN20].

We now have introduced all necessary notation to state the local topological order axioms, which
are the main object of study in this paper.

Definition 2.10. We say (2, p) is locally topologically ordered if it satisfies the following four
axioms for sufficiently large A (for r > 0) and a globally fixed ‘surrounding constant’ s > 0:

(LTO1) Whenever A <5 A, paA(A)pa = Cpa.
(LTO2) Whenever A €5 A, paA(A)pa = B(A €5 A) (which is equal to B(A €s A)pa).
6



(LTO3) Whenever A; C Ay €, A with dA; NIA = Ay NIA, B(A; €, A) = B(Ay € A).

Ao Ay OA1 NOA = 0A5 N OA
(LTO4) Whenever A €; A; C Ag with OANOA; = OANIAg, if x € B(A €5 A1) with zpa, =0,
then z = 0.
.
Ay
A - OANOA] = OA N OAs
~—

Observe that the algebra B(A €5 A) in (LTO2) plays the role of C from (LTO1).

The first condition (LTO1) implies the topological quantum order conditions (TQO1) and (TQO2)
of [BHM10], and hence the LTO axioms are stronger (see Proposition 2.26 below). Nevertheless,
these stronger conditions are satisfied by the Toric Code and Levin-Wen examples, as we show in §3
and §4 respectively below. The remaining three LTO axioms allow us to talk about operators acting
along a boundary of a region that are ‘compatible’ with the bulk. In concrete examples, these are
the operators that create excitations along the boundary only, but not in the bulk. The definition
of boundary algebras, however, depends on the choice of region A, which should not matter as
long as A is large enough, and we should be able to identify the algebras for different choices of A.
Axioms (LTO3) and (LTO4) guarantee that this identification can be done consistently, allowing
us to define an abstract local net of boundary operators.

Example 2.11. Our first example in this article is Kitaev’s Toric Code [Kit03], which appears in
§3 below.

Example 2.12. Our main example in this article is the (2+1)D Levin-Wen string net model [LW05]
associated to a unitary fusion category, which appears in §4 below.

For the above models, we verify a simplified /stronger version of (LTO2)—(LTO4) based on the
following observation.
7



Lemma 2.13. Suppose we have a quadrilateral of rectangles

A2 Cq AQ
U U such that 81\1 N 8A1 == 8A1 N aAQ

Al Cg Al

The map B(A1 €s A1) — B(Ay €s Ag) given by multiplication by pa, is an injective x-algebra
map onto B(A1 €5 Ag). If moreover OA1 N OA] = 0Ny N DA, then this map is an isomorphism.

Proof. By definition, pa, commutes with B(A; €s A1) = pa,A(A1)pa, (by (LTO2)) inside A(Az).
Again by (LTO2), we see

B(A1 s A1)pa, PAPA RMA)DPA PA, = P RA(A1)pa, =  B(A1 € Ag).

(LT:O2) (LTO2)

Thus multiplication by pa, is a well-defined surjective unital x-algebra map B(A; €5 A1) —
B(A] €s Ag). By (LTO4) applied to A; €s A; C Ag, this map is also injective. Since A; NIA; =
OA1 NOA,, clearly

%(Al Cs AQ) pAzgl(Al)pA2 c pAle(A2)pA2 = ) sB(A2 Cs AQ)

(LT:OQ) (LTO2

When in addition dA; N OA] = A N OAg, B(A1 €5 Ag) = B(Ay E5 Az) by (LTO3) applied to
A C Ay @ As. O

The above lemma says that B(A €5 A) really only depends on sites near the boundary interval
I:=90ANOA, together with a chosen ‘side of I’ on which A €; A live. Indeed, let A; C A to be the
smallest sufficiently large rectangle with OA; N 9A = I, and let A; C A be the smallest rectangle
such that A; €; Aj. Setting

B(I) :=B(A; €5 Ap), (2.14)
Lemma 2.13 says that B(I)pa = B(A €5 A). We suppress the dependence on the fixed ‘side of I’
in the notation.” This leads to an alternative characterisation of (LTO2)-(LTO4).

Proposition 2.15. The azioms (LT02), (LTO3), and (LTO}) are equivalent to the following two
axioms:

(LTO2') Whenever A €5 A with OANIA =1, paU(A)pa = B(I)pa.
(LTO4') Whenever A; €s A; C A, zpa = 0 implies x = 0 for all x € B(I).

Proof. The forward direction is immediate by Lemma 2.13 as noted right above the proposition.
Now suppose (LTO2') and (LTO4’) hold. To see (LTO2), observe that

pAA(A)pa o) B(I)pa = paB(A; Es Ap)papa € B(A Es A)pa C pal(A)pa,

so equality follows.
Note that (LTO3) is now immediate as whenever Ay C Ag €5 A with 0A;NOA =1 = 0A2NIA,

B(AesA) = A(A = B = A(A = B(Ay € A).
(A )(LToz) pa(A1)pa (LTO2) (I)pa (LTO2) pal(A2)pa (LT02) (A2 )

Finally, to prove (LTO4), suppose A €5 A1 C Ay with AN OA; = I = JA N IAs. Since
pA; < pa,, the map

B(A s A1) =B(I)pa, N B(I)pa, = B(A € Ag)

5The algebras B(I) depend on a choice of half-space in which A; € A; live. It is possible one could choose
Ar € Ar with 9A; NOA; =T on the ‘other side’ of I such that B(A; €s Ar) may not be isomorphic to B(I).
8



given by multiplication by pa, is always surjective. If z € B(A €5 A1) = B(I)pa, with xpa, =0,
let y € B(I) such that z = ypa,. Then

YPay = YPAPAy = TPA, = 0,
so y =0 by (LTO4"). We conclude that z = ypa, = 0, and thus (LTO4) holds. O

Remark 2.16. For our examples in §3 and §4 below, we actually prove something slightly stronger.
For each interval I, let A; be the minimal sufficiently large rectangle (chosen such that I is always
on the same side of Aj) as mentioned above equation (2.14). We identify an abstract C*-algebra
C(I) C pa,A(Ar)pa, which commutes with every pa such that Ay C A with OA; NOA = 1. We
then show that whenever A €5 A with 9A NOA = I, then pa1(A)pa = €(I)pa, and that zpa =0
implies = 0 for x € €(I). Thus €(I) = &(I)pa, = B(I), but it lives inside py,A(Ar)pa, rather
than pa 2A(A7)pa,;-

Before getting to our examples, we now analyze a canonical state on 2 from (LTO1) and a
canonical quantum channel from 2 to a ‘quasi-local boundary algebra’ 8 = hg B(I) coming from
(LTO2), (LTO3), and (LTO4). If the reader is more interested in the examples, they may skip
directly to §3 and §4 below.

2.3. Canonical state of a locally topologically ordered net of projections. We now show
that a net of projections (pa) on a net of algebras 2 satisfying (LTO1) has a canonical state. Recall
that if ground states are locally indistinguishable, all of them will converge to the same ground state
when taking the thermodynamic limit. To see this, consider an increasing sequence A1 C Ay C ...
of rectangles exhausting £. Suppose that ¢, : 2l — C is a sequence of states such that ¢,y is
a ground state for the local dynamics H, on 2(A,). Then the weak-* limit ¢ is a ground state
of the thermodynamic limit. Suppose that 1), is another such sequence. Then for z € A(A), by
local indistinguishability we have that ¢, (x) = ¢, (x) for n large enough. Hence the weak-* limits
coincide. Coming back to our setting of nets of projections satisfying our LTO axioms, if the (pa)
are the local ground state projections of a quantum spin model with local topological quantum
order, this state is precisely the canonical state that we define here (see Remark 2.25 below).
Below, we write < instead of <, to ease the notation.

Lemma 2.17. Suppose (A, p) satisfies (LTO1). For A sufficiently large with A < A and x € A(A),
define Ya(x) € C as the scalar such that pazpa = Ya(x)pa. Then Ya(x) is independent of A.
We may thus denote Ya(x) simply by ¥(x).

Proof. If A < A; for i = 1,2, then pick Az containing A; U Ag. Since pa, < pa, for i =1,2,
PA3TPA; = PAsPATPAPA; = PAsYA; (T)Papas = VA, (2)pag fori=1,2,
and s0 Y, (7) = P, (2) = Yo, (2). =

The following lemma and corollary are certainly known to experts. We include a proof for
convenience and completeness.

Lemma 2.18. Suppose A = @An is a unital AF C*-algebra where each A, is a finite dimensional
C*-algebra. Then A* = lim A7

an+aj,

5 = Q. This means for

Proof. Suppose a, € A, with a,, -+ a € AT. Then a} — a, so b, :=
every € > 0, there is an N > 0 such that n > N implies
spec(bn) C N.ja(spec(a)) C [—¢/2, ||all +¢/2],

where N, p(spec(a)) is an €/2 neighborhood of spec(a). Since each A, is closed under functional

calculus, we see that applying the function (-)4 : 7 — max{0,r} to b, gives a positive sequence
9



(bn)+ such that [|(b,)+ — by|| < e/2 for all n > N. Picking N’ > N such that [|b, — a]| < /2, for
all n > N/,

1(bn)+ = all < [[(bn)+ = bnll + [|bn — al| <e.

Hence (b,)+ — a, and the result follows. O

Corollary 2.19. Suppose A = liﬂAn is a unital AF C*-algebra and B is another unital C*-algebra.
A wunital (completely) positive map ¢ : |J A, — B uniquely extends to a unital (completely) positive
map A — B.

Proof. Since ¢ is unital, for all a € |J,, An,
¢(a*a) < [la”al[¢(1) = [a*al|.

Since positives in (J,, An span |J,, An, we see ¢ is bounded. Hence ¢ uniquely extends to a map
A — B, and (complete) positivity follows directly from Lemma 2.18. O

Definition 2.20. By Lemma 2.17, 9 is a well-defined positive linear functional on J, 2(A) such
that ¢(1g) = 1lc¢, and thus extends to a unique state on 24 by Corollary 2.19. We call this the
canonical state associated to the net (py).

Corollary 2.21. When A and (pp) are translation invariant, so is the state 1.

Proof. For every rectangle A and g € Auty (L) there is a rectangle A with both A < A and
g+ A< A s A —g+ A. Then using the notation from Lemma 2.17,

U(g-x) =valg-z) = Vv_gralz) = Yalz) = ¥(z) Va e A(A). O
The next lemma follows by a simple application of the Cauchy-Schwarz inequality.

Lemma 2.22 ([AFHO07, §2.1.1)). Let A be a unital C*-algebra and ¢: A — C be a state. Suppose
x € A satisfies © < 14 and ¢(x) = 1. Then for all y € A,

P(zy) = d(yx) = ¢(y).
Corollary 2.23. For every rectangle A, (x) = 1p(pax) = p(xpp) for all x € A.

Proof. Whenever A < A, papapa = pa. Thus ¥(py) = 1 for every rectangle A. Now apply
Lemma 2.22. g

Corollary 2.24. If ¢ is a state on A satisfying ¢(pp) = 1 for all rectangles A, then ¢ = 1. In
particular, 1 is pure.

Proof. 1t suffices to prove that ¢ = 1) on every A(A) for A sufficiently large. Pick any rectangle A
with A < A. Then for all x € A(A),
() ¢(pazpa) =~ = U(z)-d(pa)

(Lem._2. 17)

().

(Lem._2.22) (Lem._2.22)

Purity of ¢ now follows quickly. Indeed, suppose ¢: 2 — C is a functional satisfying 0 < ¢ < 1.
Then for all rectangles A,

0 < @(la —pa) <Y1y —pa) = 0.
Hence p(pa) = (1) for all rectangles A, so ¢ = p(1y) - 9. O
While the quasi-local algebra 2l carries a canonical pure state ¢, we do not, a priori, have a local

Hamiltonian for which v is the ground state.
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Remark 2.25. Suppose that 2l arises from a translation-invariant frustration free local Hamiltonian
H on a spin system. Recall that an interaction is an assigment X — ®(X) = ®&(X)* € A(X) to
each finite subset X C L. The interaction X — ®(X) is called frustration free if ®(X) > 0 and
the ground states of the local Hamiltonians are given by ker(Hy), with Hy = x4 ®(X). This
implies that if pa is the projection onto the local ground space of Hp, we have pA = pAPA = PAPA
if A C A, and so (pa) is a net of projections. Suppose that (pa) satisfies (LTO1). We claim that
the canonical state v is the unique translation-invariant ground state for H. Translation invariance
follows immediately from Corollary 2.21.

It is easy to check that ¢(Hy) = 0 for every sufficiently large A, which is the minimum possible
value a state can take on Hj. Indeed, using the spectral theorem locally, we can write Hy =
Aopa + Y. Aigi where each A\; > A9 = 0, and the pp,¢; are commuting non-zero projections that
sum to 1. Since

(@) =¥(paw) =¥(0)=0 Vi, = w<HA):Aow<pA>+ZAi¢(qz->:0-

This immediately implies )(Hy) = 0 for every rectangle A by considering A C A with A suitably
large. Moreover, if ¢ is a state on 2 such that ¢(Hp) = 0 for every A, then necessarily ¢(g;) = 0
for all 7, so

d(pa) = d(pa) + Z¢(qi) =¢(ly) =1 VA

and thus ¢ = ¢ by Corollary 2.24. It now follows by [BR97, Thm. 6.2.58] that ¢ is the unique
translation-invariant ground state for H.

The article [BHM10] considers a finite 2D quantum spin system defined on I' := Zj, x Zp, for
suffieciently large integers L, with periodic boundary conditions. Furthermore, they assume in
[BHM10, § I1.A] that they have a frustration-free commuting projector local Hamiltonian. In this
setting, for each rectangle A C T', we define a projection pp onto the ground space of the local
Hamiltonian supported on A. This gives a net A — pa of projections as above. The authors then
define a pair of topological quantum order conditions. We paraphrase them here for convenience
using our notation:

(TQO1) For a € A(A) with A small enough compared to the system size, we have prapr € Cpp.
(TQO2) Let A be square that is small enough compared to the system size. Then ker Tryc(pr) =
ker TrAc (pA+1).
Here Trpc : A — 2A(A) is the tr-preserving conditional expectation which traces out the degrees
of freedom localized in A® := I' \ A. The condition (TQO2) can be interpreted as the “local”
ground spaces being compatible with the “global” one. Our (LTO1) condition implies both of
these conditions.

Proposition 2.26. The condition (LTO1) in the setup of [BHM10] implies both topological quan-
tum order conditions (TQO1) and (TQO2) of [BHM10].

Proof. Since we now consider a finite quantum system, pr is a projection in 2. If a rectangle A is
small compared to the system size L, we have for all z € A(A)

prapr = Y(x)pr

as before. This is precisely (TQO1).
Now let tr be the unique tracial state on 2l and suppose that A again is a rectangle which is
small compared to L. Let A be such that A <3 A.% Consider the state on 2 given by ¢(z) =

6The <> matches the assumptions on the locality of the local terms in the Hamiltonian in [BHM10, § I1L.B].
11



(tr(pa))~! - tr(paz). Then by Lemma 2.17,

tr(pazpa) _ ¢(z) tr(pa)
#e) tr(pa) tr(pa) ve) W
Since ¢ly(ay(z) = tr(pa) ™" tr(Trac(pa)z) and Ylg)(x) = tr(pr) ™" tr(Trae(pr)z), and both these
are equal for all z € A(A), we see that tr(pr)~! Trac(pr) = tr(pa) ! Trac(pa). In particular,
Trac(pr) and Trae(pa) have the same kernel, which is (TQO2) of [BHM10].” O

2.4. The boundary net. In this section, we use (LT02), (LTO3), and (LTO4) to build a canonical
boundary net of algebras B on a codimension one Z¢~! sublattice K of £. For a choice of half-plane
H bounded by K, setting

A = lim 2A(A),

ACH
HANK£D
we construct a unital completely positive (ucp) map® E : 2y — B satisfying
pazpa = E(z)pa VzeA(A), VAEA with DANK #0. (2.27)

Thus one way to think of B is as a generalization of the role played by C in (LTO1) as a receptacle
for the canonical state 1, whose role here is played by E.

Construction 2.28 (The boundary net.). Consider a net of projections (2, p) satisfying the
axioms (LTO1)-(LTO4). For an interval I C K, let A; C H be the smallest sufficiently large
rectangle with OA; N IC = 1. Let A; be the smallest rectangle with A; €s Ay and Ay NIA; = 1.
As in (2.14), we define B(I) := B(A; €5 Ay).

We now show that I — B(I) defines a net of algebras. By convention, Ay := 0, so B(0) = C,
and (N1) holds.

If I ¢ JC K, the map B(I) — B(J) given by = — xpa, is a well-defined injective x-algebra
homomorphism by Lemma 2.13. Since pa, < pa, whenever J C K C K, the algebras B(I) form
an inductive limit system. Setting B := lig%([ ), we see (N2) and (N4) hold.

Finally, suppose we have disjoint intervals I N'J = @ in K, so that also A; N Ay = (. For
xpa; € B(I) with x € pa, A(Ar)pa, and ypa, € B(J) with y € pa,A(As)pa,, [z,y] = 0. Thus for
any interval K C K containing I U J, zypa, = yTpa,, so (N3) holds.

Lemma 2.29. Suppose (2, p) satisfies (LTO2), (LTO3), and (LTO}). For A €5 A with 9ANOA =
I, and x € A(A), the operator Ea(x) € B(I) satisfying paorpa = Ea(x)pa is independent of the
choice of A. We may thus denote Ea(x) simply by E(x).
Proof. Suppose A €5 A; with I = OANOA; # 0 for i = 1,2, and let E;(z) € B(I) such that
pA;zpA, = Ei(z)pa,. Picking Az containing A U Ay such that I = 9A N 0A3, since pa, < pa, for
both ¢ = 1,2, we have
PA3TPA; = PAPATPAPA; = PAsEi(2)pa;pas = Ei(z)pa, for i =1,2.
Hence (E;(x)—Ea(z))pa, = 0, and so Eq(z) = Ea(z). Hence En is independent of A as claimed. [
Definition 2.30. Identifying each boundary algebra B(I) with its image in B = ligl%(l ), by
Lemma 2.29, we get a well-defined map
E: ) 24—
ACH
OANK£D

"Note that we have shown something strictly stronger than (TQO2); in fact, not only do these operators share
the same kernel, but they are actually proportional.
8Such a map is also called a quantum channel in the Heisenberg picture.
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satisfying the formula (2.27) above. Observe that E is manifestly ucp, as it is defined by compressing
by a projection. Thus E uniquely extends to a ucp map E : 24y — B by Corollary 2.19.

Remark 2.31. Although B is not a unital subalgebra of 2, so [E is not technically a conditional
expectation, we do have the property that E(z) = = for all z € B([), which we show below. This
means E is like a conditional expectation, but onto a subalgebra with a different unit than the
ambient algebra. Indeed, since [x,pa] = 0 whenever A €5 A with A N IA = I, we have

E(z)pa = pawpa = zpa.
Thus (E(x) — z)pa = 0, which implies E(z) = z.

Remark 2.32. Observe that if A C H is far enough from I, i.e., there is a A C H with A < A,
then E|yx) = 9. Indeed, pick A’ €; A" with ON' NOA" C K and A C A" and A C A’. Then for
x € A(A),
E(z)par = parzpar = parparpapar = P(x)par-
By (LTO4), E(x) = ¢(x) as claimed.
This means that every state on the boundary algebra B canonically extends to a state on Ay
which looks like the canonical state @) in the bulk. Indeed, for an arbitrary state ¢ on B, we

define ¢ : Ay — C by ¢ := ¢ o E. Thus the boundary algebra 9B gives us a state-based approach
to boundary conditions. We will study such states in more detail in §5.

Example 2.33. Observe that 1 gives a canonical translation-invariant state g5 on the boundary
net of algebras B by ¢y (xpa,) = ¥(zpa,) = ¥(x) by Lemma 2.22.

At this time, we do not know if (LTO2)—(LTO4) imply s is faithful on ®B. In our examples, ¥y
is a KMS state and B is simple which implies g is faithful by [BR97, Cor. 5.3.9]. See §5.1-§5.3
for more details.

3. ExaMPLE: KITAEV’S TORIC CODE

As a first example, we consider Kitaev’s Toric Code [Kit03]. To follow conventions used in
most of the literature on the Toric Code, here we will not exactly follow the definitions of §2; the
spins/degrees of freedom now live on the edges of a Z? lattice instead of the vertices, and we will
still use rectangles along these edges for regions. In Remark 3.13 below, we make the connection
to the exact setup of §2.

The Toric Code is defined on a square Z? lattice with a copy of C? placed at each edge of the
lattice. If A is a finite subset of edges, we have 2A(A) = @ cp M2(C). A star s is the set of four
edges incident to some vertex v, and a plaquette p consists of the four edges around a face/plaquette.
We define star operators A, and plaquette operators B, as

- X o Z
L@ B=®df
Jjes Jep
where O']X and ajZ denote the Pauli matrices 0% and oZ acting on the site j. The local Hamiltonians
are then defined as
Hy:=) (1-A)+ Y (1-By). (3.1)
SCA pCA
This model has been studied extensively in the literature. Here we just mention that in the ther-
modynamic limit, the model has a unique frustration-free ground state (which is also translation
invariant), as well as non-frustration-free (and non-invariant) ground states associated to the su-

perselection sectors of the model [AFH07, CNN18].
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The Toric Code satisfies the local TQO conditions [CDH*20], and we will exploit this to define
a net of projections satisfying (LTO1)—(LTO4). If A C L is a rectangle, define the projections

oy = H (14—2As> H <1+23p)7 (3.2)

sCA pCA

which locally project onto the ground state of our Hamiltonian (3.1).

We briefly discuss the intuition behind the algebras of the form paRA(A)pa with A €3 A, which
goes back to methods employed in [AFHO07]. Recall that (pairs of) excitations are created by path
operators. To a path £ on the lattice, we can associate an operator Fy that acts with a 0% on each

of the edges in the path. Similarly, to a path £ on the dual lattice, we can associate an operator ﬁg
acting with oX on all edges that the dual path crosses. It is easy to check that if the path is not
closed, F¢ anti-commutes with A, at the start and endpoints of the path, and commutes with all

other A;. The same is true for ﬁg and the plaquette operators. Moreover, path operators associated
to closed paths (closed paths on the dual lattice) are a product of plaquette (star) operators.

The local algebras are linear spans of products of path operators on the lattice and dual lattice.
If € A(A) is such a product, it either commutes or anti-commutes with any given star or plaquette
operator. Suppose it anti-commutes with A; for some s C A where A € A. Then we have

(I1+A)x(14+A5) =1+ As)(1 - Ag)x =0,

and hence paorpa = 0. Note that this has a clear physical interpretation: x creates an excitation
at the star s, so it takes us out of the ground state space. If there is no star or plaquette operator
in 2A(A) that anti-commutes with z and OA N OA = (), it follows that x is a product of star and
plaquette operators supported on A [AFHO07] (see also Algorithm 3.10 below). Thus pazpa = pa,
i.e., the unit of the compressed algebra paR((A)pa. Observe that this argument above did not
depend on A beyond relying on the condition that A €y A with A NIA = ().

However, this argument breaks down if 9ANOA =: I # (), as in this case, the plaquette operators
near the boundary I no longer appear in pa. In this case, paAR2U(A)pa can be identified with the
operators that create excitations at sites of I, but leave the bulk untouched. We provide a proof of
this in Algorithm 3.10 below.

There are two cases for the 1D boundary K: rough (shown on the left below) and smooth (in
the right picture) depending on the choice of Z hyperplane in Z2.

K K

While these two boundaries appear to break the translation symmetry assumed for our net of

algebras 2, there is an additional %-translation dualizing symmetry which shifts all edges 45° to

the northeast and swaps horizontal and vertical edges. This %—translation dualizing symmetry maps
14



between these two 1D boundaries.

[
SN
|
I

In either case, we can fully describe the string operators which create excitations at the boundary.
These boundary operators are supported not only on /C, but at sites in the bulk closest to IC as well.
For a rough boundary interval I of A, we write I for I union the next row or column of A adjacent
to I. Similarly, for a smooth boundary interval J of A, we write J for J union the next row or
column of A adjacent to J. In the diagrams below depicting the regions T, J. , we assume that the
rectangle A meeting K at the boundary has interior on the left of X. We also define corresponding

C*-algebras €(I) and ©(J) as follows:

AT ) A )
O'Z
P 3.4
o, (3.0
| J
e(l) = c*@g,pp‘e cI,pcC I} D(J) = C* Cs,Dg‘é CJscC J}

Here, the operators Cy, D), € €(I) are the portions of the corresponding star and plaquette terms
which are included in A, i.e., Cy = agf for the edge ¢, and D, = ®j€p on where p is a truncated
plaquette. The operators Cs, Dy € ©(J) are defined similarly.

While they have different abstract descriptions, €(I) and ©(.J) are isomorphic when the intervals
I and J contain the same number of sites (even if I and J contain a different number of sites). We
omit the proof of the following lemma, which is straightforward.

Lemma 3.5. When a rough boundary interval I has n+ 1 horizontal sites, €(I) has the following
abstract presentation as a *-algebra:

® generators: Ti,...,Tntl,Yl,--->Yn
e relations:
(1) The x;,y; are self-adjoint unitaries: x; = x, x? =1, y; =y, and y]2 =1,
(2) [xi, ;] =0,
(3) [yiry;] =0,
(4) {zit1,9i} = Tit1yi + yivier = 0, and
(5) [xi,y;] = 0 whenever |i — j| > 2.
The same presentation also holds for ©(J) when J is a smooth boundary interval with n+ 1 vertical
sites.
In either case, a canonical basis for this x-algebra is given by the monomials x7* - - - xZ’fllyll’l cogybn
with a;,b; € {0,1}. Thus this x-algebra has dimension 220+ and is isomorphic to Man (C)@®Man (C).

Corollary 3.6. There is an isomorphism of the nets of algebras € and ®.
15



Remark 3.7. There is a nice description of the x-algebra €(I) in terms of the operators from
the transverse-field Ising model. Identify I with n + 1 = #I contiguous sites on a 1D lattice,
where each site hosts C2-spins. The *- algebra €(I) is isomorphic to the algebra €’(I) generated
by the operators a acting at site i € {1,...,n+1} and JZJJH actlng at sites j and j + 1 for
j € {1,...,n}. Indeed, this just corresponds to forgetting the third % operator for each D, which

lives on [ \ I, which plays no role in the abstract characterization of &(I).
Now consider the |£+) = %(]0) +(1)) ONB which diagonalizes 0;X (so C? = C|+) & C|-)). Work-

ing in this computational basis for ®n+1 C2 =~ C2"", we see that every operator in €'(I) preserves

the subspaces with even numbers of |—) and odd numbers of |—), which exactly corresponds to the
direct sum decomposition €(I) = Man(C) & Maon(C) C Moyn+1(C).

Similarly, we have an isomorphism D(J) = CD (J) where the latter algebra is generated by
operators O'jZ at each site j € {1,...,n+1} and 0’ Uj+1 at each site j € {1,...,n} when #J = n+1.
One now works in the computational ONB {|0) |1)} for C2, observing these operators preserve
parity as before.

Construction 3.8. We now construct an isomorphism of nets of algebras from the fusion categor-
ical net § for C = Hilbg(Z/2) from Example 2.5 with X = 1@ g, where 1,9 € Zs, to either ¢’ or
D’ from Remark 3.7 above. This isomorphism is essentially a planar algebra embedding from the
C planar algebra with generator X to the C2-spin model planar algebra from [Jon21, Ex. 2.8].

The ‘box space’ §(J) = Ende(X#/) where #.J = n, is spanned by Temperley-Lieb string di-
agrams with n top boundary points and n bottom boundary points with three types of strands,
X, 1¢, g subject to the following relations (in addition to 1¢ being the empty strand):

X = ilc |9

‘:u (O=1

M

The first diagram denotes an orthogonal direct sum, which suppresses distinguished isometries
1:1lc = X and ¢4 : g — X satisfying qu + Lng, = idy. The rotations of +; and ¢, are their
adjoints. We may always expand every diagram with X strands, so we see that §(J) is spanned
by diagrams with only 1 and ¢ strands; we only work with these string diagrams. Multiplication is
stacking of boxes, where we get zero if the string types of 1¢ and g do not match.

Observe that X" 227 . 12" g, so Ende (X" ) 22 Maon (C) ® Man (C). Let p1,p, € Ende(X)
be the orthogonal projections onto the first and second copy of M;(C) = C for n = 0. The operator
u:=p1 —pg € Endc(X) is a self-adjoint unitary generating Ende(X). Now consider the morphism

+ X + / €Ende(X

Here, the crossings mean mapping between the two orthogonal copies of g in X222 2-1.®2-g.
It is easily verified that v is a self-adjoint unitary which anticommutes with v ® idx and idx ®u.
For the algebra §(J) = Endc(X#/) where #J = n + 1, we write u; for the copy of u on the i-th
strand, and we write v; for the copy of v on the j-th and (j + 1)-th strands, where i =1,...,n+1
and j = 1,...,n. Observe that the u;,v; give 2n + 1 self-adjoint unitaries satisfying the relations
of Lemma 3.5. This gives an abstract isomorphism § = ¢’ = ®’, where ¢’ and ©’ are the concrete
realizations in terms of Pauli matrices of the abstract presentations € and 2, as defined above. We
now give a concrete isomorphism.

The C?-spin model planar algebra is a diagrammatic representation of the 1D spin chain with
C2-spins at each site of Z, with a local Ms(C) acting at each site. We represent a distinguished
ONB of C? by an unshaded and a red node {0,®}. (For the isomorphism § — €, 0 = |+) and
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e = |—), while for the isomorphism § — ©’, 0 = |0) and @ = |1) in the notation of Remark 3.7).
Product tensors in Q" C? are represented by drawing n nodes on a line, for example:

|cOee) = —0—O0—e—0—

Matrix units for this computational basis |n)(¢| are represented by rectangles where |n) is repre-
sented by nodes on the top of the rectangle and |£) is represented by nodes on the bottom of the

rectangle, e.g.:
oonseoon (7233

Composition is the bilinear extension of stacking boxes, where we get zero unless all nodes match
along the middle.

When #.J = n + 1, we get an injection F(J) < @" "' My(C) = Mynt1(C) by mapping a string
diagram in the 1¢ and g strings to the matrix unit which only remembers the shadings at the end

points, e.g.:
500>l Bnsoveval

This map is well-defined and injective as all relations in C lie in its kernel. Indeed, observe that
recabling the red strands has no effect on the location of the endpoints. Denote by J+1 the interval
obtained from .J by including one site to the right, and denote by 1+ J the interval obtained from
J by adding one site to the left. The following squares commute:

T — l®z T — T®1
M2anr\l ((C) — MQ((C) ®j:7\42n+1 ((C) MQanr\l (C) —  Mon+1 (C%\@ MQ((C)

O (1 +J) O §(J+1)

. - o
Moreover, these squares fit into a larger commutative cube with §(1+J+1), as adding strings/tensoring
on the left and right commute.

We have thus constructed an embedding of nets of algebras from § into the 1D spin chain. It
remains to identify the image of § under this map. By inspection, the image is exactly spanned by
those diagrams with an even number of ® = |—) boundary nodes, which is exactly the subalgebra of
Mayn+1(C) which preserves the subspaces spanned by product tensors in the {O,®} computational
ONB which have an even or odd number of ® = |—) nodes. Hence if 0 = |+) and @ = |—), the
image is exactly ¢/, where the image of u; is 0;* and the image of v; is UjZUjZH. If o = |0) and

e = |1), the image is exactly ©’, where the image of u; is O'Z»Z and the image of v; is O'JX U])‘ir

Proposition 3.9. Suppose we have rectangles A €5 A with I = OANOA # () and let pa be as in
Equation (3.2).
(1) If I is rough as in the left hand side of (3.4), then x € €(I) and xpa = 0 implies x = 0.
(2) If I is smooth as in the right hand side of (3.4), then x € D(I) and xpa = 0 implies z = 0.

Proof. We prove the first case, and the second is similar and left to the reader. Without loss of
generality, we may assume that 0A is rough on all sides of A; if this is not the case, we can replace
A with a larger region satisfying this property. Observe that zpa preserves the space of ground
states for Ha, which is isomorphic to C2*"*™™" where A has dimensions i x j (withn+1<i+4
as A € A). Indeed, the space of ground states for Ha can be identified with the space of states
along OA spanned by the simple tensors with an even number of |—)’s in the |£) computational
basis. Comparing with the faithful action of €(I) on C2""" from Remark 3.7 above, we can view
the even-parity subspace of C?"" asa subspace of the A subspace by extending by all |+) outside
17



sites in I, and we can view the odd-parity subspace of C?"" asa subspace of the A subspace by
extending by all |+) outside sites in I except for a single site 7 € A\ I which is always |—). These
two subspaces witness a faithful action of €(I) on the ground state subspace, and thus the map
T — TPA is injective. ]

To demonstrate that the axioms (LTO1)-(LTO4) hold, we adapt the algorithm presented in
[Wal23, p. 6], which in turn is based on work in [AFHO07]. We thank Shuqi Wei for a simplification
in Step 1 below.

Algorithm 3.10. Suppose we have rectangles A <2 A or A € A, and set J := JANIA. We

assume either J = () or J is rough, and the case when J is smooth is entirely similar. The following

algorithm expresses a local operator a € 2A(A) which is a monomial in the Pauli operators that

commutes with all Ay, B), for s,p C A as a product of the A,, B), for s,p C A times an operator in

e(J).

Step 1: We only apply this step if a is supported entirely on two adjacent columns or two adjacent
rows of sites, e.g.,

R on

We call these two rows or columns H. If a is supported on a larger region, go to Step 2.

First, if H N J = (), we claim a = 1. The Pauli operator for a on the outermost edge ¢
commutes with the A, for the outermost vertex s, and thus must be either 1, or 05( , where
1, is the unit of the algebra at edge ¢. But it also commutes with the B, next to it, so
it must be either 1, or O'KZ . We conclude it is 1,. Working from the outside in, the result
follows. _

Otherwise, HN.J # (), and arguing as in the previous paragraph, we may assume H C J.
We claim a € €(J). We assume J is oriented similar to the left hand side of (3.11) as in the
left hand side of (3.4); the other cases are similar. First, consider an extremal vertical edge
Cof J beyond any rough horizontal edges as in (3.4). These extremal edges must always be
14, as they commute with the B, to the left and the Ay above or below.

Now, consider a non-extremal vertical edge ¢ of J. By considering the plaquette term
on the left side of ¢, we know that a must be 1, or O‘ZZ on this edge, as this plaquette only
intersects J at £. If a is O’ZZ here, we can multiply a by a D, € €(J) operator to the right
of £ and thus assume that a acts as the identity on this edge. Hence, we may assume that
the support of a is contained in J, the horizontal rough edges. Now, considering the star
terms to the left of these edges, we know that a must be 1, or 0¥ = C; € €(J) for each
rough edge /¢, as the star term to the right of ¢ only intersects J at ¢. Thus a € €(.J).

Step 2: Now suppose a is supported on a larger region. We pick a distinguished side of 0A which
is necessarily either rough or smooth. If J = (), any side of A works. If J # (), we pick the
distinguished side of A which is opposite J. If the distinguished side is rough, go to Step
3; if it is smooth, go to Step 4.

Step 3: Since the distinguished edge is rough, the Pauli operators on the rough edges must commute
with Ay terms for vertices s on the outside of the rough edges, which are necessarily in A\ A.
This means these Pauli operators must be either 1, or Ug( . For each af that appears,
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multiply by an Ay for the star s C A containing ¢ to ‘cancel’ the ag( . This will work except
possibly at the two edges of the distinguished edge, where the cancelling star s may not be
contained in A. In this case, we see the edge in question also commutes with a plaquette
operator in A, forcing the Pauli operator to be 1,.

We may now view a’ as a monomial supported on a smaller rectangle A’ C A with a
smooth edge opposite J. Go back to Step 1 with a’ supported on A’.

Step 4: Since the distinguished edge is smooth, the Pauli operators on the smooth edges must
commute with B, terms for plaquettes p on the outside of the smooth edges, which are
necessarily in A \ A. This means these Pauli operators must be either 1, or af . For each
O‘ZZ that appears, multiply by a B, for the plaquette p C A containing ¢ to ‘cancel’ the
O'ZZ . This will work except possibly at the two edges of the distinguished edge, where the
cancelling plaquette p may not be contained in A. In this case, we see the edge in question
also commutes with a star operator in A, forcing the Pauli operator to be 1,.

We may now view a’ as a monomial supported on a smaller rectangle A’ C A with a
rough edge opposite J. Go back to Step 1 with a’ supported on A’.

Observe that the product obtained from this algorithm is independent of the choice of A beyond
that A <3 A or A @3 A with J = 0ANIA.

Construction 3.8 and Algorithm 3.10 immediately imply the following theorem.

Theorem 3.12. The azxioms (LTO1)-(LTO}) hold for the Toric Code where B(I) is €(I) or D(I)
depending on whether we choose I to be rough or smooth.

Remark 3.13. The above analysis did not exactly follow the conventions of §2. Indeed, our Hilbert
spaces were placed on edges in our lattice, which is not strictly speaking Z? C R2. However, if we
draw the edges as points and rotate our heads 45°, we again see a Z? lattice, and we can consider
rectangles on this lattice. In this setup, both the star operators As; and the plaquette operators
appear as plaquette operators.

(3.14)

td

We can define the pp as the product of the local commuting projectors, but we observe that our
net of projections (py) is only translation invariant by even translations. One must ‘coarse grain’
in order to obtain a true translation invariant net of projections.

We can now pick a 1D hyperplane K in this rotated Z? lattice and consider rectangles whose
boundaries intersect L. By an algorithm analogous to Algorithm 3.10, for every sufficiently large
interval I in K and sufficiently large A with A NK = I, paapa = Yapa for a unique operator v,
(independent of A) in an algebra &(I) generated by certain monomials of Pauli operators. Based
on the parity of sites in I, these generating Pauli monomials can be taken to be of the form

11606 91® 01 and 1180 1@ - -®1,

where the 02 always occur on, say, sites 2i and 2i 4+ 1 and the ¢ always occur on sites 2i + 1 and
2i + 2, and we again write 1 for the unit operator of the local algebra at an edge. For example,
when I is the northeast edge of A in (3.14), (I) is generated by

O’X®O'X®1®1, 1®UZ®UZ®1, and 1®1®c% @dX.
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It is clear that these operators satisfy the relations of Lemma 3.5, but observe that the algebras
E(I) grow at roughly half the rate of €(I) or ©(I). Thus the net of algebras € is ‘coarse grained’
bounded spread isomorphic to € and ©. While this equivalence relation can be made rigorous,
we leave it to a future paper as it would take us too far afield. We also note that boundary
algebras of Toric Code have recently appeared in a slightly different form in [AHLM23] as a host
for measuremnt-based quantum cellular auotmata. We plan to expand on this connection in future
work.

4. EXAMPLE: LEVIN-WEN STRING NETS

In this section, we prove that the Levin-Wen string net model [LW05, LLB21] for a unitary fusion
category (UFC) C has a net of projections A — pp satisfying (LTO1)—(LTO4). We first recall the
definition of the model following [GHK ™24, §2] which was adapted from [KK12, Kon14] before we
define the projections pj.

Let C denote a UFC, and denote its quantum double (Drinfeld center) by Z(C) [EGNO15, §7.13].
We write C(a — b) to denote the space of morphisms a — bin C. For simplicity we will only consider
the model on a square lattice in two dimensions. Schematically, the Hilbert space can be visualized
as follows, where the black edges carry labels from Irr(C).

Here, we read from bottom left to top right. The total Hilbert space is the tensor product of local
Hilbert spaces over all sites:

a%ti — Hy = @ Cla®b—c®d)

b a,b,c,delrr(C)

where the direct sum is orthogonal. The space H,, is equipped with the ‘skein-module’ inner product

C C/

1
a d | o / :6a:a’5:’5c:c’6:/7’t f /'
< «"? «"?d> b=b A=l T re(§' o &)
b

bl

Here, t is the dagger structure on C and tre is the categorical trace using the unique unitary
spherical structure [Yam04, Pen20].

Consider now a rectangle A in our lattice £. We consider the canonical spin system from this
setup as in Example 2.4, i.e., A(A) := Q,ep B(Hy). We set 2 :=1limA(A) = Q), B(Ho)-

For a rectangle A C L, we say

e an edge/link ¢ C A if the two vertices at the endpoints of ¢ are contained in A, and
e a face/plaquette p C A if the four vertices at the corners of ¢ are contained in A.
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For each edge ¢ C A, we have an orthogonal projector Ay € A(A) which enforces that the edge
labels on ¢ match from either side:

c g c g
Ae a«%d@e%h :6dea<~7d®d<"?h
b f b f

We define p := [Leca Ae-

For each plaquette p C A, we have an orthogonal projector B, € prl(A)pf using the usual
definition from the Levin-Wen local Hamiltonian [LW05, Kon14, LLB21]:

g f 9 f
h§1,2 ko |62,2 . h§1,2 k 9 k|22 .
1 1 Vdmdndgd, tl N
D LR (O et D SR v B )
¢ selrr(C) a - d ¢ m,n,q,r,s€lrr(X) $ Ak, e\.—/.]
1,1 T |€2,1 £1,1|% ™M (€21
b c b c
Y f
hn1,2 q |M2,2 .
=> Cn) - n
K a771,1 m.on2,1 d
b C
Here, D¢ = Zcelrr(c) d? is the global dimension of C, and we use the convention from [HP17]

writing a pair of shaded vertices to denote summing over an orthonormal basis for the trivalent
skein module (see (4.4) below) and its dual. Using these conventions, the fusion relation in C is
given by

a b
S Ve |e = dady- (4.1)
c€lrr(X) N .

These conventions have also been used in other descriptions of the Levin-Wen model [Cheld,
HBJP23, CGHP23].

Lemma 4.2 ([GHK'24, Lem. 2.8], see also [Hon09]). For

g f g I’
h e ! !
&1,2 &2,2 , h &o 55,26
5 = § = )
a d / !
€11 §2,1 “ € 5%,1d
b c b c
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the constant C(&',€) above is given by

C(glv 6) = 0g=a’ " -

Hence the B), are orthogonal projections and [By, By] = 0 for p # q.
For a rectangle A, we define pf = HpC A Bp. We now define our net of projections.

Definition 4.3 (Net of projections for the Levin-Wen string net). For each rectangle A in £, define

pa=pirk = [[ B» [ ] Ar-
pCA ICA

Clearly A C A implies pa < pa.

There is a nice description of the image of pf on pf @ pecr Ho in terms of the skein module
Sc(#0A) for C with n := #0A boundary points, defined as the orthogonal direct sum

@ Claz1® - Qxy)

T1,..,Tn
with inner product given by
el |en Al e 1
" ::5_/---6 :/71.0 /. 44
< ( ¢ ) ( ¢/ ) c1=c} cn=cl, 7. dcn€ 3 (4.4)

There is an obvious linear map eval : pi ®,cp Ho — Sc(#0A) called evaluation which writes a
vector in p} X pecr Ho as an element of Se(#0A).
The proof of the following lemma from [Kon14] appears in [GHK'24, Thm. 2.9].

Lemma 4.5 ([Konl4]). For a rectangle A, on py @,cn Ho,
pE = D77 evall o eval .
where #p C A is the number of plaquettes internal to A. Hence px @, Ho is unitarily isomorphic
to Sc(#0A) via the map Dc_#p/z eval.
The article [Jon24] studied the 1D net of algebras on Z given by (1) := Endc(X#!) where
X = @celrr(C) c.

Definition 4.6 (Boundary action of F(I) = Ende(X#!) on 2A(A)). Suppose A C Z? is a rectangle,

I C OA is an interval, and ¢ € Ende(X#7). Then ¢ defines an operator I'y, € 2(A) given by first

applying pa and then gluing ¢ into the I-boundary on the outer edge of A. If I is on the top or
22



right side of A, then the map I' : Ende(X7#!) — paRL(A)py is a x-algebra maps; if I is on the bottom
or left side of A, then I' is a x-anti-algebra map. We must also multiply by a ratio of 4th roots of
quantum dimensions in order to make this map a *-(anti-)algebra map.

We give a graphical example below with #I = 3, where we assume [ is at the top of A and we
suppress A \ I from the picture. If p € C(r®@ s®t — 2 ® y ® z) C End(X?), then I'y, is the map

¢ 1 | R N B
a«%d@e%h@)i«"?ﬁ 'p—A>5d:e5h:z‘ A
b I J ’ d
dpdyd, \ V4 a ]
Had:eah:iac:ragzsék:t< 2 )
a

drdsdy

3
ISH
o
>
Y

This final picture must be interpreted as a vector in §&),.; Hy, by decomposing into simples in the
usual way.

Lemma 4.7. Suppose A is a rectangle and I C OA is an interval which is on the top or right side
of A. Whenever A C A with I C OANIOA (compare with Remark 2.16), [I'y,pa] = 0 and I'ypa =0
implies ¢ = 0. In particular, the map T": F(I) — paA(A)pa given by ¢ — T'y, is injective.

Proof. By Lemma 4.5, pa @ ,ca Ho is unitarily isomorphic to S¢(#0A), and T', acts by gluing ¢
onto the sites in I C 9A. Clearly I'y, preserves pa @,ca Ho, 50 [y, pa] = 0. That I'ypa = 0
implies ¢ = 0 is easily verified using the positive definite skein module inner product. Finally, if
Iypa =0, then I'ypa =0, so ¢ = 0. ]

The first part of the next theorem shows that the Levin-Wen string net model satisfies (LTO1),
which implies (TQO1) and (TQO2) of [BHM10] by Proposition 2.26. We supply a short conceptual
proof using (an algebra Morita equivalent to) the tube algebra [Izu00, Izu01, Miig03]. The axioms
(TQO1) and (TQO2) for the Levin-Wen model were originally proven in [QW20].”

Theorem 4.8. The Levin-Wen string net model satisfies (LTO1)-(LTO/) with s = 1.

Proof.
(LTO1): Suppose A <1 A. We define the 0A-tube algebra Tubec(0A) with internal and external
boundaries given by 0A:

A Tubec(0A) = A

\ L J

9The article [QW20] proves the modified (TQO2) axiom from [BH11], which is implied by the (TQO2) condition
from [BHM10] by [BHM10, Cor. 2.1].
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Observe that p4 & ypea Ho carries a Tubec(0A)-action where we resolve the C-morphism from the
annulus into the outer-most vertex spaces. (This action is similar to [GHK*24, Eq. (10)].) Since
A < A, every pAzpA commutes with this Tubec(9A)-action for = € 2A(A).

Now consider the evaluation map into the skein module eval : pﬁ Qper Ho = S(#0A). Ob-
serve that S(#0A) also carries a Tubec(0A)-action, and the evaluation map clearly intertwines
the actions. We also observe that S(#0A) is an irreducible Tubec(0A)-module, as all rank-one
operators on S(#9A) can be realized by operators in an annulus with no C-strings going around
the annulus. By Lemma 4.5, for any z € 20(A),

-2 A
pazpa = pApRpAzpApRpA = D22 ph evall  eval(pAapi) evall  evalpa.

EEndyype, (9a) (S(#0A))=C

This means that the compression of x above lies in

C(evall eval) Lo 1) CpR
acting on p4A X pea Hoo Thus paA(A)pa = Cpa.
(LTO2): Suppose A €1 A with 9A NIA = I # (). Without loss of generality, we may assume I is

at the top or right of A. We claim that pa20(A)pa = F(I)pa. This will prove (LTO2) as
Spa < : B(A €1 A) CpaA(A)pa =FU)pa.

(Lem. 4.7
It remains to prove paRU(A)pa € F(I)pa. By Lemma 4.5, pa @ ,cn Ho = S(#0A), which can
be identified with
B C@ag — &) =e(x#OAN - x#)
Can\1,CI
with the skein module inner product, where Cya\; = ¢, -- - ¢, is a tensor product of simples in
C over the sites of A\ I, and ¢ = ¢j, ---¢;, is a tensor product of simples over the sites of I.
Observe that this space is canonically an invertible Ende(X#/) — Ende(X#92\) bimodule, i.e.,
these algebras are each other’s commutants by the Yoneda Lemma.

Now given z € 2A(A), paxpa acts as the identity on all tensorands H, with v € A\ I. Thus the
action of paapa commutes with the right action of Ende (X #OMN ) transported back to pa @, ca Ho
from the skein module. We conclude that there is a ¢ € Ende(X7#/) such that pazpa = Lopa.

(LTO3): Suppose A1 C Ay € A with 9A; NOA = Ay N OA = T # (). Without loss of generality,

we may assume [ is at the top or right of A; for i = 1,2. By the proof of (LTO2) above,
%(Al S A) = S(I)pA = %(AQ (S A).

(LTO4): Suppose A € Ay C Ay with 9ANIA; = AN OAs = I # (). Without loss of generality,
we may assume [ is at the top or right of A. We saw in the proof of (LTO2) above that B(A &;
A1) =F(I)pa,. By Lemma 4.7 applied to A € Ag, I'ypa, = 0 implies ¢ =0, so I'ypa, =0. O

Remark 4.9. Tt follows immediately from the proof of (LTO2) above that 2B([) is isomorphic to
F(I) = Ende(X#!) depending on if we chose H to be on the left or bottom of the boundary K;
otherwise, we would obtain §(I)°° = Endcor (X#!). (Here, H and K are chosen as in §2.4.)

Remark 4.10. The most common operational definition of an equivalence between topologically
ordered states is a finite depth quantum circuit which takes one state to the other [CGW10]. In
particular, the articles [BA09, GKMR10] mapped between Kitaev’s quantum double model for
a finite group G [Kit03] and the Levin-Wen string net model for Rep(G). The recent article
[LVDCSV22] constructs a finite depth quantum circuit mapping between the Levin-Wen string net
models for arbitrary Morita equivalent UFCs.
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However, it is important to note that even though finite depth quantum circuits should preserve
topological order of the bulk (as characterized by, say, topological string operators), they will not
necessarily preserve the boundary algebra 2. This is because finite depth circuits will generally
not intertwine the local ground state spaces, and thus will not naturally map boundary algebras to
boundary algebras without explicitly requiring this. Indeed, we now give an explicit example of two
Levin-Wen string nets with the same topological order but non-isomorphic boundary quasi-local
algebras.

The boundary quasi-local algebra for the Levin-Wen model constructed from Hilbg(S3) has a
Bratteli diagram with 6 vertices at each level, and in the first level, each vertex corresponds to
a copy of C. Going from one level to the next corresponds to alternately tensoring on the left
and right by the direct sum of all simple objects, which yields a complete graph between each
consecutive layer. The resulting AF-algebra is isomorphic to the UHF algebra Mg, the infinite
tensor product of Mg(C). The pairing with the unique trace gives an order isomorphic from the
Ky group to the subgroup of R of ‘6-adic’ rationals, namely the additive group of the ring Z[%}. In
particular, the pairing of the unique trace with Kj is injective.

The boundary quasi-local algebra for the Levin-Wen model constructed from Rep(S3) has a Brat-
teli diagram with 3 vertices at each level (corresponding to the isomorphism classes) of irreducible
representations. Let p denote the 2-dimensional irrep. Note that p? is the sum of all simples, each
with multiplicity 1. Therefore, the Bratelli diagram is given by tensoring on the left and right
(alternatively) by p?, which is isomorphic to just repeatedly tensoring on the right with p? since
the category is symmetric. The resulting diagram is just a coarse-graining of the AF-algebra con-
structed by taking tensor powers of the simple object p itself. By [AE20, Ex. 4.1], this AF-algebra
has Ko group Z[t]/(1 —t — 2t?) with positive cone given by {[p(¢)]|p(3) > 0} U{0}. Since the Brat-
teli diagram is connected and stationary, there is a unique trace on Ky, which pairs with K-theory
by evaluating a class of polynomial at % (which is well-defined since % is a root of 1 —t — 2t%).
This map is not injective on Ky (or in other words, this group has infinitesimals), since [2t — 1]
is in the kernel of this map, but it is non-zero on the ring since 1 — ¢t — 2t? cannot divide 2t — 1.
In particular, this implies this AF-algebra cannot be UHF, hence not isomorphic to the boundary
quasi-local algebra for Hilbgy(Ss3).

5. BOUNDARY STATES AND APPLICATIONS TO CONE ALGEBRAS

Suppose (2, p) is a translation-invariant net of algebras and net of projections satisfying (LTO1)—
(LTO4). In this section, we study states on the boundary net 6 for our examples. The states
necessarily extend to states on the half-plane algebra 2y which look like the ground state ¢ locally
on the bulk of H away from the boundary. We begin by analyzing the canonical boundary state
from Example 2.33 for our examples. We then show it is a KMS state for Levin-Wen models, and we
use it to study the cone algebras in the case that 2 is a quantum spin system, making connections
to [Naall, FN15, Oga22]. Finally, we study other canonical boundary states on Levin-Wen models
associated to Q-systems.

5.1. Toric Code boundary states. Here, we give three states on the boundary net of the Toric
Code.

Example 5.1. It is straightforward to compute the canonical state 193 on the boundary net 9B,
which we recall is isomorphic to the nets € and ©. By Lemma 3.5, we see that each €(I) is linearly
spanned by monomials in the Pauli operators supported on I, , and similarly for ©(J). Observe
further that every such monomial in this canonical basis which is not the identity monomial anti-
commutes with some star A, or plaquette operator in a large enough region A containing I. Since
U(x)pa = paxpa for x € €(I) and A sufficiently large, arguing as in Algorithm 3.10, we see that
s (x) is exactly the coefficient of the identity monomial. We have not only determined g, but
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we have also shown it is a normalized trace on B satisfying s (ab) = ¥ (ba) for all a,b € B(I).
Under the isomorphism B = § to the fusion categorical net for Hilbgg(Z/2) from Example 2.5
with X = 1@ g, 1 corresponds to the unique Markov trace [GAIHJ89, §2.7] on § given by
trz(x) = dy" tre(p) for ¢ € Ende(X™).

In the example below, we discuss two other canonical states on the Toric Code boundary net ‘B.
These states translate directly to canonical boundary states on fusion categorical nets discussed in
§5.5 below.

Example 5.2. We use the diagrammatic description of the boundary net B = ®’ from Remark 3.7
and Construction 3.8. When #I =n+1, the x-algebra B (I) = D'(I) is generated by the operators
o acting at site i € {1,...,n+1} and o O'J_H acting at sites j and j + 1 for j € {1,...,n}. We
get a pure state ¢f, = (¢4] - |€L) on ”D’(I) by choosmg the product state vector |¢L) = ®"+1 |0) €
Q"+ €2, which lives in the +1 eigenspace for each 0. When I C J, ®'(I) includes into ©'(J) by
tensoring with I, so ¢Z’®'(1) = <Z>Z We define ¢z = hﬂgﬁz.

We will now show that the e particle condenses at this boundary, so it corresponds to the ‘rough
boundary’ in the sense of [KK12]. Note that e particles correspond to violations of A4 terms in the
Hamiltonian. Thus two e particles are created by applying a single ¢Z operator. Since \ﬁé) isa+1
eigenvector for all 0% operators, this state absorbs ¢, so it condenses the e particle.

Similarly, we can define an inductive limit state ¢x := hgnd)ﬁ( where ¢t = (k| - |¢4) and

€)= QI +) € @I C2. By similar analysis, ¢x condenses the m particle, so it corresponds
to the ‘smooth boundary’ in the sense of [KK12].

Remark 5.3. Under the isomorphism § = ®’ from Construction 3.8, ¢z on ©’ corresponds to
¢1. on § from Example 5.19 below, as ¢z takes the coefficient of the empty diagram in §(/) =
Ende(X#!) because Q1" |0) is the first standard basis vector in C?" "' On the other hand, ¢x
corresponds to ¢¢g for @ = C[Z/2] with normalized multiplication on § from Example 5.20 below,

n+1)

as ¢x maps every diagrammatic basis element in F(I) to 2=# because @' |+) is 27 "+1/2 times

the all 1s vector in C2"

5.2. The canonical Levin-Wen string net boundary state. We now consider the Levin-Wen
string net model for the UFC C discussed in §4.

The interactions ® of the Levin-Wen string-net system are given by a map from the finite subsets
A of our infinite square lattice to self-adjoint operators of 2 such that ®(A) € 2(A). In our setting,
the interactions are easily defined: ®(¢) = 1o — Ay for each edge ¢ and ®(p) = 19— B, for a plaquette
p, and ®(F) = 0 for all other finite subsets. On &), Ho, we define the local Hamiltonian

Hy = Z O(F) = Z(lm —Ap) + Z(lm - By),

FCA LCA pCA

which is clearly a commuting projector local Hamiltonian.

Remark 5.4. We can construct the canonical state ¢ from a net of state vectors [£25) on our local
algebras 2A(A). On @, Hv, we normalize the empty state vector [0) € py @, Ho after applying
pf to get the state vector
Q) := D (#PCA /2 B H,.
¥

We set wp = (Qa] - [Q24) : A(A) — C to be the corresponding vector state. Clearly wp(pa) =1, so
by Lemma 2.22, wp(a) = wa(paa) = wa(apy) for all a € A(A). Moreover, if a € A(A) and A < A,
then

wa(a) (Lern.:2.22) wa(paapa) (Th; 4.8) ¥(a) - walpa) = ¥(a).
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We now compute the canonical state g from Example 2.33 on the boundary algebra 95 of the
Levin-Wen model. By Theorem 4.8, operators in B(/) where OA N K = Z are products of the
form I'ypa where ¢ € Ende(X#1) and A € A with A N OA = I. (Without loss of generality, we
have assumed [ is at the top or right of A.) Thus to compute 15 on B, it suffices to calculate
Y(Ty) = ¥(Lypa) for ¢ € End(X#!) along some boundary interval I. This will also give us a
formula for the canonical boundary state transported to the fusion categorical net § for C from
Example 2.5.

Fix p €Cla1 ® -+~ ® ap — by ® --- @ by), an interval I along K in Z? with #I = n, and a large
square A surrounding I such that 9A NI = (. We compute paT',pa§ where § is a simple tensor in
pg X yca Ho. Here, we have colored the first-acting pa red and the second acting pa blue, which
will be reflected in the color of the strings used in the plaquette operators in the diagrammatic
proof below. We will further make the simplification that n = 3, and it will be clear what the
formula will be when n is arbitrary.

First, starting with £, we apply pa, screening all punctures corresponding to the plaquettes. In
order to apply the gluing operator I',, we must first use (4.1) to resolve all plaquette operators
which act on the sites in I. In the diagrams below, to ease the notation, we suppress all unnecessary
sums over simples and scalars, only keeping track of labels, sums, and scalars for sites in I, which
are marked in cyan in the diagram on the left.

oo
00
00

00

1m
T1Y1 ay Y1471
T\z /
7\3 /
3@ 3

\/drl dT4 \/dal daQ daB
N
" Z Dy \/dy, dyydoy

ai,a2,as
Y1,Y2,Y3
€lrr(C)

T4

0000
0000
0000

We now apply I', and then pa to obtain

r @
zgyilaif ey zy

O
/ 3
(m) (m) VIt 5~ 8 \ . O/

NZET dy, dgyd

T3 T1,72,73,74,

Y1,Y2,93 \
€lrr(C) Z3,Y31a3 a3 (Y3 x3

or

OOOO

where we have used that 32 B, for all un-resolved plaquette operators. We now assume a; = b;
for all 4, and we use the screenlng property of the blue B, operators with respect to the resolved
27



red B, operators to obtain

O
0000

\ O

T2 Y2\a2 % az[y2 T2

dxl dIQ dCE3 71,72,73,74, ,,\ O
€lrr(C) Z35Y31a3 a3 /Y3 rs3

Y1,Y2,Y3
O\«
T

Ol .2
5 ¢ O

We can thus reduce to the analysis of the sub-diagram

1
Vda, daydasg Z N
2
4
dwl dz2 dzs T1,72,7'3,7'4,
Y1,Y2,Y3
elrr(C) 3

Above, we claim that the morphism on the left is equal to a scalar times the identity idy, z,2,; this
scalar will necessarily be equal to ¢(I'y). First, we use the fusion relation (4.1) to contract along
the r1 string to obtain

Y1
a a1

1
N "
a1 g § V dy, dp,—E2 820921  a2llp T2
DX divldmdms T2,73,T4, r3
Y1,Y2,Y3 '
€lrr(C) T3,Y3\03 a3[ys 3

T4

Next, we use the fusion relation (4.1) to contract along the y; string to obtain

S

daQ da3 Z drz dm _Z2 ,

Yy2laz © azly2 T2

doy ——F———=
14
D)(\/m 72,73,74, .
Y2,Y3 "3
€Irr(C) x3,Y3)a3 a3[ys x3
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We then use the fusion relation (4.1) to contract along the ry string to obtain

1
v/ da, : ;
da1 dag 75 Z \/ dy2 d'y‘4 337%2 o SO & T2 -

4/
DX d@d% 73,74,
Y2,Y3 r3
€lrr(C) 3 y3\as as fys 3

T4

=)

At this point, it is clear that we can then contract along the ys string using (4.1), followed by the
r3 string afterward to obtain

_m 22l
daydayda v daydayday e

Tro ) X Vb= 2R e) 3 b
elrr(C) ra— ra€lrr(C) ra O

1

dg,dg,d
= 41 92 43 5; as trc(cp) . o .
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We have just proven the following proposition.

Proposition 5.5. The canonical state 1z on the boundary net of algebras § is given by

1
V(L) = h Z dey -+ dc, t1¢( * Pe1@--@c,) ¢ € Ende(X™)
X seebn
Cellrr(g’)

where pe,g--ge, € Ende(X™) is the orthogonal projection onto ¢y ® -+ ® ¢, C X™.
It is clear that the above formula gives a well-defined inductive limit state 1z on §.

Remark 5.6. Surprisingly, v is a trace on B = § if and only if C is pointed, i.e., d. = 1 for all
¢ € Irr(C). In this case, § has a unique Markov trace, namely tr := ligld;(" tre : @Enda (X™) = C,
satisfying

Vo€ Endc(X"),

as the centers Z(§(I)) have dimension globally bounded by # Irr(C) [GAIHJ89]. Thus ;5 is the
unique Markov trace, and §” in the GNS representation of ¢z is a II; factor. Above, since X is
self-dual,

~ T T

= COeVY 0COeVy = eVy Oevy
7

where (X, evy,coevy) is any standard solution of the conjugate equations for X. (Observe

P clab—1)@C(1 - cd)
a,b,c,d
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is of the form I ® K* for the Hilbert space K = C(XX — 1), and summing over an ONB and its
adjoint is independent of the choice of ONB.)

5.3. The KMS condition for the Levin-Wen string net boundary state. We now show
that the canonical state ¢z on the fusion categorical net § is the unique KMS 3 = 1 state for a
dynamics coming from a certain unbounded operator.

First, we use ¥z to complete § to a Hilbert space on which § acts by left translation by bounded
operators. The operator Hy = — ), C, with C,, := Zcelrr(c) log(d,.)id. € End¢(X) acting locally
at site v is an unbounded operator acting in L?(§,3), containing each ¢ € F(I) = End¢(X™) in
its domain for each bounded interval I (we write n = #I here). Observe that exp(—itC,) =
Dcire) d;"id. acting at site v, and thus exp(itHy) = [], exp(—itC,) acts locally at each site v.
FortcRandpeCla1 ® - ®ap - b1 ®---®by,) CF(I), we have

dzt ---dif
ot(p) = exp(itHy)pexp(—itHy) = H exp(—itCy,)p exp(itCy) = <M> ©. (5.7)
u,vel b1 bn

Clearly on such ¢, t — o4(¢) can be analytically continued to an entire function, and we observe

oit(p) = day -+ o, @ = oy i, .
db_lt'”dl;f dt - db

Recall that 15 is a KMS-5 state for (§,0) and g > 0 if for all z,y € § with y entire (¢t — o¢(y)
extends to an entire function), ¢¥z(xoig(y)) = Yz(yx). When p a1 ® -+ ®@a, = b1 ® -+ ® b, and
PR - ®b, > a1 ® - R ay, are in F(I), we calculate

s ... d° 1 (48 .48
i — 1 n — 1 n d L d .
Y3(015(9) (dbﬁlm di) ¥ole9) = 7 (déi dfn>( b, tre(o0)
1

oy D (o) tre(69) = V5 (09).

We have thus shown 15 is KMS-1 for (F,0).

Moreover, 1z is the unique KMS-1 state on § by [Kis00, Prop. 4.1] and uniqueness of the
Frobenius-Perron eigenvector (up to scaling), as the Bratteli diagram of § = hg%([—n,n]) is
connected and stationary. Hence letting §’ be the von Neumann algebra generated by § in the
GNS representation L?(F,53), we have that §” is a factor. Recall that ¢z and o both extend to
§”, and this extension is still a KMS-1 state [BR97, Cor. 5.3.4], so the modular automorphism
group is given by ¢t — 0. We write (3, 0) for this extension again.

Lemma 5.8. The canoncial state vz is faithful and normal on §". Since § is simple, 1z is faithful
on §.

Proof. By [BR97, Cor. 5.3.9], the canonical cyclic vector €, in the GNS representation L2(3,v3)
is separating for §”, and thus 1z = (Qy.| - [€y;) is normal and faithful. The last claim is then
immediate. ([l

Our next task is to prove the following theorem.

Theorem 5.9. If there is a ¢ € Irr(C) with d. # 1, then for all but countably many t € R, o, from
(5.7) is outer. In particular, " is a type III factor.

To prove this theorem, we make the following definition.

Definition 5.10. Given a von Neumann algebra M and a faithful state ¢, a ¢-central sequence is
a norm bounded sequence (x,,) C M such that |lyz, — zny||s — 0 for all y € M?, where M? is the
centralizer of ¢.
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Lemma 5.11. Let « be a ¢-preserving automorphism of M and (xy,) a ¢-central sequence. If o is
inner, then ||a(xn) — x|y — 0.

Proof. If o = Ad(u) is ¢-preserving, then v € M?, and ¢(yu) = ¢(uy) for all y € M. Thus right
multiplication by u (and u*) is a || - ||4-isometry. We conclude

0 = lim ||ux, — zpullp = lim ||uz,u” — z||p = lim ||a(z,) — Tn|]4- O

We also need an observation about centralizers. Recall that there is a canonical ¢-preserving
conditional expectation E : M — M defined as follows. First, consider the canonical injection
v L2(M?,¢) < L*(M, ¢). Then for x € M, E(x) := *z1 € B(L?*(M?, ¢)) and commutes with the
bounded right M?-action, and thus defines an element of M?.

Now suppose M = | MnSOT is a hyperfinite von Neumann algebra with each M, finite dimen-
sional. We then get a conditional expectation F, : M,, — Mg as above.

Lemma 5.12. Lett — af be the modular automorphism group of M for the state ¢. Suppose Uf
T

——S0
preserves My, for allm and all t € R. Then E|y, = Ey. In particular, M? = U M;f .

Proof. Since each cr]fs preserves each M, L?(M,,, ¢) is an invariant subspace for each unitary A% on
L?(M, $), where A is the modular operator. This means that A¥ commutes with the orthogonal
projection p, onto each L2(M,, ¢) for all n, so the von Neumann algebra generated by all A* and
pn is abelian. Hence for each ¢ € R, the spectral projection e; onto the A = 1 eigenspace for A%
commutes with each p,. The orthogonal projection e onto the intersection of these eigenspaces is
given by e = [[,cg €, where the limit is taken in SOT. Hence e is in the von Neumann algebra
generated by the A% and p,, so it commutes with each p,,. Since each e; projects onto the invariant
subspace for A%, it follows that e projects onto L?(M?, ¢) embedded in L?(M, ¢), so E(z)Q = ez
for x € M. Thus for x € M,

E(x)Q) = exQ) = eppxQ = ppexQ) = pp E(x)Q,

and thus E(x)Q2 € L?(M,, ). We conclude that E,,(z) = E(z).
To prove the final claim, suppose € M? and z, € M, with z, — 2 SOT. Then E,(z,) =
E(z,) — E(x) =  SOT. Since E,(zy,) € M, we are finished. O

Proof of Theorem 5.9. Suppose there is a ¢ € Irr(C) with d. # 1. Let ¢t € R such that d2¥ # 1. We
define a 1z-central sequence using the map ev. : ¢ ® ¢ — 1¢. To begin, g = ev, localized at sites
0,1 in our Z-lattice K. We then set xz,, := 7,(ev.), where 7, is translation by n € N, i.e.:

n—1 n+2

o Ve

n ntl

xn:...X X...

Note that o;(x,) = d_ 2z, for all n. We claim that () is ¥z-central. Indeed, for y € (F")¥s,

lyzallf, = vs(ahy yan) = ¥3(yenoi(e)y”) = dz *Vs(yanzhy)
< dg?|lenl Py y) = dg [l 1yl (5.13)
Let € > 0, and choose a finite interval I C Z and z € F(I)¥s such that ||y — z|ly; < € (which exists

as [JF(I) is SOT-dense in §” together with Lemma 5.12). Pick N € N large so that n > N implies
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Tnz — z2x, = 0. We now calculate that when n > N,

lyzn — 2nylly; = lyzn — 220 + 20z — Taylly;
< Iy = 2)zallys + llzn(z = y)llus
< (dz? + Dllaallly = 2lly; by (5.13)
< (d?+1)C-e
where C' = ||z, || is independent of n by translation invariance of ¢¥z. We conclude that (z,) is

z-central. However,

o (en) = 2l = 1@ = Dallyy = 1827 = 1] oallsy = a2 = 1] K

where K = ||z, ||y, is independent of n. By Lemma 5.11, oy is not inner.

The last claim follows immediately by [Tak03b, Thm. VIII.3.14]. O

Remark 5.14. Recall that type III factors can be further classified by a parameter A € [0,1]. In
Appendix A authored by Masaki Izumi, he shows there are two cases, based on the fusion rules for

C. If the set
dedp
de

generates R~ as a closed subgroup, then §” is of type III;. We call a triple (a,b,c) such that
NG > 1 admissable. If the generated subgroup is not dense, there is a 0 < A < 1 such that for all
admissable triples (a, b, c), we have

dqady

== Aab for some Z; € Z,
C

and the integers Z¢, together generate Z. In this case, §” is of type III,.

a,b,c € Irr(C) and Ng, > 1}

Example 5.15. Let C be the Fibonacci category with simple objects 1,7 satisfying r®@ 7 = 1H 7
and d; = ¢, the golden ratio. Since

dif = 9" = exp(log(¢")) = exp(itlog(9)),
2

whenever ¢t € Toa( ¢)Z, d? = 1. Since 1 is always 1, this says that o; is inner for these t. We

conclude that §” is not type III; [Con73, Thm. 3.4.1]. In fact, using the results in Appendix A, we
can determine the type. Note that the only non-trivial admissible triples are (7,7,1) and (7, 7,7),
leading to the ratios d2 and d,. Since these generate the non-zero part of S(g”), it follows that
A=d;! and §” is of type I,

The above example can be modified to any near-group or Tambara-Yamagami UFC.

Remark 5.16. The classification program for topologically ordered phases of matter is about
gapped phases. That is, one considers equivalence classes of (local) Hamiltonians which have a
spectral gap in the thermodynamic limit. This means that in the GNS repersentation, the (un-
bounded) Hamiltonian implementing the dynamics in the GNS representation of the ground state
has a spectral gap between its lowest eigenvalue and the rest of the spectrum. Our framework does
not make reference to the spectral gap directly (although in our examples, the nets of projections
come from gapped Hamiltonians), but a natural question to ask is if the canonical state associ-
ated to (2, p) can be realized as the ground state of a gapped Hamiltonian. Because we want the
dynamics to be local, this is a non-trival question.
In the projected entangled pair state (PEPS) setting, a particular class of tensor network states,
it turns out that there is a relation between the spectral gap of the 2D bulk state, and properties of
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the 1D boundary state.'” It is known that every PEPS is the ground state of a local Hamiltonian,
called the parent Hamiltonian, but showing if this is gapped is generally very difficult. However,
important progress has been made. For a 2D PEPS, there is a canonical way to define a 1D boundary
state, and a corresponding boundary Hamiltonian [CPSV11]. Based on numerical evidence, it was
conjectured that the bulk Hamiltonian is gapped if and only if the boundary Hamiltonian is short-
ranged. Later, it was shown that if the boundary state is “approximately factorizable”, then the
bulk state indeed is gapped, and that 1D thermal states of finite range Hamiltonians satisfy this
property [CPGSV17, KLPG19].

In the example above, we have shown that our boundary state 1z is a thermal state for a local
Hamiltonian. Moreover, the bulk state is the Levin-Wen model, which has a spectral gap. Hence
this is consistent with the result in the PEPS setting, even if our framework does not make reference
to Hamiltonians. On the other hand, it is known that for the boundary states of topologically ordered
PEPS (such as the G-injective PEPS for G a finite group), the local density operators do not have
full rank, in contrast to KMS states. One can, however, project down to the support of the local
density operators and define a boundary Hamiltonian on this subspace (cf. §5.6 of [KLPG19]). But
this is essentially what happens already on the algebra level in the construction of the boundary
algebras.!!

Hence it is an interesting question how our results relate to the PEPS setting, also because we
do not assume that the canonical state on the bulk has a PEPS representation. For example, one
could ask if our canonical boundary state coincides with that defined in [CPSV11]. We hope to
return to this question at a later point.

5.4. Cone algebras. In this section, we specialize to the case when our net (2, p) is a quantum
spin system as in Example 2.4 with a translation-invariant net of projections. We now discuss the
connection between the canonical state on the boundary algebra 8 and the analysis of the cone
algebras 2A(A)" of the Toric Code and Kitaev quantum double models from [Oga24]. A cone A C Z?

is a region of the form
/

/

and the algebra 2A(A) is the C*-subalgebra of 2 supported on sites in A. The cone algebra is
then A(A)”, where the von Neumann completion is taken in the GNS representation on L2(2,1)).
These algebras are of interest as these cone regions are used to describe the excitations of topo-
logically ordered spin systems using superselection theory [Naall, FN15, Oga22|. In particular,
the excitations for Toric Code [Naall] and the abelian quantum double model [FN15] have been
described by localized and transportable endomorphisms of the quasi-local algebra 21 (superselec-
tion sectors), where the localizing regions used are precisely these cones. Since the intertwining
morphisms between two sectors live in the cone algebras, and since these endomorphisms can be
uniquely extended to the cone algebras in a WOT-continuous fashion, the cone algebras become of
interest when studying these models.

10Many 2D states with topological order have a PEPS representation (including the states we consider here), but
it is still an open problem if every gapped quantum phase contains at least one PEPS representative [CGRPG19).
LLA§ we remark at the end of §2.4, we do not know if the boundary state is faithful in general, but it is for all our
examples.
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When we have a net of projections (pa) satisfying (LTO1), we can use the canonical state ¢ to
employ the argument in [Naall] to show the cone algebras are factors.

Proposition 5.17. Let A be any subset of the lattice. Then A(A)” in the GNS representation on
L2(A, %) is a factor. When A is a cone, A(N)" is infinite.

Proof. This is a standard argument, but we repeat it here for convenience. First, since ¢ : 4 — C
is a pure state, we have that

AN VAN = A" = B(LA(A,)).
This immediately implies
Z(AN)") = (AN)" NAR)) 2 AA) VAN)" 2 AA)" VAN)" = B(L* (A, ),

and thus 2((A)” is a factor.
When A is a cone, the argument from [Naall, Thm. 5.1] shows that 2A(A)” is infinite. O

In [Oga24], Ogata proves that the cone algebras 2A(A)” € B(L?(2,1)) with rough edges for the
Kitaev quantum double model are type 11, factors by essentially'? showing there is a projection
pa € A(A)” such that the ground state restricted to the corner pp2((A)”py is a trace. Here, we use
the suggestive notation py, as the chosen projection in [Oga24] is essentially [[ - As [[,ca By,
which exists as an infimum of projections in 2A(A)”. (In Kitaev’s quantum double model, Ay, B,
are orthogonal projections, in contrast to A, B), from Kitaev’s Toric Code model.)

Kitaev’s quantum double model is simultaneously a model for Hilbg(G) and Rep(G); really, it
is a model for the quantum double D(G), which is the center of both Hilbg(G) and Rep(G). (See
also Remark 4.10.) For the C = Hilbg(G) Levin-Wen model, the compression of the cone algebra
pAA(A)pp is almost'? exactly the von Neumann algebra § in the GNS representation of the
canonical state ¥z. Indeed, consider A to be the third quadrant (including the sites on the axes).

( N\

Ay

Let A, be the n?-rectangle in A with northeast corner at the origin. Given a local operator
x € A(A,) C A(A), by an argument similar to the proof of (LTO2) for Theorem 4.8, there is a
unique ¢ € Ende(X?") such that for every k > n, pa,zpa, = I'ypa,, where ', now glues ¢ onto
the northeast boundary of A,,.

Observe now that thAnHQl(An)pAnH >~ §; on this algebra, the ground state is exactly the
canonical state ¢z from Proposition 5.5 above. Since 2A(A) = hﬂ%l(An) and pa, — pa SOT, we
conclude that ppRA(A)”py is exactly the von Neumann algebra §” in the GNS representation of
the canonical state ¢z. In the case C = Hilbgg(G), which is analogous to Kitaev’s quantum double
model, 15 = tr, the unique Markov trace as discussed in Remark 5.6.

12Really, Ogata proves this for a region A’ differing from the original cone by a finite number of edges. She does
this by intersecting A’ by larger and larger rectangles and showing that when you cut down by the support projection
for the state 1) on these finite regions, the obtained state is a trace.
1Bwe get the boundary algebra on the nose if the sites in A are connected by edges and plaquettes contained
entirely in A. However, if sites are disconnected, we will get an amplification of a boundary algebra by a certain finite
dimensional algebra.
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The recent article [CHK™24] computes the boundary algebras for Kitaev’s quantum double model
and indeed verifies that the canonical state is again a trace. This gives more direct confirmation of
the result in [Oga24] using the argument we just outlined above.

However, we remark that when C is not pointed, the cone algebras are no longer type Il,,, but
rather type III!

Corollary 5.18 (Cor. C). The cone algebra 2A(A)" is type W if C is pointed; otherwise A(A)" is
type I11.

Proof. By Proposition 5.17, 2(A)” is an infinite factor. Since §” = paARA(A)"py is either a type II;
factor when C is pointed by Remark 5.6 or a type III factor when C is not pointed by Theorem 5.9,
the result follows. 0

5.5. Additional boundary states on the Levin-Wen boundary net. In this section, we
define some additional states on the Levin-Wen boundary net of algebras § in terms of the UFC AF
approximation End¢(X™) where X = @ cp,, () ¢ In future work, we will analyze the superselection
theory for the boundary nets for these states.

Example 5.19. Consider the inclusion isometry ¢ : 1¢ — X and its adjoint ¢/. We denote ¢, ¢ by
a univalent vertex on the X-string. We define a state ¢ on § by

¢ € Ende(X™).

Observe that ¢1(¢) = ¢1(p ®idx) = ¢1(idx ®p) as ot o =1idy, so we get a well-defined inductive
limit state.

The previous example can be generalized substantially. Recall that that a @-system in C is an
algebra object (Q,m, 1) € C satisfying the following axioms:

(Associative) (Unital) (Frobenius) (Separable)

Here, we denote ) by an orange strand, the multiplication m by a trivialent vertex, and the unit
1 by a univalent vertex. We denote adjoints by vertical reflections. In the example below, we use
a standard Q-system which satisfies that if om € C(Q® Q — 1) and mfoi € C(1 = Q® Q) is a
standard (minimal) solution to the conjugate equations [LR97]. We refer the reader to [CHPJP22]
for the basics of Q-systems in unitary tensor categories.

Example 5.20. Pick a standard Q-system @ € C, and for each ¢ € Irr(C), choose an ONB
{a.} € C(¢ — Q) using the isometry inner product, i.e., ol o p = 0q,=ay, and ), ac o ol is

the projection onto the isotypic component of ¢ in Q. Note that > cclrr(C) > a, Qe © ozj; = idg and

aloag:Owhenc;«éd.

We define ¢g on § by
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Here, we write a single multi-valent orange vertex to denote the product of n copies of @), and the
orange cup and cap are the standard solution to the conjugate equations built from 7, m and their
adjoints. One checks that ¢g(p) = ¢g(p ®idx) = ¢g(idx ®y) using associativity and separability
of @ and sphericality of C. We thus get a well-defined inductive limit state.

In [KK12], the authors study topological boundaries of Levin-Wen models in terms of module
categories. A (@Q-system Q € C gives the module category Cq of right ()-modules in C. The
states above should correspond to the ground states of the corresponding commuting projector
Hamiltonians. In future work, we plan to analyze these states in more detail and rigorously study
their superselection sectors, making this connection more explicit.

Remark 5.21. Even though the canonical state vz is not always tracial, we may consider the
canonical inductive limit trace trz as a state on the boundary algebra. This represents the unique
infinite temperature boundary equilibrium state.

6. BULK TOPOLOGICAL ORDER FROM THE BOUNDARY ALGEBRA NET IN 241 D

The boundary algebras in Construction 2.28 can yield highly non-trivial nets. Even starting
with an ordinary spin system such as the Toric Code we already obtain a non-trivial net. In
fact, Examples 6.5 and 6.6 below indicate that the algebraic structure of boundary nets contain
information about the bulk topological order. We conjecture that this is a general phenomenon, and
that the algebraic structure of the net of boundary algebras completely captures the topological
order of the bulk Hamiltonian alone, without reference to a Hamiltonian, just the net of projections.
From a mathematical perspective, this observation is somewhat surprising. In this section we
provide the key points behind this idea.

The idea is to consider the category of DHR bimodules associated to the boundary net of C*-
algebras introduced in [Jon24, §3], which was shown to be a braided unitary tensor category for
lattices. The definitions utilize the theory of correspondences over C*-algebras, for which we refer
the reader to [Jon24, §3.1] and references therein.

Definition 6.1. Consider a rectangle A C £. A right finite correspondence X over the quasi-local
algebra A is localizable in A if there exists a finite projective basis (PP-basis) {b;} € X such that
ab; = bia for all a € A(A°) := C* (Upcpe A(A)). Here {b;} being a PP-basis (after Pimsner and
Popa) means that ), b;j(b;|x) = « for all x € X, where (:|-) is the ™-valued inner product on X.

Definition 6.2. A right finite correspondence X is called localizable if X is localizable in all
rectangles sufficiently large relative to X, i.e., there exists an r > 0 (depending on X) such that for
any A C L containing an r"-cube, X is localizable in A. We denote by DHR(2() the full C*-tensor
subcategory of right finite correspondences consisting of localizable bimodules.

Definition 6.3. A net satisfies weak algebraic Haag duality if there is a global t > 0 such that for
all sufficiently large rectangles A, 21(A¢)" C A(A*?), where the prime denotes the commutant in 2(
and AT is as in Definition 2.6. (This definition of weak algebraic Haag duality is equivalent to the
one given in [Jon24].)

By [Jon24, Prop. 2.11], weak algebraic Haag duality is preserved by bounded spread isomorphism.
More importantly, it allows one to prove the following result, which is central to the bulk-boundary
correspondence. It tells us that the DHR bimodules can be endowed with a braiding, which is
expected if they are to describe the topological excitations in the bulk. Moreover, invariance under
bounded spread isomorphism (up to equivalence) allows us to relate the boundary nets to fusion
categorical nets §, for which DHR(F) can be found explicitly.

Theorem ([Jon24, Thm. B]). If a net A satisfies weak algebraic Haag duality, then DHR(2() admits
a canonical braiding. If A is isomorphic to B by a bounded spread isomorphism, then DHR(2() =
DHR(B).
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We can define the braiding in fairly simple terms, and the technicalities arise in showing it is
a well-defined bimodule intertwiner. (This definition and strategy is very similar to that used in
[CJP24].) Let X,Y be DHR bimodules, {b;}, {c;} be projective bases localized in sufficiently large
balls F' and G which are sufficiently far apart (see [Jon24] for details). Define

u??:X&Y%Y&X by ufff/ Z@'@Cjaz‘j ::ch‘gbiaij.
i, 0,

One can show that this is a well-defined, unitary bimodule intertwiner which does not depend on
the balls F, G as long as they are sufficiently large and sufficiently far apart. (In the case n = 1,
they must also have the same ordering, i.e., we require f < g for all f € F and g € G.)

Conjecture 6.4 (Bulk-Boundary Correspondence). For 2D Hamiltonians on a spin system satis-
fying (LTO1)-(LTO}), the bulk topological order is the braided DHR category of bimodules of the
net of boundary algebras.

Of course, for the category of DHR bimodules on the boundary to be braided, we need the
boundary net to satisfy weak algebraic Haag duality. This happens in practice (see Examples 6.5
and 6.6) but appears to not be automatic. Our justification for Conjecture 6.4 is that it gives the
correct result for the Toric Code and for Levin-Wen string nets, as we show in the following two
examples, using the following theorem.

Theorem ([Jon24, Thm. C]). If § is the 1D net constructed from a unitary fusion category C from
Ezample 2.5, and X € C strongly tensor generates C, then DHR(F) = Z(C).

Example 6.5. Consider the Toric Code model from §3. The boundary net 98 is isomorphic to €
and ® by Corollary 3.6 and Theorem 3.12, which is also isomorphic to the fusion category net §
from Example 2.5 for C = Hilbgg(Z/2) and X = 1@ g. Because the object X = 1® g strongly tensor
generates Hilbgg(Z/2), the net § satisfies weak algebraic Haag duality by [Jon24, Thm. C]. Since B
and ® are isomorphic to § by bounded spread isomorphism, they also satisfy weak algebraic Haag
duality [Jon24, Prop. 2.11]. Furthermore, by [Jon24, Thm. B], the category of DHR bimodules is
preserved under bounded spread isomorphism, and thus

DHR(®) =~  DHR(® ~  DHR(Z >~ Z(Hilbu(Z/2)).
[Jon24, Thm. B] [Jon24, Thm. B] [Jon24, Thm. C]

This recovers the well-known bulk topological order of the Toric Code, supporting Conjecture 6.4.

Example 6.6. Just as in the Toric Code case, the boundary net B for the Levin-Wen model for
C is isomorphic to the fusion categorical net § for the UFC C by Remark 4.9. Thus

DHR(B) ~DHR(3) =  Z(C).
[Jon24, Thm. C]

This recovers the well-known bulk topological order of the Levin-Wen string net model, providing
further support for Conjecture 6.4.

6.1. Heuristic for DHR bimodules. Physically, we can think of the category of DHR bimodules
as existing in the emergent ‘time’ direction. This is compatible with the viewpoint of [KZ22], and
allows us to think of DHR bimodules as topologically Wick-rotated point defects, which gives some
justification for this correspondence.
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Here, we give a heuristic in terms of string operators that is somewhat model independent.
Suppose we have a topological string operator, terminating in an excitation in the boundary I C L.

K

Given a string operator S with endpoint localized at a vertex v € K C L, we define a DHR
bimodule Y for the boundary algebra 5 as follows. We define a defect Hilbert space localized at
v, and we define Y = ligyn where each ), is defined in a certain rectangle A,, (see below for
details). Without loss of generality, we assume that K is oriented vertically and we have chosen a
distinguished half-plane H to the left of K.

First, we define A,, to be the smallest sufficiently large rectangle whose right edge has length 2n+1
and is centered at v, and A, is the smallest rectangle such that A, €; A, with dA, N IA,, C K.
Here is a cartoon of A1 €; Ay with r =3 and s = 1:

We define ), to be the space of homs between the tensor product Hilbert spaces localized in A,
from sites in our original lattice to sites in our lattice with our new defect Hilbert space. However,
we cut down on both sides by projectors; we precompose with pa,, and we post-compose with
the projector ga, corresponding to the new tensor product space which carries the defect space at
v € A,. For example,

V1 :=qa, Hom DA, -

The right action of B(I) := B(Ar € Ar) where A N K = I is the standard composition of
bounded operators, where we implicitly embed B(I) — B(I)pa, using (LTO4). That is, the right
action of a € B([) is given by V,, > f +— foa € V,. Using the same arguments as in Construction
2.28, this action should stabilize for large n.

The left action of B(I) is more interesting. First, we use a unitary hopping operator h to move
our excitation completely out of A, where n is large so that A; C A,. We then post-compose with
a, and then re-apply the adjoint k! of the hopping operator h to bring the excitation back where
it started, i.e., Y, 3 f — hfoaoho f € V,. Again, using the arguments of Construction 2.28, this
action should stabilize for large n.
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6.2. Implementation of the DHR bimodules for Levin-Wen. We now give a brief construc-
tion of a DHR bimodule for the fusion categorical net § of the UFC C associated to a string operator
for z € Z(C) following the above heuristic. These give all DHR bimodules for § by [Jon24, Thm. C].
First, we define a defect Hilbert space

C

a%}%d & D, = @ Cla®b— F(z)®c®d)

a,b,c,deC
b zelrr(Z(C))

where F : Z(C) — C is the forgetful functor. Choosing a distinguished vertex v € Z?, we can modify
the total Hilbert space by replacing H, WitlAl D, at v. For a rectangle A containing v, whereas we
defined H(A) := @,ep Hu, We now define H(A, v) := Dy ® Qe n) (v} Hu- We define the projector
Cy at v to be the operator which selects the copy of 1 € Z(C) on the orange wavy string. We also
modify the plaquette operator in the northwest plaquette to v to incorporate the half-braiding for
z as follows:

126 m iS22
1 1 Vdpded,,d i/ h
o Z d, - =5 Z VIRAEmTn n| ¢
¢ relrr(C) ¢ r.k,f,mnelrr(C) dr dgdhdidj _IIN iR
&11]9 k g@
m.2| 12,2
=> C(n)

7,1 72,1 )
n 77?

By an argument similar to [GHK ™24, Prop. 3.2], the coefficient

C(ﬁa 5/) = 5z=z’5a:a’ T 5h:h’

and thus this modified plaquette operator is a self-adjoint projector. For rectangles A containing
the distinguished vertex v, we define the projector ga := [[,-5 Ar HpC A Bp, where the plaquette
operator B), for the plaquette northwest to v has been modified as above.
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For any two u,v € L, rectangle a A containing wu, v, and a localized excitation z € Irr(C) at u,
we have a unitary hopping operator H; , : H(A,u) — H(A,v) given by

HZ

v,u

where we implicitly use the fusion relation to resolve the z-excitation into each edge along the path.
We now focus on the case that the distinguished vertex lies in our codimension 1 hyperplane
KC C Z?. The DHR-bimodule discussed in the heuristic above is given by

Y* =1mY; = lim ga, Hom (H(An) — ﬁ(An,v)) DA,,- (6.7)

We now show Y7 carries commuting left and right actions of §F(I) with I = 9A,, N K. Below, we
write A = A, to ease the notation. By Lemma 4.5, pAH(A) = pa @ en Hu = S(#0A), which
can be identified with
P Clepay — ar) = C(XFIR - X#I) X= @ c
E@A\],E[ CEIrr(C)
with the skein module inner product, where cya\; = ¢, -~ ¢, is a tensor product of simples in
C over the sites of 0A \ I, and ¢; = ¢j, ® --- @ ¢;, is a tensor product of simples over the sites
of I. Similarly, by [GHK 24, Thm. 3.4], qAﬁ(A) = qa (Dv ® ®ueA\{v} Hu) is isomorphic to an
‘enriched’ skein module of the form
P Clav— e F(=) 2 C(XHA o X# @ F(2)
Con\I CI
where F': Z(C) — C is the forgetful functor. Hence operators in Y? from (6.7) can be viewed as
operators
C(XHIAN  x#Iy y o(X#IAMN 5 X#1 @ F(2))
which commute with the left Ende(X#92\/)-action. By the Yoneda Lemma, we can identify
Vi =C(X* = X* @ F(2)).
The right §(I)-action on Y7 is exactly precomposition, and the left F(I)-action which uses the
hopping operator Hy , to move the z-excitation out of I before acting and then move it back is
exactly postcomposition on the X#! tensorand. In diagrams:

€€ Y?, a,be Ende(X#),

where the orange F'(z)-string should be viewed as in the target of the above morphism.
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Now suppose J is obtained from I by adding k& boundary points below I and k& boundary points
above I, where we view I as the right hand side of JA,,. Then as we have

An+2k Cs An+2k
U U such that 0N, NOA, =1=0A,NIOA, o,

A, Cs A,

we get an inclusion Vj; < V7 o, by adding 2k through strings as follows:

Observe that the inclusion YV < V7, is compatible with the inlcusions §(I) < §(J) from Lemma
2.13 under both the left and right actions. We thus get an inductive limit § — § bimodule Y7, and
this bimodule is exactly the one constructed for z € Z(C) in [Jon24]. It follows that this bimodule
is localizable.

6.3. Boundary states and W*-algebras in DHR(8). In this section, we focus on the case of
a translation invariant 2D lattice model (2, p) satifying (LTO1)—-(LTO4), and let B be the 1D
boundary net. For a separable C*-algebra A, we write Rep(A) for the W*-category of separable
Hilbert space representations [GLR85]. If H, K € Rep(A), we say H is quasi-contained in K,
denoted H < K, if H is isomorphic to a summand of K™ for some n € NU{oo}. The reader should
compare the following definition to [SV93, NS97].

Definition 6.8. Let B be a net of finite dimensional C*-algebras on the lattice Z as in Defini-
tion 2.1, and let ¢ be a state on B. A superselection sector of ¢ is a Hilbert space representation
H of % satisfying the following property:

e There exists an r > 0 such that for any interval I of length at least 7, H |y ey = L2(%B, ¢) | (7¢)-

Here, B(I€) is the unital C*-subalgebra of B generated by the B(J) for all J C I¢. We denote by
Rep,(B) the full W*-subcategory of Rep() of superselection sectors of ¢.

Note that by definition, Rep, (%) is unitarily Cauchy complete (closed under orthogonal direct
sums and orthogonal summands). We now assume that DHR(B) is a unitary tensor category, so
that each X € DHR(®B) is dualizable and B has trivial center, which is satisfied in all of our
examples. We refer the reader to [KW00, KPW04, CHPJP22] for dualizable criteria for Hilbert C*
B — B correspondences.

Proposition 6.9. Rep,(B) is a DHR(®B)-module W*-category with action given by X > H :=
X Ry H.

Proof. Suppose H € Rep,(®B). Then there exists some r > 0 so that for any interval I with at
least r sites, H|p(se) < L*(B,¢)|g(re)- For X € DHR(B), there exists some s > 0 such that X
is localizable in any interval with at least s sites. We claim X Xy H € Rep, () with localization
constant ¢ = max{r, s}.

Indeed, let I be an interval with at least ¢ sites, and let {b;}!'_; be a PP-basis of X such that
xzb; = bz for all x € B(I¢), as in Definition 6.1. Observe that (b;|b;) € B(I¢) N B. Since the
action of B(I¢) N B commutes with B(I¢) in any representation, we have M, (B(I¢)' N VB) C
El’ld%(lc) (H@n)
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Now consider the orthogonal projection P = ({b;|b;))i; € M,,(B(I¢) NB), so K := PH is a
summand of (H|g(se))®™. We claim (X Ko H) |g(se) is unitarily isomorphic to K. Consider the
map v : X ® H — K given by
&1

’U(ibz(@gz) =P :
= 6.

By definition of P, v extends to a unitary isomorphism v : X Ky H — K. Observe v intertwines
the B(I¢)-actions as each b; centralizes B(1°).

We have thus shown X Mo H |93 (7ey = H|gs(7e). Since H |g(rey =< L?(B, ®)|s(1c) and =< is transitive,
the claim follows. 0

Note there is a distinguished object L?(B, ¢) € Rep,(%B), which gives this module W*-category
a canonical pointing (more specifically, it gives the full module subcategory generated by DHR(8)
and L*(*B, ¢) a pointing). By [JP17], we get a canonical W*-algebra object Ay € Vect(DHR(B)) :=
Fun(DHR(B)° — Vect) associated to (Repy(B), L*(B, ¢)) given by

Ag(Y) := Homgep, () (Y B L*(B, ¢) = L*(B, ).

Here, the W*-algebra object Ay = Endppg(s) (L?(B, ¢)) is in general too large to live in DHR(B),
but rather it lies in the ind-completion Vect(DHR(B)). We refer the reader to [JP17] for more
details.

Definition 6.10. For a boundary state ¢ on B, we define the boundary order to be the isomorphism
class of the W*-algebra object Ay € Vect(DHR(8)).

We call the state ¢ a topological boundary if Ay € Vect(DHR(®8)) is Lagrangian. (Recall that a
Wr-algebra object in a braided tensor category is called Lagrangian if it is commutative and its
category of local modules is trivial.)

Example 6.11. When C is a fusion category, the canonical Lagrangian in Z(C) is I(1¢) where
I:C — Z(C) is adjoint to the forgetful functor Z(C) — C, as I(1¢) = Endy(1c) for the module
action of Z(C) on C given by the forgetful functor.

Remark 6.12. In future work we will study fusion of superselection sectors for topological bound-
aries. Ome could actually use the above definition of topological boundary to define fusion of
superselection sectors, as Ag-modules in Vect(DHR(B)) again form a tensor category.

We now specialize to the case that B = §, the fusion categorical net from our UFC C. All the
states constructed from Q-systems in Example 5.20 above give topological boundaries. Indeed,
every Q-system in the fusion category C gives a canonical Lagrangian algebra in the center Z(C) =
DHR(F). We explicitly illustrate this for the case ¢ = ¢ for the trivial Q-system 1 € C, which
corresponds to the canonical Lagrangian algebra in Z(C). The argument for the other Q-systems in
C is analogous, and we plan to carry out a more systematic analysis of these states in future work.

Let My be the full subcategory of Repy (%) generated by L?(§,¢1) under the DHR(F)-action
under taking orthogonal direct sums and orthogonal subobjects.

Construction 6.13. We now build a left Z(C)-module functor C — M.
First, for each non-empty interval I C Z, we have a fully faithful functor H_(I) : C°® — Rep(§([))
given by
Ho(I) = C(a — X*1) (nl€) := tre(n' 0 €).
Observe that H,(I) is a left §(I)-module where the action is given by postcomposition. That this
§(I)-action is compatible with { in § follows by the unitary Yoneda embedding [JP17, Rem. 2.28]

(see also [GMP123, Rem. 3.61]). Moreover, precomposition with ¢ € C(a — b) gives a bounded
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F(I)-linear map @, : Hy(I) — Hy(I), and (¢.)7 = (o). again by the unitary Yoneda embedding.
We thus have a unitary functor H_(I) : C°® — Rep(F(I)) which is fully faithful by the Yoneda
Lemma as every simple object is a subobject of X#!.

For I C J, we have an isometry H,(I) < Hy(J) given by tensoring with J \ I copies of the unit
isometry ¢ : 1¢ — X.

Moreover, the inclusion isometry H,(I) < H,(J) is compatible with the left actions of F(I) —
§(J), so the inductive limit H, := liﬂHa(I) has a left §-action. We thus get a unitary functor
H : C°° — Rep(J). Finally, we precompose with the canonical unitary duality C — C™°P,'* noting
that C™°P = C°P as categories where we have forgotten the monoidal structure. This gives us a
functor H : C — Rep(gF) given by H, := Hy.

We can identify H;, = L%(F,¢) as follows. We have a unitary isomorphism L?(F(I),¢) =
Hy,(I) = C(1¢ — X#T) given by

P =

and this map clearly intertwines the left §(I)-action. Taking inductive limits, we get an F-linear
unitary L(F,¢) = Hi,.

We now construct a natural unitary isomorphism g, . : J* Xz H.— H ¢, Where Y* is the DHR
bimodule associated to z € Z(C) from §6.2 above. This isomorphism will clearly satisfy unital and
associative coherences, which will endow H with the structure of a Z(C)-module functor. Observe
that Z(C) = Z(C)™ = Z(C°P) as tensor categories where we have forgotten the braiding, and the
forgetful functor Z(C°) — C°P is dominant. Since H; = L?(F,¢) € Rep,(%), this will show that
the image of H lies in M.

Now for every interval I C Z containing the defect point for Y?, we have a unitary isomorphism

Mz,c(I) : yZ(I) &3(1) HC(I) = yZ(I) g%’ HE(I) — HZDC(I) = HE@F(E)(I)
by gluing diagrams and bending the z-string down and to the right of ¢:

The isomorphism p, (1) clearly satisfies the unit and associativity axioms for a modulator. More-
over, if I C J, we get a commutative square

7 z,cJ he
V() Ry He(d) 222D ()

i i

- z,c I hd
yZ(I) &&'(I) HC(I) M—()> Hzl>c(I)'

14Here, mop means taking both the monoidal and arrow opposite of C.
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We thus get a well-defined unitary p, . := liglum(l) : Y K H, — H,s., which endow H with the
structure of a Z(C)-module functor.

With these considerations, we can prove the following theorem.

Theorem 6.14. Let C be a UFC, let § be the associated fusion categorical net, and let ¢ = ¢1 be
the boundary state associatied to the trivial Q-system from Example 5.19 above. The functor H :
C — Repy () from Construction 6.13 above is a Z(C)-module equivalence onto M. In particular,
¢ 1is a topological boundary.

Proof. We first show H is fully faithful. To show Rep(g)(ﬁa — M) %VC(E — a) = Cla — b)
for a,b € C, we show that every Rep(F)-intertwiner T : H, — Hjp maps H,(I) — Hy(I) for every
interval I C Z. Since every H_(I) is fully faithful, and since H = lim H (I), this will prove the
result.

For I C Z and n > #I1, we define an orthogonal projection g, (I) which is idx on sites in I and

' on the n sites to the left and on the n sites to the right of I, where ¢ : 1¢ — X is the inclusion.
Tt 1.1

Since T intertwines the F-actions, we have that Tq,(I) = ¢,(I)T. Thus if 2 € H,(I), z = an ()
for all n € N, and thus Tz = T'q,,(I)x = ¢, (I)T'x for all n € N. We claim this means Tz € Hy(I).

Indeed, H, is filtered by the finite dimensional subspaces E’b(I ), and thus we can write Hy as an
orthogonal direct sum

Hy, = Hy(I) ® PHy(n+ 1 +n) © Hy((n - 1) + T+ (n—1))].
neN

Observe that the subspace Hy(n + I +n) © Hy((n — 1) + I + (n — 1)) on the right is given by
adding a idx —u! on both outer-most strands. Now writing Tz = (Tz); + >_,cn(T2), in this
decomposition, we see that Tx = ¢,(I)Tx for all n, and ¢,(I)(Tx)r =0 forall k =1,...,n — 1.

We conclude that (Tz), = 0 for all n, and thus Tz = (Tx); € Hy(I) as claimed.
Now since My was defined as the full W*-subcategory of Rep, () generated by L?(F, 1) under
the DHR(J) = Z(C)-action, H is dominant. Since both C and M, are unitarily Cauchy complete,
H is a unitary equivalence. O

an(I) : €F(n+1+n).

APPENDIX A. PATH ALGEBRAS AND TYPE III FACTORS
BY MASAKI IzuMI

In this appendix authored by Masaki Izumi, we further classify the type of the factor §” for the
boundary states ¢z (see §5.2) of Levin-Wen models (defined in §4) in the type IIT case. We first
prove a general result on the type of the von Neumann algebra M = B” generated by a certain
KMS state ¢ on an AF-algebra B defined in terms of a finite oriented graph G. The key point
in the proof is that we can identify Krieger’s ratio set [Kri70b], which gives us Connes’ invariant
S(M) [ConT3]. See [FM77b, §2] or [Tak03a, §XIII.2] for the equality between the two sets. This
result can then be applied to the setting of the Levin—Wen model, leading to a proof of the claim
in Remark 5.14.

A.1. Path C*-algebras. Throughout this appendix, let G be a finite oriented graph. We write
G0 and ¢ for the set of vertices and edges respectively. With s, : ¢M — GO we denote the
source and range maps. We furthermore assume the choice of a distinguished vertex x € G0, For
simplicity, we make the following assumption:
e For any pair of vertices v, vy, there is an edge e € GV with s(e) = v; and r(e) = vs.
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We define
Pathy)(G) := {&1&2 -+ - &nlr(&) = s(&iva), s(&1) = v}
as the set of all paths of length n starting at the vertex v. For any finite path £, we will write |¢]
for its length, and r(£) for the range of the last edge in the path.
The paths starting in the distinguished vertex * can be used to define a tower of finite dimensional
C*-algebras (By,) as in [Ocn88, GAIHJ89, EK98, JS97, JP11]. For each pair £, n € Path}(G), define
the formal symbol |£)(n| and let

By, := spanc {[) (n][¢,n € Pathl(G), r(§) =r(n)},

with multiplication and *-structure given by

[€0) (€al - [m) (mal == bey=n, 1€1) (2 and ) nl™ == m) (]

Since G is finite, B, is a C*-algebra which is the direct sum of \g (O)‘ full matrix algebras. For each
v € GO, the corresponding summand is an n, X n, matrix algebra, where n, is the number of
paths from * to v of length n. One can think of |£)(n| as a loop of length 2n on G starting at x*
where you first travel £ to 7(§) = r(n), and then travel n in the reverse direction. This gives the
loop algebra convention of [JP11].

The inclusion ¢, : B,, < Bj,+1 is given by

m(€)E) =Y lan)iénl. (A1)
r(61)=s(n)
In|=1
That is, we extend each pair of paths by one edge in all possible ways satisfying the loop condition,
and sum the result. By our assumptions on G, ¢, : B, < Bp41 is injective and unital, and the
Bratteli diagram can be identified with G. We write
B = hﬂ B,

n—oo

for the corresponding AF-algebra.

A.2. Edge and vertex weighting and a KMS state. To define a KMS state on B we need to
specify a weight on our graph G.

Definition A.2. Consider a weight w : ¢Oyugl) (0,00) on the vertices and edges of G. Then
for £ € Path!'(G), we set w(§) := w(&)w(&2) -+ - w(&y).

We now assume that our weight w on G satisfies the following condition:

e there is a 0 > 0 satisfying that for all v € G(©, we have

> wnw(r(n)) = sw(v). (A.3)
In|=1
s(m)=v

In the final subsection of this appendix we will give an example of such a weight.

Remark A.4. Observe the condition above is a system of linear equations, with one equation and
variable for each vertex v € G(©). So any solution of this system is a formula for the weights of the
vertices as a function of the weights of the edges, with possibly some free parameters. If all edges
have weight 1, then w is a Frobenius-Perron eigenvector associated to §. If all vertices are weighted
1, this is roughly the o-fairness condition of [DCY15] (without the balancing and even number of
loops conditions).
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Let us now introduce dynamics on B. For ¢t € R and |£)(n| € B, define

_ w(®)"
a:(|§) (n]) == W) 1€)(nl - (A.5)

This induces a one-parameter group of *-automorphism on B,, which is compatible with the inclu-

sion B, < By+1 defined above. Hence we can extend it to a one-parameter group o; € Aut(B).
Next define a state ¢ on B,, by

o(1€)(nl) = 55:n5inw(§)W(7’(§))y §,n € Path(G). (A.6)

Using A.3, it is straightforward to see that ¢ is a positive linear functional on B,, with ¢(1) =1
which is compatible with the inclusion B,, — B,1. Hence ¢ extends uniquely to a state on B by
Corollary 2.19.

Furthermore, observe that every |£)(n| is entire with respect to oy, and when § = —1,

o€y - o—i(1€bmD) = 22 b1 | - €2} )
w(n2)

= Oy =£:06,=np mw(&)w@‘(&))

1
= Oy =g 06, =mp 5710(’52)1”(7"(772))

= Op=20¢, =1y %w(fg)w(T(fg))
= o(|€2) (m2] - [€1) ()

for all |£1)(n1], |€2)(n2| € By, (recall here that r(£2) = r(n2) as |£2) (2] € By).
Since the Bratteli diagram for B is connected and stationary, by [Kis00, Prop. 4.1] and uniqueness

of the Frobenius-Perron eigenvector (up to scaling), ¢ is the unique f = —1 KMS state for the
dynamics o.
We have just proved the following proposition.

Proposition A.7. The state ¢ is the unique § = —1 KMS state on B for the dynamics o. Thus
M := B" acting on L?(B, ) is a factor.

Note that B is simple because G is connected. Hence as before (see §5.3), ¢ extends to a faithful
normal state on B” acting on L?(B, ¢), and the extension of o to B” corresponds to the modular
automorphism group with respect to the canonical cyclic vector in L%(B, ¢).

A.3. Type of the von Neumann completion using Krieger’s ratio set. Recall that a maxi-
mal abelian von Neumann subalgebra A of a von Neumann algebra M is called a Cartan subalgebra
if there exists a faithful normal conditional expectation E : M — A and its normalizer generates
M, ie., Ny(A)" = M where

Ny (A) :={u e U(M)|uAu* = A}.

This latter condition, called regularity of A C M, is equivalent to M = AV Ny (A).
We now consider the von Neumann algebra M := B” in the GNS representation L?(B,¢) and
the abelian von Neumann subalgebra

A= {r@(ér £e UPachE(Q)} :

Lemma A.8. A is a Cartan subalgebra of M.
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Proof. Clearly A is abelian. Note that for each n € N, the algebra B,, is globally fixed by all oy,
that is o4(By,) = By, for all t € R. Since o is the modular automorphism group for ¢, by a theorem
of Takesaki [Tak03b, Thm. IX.4.2] this implies the existence of a sequence of normal conditional
expectations F,, : M — B,, such that ¢ o E,, = ¢. Then for all x € M, we have that E,(z) — = in
the strong-* topology. Indeed, to see this, recall that on the unit ball of M, the topology induced
by || - ||¢ coincides with the o-strong topology [Tak02, Prop. II1.5.4]. It follows that for z € M, we
can choose (z;) € |,, Bn with ||z; — || — 0. Then

i [|Ey, (2) =zl = lim [[En(z — ;) = (z = zi) + En(2:) — @il

<2z = zillg + lim [[En(zi) — il

=0

for all ¢, and similarly for z*. Hence ||E,(x) — ||y + ||En(z*) — 2*||¢ — 0 for all z € M. Since
(En(z) — x), and (E,(z*) — x*),, are both norm-bounded sequences, the claim follows.

Now consider ' € M N A’, so that E,(a’) € (AN B,)' N B,,. Because AN B, is maximal abelian
in By, it follows that F,(a’) € AN By, and from the strong-* convergence of E,(a’) to a’, it follows
that @’ € A, and hence A is a MASA.

Since A is also globally fixed by all o;, as above there exists a normal conditional expectation
E: M — A such that ¢ o E = ¢. Since ¢ is faithful, it follows that E is faithful as well.

It remains to check that A C M is regular. For each pair of paths &,n € Pathl(G) with
r(§) = r(n) but £ # n, define the operator

ugy = 1)l + )€l +1 =[] = [n)(nl.- (A.9)

It is straightforward to check that these are self-adjoint unitaries, and that “&nAuz,n = A, and
therefore ug,, € Nu(A). Finally, note that ug, |n)(n| = [£)(n|, from which it is clear that A
together with the ¢, generate M = B”. O

By the Feldman-Moore Theorem [FM77b, Thm. 1] M = LR where R is a countable standard
relation on a Borel measure space 2 and A = L>®°(Q, ). We will show this explicitly for M by
identifying a measure space (£, 1) such that A = L*°(Q, ), together with an action G ~ Q, where
G is the group generated by the unitaries of (A.9) in Lemma A.8. The equivalence relation R is
then the orbit equivalence relation. This explicit description makes it possible to compute Krieger’s
ratio sets and determine the type of M.

We first claim that A = L*°(Q, u), where we define the measure space €2 as follows. Let Q be
the Cantor set Path°(G) of infinite paths on G. For £ € Path](G), define the cylinder set

For two finite paths £, n starting at * and |£| < |n| we have E¢ N E,) = () if the first |£| edges of n do
not agree with those of £, or E,, C E¢ otherwise. Thus the cylinder sets form a basis for a topology
on (.

Let xg, be the indicator function for a cylinder set. Then we can map xg, — [§)({] € A, and
this is compatible with multiplication on both sides: xg, - x&, = XE.nE, — §){&] - [7)(n|. For
¢ € Pathl(G), define

pu(Ee) := o(1€)(€]) = %w(é)w(T(f))' (A.10)

Since ¢ is a normal state, it follows from the discussion above that p extends to a regular Borel

measure on . The map 7 := xpg, + [£)(£| mentioned earlier extends to a *-homomorphism of a

(SOT) dense subalgebra of L>°(2, 1) onto a dense subalgebra of A. Write u again for the state

on L>°(Q, 1) induced by the probability measure. Since p(f) = ¢(7(f)) on this dense subalgebra
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and both states are normal and faithful, it follows that 7 extends to a spatial isomorphism of von
Neumann algebras, and we may write A = L*™(Q, p).

Now let G' be the (countable) group generated by our normalizing unitaries u¢, as in (A.9)
which together with A generate M. We now identify the action of G on A under the identification
A= L>®(Q,u). Since M = LR acts on L?(£2, i), we first identify the action of the ket-bra operators
|€)(n| for &,n € Path}(G) such that (&) = r(n). Given w € Q, we can write w = (', where
consists of the first n edges in the path, so w € E¢, and ¢’ the rest of the infinite path. We have

£¢" if p = (¢, equivalently w € E, = E;
0 otherwise,

€><77!-w={

and thus the action of (the generators of) G on {2 is given as follows:

n¢ if ( = ¢, equivalently w € By = E¢
ugy - w = ¢ & if ( =), equivalently w € E;, = E¢ (A.11)

w otherwise.

In particular, ug, sends single points in § to single points, since 7(§) = r(n). Note that ug,
replaces the first part of the path w with the path n (resp. £) if w starts with the path & (resp. n).
In all other cases it acts trivially. Thus (A.11) is indeed a G-action on 2. Since the cylinder sets
generate the topology on €2, G acts by Borel automorphisms on §2, and we have the standard Borel
orbit equivalence relation

R:={(w,g-w)|g€G,weN},
which is a Borel subset of 2 x 2. Note that two elements in {2 are equivalent if and only if the
corresponding infinite paths differ in finitely many places only.

For every ue, € G, we define a new measure via ug, - p(E) = u(ug; - F) as usual. The
Radon-Nikodym derivatives are given by

w(n) E
. wE w e Le
d(“i{?“)(w) — wgg% we E, (A.12)
m w
1 otherwise,

which can be directly verified using (A.10) and (A.11). In particular, it follows that p is quasi-
invariant with respect to the action of G.

To compute Connes’ invariant S(M) it suffices to determine Krieger’s ratio set (2, G, ) [Kri70a).
We recall the definition here (adapted slightly to the case at hand).

Definition A.13 ([Kri70a]). The ratio set r(§2, G, u) is the set of all € [0, 00) such that for all
measurable A C Q with pu(A) > 0 and € > 0, there is a measurable B C A with u(B) > 0 together
with a g € GG such that g - B C A satisfying that

‘d(iz,;u) () r' — (A.14)

for almost every w € B.

We claim that the ratio set is generated by quotients of the form w(§)/w(n), where  and 7 are
finite paths starting in * and ending in the same vertex. To prove this we will use the following
lemma.

Lemma A.15. For all {,n € Path}(G) with r(§) = r(n), there is an £ > 0 such that for all cylinder
sets E¢, the following holds: There are A,B C E¢, together with a g € G with > =1 such that
g- A= B and the following bounds are satisfied:
w(A) = bu(Ee)  and  p(B) = Lu(Ec).
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Moreover, A, B and g can be chosen such that we have
d(g - p) 115(757) forwe A
(w) = wgn;
du 2@ forw e B,
and g acts trivially on E¢ if Ec N Eq = ().

Proof. For each vertex v € GO, choose an edge evx €G (1) going from v to *. Define

Ci= i Tan(r(n) - minfu(€), w(n)),

where m := min, cg0) w(ey«) is the minimum weight of the edges ending in the distinguished point
and M := max,cgo) w(v) the maximum vertex weight. Define the two sets A := E¢. ., » and

B := E¢e, . .¢. Then clearly A, B C E¢. Using (A.10) it follows that

pA) _ 1 wlegwmw(r) _
u(Ee) o+t w(r(¢)) T
Since r(§) = r(n), we obtain pu(B) > fu(E¢) similarly.
Now set g := uce, ) €.¢epyn- Then g- Ec C E¢, g - A = B, and ¢g?> = 1. The claim on the
Radon-Nikodym derivative follows from (A.12). Finally, if E N Ey = 0, our choice of g acts
trivially on E¢ by (A.11). O

Theorem A.16. For alln € N and &,n € Path],(G) with r(§) = r(n), we have % er(Q, G, p).

Proof. We first consider the case where v = x. Let E C € be a Borel set with u(FE) > 0. Since p
is regular, for all € > 0, there exists U C Q open such that £ C U and u(U \ E) < eu(E). The
cylinder sets generate the topology of €2, and since two cylinder sets are either disjoint or one is
contained in the other, it follows that there is a sequence (&) C |J,, Pathl(G) such that

(o)
U= U Ee,, E¢, N E¢; = () whenever i # j,
k=1

where we allow E¢, to be the empty set. Choose m € N such that p(U) — > ;" p(Ee,) < ep(E)
and set B := J,—, E¢,. Then

WEAE") = p(E\ E') + p(E'\ B) < p(U\ E) + (U \ E) < 2ep(E).
For each k = 1,...,m, choose sets A, By, C E¢, and a group element g; as in the statement of
Lemma A.15. Set A :=J,, A; and B := |J,, By. Since the sets E¢, are disjoint it follows that
((A) > Lu(E)  and  p(B) > Lu(E'),

where £ is the constant from Lemma A.15 (note that it only depends on the choice of &, 7). Let
g = g192 - - gm (since the gi act non-trivially only on mutually disjoint sets, they all commute).
Again by Lemma A.15,

1

d(g-u)(w): r forwe A
r— forw € B,

where we set 7 := w(&)/w(n).
Using the results so far, we obtain the following estimates:

W(EN A)AL) < w(E\ E) < 260(E)
pg(E N B)AA) = u(g(E N B)AB)) = ~u((E N B)AB) < 2 u(E)

H(A) = (u(E') > Uu(U) — en(E)) > €1 — )u(E).
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In the second line, we used that gA = B and ¢g? = 1 in the first equality, and that the Radon—
Nikodym derivative is equal to 7~! on B in the second equality. The last inequality in the last line
follows because £ C U.

Define the following sets:

Al=EnNA and As:=g(ENB)NA.

Then clearly pu(A) > u(Ay)+ pu(Az) —u(A;NAz). Without loss of generality (since /£ is independent
of €) we may assume that € < (t“r24+r*1) We claim that in this case, we have pu(A; N Az) > 0.
Indeed, we calculate using the estimates above

(A1 N Ag) > pu(Ar) + p(Az) — p(A)
2e

2 u(A) = 2ep(E) + p(A) = —pu(E) — p(4)

> <e(1 C ) -2 - 2:) u(E)

= <€— (E+2+i>6),u(E)
> 0.

Finally, define
A'=(EnA)ng(ENB)CE.
d(g-p)

Then by construction we have g - A" C E, u(A’) > u(A; N Az) > 0, and moreover T(w) =r for

all w € A’. Hence r € 7(Q, G, i) as claimed.
To prove the general case, pick an arbitrary finite path ¢ with s(¢{) = % and 7({) = v. Then

CE, ¢n € Path™™¢1(G), so w(Ce) /w(¢n) € r(Q, G, 1). But since w(¢€) = w(¢)w(€) and similarly for
w(¢n), the claim follows. O

We note that the Krieger ratio set can more generally be described in terms of the “asymptotic
range” of a Radon—Nikodym cocycle (see [FM77a, Defn. 8.2]). But the asymptotic range is equal
to the Connes invariant S [Con73] of the Krieger factor by [FM77b, Prop. 2.11]. Thus we arrive
at the following corollary.

Corollary A.17. Let Gg be the subgroup of R~ generated by the set

{Z’)Eg’n €N, &1 € Path™(G), r(€) = T(n)} -

Then the Connes invariant S(M) is given by the closure of GR.

Proof. From the proof of Theorem A.16 it is enough to consider paths starting in *. By the same

theorem, each ratio % is in S(M). Since S(M) is a closed subset of [0,00), and S(M)NRsq is a

multiplicative subgroup of R+, the closure of G is contained in S(M).

Now each g € G is a finite product of operators of the form ug, ,, from (A.9). One can then see
(for example, using (A.12) and the chain rule for Radon-Nikodym derivatives) that all values of
d(g-1)

i are products of ratios of the weights of a pair of paths as above. Hence S(M) cannot be any

larger. O
A 4. Application: type of the boundary algebra in the Levin-Wen model. We associate
a graph G to a unitary fusion category C as follows. The set of vertices is G(©) = Irr(C), with
distinguished vertex % = 1¢ the tensor unit. For ¢i,co € GO, the set of edges GV is a disjoint

union of orthonormal bases for C(co — a®c; ®b) over a, b € Irr(C), with the isometry inner product
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determined by (f|g)id., = fT o g. Since C is rigid, there is an edge between every pair of vertices.
Thus we can define algebras B,, again as in §A.1.

To illustrate this, first consider the case n = 1. Recall that X = P cetre(c) - We can identify an
edge ¢ from * to ¢ with a morphism £ € C(c — a®b), which we can identify with £ € C(c = X ® X).
If 1 is another edge from * to ¢, we have £ o n' € End(X®2), which can be identified with |¢)(n|.
By considering all ¢ € Irr(C), we see that B; = Endc(X%?).

If & € Cleca — a1®c1®by) and &2 € Ccg — aa®ca®bsy) are two edges, the path £ := £1£s is defined
by (idg, ®&1 ®1dy, ) 0&a. As before, we can again see £ as an element of C(cs3 > X @ X ®c1 @ X @ X).
Generalising this to paths of length n, it follows that each algebra B, = End¢(X®2?"). Moreover,
the inclusion ¢, : By, < Bp+1 as defined in (A.1) is given by & — idx ®¢ ® idx.

Next we define a weight w on G. For vertices, set w(c) := d., where d. is the quantum dimension
of ¢ € Irr(C). Since an edge from ¢; to ¢y is an element 7 € C(c2 — a ® ¢; ® b) for some irreducible

2
a and b, we can set w(n) := d,dp. We see (A.3) is satisfied with § = <Zc€m(c) dg) : for fixed
¢ € Irr(C),

> > wywirm) = S NENEydadyd.,

a,b,c2€Irr(C) n€ONB(c2—a®c1 ®b) a,b,co,e€lrr(C)
2 2 72
= Y Nodedyde=| Y didp | de,.
a,b,e€lrr(C) a,belrr(C)

Now suppose that ¢ < a ®b for a,b, c € Irr(C). That is, ¢ appears in the direct sum composition
of a ® b. We call such a triple (a, b, c) admissable.

Lemma A.18. The following set
dodp
de

generates a dense subgroup of S(M).

(a,b,c) is admissable} C R-o

Proof. Let (a,b,c) be an admissable triple. Then there exist non-zero
Eellc=>a®1®b) and neClc—crlx®l).

We can choose both of them to be edges from 1 to ¢, and identify £ and i with paths of length one.
Note that w(§) = dudp and w(n) = d.. Hence by Corollary A.17 it follows that d‘é—fb € S(M).

Now let £ =& - -+ &, be a path from * to ¢, with §; € C(¢j+1 — a; ® ¢; ® b;), and thus ¢; = * and
¢n+1 = ¢. Using the fusion rules and semisimplicity, it follows that such a (non-zero) §; only exists
if there is some k such that (¢;, b;, k) and (a;, k, ¢;+1) are both admissable. Using the first part, this

means that
<dci dy, ) (dai dy, > _ dg,; dy,de,
dy dCiJrl dCi+1

is in the generated group. Taking the product over all i = 1,...,n gives w(§)/d.. If n is another
path from * to ¢ of the same length, the same argument gives that w(n)/d. is in the generated
group. Thus w(§)/w(n) is as well. The claim then follows from Corollary A.17. O

From the characterization of the net of algebras (B,,), it follows that the limit algebra B is the
same as that of the fusion categorical net I — F(I) for the Levin-Wen model studied in §5.2. Using
the proof of Lemma A.18 and the observations made earlier, we see that the state ¢ defined on B via
(A.6) is exactly the canonical boundary state 1z, which is described explicitly in Proposition 5.5.
(Alternatively, since the dynamics (A.5) on B is inverse to the dynamics (5.7) on §, the § = —1
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KMS st
lemma.

ate ¢ on B agrees with the 5 = 1 KMS state 5 on §.) Thus we have obtained the following

Lemma A.19. The von Neumann algebra M is isomorphic to the boundary algebra " for the
Levin—Wen model for C.

We are now in a position to determine the type of the boundary algebra. Since S(M) is closed
in [0,00) and S(M) NRsq is a subgroup of Ry it follows that S(M) must be one of the following
four cases [ConT73]:

S(M) = {1}, in which case M is semi-finite. From Lemma A.18 this is true if and only if
all d, = 1, i.e., C is pointed. In this case, it is also easy to see directly that the state ¢
defined in §A.2 is a trace.

S(M) ={0,1}, in which case M is type IIly. Note that ¢g-p and p are mutually absolutely
continuous. Hence the Radon—Nikodym derivative d(gl;“ ) cannot be zero on a non-neglible
set. By Corollary A.17, if 0 € S(M), it must be the limit of non-zero points in S(M). This
is in contradiction with 1 being the only other point in S(M), so the type IIly case cannot
occur.

S(M) = {0} U{\"|n € Z} for some X € (0,1), in which case M is of type III). Note that
Lemma A.18 implies that for each admissable triple (a,b, c), there is an integer Z¢, such
that

dody
d.

and the set {ZS,} generates Z as a group.
S(M) = [0,00), in which case M is of type III;. This is equivalent to the set

dadp
de

generating a dense subgroup of Rsg.

AZSb’

(a,b,c) admissable} (A.20)

This result refines Theorem 5.9.
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