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ABSTRACT The focus of this paper is on operating the electric power grid in a secure manner during
scenarios of active wildfire risk. This is a challenging problem because of the uncertain ways in which the
fires can impact the operation of the power system. To address this challenge, we propose a novel preventive-
corrective coordinated decision-making scheme that quickly mitigates both static and dynamic insecurities
given the risk of active wildfires in a region. The scheme utilizes a comprehensive contingency analysis
tool for multi-asset outages that leverages: (i) a ‘‘Feasibility Test’’ algorithm which exhaustively desaturates
overloaded cut-sets to prevent cascading line outages, and (ii) a data-driven transient stability analyzer which
alleviates dynamic instabilities. This tool is then used to operate a coordinated unit commitment/optimal
power flow model that is designed to adapt to varying risk levels associated with wildfires. Depending on the
allowed risk, the model balances economical operation and grid robustness. The results obtained using the
IEEE 118-bus system indicate that the proposed approach alleviates system vulnerabilities to wildfires while
also minimizing operational cost.

INDEX TERMS Cut-set saturation, preventive-corrective coordination, static security, transient stability,
wildfire.

NOMENCLATURE
�Ptr Transient stability transfer margin.
λ Generalised wildfire risk in target area.
λb Risk metric for post-contingency branch

overloads.
λc Risk metric for cut-set desaturation.
λN Risk metric for power flowing through vulnera-

ble lines.
λt Risk metric for transient stability correction.
�PKcrit Transfer margin identified for cut-set Kcrit.
δ Rotor angle.
ε Desired stability margin.
ηus Stability margin of the unstable system.
κcrit Set of all identified saturated cut-sets.
CM Set of critical machines.
LODF Line Outage Distribution Factor.
NM Set of non-critical machines.
PTDF Power Transfer Distribution Factor.
TSI Transient Stability Index.

τn Linear sensitivity factor.
ξ Contingency List.
ai Static cost coefficient of generator i.
bi Linear cost coefficient of generator i.
Br Set of all branches.
ci Quadratic cost coefficient of generator i.
fe Active power flowing in branch e.
Fi Cost function of generator i.
G Set of all generators.
Gd Set of inactive generators.
Kcrit Identified saturated cut-set.
L Set of all loads.
lj Active power of load j.
M Inertia coefficient.
mj Cost of load-shed.
p0i Pre-contingency active power produced by genera-

tor i.
pni Post-contingency active power produced by gener-

ator i.
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pi Active power output of generator i.
ui Binary variable signifying status of generator i.

I. INTRODUCTION

INRECENT times, the increasing frequency, intensity, and
spread of wildfires has presented significant challenges

not only to emergency personnel and forest authorities, but
also to the operation of electric power systems. While the
impacts on emergency services and forest officials are rela-
tively easier to understand, the interaction between wildfires
and the electric power infrastructure is more complex. Power
utilities are expected to take measures to prevent initiation of
wildfires by their equipment (most often, power lines), while
simultaneously operating the grid in a robust and economic
manner in the presence of high wildfire risks [1], [2], [3],
[4]. While past research has extensively explored the former
issue, this paper focuses on the latter: ensuring security and
stability of the power system in the face of active wildfire
risks.

Analyses of major power system interruptions related to
wildfires have identified cascading outages resulting from
overloaded lines, instabilities caused by frequent arc-faults,
and/or preemptive disconnections of the lines as the primary
cause(s) (for the interruptions). Overloads occur because the
heat from ongoing wildfires affect the nearby power lines
resulting in lowering of the conductor’s current carrying
capacity [5]. This lowering can then cause bottlenecks to
appear in other parts of the system [6]. Arc-faults are not only
precursors of grid-initiated wildfires but also they occur when
a fire ignited by another source (e.g., lightning) approaches
the power lines. Wildfire inducing/induced arc-faults are
unique in the sense that they occur multiple times within
a short time-period [7]. Conventional contingency analy-
sis tools that usually deal with non-repeating faults are not
equipped to handle such phenomena. It is crucial that both the
static security as well as the dynamic stability implications of
a potential wildfire contingency are considered for ensuring
reliable and resilient power system operation.

To prevent grid-induced fires and protect grid assets from
wildfires, grid operators often resort to public safety power
shutoffs (PSPS), in which power lines are preemptively dis-
connected. Typically, PSPS is carried out heuristically based
on operators’ experience [8]. However, from a practical per-
spective, preemptively disconnecting lines bears a very high
social cost [9]. For example, over 2.7 million people lost
electricity in California in 2019 when preemptive measures
taken by the local utility resulted in more than 940,000 homes
and businesses losing electricity [10].While PSPS is effective
at minimizing grid induced fires, suboptimal implementa-
tion may lead to significant power outages during wildfire
scenarios, as network de-energization affects power flows in
the remainder of the network, leading to potential cascading
outages.

While there is significant research aimed at wildfire risk
management in the context of the electric power grid [11],

these efforts predominantly revolve around risk quantifica-
tion [12], resilience assessment [13] resource allocation [14],
and/or system upgrades [15]. Addressing the security and
stability challenges posed by wildfires in real-time requires
a holistic approach that is currently missing in the state-of-
the-art [5], [6], [7], [9], [11], [12], [13], [14], [15]. Mitigating
wildfire risk-induced security concerns after the wildfire had
started was explored in [16], [17], [18], and [19], which
treated it as an operations research problem. At the same time,
static security assessment and enhancement in the context of
storms and hurricanes with the aim of minimizing operational
cost and load-shed has been formulated in [20], [21], [22].
Similarly, a multi-state model for dynamic security enhance-
ment against faults caused by hurricanes was developed
in [23]. However, [16], [17], [18], [19], [20], [21], [22], and
[23] either assessed stability after contingency manifestation
or did not utilize the stability results in both the day-ahead
and the real-time stages. Specifically, coordination between
day-ahead and real-time operations is crucial for achieving
robust and economic operation when multiple contingencies
manifest.

Lastly, although prior research has integrated transient sta-
bility constraints into an optimal power flow (OPF) problem
(called TSCOPF henceforth) [24], [25], or a unit com-
mitment (UC) problem (called TSCUC henceforth) [26],
such problems have not been investigated in the presence
of active wildfire risks. Moreover, the direct application
of TSCOPF/TSCUC to an extreme event scenario (such
as wildfire) is not appropriate because of the heightened
uncertainty associated with such scenarios, as well as the
severely limiting nature of the stability constraints. Our
prior work [27] introduced a cut-set and stability constrained
OPF algorithm which assumed that the wildfire had already
started. However, scenarios of active wildfire risks, which are
more prevalent, was not analyzed in that study. Furthermore,
preparation for periods of high risk in the day-ahead stage
and coordination with varying risk scenarios in real-time,
was also not considered in [27]. This paper addresses the
above-mentioned limitations by making the following salient
contributions:

• A comprehensive contingency analysis tool for wild-
fire inducing/induced faults initially introduced in [27]
is utilized to exhaustively analyze multi-asset outages,
considering the ability of these outages to affect the grid
from both static security as well as dynamic stability per-
spectives. The tool first leverages a Feasibility Test (FT)
[22] algorithm that, given a sequence of outages, is able
to quickly and exhaustively identify and correct cut-set1

saturation. Secondly, the tool has a transient stability
analysis component that utilizes machine learning (ML)
to analyze and correct rotor angle instabilities caused by
multiple frequent arc-faults and line outages.

1A cut-set is a set of lines, which if tripped, would create disjoint islands in
the network. Therefore, saturated/overloaded cut-sets are themost vulnerable
interconnections of the system as they have limited power transfer capability.
For more details, refer to [22].
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• This contingency analysis tool is then used to operate
a two-stage preventive-corrective coordinated optimiza-
tion model to optimally allocate resources based on
actual system conditions and allowed risk. The pre-
ventive component is based on a cut-set and stability
constrained UC (CSCUC) that brings additional gener-
ators online to support those regions of the system that
are at risk of wildfires in the near-future.

• The corrective component is based on a cut-set and
stability constrained OPF (CSCOPF) which is extended
from our previous work in [27] by taking real-time
wildfire risk and load forecasts into account to provide
a wider range of solutions that balance between system
robustness and operational cost.

The proposed model is implemented on simulated wildfire
scenarios for the IEEE 118-bus system. A comparison with
the conventional real-time security constrained economic
dispatch (RT-SCED), a traditional TSCOPF model [28],
and our previous work on CSCOPF [27] indicates that the
approach developed in this paper gives demonstrably bet-
ter results. A sensitivity analysis is conducted next to gain
additional operational insights. Finally, a case-study is per-
formed to emphasize the contributions of the proposed model
in severe islanding cases including its ability to facilitate
PSPS.

The rest of the paper is structured as follows. Section II first
discusses the impact of wildfires on power system operations,
and then proposes two solution methodologies for mitigating
the steady-state and transient impacts of such extreme events.
Section III integrates these twomethodologies into a UC/OPF
formulation to create a coordinated decision-making
framework that considers the risk of a wildfire event in the
region for optimally operating the system. Section IV entails
the implementation of the proposed model on the IEEE 118-
bus system by simulating a wildfire scenario on an identified
vulnerable corridor of that system. The section also considers
extreme scenarios such as islanding as well as describes the
integration of the proposed model with PSPS operations. The
conclusions are drawn in Section V.

II. STRATEGIES TO MITIGATE IMPACTS OF
MULTI-ASSET OUTAGES DURING WILDFIRES
A. PROBLEM SCOPE
Wildfires and their interaction with the electric power infras-
tructure constitute a multi-faceted problem. Grid-initiated
fires are usually the result of high-impedance faults that:
(a) occur under environmental conditions that are conducive
for a faster spread, (b) are harder to detect, and (c) happen
in quick succession [29], [30], [31], [32]. The fear is so
severe that utilities are often forced to change their protec-
tion settings apriori (say, a day before) in anticipation of
high wildfire risks. For fires started by another source and
approaching the power lines: (a) the spatio-temporal pro-
cess of wildfire spread is based on the local climate and
geography (topography, vegetation, wind); (b) the breakdown

mechanisms of the air gap around the lines vary with time,
location, and wildfire proximity and intensity; (c) the out-
comes can range from multiple arcing events to a complete
line melt-down (permanent outage) [33], [34], [35]. A vari-
ety of tools already exist for tracking wildfire spread over
different geographical regions (e.g., FlamMap [36]). This
study assumes that the stochasticity of wildfire eruption, and
the spread of that fire across neighboring regions can be
expressed through a quantified risk metric for a given region
(based on existing tools), and is available apriori (e.g, a day in
advance).

From a power systems operations perspective, an econom-
ically optimal way to perform PSPS based on the knowledge
of wildfire risk, termed optimal power shutoffs, has been
introduced recently [29]. However, it did not consider the
dynamic impact of wildfires since these impacts involve
assets that are usually not under the purview of PSPS.
As such, a purely economics-focused scheme may end up
worsening grid vulnerability from a stability view-point by
increasing loading on an already vulnerable area of the
network. Similarly, a scenario where a non-grid induced
wildfire manifests unnoticed, may lead to the same outcome.
Therefore, this study is aimed at striking a balance between
economical operation and grid stability by pre-allocating
resources in the day-ahead stage and reallocating them,
if need be, in real-time.

We now outline two power system vignettes that exemplify
the scope of the methodology developed in this paper:
Vignette 1: The risk of wildfire is high for the next day in
a particular region but the fire has not started yet, and the
power utility wants to pre-allocate/reallocate resources so as
to secure the system without preemptively deenergizing all
the power lines in that region.
Vignette 2: A fire is burning in a neighboring region, and
there is a reasonably high probability of the fire spreading to
the region-under-study on the following day. In this case, the
utility wants to pre-allocate/reallocate resources so that the
system runs in a secure and stable manner while considering
the dynamic nature of wildfire risks.

An illustration of the implementation of the proposed
preventive-corrective coordinated action scheme is given in
Fig. 1. In the pre-contingency stage, a contingency analysis
is performed on the high-risk areas, following which power
flowing through that region is lowered and additional genera-
tors are brought online in other regions (indicated by red and
green arrows). In the real-time stage, the online generators are
optimally redispatched to quickly and economically steer the
system to a secure and stable state.

Lastly, note that the proposed formulation is generic and,
with suitable modifications, can be used to tackle other
extreme events/multi-asset outage causing contingencies.
The focus of this paper, however, is on wildfires. In the
following sub-section, we highlight the FT algorithm and the
ML-based transient stability analysis which form the back-
bone of the proposed comprehensive contingency analysis
tool for combating active wildfire risks.
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FIGURE 1. Overview of the proposed preventive-corrective coordinated action scheme.

B. FEASIBILITY TEST (FT)-BASED CUT-SET
SECURITY ANALYSIS
Since wildfires generally impact more than one line in a
target area, their outage can lead to a load-generation mis-
match in areas that are connected by those lines. Cut-sets,
by definition, are the set of lines that join two areas. There-
fore, by detecting and alleviating saturated cut-sets, security
criteria during multiple line losses can be strengthened. A sat-
urated cut-set is one whose aggregate power flow exceeds the
limits of the lines that form the cut-set. This is mathematically
described by: ∑

∀e∈Kcrit

fe >
∑

∀e∈Kcrit

f max
e (1)

where, f max
e is the maximum power flow allowed through

the eth line of the saturated cut-set, Kcrit. By exploiting the
principle that the cut-set power flow is not impacted by the
method employed to redirect the power flowing through a
line that faces an outage [20], a fast and scalable algorithm
called FT was developed that exhaustively identifies and
alleviates all saturated cut-sets for a given contingency [22].
The identified cut-sets can be desaturated by reducing the
aggregate power flowing through the constituent lines. This
is mathematically expressed as:∑

∀e∈Kcrit

�fe ≤ −�PKcrit ∀Kcrit ∈ κcrit (2)

where, �PKcrit is the required transfer margin for Kcrit, and
indicates the total amount of power that must be reduced
across the lines of Kcrit to prevent it from being overloaded.

More details about the FT algorithm and its capabilities can
be found in [20] and [22].

C. MACHINE LEARNING (ML)-BASED TRANSIENT
STABILITY ANALYSIS
Multiple arc-faults during periods of high wildfire risks and
cascading outages caused by ongoing wildfires possess the
ability to cause transient instability in the form of rotor angle
instabilities in the synchronous generators present in the sys-
tem. Transient stability (rotor angle stability) is assessed from
the maximum difference in the rotor angles (δmax) between
two consecutive synchronous machines. The metric used to
analyze transient stability under such situations, called the
transient stability index (TSI), is mathematically defined by:

TSI = 360 − δmax

360 + δmax
× 100 (3)

The system is stable if TSI > 0, and unstable otherwise.
An unstable system is characterized by at least one generator
losing sychronism, and eventually tripping. For an unstable
contingency, the total generation can be classified into stable
and unstable generators, with the stable generators being
those whose rotor angles are below δmax. Given a contin-
gency that leads to transient instability, the instability can
be corrected using the integrated extended equal area crite-
rion (IEEAC) [37]. The theory of the IEEAC stipulates that
transferring requisite amount of generation from the unstable
generators (CM) to the stable generators (NM) can make the
TSI positive. The required amount of generation that must be
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shifted is given by [27]:

�Ptr ≥
(−ηus + ε

τn

)
.

(
M
MCM

+ M
MNM

)−1

(4)

where, M , MCM, and MNM are the one machine infinite bus
(OMIB) inertia coefficients of the whole system, CM, and
NM, respectively, and CM ∪ NM = G. �Ptr is referred to
as the transient stability correction factor (TSCF). Eq. (4) can
be used to provide a transient stability constraint as shown
below: ∑

∀i∈CM
�pi ≤ −�Ptr (5)

Now, the calculation of �Ptr requires performing multiple
time domain simulations (TDSs) for a single contingency,
which is computationally expensive to do in real-time when
the list of potential contingencies is large. Furthermore, one
must also consider the variability of the loads - a factor that
will be compounded if solar or wind is present. To account
for both of these factors, we exploit the quasi-linear relation-
ship between the pre-contingency one machine mechanical
power and the transient stability margin [37]. Specifically,
we posit that a quasi-linear relationship exists between the
TSCF and the pre-contingency loading condition (l), since the
pre-contingency mechanical power is linearly related to the
loads. Consequently, we formulate a linear regression model
that estimates the required TSCF for a forecasted loading
condition, as shown below [27]:

�P̂tr =
∑
i∈L

θili + θ0 = ϒ(li) (6)

J (θ ) = 1
k

k∑
i=1

(�P̂tri − �Ptri )
2 (7)

where, θ are the weights, J (θ ) is the loss function, and k
is the batch size. This data-driven model for estimating the
TSCF is referred to as the transient stability constraint pre-
diction (TSCP) algorithm, and is denoted by ϒ . The ability
of different ML techniques in estimating�Ptr is compared in
Section IV-A. More details about the TSCP algorithm and its
implementation can be found in [27].

With the FT algorithm and theML-based transient stability
analysis generating appropriate constraints, the goal is now to
integrate them into the UC/OPF problem to achieve secure
and stable power system operation during active wildfire
risks, while also being economical. This goal is achieved
through the preventive-corrective coordinated action scheme
described in the next section.

III. PREVENTIVE-CORRECTIVE COORDINATION
In the day-ahead stage, the conventional UC formulation
helps to find a low-cost operating schedule for the generators.
However, it can be suitably modified to better prepare the
system for extreme events. Similarly, the corrective actions
of a modified OPF formulation can minimize (if not elim-
inate) the impact of contingencies by quickly reducing the

power flowing through themore vulnerable areas in real-time.
Together, this coordinated preventive-corrective decision-
making scheme can rapidly, safely, and economically steer
the power system towards a secure and stable state. The
following sub-sections describe how such a scheme can be
developed and implemented for managing active wildfire
risks.

A. PREVENTIVE UNIT COMMITMENT (UC)
In the preventive stage, previously inactive generators are
brought online to prepare the system for a contingency that
might occur in the near-future. Note that although the gen-
erators are brought online, they may or may-not dispatch
in real-time (this decision is made in the next sub-section).
Hence, we formulate a modified UC problem as described
below. We start by expressing the generator costs (Fi) as a
quadratic function of the output power (pi):

Fi(pi) = ai + bipi + ci(pi)2 (8)

Since the proposed formulation is modeled as an optimal
rescheduling problem, the cost of change in generation can
be simplified to:

�Fi(�pi) = {ai + bipni + ci(pni )
2}

− {ai + bip0i + ci(p0i )
2}

= ci(�pi)2 + (bi + 2 cip0i )�pi (9)

where, the superscripts 0 and n refer to the pre-contingency
and post-contingency status, respectively, of the correspond-
ing variable, and�pi = pni −p0i . The overall objective should
include the cost of generation change and load shed while
also considering the availability of inactive generators. Now,
the UC decisions are based on the post-contingency operation
(which generators are most economical after the vulnerable
assets are out), hence only the generators that are currently
inactive are considered in the modified UC. This decreases
the number of binary variables in the proposed formulation
by a considerable amount. Taking all of this into account, the
desired objective function can be written as:

min
�pi,�lj,ui

∑
∀i∈G

(ci�p2i + di�pi) +
∑
∀j∈L

(mj�lj)

+
∑

∀i∈Gd
uiai (10)

where, di = (bi + 2 cip0i ). The set of inactive generators Gd
is a subset of G. Load shed cost mj is chosen to be higher
than the generator costs, to de-incentivize power outage.
The binary variable ui is used to bring additional generators
online considering the post-contingency situation, including
the assets out of service due to the contingency. The overall
objective is now subjected to the following constraints:

ui.(pmin
i − p0i ) ≥ �pi ≥ ui.(pmax

i − p0i ) ∀i ∈ G (11)

ui = 1 ∀i ∈ {G− Gd } (12)

lmin
j − l0j ≥ �lj ≥ lmax

j − l0j ∀j ∈ L (13)

496 VOLUME 12, 2025



Sahoo and Pal: Preventive-Corrective Scheme for Ensuring Power System Security

f min
e − f 0e ≤

∑
∀i∈G

PTDFre,i�pi −
∑
∀j∈L

PTDFre,j�lj

≤ f max
e − f 0e ∀e ∈ Br (14)∑

∀i∈G
�pi =

∑
∀j∈L

�lj (15)

∑
∀i∈G

(PTDFre,i + LODFe,kPTDFrk,i)�pi

−
∑
∀j∈L

(PTDFre,j + LODFe,kPTDFrk,j)�lj

≤ f max
e − f 0e + (LODFe,k f 0k ) ∀e, k ∈ Br , ξ (16)∑

∀i∈G
(PTDFre,i + LODFe,kPTDFrk,i)�pi

−
∑
∀j∈L

(PTDFre,j + LODFe,kPTDFrk,j)�lj

≥ f min
e − f 0e + (LODFe,k f 0k ) ∀e, k ∈ Br , ξ (17)∑

∀i∈G
(

∑
∀u∈Kcrit

PTDFu,i)�pi

−
∑
∀j∈L

(
∑

∀u∈Kcrit

PTDFu,j)�lj

≤ −�PKcrit ∀Kcrit ∈ κcrit (18)∑
∀i∈CM

�pi ≤ −�Ptr (19)

Eqs. (11)-(14) provide limits for the optimization variables.
Note that the binary variable ui is set to 1 for the already
dispatched generators; this is indicated by (12). The power
balance constraint is shown in (15). The post-contingency
N − 1 branch overload constraints are expressed in (16)-(17).
The post-contingency cut-set constraint is modeled in (18),
while (19) denotes the transient stability constraint. This com-
pletes the description of themodifiedUC,which is henceforth
referred to as the CSCUC.

Algorithm 1 describes the implementation of CSCUC.
In the day-ahead stage, a list of contingencies are obtained,
and contingency analysis is done with each list using TDS.
If a contingency is found to cause transient instabilities or
cut-set saturation, then the required transfer margins are
calculated, and the TSCP is trained. This is followed by
the CSCUC, which recommends additional generators to be
brought online in anticipation of the contingency manifesting
the next day.

B. CORRECTIVE OPTIMAL POWER FLOW (OPF)
In real-time, the rescheduling must be done according to the
updated forecasts and contingency risk. By quantifying the
risk of a wildfire affecting the region, we can use it to relax
constraints (16)-(19) which may be too limiting otherwise,
to solve a modified OPF problem (called the CSCOPF prob-
lem) and get the desired redispatch. The modified objective
is now expressed as:

min
�pi,�lj

∑
∀i∈G

(ci�p2i + di�pi) +
∑
∀j∈L

(mj�lj)

Algorithm 1 CSCUC Implementation
Input: Historical load distributions, Contingency list ξ
Output: Unit Commitment (UC) status ui
Day-ahead:
1: Perform random sampling from the historical load dis-

tributions to determine potential loading conditions
�

2: Define empty list of constraints 


3: for loading condition in � do
4: Perform TDS using ξ

5: if violations detected then
6: Generate transient stability constraint using (4)
7: Update 


8: end if
9: end for
10: Train ϒ using 


11: Run FT to generate constraint (18)
12: CSCUC: Set objective (10)
13: Set constraints (11)-(19)
14: Solve to get UC status, ui

+ λc(
∑
∀i∈G

∑
∀u∈Kcrit

PTDFu,i�pi

−
∑
∀j∈L

∑
∀u∈Kcrit

PTDFu,j�lj + �PKcrit )

+ λt (
∑

∀i∈CM
�pi + �Ptr ) + λN (

∑
∀e∈ξ

f 2e ) (20)

In (20), the constraint penalties λc and λt are representative
of the wildfire risk in the target area, and can be varied appro-
priately to enforce compliance of the cut-set and transient
stability constraints. The above-mentioned objective is now
subjected to the following constraints, which are similar to
those specified for the CSCUC with the additional inclusion
of the constraint penalties:

pmin
i − p0i ≥ �pi ≥ pmax

i − p0i ∀i ∈ G (21)

lmin
j − l0j ≥ �lj ≥ lmax

j − l0j ∀j ∈ L (22)

f min
e − f 0e ≤

∑
∀i∈G

PTDFre,i�pi −
∑
∀j∈L

PTDFre,j�lj

≤ f max
e − f 0e ∀e ∈ Br (23)∑

∀i∈G
�pi =

∑
∀j∈L

�lj (24)

∑
∀i∈G

(PTDFre,i + LODFe,kPTDFrk,i)�pi

−
∑
∀j∈L

(PTDFre,j + LODFe,kPTDFrk,j)�lj

≤ λb(f max
e − f 0e + (LODFe,k f 0k )) ∀e, k ∈ Br , ξ (25)∑

∀i∈G
(PTDFre,i + LODFe,kPTDFrk,i)�pi

−
∑
∀j∈L

(PTDFre,j + LODFe,kPTDFrk,j)�lj

≥ λb(f min
e − f 0e + (LODFe,k f 0k )) ∀e, k ∈ Br , ξ (26)
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Algorithm 2 CSCOPF Implementation
Input:Units committed ui, Real-time power injections, Real-
time wildfire risk �, Transient stability analyser ϒ

Output: optimal redispatch �pi, and load shed �lj
Real-time:
1: Obtain or set risk λ

2: Define empty list of constraints 


3: Obtain real-time power injection information
4: Generate cut-set constraint using (18)
5: Generate transient stability constraint using ϒ ; see (19)
6: Update 
 with constraints (18) and (19)
7: while additional violations detected do
8: CSCOPF: Define objective (20) using 
, apply

constraints (21)-(26)
9: Solve CSCOPF to get �p and �l
10: Update dispatch and run power flow
11: Run FT and single TDS on updated dispatch
12: if violations detected then
13: Update 
 and Go to Step 8
14: end if
15: end while

The CSCOPF problem formulated above utilizes the sta-
tus of the generators calculated in the CSCUC as inputs.
This ensures that the resulting redispatch is fast as well as
economical. The values of the constraint penalties, denoted
by � = [λb λc λt λN ] which constitute the real-time
wildfire risk, may be obtained from predictive models using
external factors such as weather data [38], or from grid-edge
devices monitoring for faults or smoke [39]; it may also be
set manually from operator experience. Furthermore, its value
may be altered in real-time to shift the system to a more
alert state or less alert state depending upon the probability
of wildfire in the region-under-study.

Algorithm 2 describes the implementation of CSCOPF.
It takes inputs from various sources, including the trained
TSCP ϒ , and the allowed wildfire risk, �. The warm start
solution p0i may be obtained from the real-time power injec-
tions (which can be estimated [40]) and the load forecasts.
Once the risk metrics are set, CSCOPF is run, and the result-
ing solution is checked for any additional violations using FT
and a single TDS. As one approaches the most vulnerable
hours of the day, the value of � should be increased to better
prepare the system for facing the wildfire contingency.

IV. RESULTS
The proposed formulation is tested on the publicly available
IEEE 118-bus system [41]. The system consists of 118 buses,
54 generators, and 99 loads. This system is known to be
very robust and stable against line outages, so the effects of
simulated wildfires in this system emphasizes the true effects
of the damage an unmitigated approach can have. For gen-
erating diverse operating conditions, equivalent loads from
the publicly available 2000-bus synthetic Texas system [42]
are first found, and then their variations were captured using

FIGURE 2. Load variation data for five loads in the 118-bus
system.

kernel density estimation (KDE). The variations in some of
the loads are shown in Fig. 2. Random sampling was then
performed from the KDEs to generate ≈ 28000 samples
of real power load li. These loading conditions were then
used to perform contingency analysis using TDS. The TDSs
were performed in PSSE�, while the two-stage optimization
was modeled and solved using Gurobi and Pandapower in
Python 3.11.

A common theme across Vignettes 1 and 2 is the possibility
of a wildfire impacting a region of the power system in
the near-future (e.g., the next day). Accordingly, a prospec-
tive transmission corridor comprising two lines (namely,
23 − 25 and 26 − 30) of the 118-bus system was identified,
and it was assumed that on the following day, a set of five
arc-faults would occur consecutively over a period of three
seconds at the end of which each line would suffer a perma-
nent outage. The corrective action analysis used to generate
the power shift required in (5) for all the loading conditions
were then calculated, and ϒ was trained, with the train to test
split in the ratio 80 : 20. For obtaining the results shown in the
next four sub-sections, the constraint penalties/risk metrics
were made to obey the following relation: λb = λc = λt =
λN ∗ 0.01 = λ; this condition was relaxed in Section IV-E.
Note that λN includes a normalising factor as the associated
term is of the unit MW 2. All computational analyses done
in this paper were performed using a computer with an Intel
Core (TM) i7-11800H CPU @2.3GHz with 16GB of RAM
and an RTX 3070Ti GPU.

A. CONTINGENCY ALLEVIATION ACTION
The cut-set and transient stability constraints generated for
this extreme event scenario is detailed in Table 1. The
constraints also define the instability alleviation actions,
namely, the dispatch of the critical generators (25, 26) must
be reduced by at least 118 MW, and the aggregate power
flow across the lines (26 − 30, 25 − 27) must be reduced
by at least 187 MW. Note that the required rescheduling
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TABLE 1. Contingency impacts.

is considerably large, implying that the alleviation will be
subject to ramp-rate constraints. Furthermore, such a large
change does lead to additional security violations for the
test system, which are captured by the FT algorithm. For
these (as well as economic) reasons, it is essential that a
coordinated strategy involving both day-ahead and real-time
control are employed instead of entrusting everything to real-
time corrections.

For the contingency-under-investigation, the proposed
contingency analysis tool was able to quantify the impacts (of
the contingency) as well as determine the actions that must
be taken to alleviate them. As an example, Fig. 3 illustrates
the transient stability (rotor angles) of two TDSs for this
contingency before and after implementing the recommended
alleviation actions. The unstable generators (25, 26) are able
to ride-through the contingencies and do not lose synchro-
nism after the corrections are applied (compare the red and
orange-colored curves in this figure).

The results for the TSCP algorithm, ϒ , is given in Table 2.
In this study, ϒ trained using a linear regression model
is compared with other data-driven models including ridge
regression, support vector regression (SVR) with a radial
basis function (RBF) kernel, XGBoost, random forest, elastic
net, k-nearest neighbor (KNN), decision tree, and least abso-
lute shrinkage and selection operator (LASSO) regression.
The metrics used to gauge the performance of these models
include the root mean squared error (RMSE), R2 score, mean
bias deviation (MBD), and R2 robustness. Note that MBD is
a representation of the average bias in the model predictions,
and is mathematically defined as:

MBD =
∑

n(y− ŷ)
n

(27)

Ideally, MBD should be 0, to prevent bias in estima-
tion. However, for the identified problem, underestimation
of TSCF (positive MBD) is much worse than overestima-
tion, as the latter leads to uneconomical operation, while
the former leads to transient instabilities and the eventual
tripping of generators. Therefore, data-driven models that
give a small negative value for MBD are better. Finally, since
load forecasts are naturally subject to errors, it is important to
also consider the robustness drop in R2, which is calculated
by introducing noise into the forecasts and observing the

FIGURE 3. Rotor angle stability for the 118-bus system.

TABLE 2. TSCP results for different data-driven models.

subsequent change in the R2 score. Naturally, a smaller value
of R2 robustness is preferred.

It is clear from the table that linear regression has a low
error with a high degree of confidence, even in the presence
of noise in the forecasts. This result confirms our earlier
stipulation that a quasi-linear relationship exists between
the pre-contingency loading conditions and the transfer
margin (see Section II-C). Moreover, the shallow model (lin-
ear regression) combined with the interpretable nature of
the constraints ensures transparency, i.e, should prevailing
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TABLE 3. CSCUC results.

conditions shift, a power system operator possesses the dis-
cretion to intervene at any stage of the implementation,
allowing the application of custom solutions derived from
their experience.

B. DAY-AHEAD UNIT COMMITMENT
The contingency analysis results shown in Table 1 are now
used for optimal decision-making. In anticipation of a wild-
fire impacting the identified transmission corridor of the
118-bus system in the following day, the proposed modi-
fied UC is performed to determine and dispatch additional
generators. The CSCUC is solved assuming the contingency
has already manifested, and in the post-contingency state,
the committed generators are to be dispatched. The results
obtained are shown in Table 3. The CSCUC recommends
bringing an additional generator online at bus 6. Note that
this generator may not dispatch during the times of the day
when the risk of fire is low. However, it is cheaper and faster
(as shown later in Section IV-D) to bring the system to a ready
state with this generator in-service when the risk of wildfire
is high (Vignette 1) or the fire enters the region-under-study
(Vignette 2).

C. REAL-TIME OPTIMAL REDISPATCH
The optimal reschedule primarily depends on the real-time
status of the wildfire: whether it actually occurs in case
of Vignette 1 or enters the region-under-study in case of
Vignette 2, or it has not impacted the region-under-study yet
but the risks continue to be high. It also depends on how alert
the power system operator wants the system to be (i.e., the
level of allowed risk specified by λ). In the case when a fire is
in the region-under-study, the CSCOPF solution is obtained
by solving (10) with the values of ui set based on the day-
ahead CSCUC. In the case when a fire has not started but
the risks are high, the risk-based formulation given in (20)
allows the system to increase its readiness to the contingency
gradually (e.g., by increasing λ).

In the following results, we consider the latter case in
which the fire has not started in the region-under-study of
the 118-bus system but the risks remain high. A reschedule
of the generators based on λ = 5 is shown in Fig. 4.
In the figure, the blue bars indicate generators that take on
additional generation, while the red bars indicate generators
that lower their active generation. Themajor reduction in gen-
eration is seen in generators which are directly affected by the
contingency-under-consideration, and CSCOPF reschedules

FIGURE 4. CSCOPF result: Generator reschedule. Blue
generators take on additional generation, while red generators
lower their dispatch.

them economically while maintaining the security of the rest
of the system.

D. COMPARISON WITH STATE-OF-THE-ART
A comparison of the proposed model with the conven-
tional real-time security constrained economic dispatch
(RT-SCED), a traditional transient stability constrained opti-
mal power flow (TSCOPF) model [28], and our previous
CSCOPF formulation in [27] is performed for the identified
contingency in the 118-bus system, and the results are shown
in Table 4. Note that the RT-SCED model has no cut-set
or stability constraints, while the TSCOPF has no cut-set
constraints. Similarly, the CSCOPF developed in [27] only
operates in the post-contingency stage in which the fire is
already in the region-under-study.

In the table, both the pre-contingency and the post-
contingency scenarios under vignettes 1 and 2 are con-
sidered. In the day-ahead stage, the proposed coordinated
CSCUC/OPF formulation is implemented to dispatch an
additional generator (at bus 6) which is used in real-time to
reduce system vulnerability by controlling the risk param-
eters. While the ideal value of λ is subject to operator
experience, one objective of tuning it would be to minimize
the time required to remove system vulnerabilities, ideally
bringing it to within a single dispatch cycle. For example,
operating at λ = 0.1 would be cheaper than operating at
λ = 7. However, upon contingency manifestation or during
periods of high risk when the utility decides to preemptively
shut the region down, it would take at least three times
longer to bring the system into a secure and stable state using
λ = 0.1 vs. λ = 7; the difference arising due to the ramp
rates of the various generators. In the post-contingency stage,
while TSCOPF was able to alleviate the stability constraint,
it did not alleviate the cut-set insecurities. Meanwhile, RT-
SCED increased the cut-set saturation, making the region
even more vulnerable to additional asset loss. Conversely, the
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TABLE 4. Comparative analysis of the proposed model with state-of-the-art.

CSCOPF developed in [27] and the proposed CSCOPF/OPF
are able to alleviate both the vulnerabilities, resulting in a
static-and-dynamically secure solution without resorting to
any load shed. However, the proposedmodel results in a lower
additional cost as elaborated below.

The additional operational cost (henceforth referred to as
simply cost) under all conditions relative to base dispatch
given the same load forecasts are given in the second-to-last
row of the table. For context, a system with no control/an
insecure solution would have put about 534 MW of gener-
ation at risk of tripping which would have led to a loss in
revenue of at least $12,651.44/hr, calculated on the gener-
ation side. In the pre-contingency stage, the real-time cost
is significantly lower than the cost incurred for all post-
contingency scenarios, which shows the advantages of using
the proposed approach when the risks are relatively lower,
or if the wildfire has not started yet. Note that for λ = 7,
the system can be operated with the transient stability con-
straint cleared (the CMswill not lose synchronism even under
the worst-case scenario) while the cost is about one-tenth
of the (economically) best case post-contingency operation
($760.04 compared to $7526.11 obtained for RT-SCED).
Now, performing an economic comparison of the proposed
CSCUC/OPF with the CSCOPF developed in [27] for the
post-contingency stage, it is clear that the cost of the former
is $900.26/hr lower than that of the latter ($8,353.93/hr for
the proposed model and $9,254.09/hr for the model devel-
oped in [27]). This difference in cost shows the importance
of a two-stage preventive-corrective coordinated approach.
Essentially, while the proposed solution leads to increased
start-up costs due to the dispatch of an additional generator
(at bus 6), the costs are recovered through lower price of real-
time operation.

It is also important to consider the computational burden of
the optimization to ensure feasibility during real-time opera-
tion; this information is provided in the last row of Table 4.
The solution time for the proposed model is presented as
the total time to solve both the UC and OPF models, albeit
they are run at different times. The UC’s model complex-
ity is bounded by only the set of generators that are not
dispatched, and the security and stability criteria are formu-
lated as linear constraints of the decision variables, which

aims to minimize solution time. For the 118-bus system,
the solve time of the CSCUC model was 0.596s, and the
CSCOPF model was 0.066s, bringing the total to 0.662s.
The solve time of CSCOPF is similar to RT-SCED and one-
fourth of TSCOPF, implying that the additional constraints
do not significantly increase the computational burden of the
optimization, with the data-driven transient stability analyzer
improving the speed of online operation, as compared to
the TDS required for conventional TSCOPF. Lastly, although
load-shed was not required for the contingency-under-study,
it is important to incorporate it in the problem formulation to
increase operational flexibility.

E. SENSITIVITY ANALYSIS
This sub-section explores the flexibility in implementation of
the proposed model under the identified problem scope for
the region-under-study of the 118-bus system. The primary
purpose is to understand the full scale of its applicability and
simultaneously, its limitations. To do this, we evaluate the per-
formance of the proposed two-stage optimization formulation
by varying λ, i.e, for varying wildfire risk situations.

For a small λ, economical dispatch is preferred, while the
vulnerability of the system to contingencies is high, as it
would take a longer amount of time for the critical gen-
erators to ramp down to stable levels of generation. Note
that one dispatch cycle is considered to be 15 minutes here.
Meanwhile by increasing λ, the model prefers clearing these
constraints, and hence the risk of the system being affected by
a wildfire reduces significantly, albeit at a higher operational
cost indicated by the higher (positive) value of the CSCOPF
objective.

A sensitivity analysis for the most important individual
risks is explored next. The sensitivities for the risk metric
λc and λt are shown in Figs. 5 and 6, respectively. In both
the figures, the identified vulnerable regions are the regions
where the system may be operated at if the wildfire has not
manifested yet, for economic reasons, as reducing vulnera-
bility is associated with an almost equivalent increase in cost.
These analyses have different effects based on the problem
scope. For situations of active wildfire risks in which the
contingency has not manifested yet, but the risk is very much
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FIGURE 5. Sensitivity analysis of the cut-set risk λc.

FIGURE 6. Sensitivity analysis of the transient stability risk λt .

present, the system may be run in the vulnerable regions of
Figs. 5 and 6. For example, a recommended solution is to set
log(λc) = 2.6 and log(λt ) = 0.4, as it results in a reasonable
trade-off between operational cost and system vulnerability.
On the contrary, if there is a fire in the region-under-study, the
system must be operated beyond the vulnerability regions for
both the risk metrics since the affected lines would have to be
tripped. Lastly, note that in all of these results, the total load
was served, which demonstrates that it is possible to increase
supply reliability without increasing system vulnerability.

F. CASE STUDY: SEVERE ISLANDING CONTINGENCY
The primary objective of the proposed CSCUC/OPF formu-
lation is to mitigate the worst-case impact and reduce system
vulnerabilities caused by a system disruption, whether it is
planned (preemptive shutoffs) or unplanned (after a wildfire
has already manifested). However, if the risks are too high,
utilities resort to PSPS to avoid the grid itself from starting a
fire. In extreme cases, this may lead to controlled islanding
of the network to prevent widespread disruptions. This case
study models such an islanding case in the 118 bus system,
and analyzes the effect of the proposed formulation in both
the pre-contingency and the post-contingency stages. The

FIGURE 7. Case-study of an islanding contingency in IEEE
118-bus system. ‘‘Wildfire risk’’ denotes the region of the system
where the contingency occurs, while the ‘‘secondary
vulnerability’’ denotes a new region of the islanded system that
becomes vulnerable after the island has formed.

location of the island and the affected lines are shown in
Fig. 7. The affected lines span across a distinct corridor which
carves out an island that is≈ 30% of the network. The intertie
consists of four lines (15)-33, 19-34, 30-38, and 23-24), with
a total transfer capacity of 1.4 GW. Islanding of this region
may happen either: if the forecasted wildfire risk is very high,
and the utilities intend to conduct PSPS (Vignette 1), or if
a wildfire breaks out in the vulnerable region (Vignette 2).
We analyze this case-study from two perspectives as elabo-
rated below.

1) ENSURING POST-CONTINGENCY STABILITY
In this sub-section, the contingency analysis tool is used
to assess the resilience of the system due to the eventual
creation of the island. While there were no cut-set or transient
stability violations for the outage/de-energization of the lines,
the tool identified violations in a secondary region of the
created island, the details of which are given in the contin-
gency analysis portion of Table 5. The violations include
a vulnerable cut-set across three lines (23)-25, 25-27, and
26-30) and two vulnerable generators (at buses 25 and 26);
the corresponding stability margins/entries are also provided
in the table. Note that upon the creation of the island, all
the power flowing through the de-energized lines is now
redirected through the vulnerable secondary cut-set, which
increases the static insecurity of the island. If any assets are
now affected by a fire spreading into the secondary region
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TABLE 5. Case study: Islanding results.

(Vignette 2), it may lead to an outage of the entire vulnerable
region and the corresponding generators. This shows that
the proposed model can be used to provide insights into
the stability of the grid in the event of an island formation
or reduced network operation. Furthermore, by alleviating
this vulnerability using the proposed model (described in
the second half of Table 5 and elaborated in the next sub-
section), reliable power dispatch within the entire grid can be
ensured.

2) FACILITATING PREVENTIVE PSPS OPERATION
Although the post-contingency stability of the island is
assessed by considering the static and/or dynamic insecurities
created by asset loss after the island is created, it is better
to alleviate these vulnerabilities before the island is formed;
this aspect is analyzed in this sub-section. If the utility pre-
emptively conducts PSPS de-energizing the four lines in the
wildfire risk area (Vignette 1), the proposed model can be
used to alleviate post-contingency vulnerabilities by reducing
the power flowing through the high risk region (while causing
minimal addition to operational cost), so that the region can
be quickly shut down when the risk is at its peak. The results
are shown in the second half of Table 5. Implementation of the
proposed coordinated CSCUC/OPF dispatched an additional
generator at bus 40 in the day-ahead stage. In real-time, before
the system risks increase dramatically (thus forcing PSPS),
the system is run in an intermediary stage, where the power
flowing through the vulnerable area (secondary cut-set in this
case) is reduced just enough to enable the utility to disconnect
the four lines within one dispatch cycle, while ensuring that
the security and stability of the island is maintained, while
also not causing any load shed. For comparison, doing PSPS
alone would have required over two dispatch cycles, while
increasing operational cost post shutdown as well. In sum-
mary, from this case study, it is observed that the proposed
model can be used to increase system resilience during wild-
fire events, while also facilitating the PSPS implementation
process.

V. CONCLUSION
In this paper, a holistic preventive-corrective action scheme
addressing both static and dynamic security criteria was intro-
duced that facilitates stability and security-constrained unit
commitment (UC)/optimal power flow (OPF) solutions for
wildfire-related contingencies, and periods of active wildfire
risk. A fast and scalable algorithm for cut-set detection and
correction, called Feasibility Test (FT), is used to analyze
extreme event scenarios from a static security perspective,
and prevent cascading line outages. This algorithm is com-
bined with a data-driven linear transient stability constraint
prediction (TSCP) model that is able to accurately and reli-
ably predict the appropriate correction factor for mitigating
transient instabilities (caused by generator outages) under
various loading conditions.

A two-stage optimization model is then proposed that
utilizes the contingency analyses and enables optimal
decision-making in the day-ahead and real-time stages. In the
day-ahead stage, the cut-set and stability constrained unit
commitment (CSCUC) performs a modified UC considering
a post-contingency scenario to determine additional gen-
erators to be brought online. In real-time, the cut-set and
stability constrained optimal power flow (CSCOPF) is able to
determine multiple redispatch solutions based on the varying
real-time risk of wildfires.

Implementation of the proposed model on the IEEE 118-
bus system shows that the FT algorithm and the TSCP
model are able to accurately and reliably predict the static
and dynamic stability constraints in the face of load uncer-
tainties. The numerical results show that the proposed
preventive-corrective coordinated optimization is able to
detect and alleviate all cascading outage risks for both lines
and generators, while bearing minimal additional operational
cost. A comparison with similar models shows that the pro-
posed model is able to achieve security and stability while
being fast and economical. With suitable modifications, the
proposed formulation can be applied to other extreme event
scenarios as well. Future work will pivot towards the syner-
gistic integration of renewable resources, from both economic
and physical perspectives (such as ride-through constraints),
into the proposed CSCUC/CSCOPF problem formulation.
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