O

Check for
updates

FWin Transformer for Dengue Prediction
Under Climate and Ocean Influence

Nhat Thanh Tran®®, Jack Xin®, and Guofa Zhou

University of California, Irvine, Irvine, CA 92697, USA
{nhattt,jack.xin,zhoug}@uci.edu

Abstract. Dengue fever is one of the most deadly mosquito-born trop-
ical infectious diseases. Detailed long range forecast model is vital in
controlling the spread of disease and making mitigation efforts. In this
study, we examine methods used to forecast dengue cases for long range
predictions. The dataset consists of local climate/weather in addition
to global climate indicators of Singapore from 2000 to 2019. We utilize
newly developed deep neural networks to learn the intricate relationship
between the features. The baseline models in this study are in the class
of recent transformers for long sequence forecasting tasks. We found that
a Fourier mixed window attention (FWin) based transformer performed
the best in terms of both the mean square error and the maximum abso-
lute error on the long range dengue forecast up to 60 weeks.

Keywords: Dengue forecasting - non-stationary time series - efficient
transformers + Fourier mixing

1 Introduction

The modeling and forecasting of vector-borne diseases (VBD) are scientifically
challenging and important to the society at large due to their complex non-local
temporal dependencies in the data as well as external climate factors. VBD
originated from tropical countries pose serious public health risks to both local
and global communities. Among them, malaria and dengue fever are the two
most deadly mosquito-borne tropical infectious diseases, with about 240 million
malaria cases globally and 440,000 malaria deaths annually, and 50-100 million
dengue cases. Currently, no tested vaccine or treatment is available to stop or
prevent all types of dengue fever. Thus modeling dengue disease evolution is
particularly significant.

The correlation of weather/climate with VBD evolution is well-documented
([2,9,12,15,27] among others). With global warming upon us, higher temper-
atures create more habitats for mosquitoes to infect unexposed human pop-
ulations and spread diseases. Just in July 2023, about 80 million Americans
experienced a heat index of at least 105° according to the National Weather
Service. The extreme heat waves prompt irregular typhoons in Asia and flash
floods in north America. Such intense precipitation and flooding events become
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more frequent and longer (unless humans essentially stop adding carbon dioxide
to the atmosphere), behaving as strongly non-stationary instead of traditional
seasonal signals. They can favor mosquito breeding and survival to further com-
plicate VBD evolution. Besides temperature, ocean currents can also influence
the infection dynamics of VBD [2,9].

Knowledge of weather and population susceptibility cycles is known to help
prediction, see [5,11] and references therein. A new challenge of VBD modeling
is to extract critical information from complex correlations and multiple factors
i the presence of intense transients lasting for week long periods due to extreme
climate events. Ensemble machine learning (ensemble support vector machines
[11]), recurrent neural networks (RNN) and regression [5], among other tools 18]
have been utilized in the past to study the effects of climate and seasonal weather.
However due to either stationary hypothesis or simple decision boundary or one
time unit ahead recursion, these existing tools are not well-suited for predicting
the aftermath of intense non-stationary behavior in the data.

In this paper, we study a local-global attention based efficient transformer
[21] for non-stationary VBD modeling and prediction in a specific spatial region.
For simplicity, we leave the spatial synchrony issue [1] (coupling among neigh-
boring regions) to a future study. Transformer networks equipped with attention
blocks |22] have powered the recent breakthroughs of natural language process-
ing (NLP and Open AI's Chat-GPT) where long range temporal correlations
exist. Since VBD data are not as abundant as in NLP, light weight and efficient
transformer networks are more suitable and will be our main objects of study
here. A successful strategy to reduce computational complexity of transformers
is to approximate the full attention by a local attention (e.g. window attention
[8]) globalized by a subsequent mixing step (e.g. through shifting [8] or shuffling
[3] windows among other treatments). Recently, Fourier transform based mix-
ing has been found competitive in accuracy and efficiency in both training and
inference on long sequence time series forecasting tasks. On standard benchmarks
[28] as well as highly non-stationary power grid data [26], Fourier-mixed win-
dow attention (FWin, [21]) out-performs prob-sparse attention [28] and other
recent models such as Autoformer [24], FEDformer [29], ETSformer [23] and
PatchTST [16]. We aim to continue this line of inquiry here on multi-variate
dengue and climate data in Singapore which provide a real-world VBD data set
to help understand and evaluate transformers as a new tool for advancing public
health.

The innovations of this paper include a comprehensive transformer based
generative model to encompass essential driving mechanisms of VBD evolution
and make fast prediction of non-stationary dynamic behavior over a longer tem-
poral duration than existing methods. The ideas of attention and multi-variate
data fusion have been applied before in the context of infectious disease predic-
tion, e.g. hand-foot-mouth disease and hepatitis beta virus [25], influenza and
dengue [14,30] etc. However, 1) the prior approaches of using a composition of
a linear projection and softmax normalization as attention [25,30] or a special
form of attention in machine translation [10] adopted in [14] is not robust com-
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pared to the canonical quadratic (Q,K,V) form [22]; 2) these methods have not
been evaluated on the public long sequence time-series forecast benchmarks [28];
and 3) the models by design can only make one time unit predictions which is
not enough for any early warning. Though the attention enhanced LSTM in [14]
was extended from 1 month ahead to 2/3/6 month ahead predictions, the perfor-
mance was increasingly worsening. Methods being a generative transformer can
naturally make multi-time unit predictions.

The rest of our paper is organized as follows. In Sect. 2, we discuss the Sin-
gapore dengue data set and two prediction tasks. In Sect. 3, we give an overview
of transformer models in this paper including FWin transformer. In Sect. 4, we
verify the hypothesis of the FWin equivalence theorem. In Sect. 5, we compare
results from the transformer models on the two prediction tasks and give our
interpretations. In Sect. 6, we provide an ablation study on the choice of window
lengths of FWin transformer, and effect of shorter inputs. Concluding remarks
are in Sect. 7.

2 Dataset and Task
2.1 Data

The dataset contains 1000 weeks of Singapore’s weekly dengue data spanning
from 2000 to 2019. The dataset’s features include the following variables: the
cases number, average temperature, precipitation, Southern Oscillation Index
(SOI), Oceanic Nino Index (ONI) total, ONI anomaly, Indian Ocean Dipole
(IOD), 10D East, NINO1+2, NINO3, NINO4, NINO3.4, and the respective
NINO anomaly. We provide descriptions of important features here: 1) SOI is the
difference from average air pressure in the western Pacific, measured in Darwin,
Australia, to the difference from average pressure in the central Pacific, mea-
sured at Tahiti [7], 2) ONI is running 3-month average sea surface temperatures
in the east-central tropical Pacific between 120W-170W [6], 3) IOD is the surface
temperature difference between the western and eastern tropical Indian ocean
[17], 4) NINO1+2, 3, 3.4, 4 represent the sea surface temperature correponds
with the region across the Pacific ocean with coordinates (0-10S, 90W-80W),
(5N-5S, 150W-90W), (5N-5S, 170W-120W), (5N-5S, 160E-150W) respectively.
Many of the features are reported in a daily or monthly interval. Whenever data
are available at a coarser temporal resolution than weekly, we select the data
corresponding to the month of the first day of that week. In cases where data
is available at a finer temporal resolution than weekly, we calculate the average
data for that week. The train/val/test split ratio is 6/2/2. We present a sample
of the features of the dataset with the corresponding split ratio in Fig. 1. Data
normalization applies to the entire dataset before passing it to the model. This
means that each feature in the dataset will have zero mean and variance equal
to 1. We label the data set as Singapore Dengue (SD). The processed data is
available upon request.
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Fig. 1. Sample features of the dataset. The plot includes the average temperature and
precipitation from 2000 to 2019 with the dengue cases number. Here blue, orange, green
indicate training, validation and testing split respectively. (Color figure online)

2.2 Prediction Task

In this paper, we are interested in predicting the dengue cases number using all
provided features. The appropriate task for this is Multivariate to Univariate
(MS). For this prediction task, we utilize information from all features from the
past m time steps, and predict the number of dengue cases for the next n time
steps. In the models, we set m to be 36 by default, and n € {24, 36, 48,60}.

Since we do not need to predict the other features, e.g. precipitation, we
introduce a new prediction task where the inputs consist of m + n time steps of
the predictor variables (PV). However, the input will only contain m time steps
of the response variable (RV), with the RV at the remaining n time steps set
to 0. We refer to this task as Modified Multivariate to Univariate (MM). The
rationale behind this task is that if we have accurate forecasts for the PV, then
we can leverage this information to improve the prediction of the RV. Later, we
will show that this modification increases the prediction power of the models.
Figure 2 provides an overview of the overall structure of these tasks.

3 Models

Time scale latency between the effect of weather features (such as the abundance
of water for larvae, and symptoms of disease in the host) varies depending on
the location. This latency could range from up to 6 months of delay to as short
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Fig. 2. (a) Input-Output structure of MS task. (b) Input-Output structure of MM
task. Here orange shaded cells indicate non-zero value of the RV, blue shaded cells
indicate non-zero value of the PV, and white cells indicate zero padded value. (Color
figure online)

as just 6 weeks [20]. Thus choosing a lag order (an integer parameter) in a
standard statistical model such as ARIMA or VAR is non-trivial for our dataset.
Moreover, traditional methods require choosing significant features, i.e. Pearson’s
correlation, before passing them in to the model [13]. Also features are assumed
to be linearly correlated, which may not be true in general. In cases where a
nonlinear model is necessary, we must have some functional form to describe
the relationship between the climate features and cases number. To address this
issue, we will utilize recent deep neural networks, in particular attention based
neural networks. We will discuss in detail the structure in the following sections.
Below are some reasons why a neural network may resolve some of the issues we
have with traditional methods. First, a deep neural network has the ability to
extract important features through learning. Second, we treat each time step of
the input as a token passing into the neural network. Given a certain time step
information (token), the attention mechanism allows a particular token to focus
on other tokens, this alleviates the need to pre-define a lag order. Of course, if
one has a prior knowledge of a lag order, then it can be incorporated into the
model such that one only allows tokens in that particular lag window to affect
the final prediction. We will show this as an advantage of FWin. Lastly, other
than choosing an architecture for a deep neural network, since in most cases it is
a universal approximator, we do not need to have an exact equation to describe
the nonlinear relationship between predictor and response variables.

In order to accomplish the dengue forecasting task, we will utilize some of
the recently developed deep neural network models. We will compare the follow-
ing models: FWin [21], Informer [28|, FEDformer [29], Autoformer [24], ETS-
former [23]|, and PatchTST [16]. We only include transformer based models in
this paper, because these models are the current SOTAs for time series tasks.
They demonstrated to out perform statistical models, RNN and CNN on multi-
ple benchmarks [16,28,29].
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3.1 Background

Many of the models presented in this paper utilize similar ideas from Transformer
[22]. This was originally designed for natural language tasks. In recent years, it
was demonstrated that similar approach can be used for time series. We will
provide some background information on these models next.

Transformer. Transformer is a basis for many of the newly developed models.
Transformer has an encoder-decoder structure. The encoder maps an input x to
a representation y. Then the decoder accepts y as an input to generate an output
z. Encoder composes of stacks of self attention and feed forward layers. Similarly,
decoder composes of stacks of masked self attention, cross attention, and feed
forward layers [22]. Attention is an essential component of the Transformer, thus
we will discuss it in more detail in the next section.

Attention. Let € RY%? be the input sequence, where L is the sequence length
and d is the feature dimension. Here d loosely can be understood as the number
of features in the dataset, usually the input is passed through a linear layer to

map the original number of features to a larger dimension. We compute queries
(Q), keys (K), values (V):

Q:$WQ—|—bQ,K:$WK+bK,V:xWV—{—bV? (1)

where Wo, Wi, Wy € R?%4 are the weighted matrix, and bg, b, by € REX? are
the bias matrix. Attention is defined as:

A(Q, K, V) = softmax(QKT /Vd)V, (2)

where A is the attention function and the softmax function applies along the row
dimension [22]. We usually refer to this calculation as full self attention, because
the queries, keys, and values are linear projections of the same input, and there is
a full matrix multiplication of @ and K. However, for cross attention, the query
comes from the linear projection of decoder input, while the keys and values come
from encoder output. For causality, masked attention is a restriction to the self
attention calculation where we prohibit the interaction of the current query to
future keys.

For window attention [8,21|, one computes the attention on sub-sequences
then concatenate the results together. We first divide sequence x into
N subsequences: (M), 2@ . (N such that 2 = [z, 2@, . T,
Each 2z ¢ RENXd for 4 = 1,2,...,N, where N = L/w, w is a
fixed window size. This implies we divide the queries, keys and values
as follow Q@ = [QW,Q®,....QWT, K = [KWO K® KNT Vv =
[V(l), ve o vWw )]T. Thus we compute attention for each subsequence as fol-
lows:

AQW, K, V) = softmax ( QUKW /Vd ) VO, (3)
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After computing the attention for each sub-sequence, we concatenate the sub-
attentions to form the window attention:

AQW, KM v (1)

Aw(Q>K, V) = (4)

AQW), KOV ()

3.2 Fourier Mix

The FWin model [21] uses window attention in place of full attention to reduce
the computational complexity. However, this limits the interactions between the
tokens, which may lead to degradation in performance. To resolve this issue,
FWin utilizes the fast Fourier transform as a way to mix tokens among the
windows. Given input x € RY*¢ one computes Fourier transform along the
feature dimension (d), then along the time dimension (L), finally taking real
part to arrive at:

Yy = R(‘/Ttime(‘/ffeature(x)))? (5)

where F is 1D discrete Fourier transform, and R is the real part of a complex
number [21].

3.3 FWin Overview

FWin |21] performs the best among all of the models. In addition, the procedure
is general across different models. We will present FWin model structure in more
detail. See Fig. 3 for the model overview. FWin is an adaptation of Informer [28§]
by employing the window attention [8] mechanism to capture the local informa-
tion and Fourier Mix layer [4] to mix tokens among the windows. FWin has an
encoder-decoder structure. First, raw input passes into the Encoder Input layer
to embed the time, and positional information. In the encoder, the input first
passes through the window attention, then dimensional reduction layer of Dis-
tilling Operation. This layer composes of convolution and MaxPool operations.
Lastly, the tokens mix by the Fourier Mix layer, and go toward to the decoder.
Second, the raw input passes into the Decoder Input layer with the time and
positional information added into the input. In the decoder, the input passes
through a masked window attention to respect causality. Then the tokens mix
by the Fourier Mix layer before passing through the cross attention block, and
finally through a Fully Connected Layer (i.e. a linear projection to return an
output with correct dimension) to produce the output. The input and output
dimensions are the same as shown in Fig. 2.

FWin employs window attention instead of full attention. This led to com-
putational savings as token interactions are localized in a window. This implies
that selecting a window size has a similar effect to choosing a lag order in a
vector autoregression (VAR) model. We will delve into this effect in more detail
in the ablation study section.
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3.4 Other Models

FWin is derived from the Informer whose structure is similar to Fig.3. The
main difference is that Informer uses the so called Probsparse attention instead
of window attention and Fourier mix. Probsparse attention [28| relies on a sparse
query measurement function (an analytical approximation of Kullback-Leibler
divergence) so that each key attends to only a few top queries.

FEDformer uses an encoder-decoder structure as well, however, instead of
canonical attention, it uses the frequency enhanced attention. It applies Fourier
transform to the input, then select a few modes to compute attention. In addi-
tion, it incorporates a seasonal-trend decomposition layers to capture the global
properties of time series [29]. Similarly, Autoformer uses Series Decomposition
and Auto-Correlation instead [24]. ETSformer uses similar structure with fre-
quency attention and exponential smoothing attention to extract growth and
seasonal information from the inputs. Here the attention is weighted with an
exponential term that favors nearby tokens. Then it uses such information selec-
tion in the decoder to forecast the future horizon [23]. Lastly, PatchTST only uses
the encoder structure of the Transformer. It first divides the input into patches,
and passes each feature independently through the Transformer’s encoder, then
concatenate the outputs to form the final prediction [16].

Some of the models only make multivariate prediction. Therefore, to generate
univariate predictions, we simply extract the response feature from the model’s
output. This approach is standard for these types of problems.

3.5 Models Hyperameters

For all of the models in this paper, we used their default hyper-parameters. For
FWin we use a window size of 12, and cross attention window number is 3. The
total number of epochs is 6 with early stopping. We used the Adam optimizer,
and the learning rate starts at le~*, decaying two times smaller every epoch.
For ETSformer we used the initial learning rate of 1e~2 in the exponential with
a warm up learning rate schedule. For PatchTST we used the constant learning
rate of 2.5e73 and 100 training epochs with early stopping.

4 FWin Equivalency Condition

FWin comes with an equivalence theorem for its estimator that is summarized
below. For the detailed proof, we refer to [21].

Theorem 1. Let Q, K,V € RE*4 and w € N be a factor of L. If Attn(Q, K) is
block diagonally invertible, then there exists a matriz C € C*F such that

A(Q7K7 V) = C]:(Aw(QaKv V)) (6)

Here Attn(Q, K) = softmax(QK™ /\/d), F is the discrete Fourier transform, -
denotes matriz multiplication, A(-) and Ay (-) are functions define in Eq. 2 and
Eq. 4 respectively.
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Fig. 3. FWin model overview [21].

A matrix B is block diagonally invertible if each block diagonal sub-matrix
is invertible [21].

To verify the condition of the theorem we will follow the procedure: 1) Run
simulations using the Informer model with full attention instead of probsparse
on the testing set. 2) Collect the full attention matrix of the first encoder block
of the Informer. 3) For a fixed window size w, compute the condition number of
each block sub-matrix of size w x w. 4) If the condition number is finite, then
the sub-matrix satisfies the condition.

From Fig. 4, we verify that dengue dataset satisfies Theorem 1. All of the
condition numbers are finite under various window sizes, most of them are rela-
tively small (less than 10*). We noted that as window size increases, the condition
numbers increase.

5 Results and Discussion

We present a summary of all the prediction tasks on the Singapore dataset in
Table 1. MAE = £ 3" |y — g| and MSE = 1 37 (y — §)? serve as evaluation
metrics. The results are the average of five independent simulations. The best
results are highlighted in boldface, and the total count at the bottom of the
table indicates how many times a particular method outperforms the others per
metric per task. From Table 1, we observe that FWin has the best performance
on both tasks.

In addition, we also demonstrate that including future PV information (e.g.
climate and ocean current features) in the model increases FWin performance
(on dengue cases) significantly. We observed that for longer time forecasting, i.e.
metrics of 36, 48, 60, the error for MM task is lower than MS task. However,
for Informer and PatchTST, the models’ performances decrease with additional
information. An explanation for the degradation in performance is as follows: 1)
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Fig. 4. Condition numbers of block sub-matrices with various sizes of attention matrix
obtained from the first encoder block of Informer model using full attention on the
testing data. On the top right corner of each subplot, there is a label “n/m (k%)”; here
m is the total number of condition numbers, n is the infinite condition numbers, and k
is the corresponding percentage.

the Informer’s probsparse attention only chooses a number of queries to com-
pute attention, which means if the input length increases then a few top queries
may not capture the majority of the contribution. 2) For PatchTST, it initially
patches the input with overlaps, thus increasing the sequence length may cause
too much overlap, leading to an overflow of information. In addition, it treats
each feature independently, thus adding additional information for the PV may
not affect the RV. In case of Autoformer and ETSformer, including future predic-
tor (e.g. climate and ocean current) information is beneficial to model prediction
power. In particular, ETSformer’s error reduces significantly for MM task com-
pared to the MS task. However, FEDformer was not able to perform the MM
task because the requirement of the input length of the decoder need to be half
of the input of the sequence.

Furthermore, we compared the vector autoregression (VAR) to DNN models.
VAR depends on a choice of lag order, which is non-trivial. Opting for a large lag
order can lead to the model making wild predictions, resulting in large errors.
On the other hand, selecting a small lag order can significantly reduce errors, but
the prediction may appear too smooth, which is unrealistic given the behavior
of the dataset. Additionally, the overall error was higher than FWin, thus we do
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not present the full VAR results obtained from calling the VAR library of the
package statsmodels [19].

We present a sample of the prediction of various models in Fig. 5 for the MM
tasks. The x—axis represents the timescale in weeks, and y—axis is the normal-
ized number of cases. FWin performs the best in terms of metrics presented and
visual. It was able to predict a large drop in number of cases while many other
models were unable to do so. We noted that in the MM task, the model input
is richer, containing the most information. This confirm the results we obtained
in Table 1.

Table 1. Accuracy comparison on Singapore data with input length of 36, best results
highlighted in bold. Here MS, MM are multivariate to univariate, and modified multi-
variate to univariate respectively. SD is short for Singapore Dengue, and “-” indicates
that the method is inapplicable for the task.

Methods FWin Informer |FEDformer|Autoformer ETSformer|PatchTST
Metric MSE MAE MSE|MAEMSE MAE MSE MAE MSE MAEMSE MAE
SD (MS) [24/1.170(0.684(1.842|0.877|2.090(1.085 |2.237|1.127 |1.611/0.8561.273|0.684
36/1.450/0.725|1.974/0.942|2.455|1.187 |2.441|1.198 [1.823(0.938|1.664|0.815
48(1.782(0.830(2.043|0.958(2.912(1.334 |2.927/1.370 |2.271|1.063|1.887|0.915
60/1.518|0.826(1.784/0.910(2.938|1.358 [3.015/1.395 (2.379|1.128(2.390|1.107

SD (MM)[24/1.303/0.787|2.137|1.002 - - 1.951|1.055 |1.480(0.885(1.734(0.833
36/1.156/0.680(2.043|0.968|- - 2.136/1.105 [1.305|0.774(1.994|0.937
48/1.251|0.693|2.228|1.033 - - 2.238/1.152 |1.355/0.825|2.352|1.062

60(1.124/0.710(1.911/0.946 2.680/1.272 |1.295/0.781|2.579/1.117
Count 16 0 0 0 0 1

6 Ablation Study

In this section, we will examine the effect of window size of the FWin model on its
performance. We can think of the window size of FWin as prior knowledge of the
time delay effect of weather/climate on the dengue cases. Due to the restricted
interaction within each window, the cases number in a particular window only
attends to local weather information. For this experiment, we utilize FWin with
window sizes of 1, 2, 4, 6, 12, and 18.

From Table 2, we observe that the biggest window size of the task gives the
best performance in most cases. This is intuitively consistent with the design of
FWin where we expect that the larger the window size, the better the overall
performance. In addition, we observe that for the smallest window size of 1,
the errors are significantly lower than naively expected. In particular, under
the MAE metric, the window size of 18 performs the best, while under the
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Fig. 5. Sample models’ prediction for MM task. The z-axis represents time in weeks,
and y-axis is the normalized cases number. The suptitle includes the model name and
the prediction errors (MSE and MAE). In black is the case number input, blue is the
ground truth and red is the prediction of the model.

MSE metric, a window size of 1 is the best for MS task. MSE amplifies the
effects of large errors while suppressing those from the small errors. Thus under
this metric, the smallest window size of 1 does not result in many large errors
overall. On the other hand, MAE penalizes all error types equally, thus implying
that the window size of 18 mostly results in small errors. We observe from
the proof of FWin attention equivalency with the full attention (Theorem 5.6
in |21]) that the theorem is true without any assumption on the structure of
the attention matrix if the window size is 1. This provides an explanation for
why we encountered low MSE error for window size of 1, i.e. the model does
not make many large errors in the prediction. On the other hand for MM task,
since we incorporate more information in the input, the largest window size of 12
performs the best. Moreover, except for the metric (prediction length) of 24, MM
task performs better than MS task. This indicates that additional information is
useful. An explanation for this phenomena is if the dependency between the RV
(dengue cases) and the PV (precipitation) is short, i.e. 6 weeks, then the model
performance may degrade at later time steps.

In addition, we performed further experiments to understand the effect
of shorter input sequence length to model performance. For this purpose, we
reduced the input sequence length of the model from the default value of 36 to
18. From Table 3 we observe that for the shortest prediction length, PatchTST
performs the best. However, for longer prediction lengths, FWin exhibits the
best results. In general, the errors remain similar to their counterparts when
the input length is 36. Therefore FWin is robust under the variation to shorter
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Table 2. Accuracy comparison of FWin model using different window sizes with input
length of 36. Here MS, MM are multivariate to univariate, and modified multivariate

to univariate respectively. Best results highlighted in bold. “-” denotes window size is
inapplicable.

Window Size|l 2 4 6 12 18

Metric MSE MAE MSE MAE MSE MAEMSE MAEMSE MAE MSE MAE

SD (MS) (24 1.195 |0.705 |1.282/0.720 |1.284/0.877|1.223/0.703/1.181/0.678 |1.196/0.667
36 1.432|0.742 (1.507|0.754 |1.517|0.755|1.492|0.747|1.458 |0.725 (1.440(0.708
48 11.673/|0.828 |1.854|0.866 |1.821|0.859|1.836/0.862(1.765 |0.824 |1.756|0.817
60 (1.538|0.848 |1.552/0.805(1.555/0.810(1.622|0.830/1.592 |0.813 |1.598|0.809
SD (MM)[24 1.354/0.795|1.367|0.802 |1.368|0.802|1.351/0.798/1.354/0.807
36 (1.306 |0.726 |1.326/0.740 |1.331|0.738|1.286|0.726/1.185|0.695|1.216/0.718
48 ]1.523 |0.815 |1.502|0.808 |1.504/0.807|1.534/0.839(1.270|0.719/- -
60 |1.339 |0.802 [1.338|0.805 |1.328|0.800(1.312|0.796|1.140|0.724/|- -
Count 5 1 0 0 8 3

Table 3. Accuracy comparison on Singapore data with input length of 18, best results
highlighted in bold. Here MS, MM are multivariate to univariate, and modified multi-
variate to univariate respectively.

Methods FWin Informer |FEDformer|AutoformerETSformer|PatchTST

Metric MSE MAE MSE|MAEMSE MAE MSE MAE MSE MAEMSE MAE
SD (MS) [24/1.388 |0.673 |1.899/0.888/1.650/0.890 |1.734/0.937 |1.476|0.839(1.040/0.621
36/1.444/0.698/1.903/0.921/2.169/1.021 [2.267|1.064 [1.722/0.908|1.542 [0.772
48/1.564/0.771/2.045/0.983|2.863|1.241 (2.930|1.275 (2.147|1.048|1.972 |0.932
60/1.281/0.666/1.811|0.928/2.992/1.282 (3.030(1.297 (2.169(1.073|2.282 [1.050

SD (MM)|24/1.669 (0.863 |2.250|1.017 |- - 2.075/1.189 [1.807|0.944|1.340(0.765
36/1.479|0.839(2.225/1.004 - - 2.451/1.309 [1.995/1.009(1.650 [0.872
48/1.511|0.822(2.307|1.058- - 2.687/1.364 (1.726/0.890(1.800 [0.940

60/1.187/0.696|1.952(0.966 2.803/1.312 |1.462(0.844|1.570 |0.864
Count 12 0 0 0 0 4

input lengths. Moreover, the MM tasks perform better than their counterparts
on longer prediction lengths for all models except Informer.

7 Conclusions

We evaluated various attention-based deep neural networks for predicting dengue
cases in Singapore. The dataset contains multiple features, including average
temperature, precipitation, and global climate indices such as Southern Oscilla-
tion Index, Oceanic Nino Index, and Indian Ocean Dipole. Among the models
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investigated in the study, FWin demonstrated the highest prediction accuracy
overall. Moreover, incorporating future climate/weather/ocean information in
the modified multivariate to univariate task generally improved dengue case
prediction for many models considered.

For subsequent work, we plan to design and embed a more explicit climate
and disease correlation layer (with help of certain prior knowledge) into the
FWin model to enhance its performance. In addition, we plan to develop spatial-
temporal transformer models that take into account geographical information
and predict disease cases over multiple regions in countries bordering the Indian
and Pacific oceans.
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