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Abstract—Resilient operation of the power system during
ongoing wildfires is challenging because of the uncertain ways
in which the fires impact the electric power infrastructure. For
example, wildfires near energized power lines cause arc-faults to
occur in rapid succession; such frequent faults can trip multiple
grid assets due to dynamic instability. Conventional contingency
analysis tools are not equipped to handle such phenomena. To
address this challenging problem, we propose a novel cut-set
and stability-constrained optimal power flow (CSCOPF) that
ensures secure, stable, and economic power system operation
through an advanced contingency analysis formulation which
quickly detects and mitigates both static and dynamic insecurities
as wildfires progress through a region. The CSCOPF achieves
its objective by integrating a “feasibility test” algorithm that
exhaustively desaturates overloaded cut-sets to prevent cascading
line outages and a data-driven transient stability analyzer that
predicts the correction factors for eliminating generator trips,
with the optimal power flow formulation. The results obtained
using the IEEE 118-bus system indicate that the proposed
approach alleviates vulnerability of the system to active wildfires
while simultaneously minimizing operational cost.

Index Terms—Contingency analysis, Cut-set saturation, Opti-
mal power flow, Static security, Transient stability, Wildfire

I. INTRODUCTION

IN recent years, the prevalence of wildfires has surged,

posing monumental challenges for electric power utilities.

On one side, they have been blamed for starting devastating

wildfires, which have even culminated in some utilities declar-

ing bankruptcy [1]. On the other side, they are expected to

maintain secure and stable grid operation in presence of active

wildfires to support other critical services. The focus of this

paper is on the latter, namely, ensuring resilient power system
operation when a progressing wildfire is projected to intersect
a power transmission corridor.
An analysis of major wildfire-induced power system inter-

ruptions has identified cascading outages resulting from over-
loaded assets, frequent arc-faults, and/or preemptive discon-
nection of power system equipment as the primary causes (for
the interruptions) [2], [3]. Overloads occur because the heat

from the fires affect the power lines in their vicinity resulting

in lowering of the conductor’s current carrying capacity [4].

This lowering may then cause bottlenecks to appear in other
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parts of the system. The pioneering work on this topic was

done by [5]. However, [5] and the papers that cited it, did not

consider the impacts of fire-induced faults on dynamic stability

of the power system. During the 2016 Blue Cut Fire, as the

fire approached a corridor of three 500kV and two 287kV

transmission lines, 15 arc-faults occurred in a short period
of time [6]. Other instances of system instabilities caused by

fire-induced arc-faults can be found in [3], [7], [8]. Wildfire

induced arc-faults are unique as they occur multiple times

within a few seconds [9]. Conventional contingency analysis

tools that usually deal with one fault occurring on a line/lines,
are not equipped to handle such phenomena. At the same time,

preemptively disconnecting lines in advance and over wide

regions to protect them from future arc-faults bears a very
high social cost. During the 2019 California fires, preemptive

actions by the local utility left more than 2.7 million people

without electricity [10]. Since areas impacted by wildfires have

grown considerably in the last decade, power utilities must

operate their systems till the last-minute while also considering

static security (to protect against asset overloads) and dynamic

stability (to minimize impact of frequent arc-faults) [11].

In this paper, we introduce a novel cut-set and stability-

constrained optimal power flow (CSCOPF) to conduct a com-

prehensive contingency analysis for active wildfire scenarios,

and ensure resilient power system operation upon emergence

of such scenarios. A cut-set is a set of lines, which if tripped,

would create disjoint islands in the network. Therefore, sat-

urated/overloaded cut-sets are the most vulnerable intercon-

nections of the system [12]. For ensuring static security, we

leverage the “feasibility test” (FT) algorithm developed in

[13] to exhaustively protect the system against saturated cut-

sets; we also ensure security against N− 1 branch overloads.
Dynamic stability is ensured through a data-driven transient

stability constraint prediction (TSCP) algorithm that estimates

the required transient stability correction factor (TSCF) while

accounting for load uncertainties. The outcomes of the two

algorithms are added as constraints to the optimal power

flow (OPF) formulation (see Fig. 1). The OPF, modeled as

an optimal redispatch problem, is run iteratively until all

violations are addressed. A case-study conducted using the

IEEE 118-bus system demonstrates that the proposed approach

is able to alleviate cascading outages due to static and dynamic

insecurities with minimal increase in operational cost.979-8-3503-7240-3/24/$31.00 ©2024 IEEE
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Fig. 1: CSCOPF overview

II. PROBLEM SCOPE AND SOLUTION APPROACH

Wildfires and their interaction with the electric power grid

constitutes a multi-faceted problem because of the following

reasons: (a) the spatio-temporal process of wildfire spread is

based on local climate and geography (topography, vegetation,

wind); (b) breakdown mechanisms of the air gap varies with

time, location, and wildfire proximity and intensity; (c) out-

comes can range from multiple arcing events to a complete line

melt-down (permanent outage) [7], [8], [14]. We now specify

the problem scope in the context of these facets.

A variety of tools already exist for tracking wildfire spread

over different geographical regions (e.g., FlamMap [15]);

hence, tracking of wildfires is outside the scope of this paper.

Without knowledge of the local environmental conditions

around a transmission line when a fire is nearby, it is not

possible to determine the air quality and/or the type of event

that might occur (frequent multiple arc-faults or permanent

outage). In this regard, one strategy could be to assume that all

power lines located in an active wildfire area are preemptively

de-energized, and then solve an optimal generation redispatch

problem in presence of topology changes [16]. However, as

explained in [2], such a strategy may not be optimal from a

socio-techno-economic perspective.

In this paper, we consider both types of outcomes, namely,

multiple arc-faults as well as permanent line outages. To

prepare the system for such eventualities, we develop two

contingency analysis methods. Although these methods can

be used for any extreme event/multi-asset contingency, they

are implemented (see Section III-G) considering the unique

attributes of wildfires. Lastly, some articles have focused on

enhancing the resilience of the power grid against wildfires by

system hardening, better asset management, and/or optimally

allocating fire-extinguishing resources [4], [17]–[19]. These

could be deemed complementary to the scope of this paper.

A. Static Security using Cut-set Analysis

A saturated cut-set is a cut-set whose aggregate power flow

exceeds the limits of the constituent lines, as shown below:∑
∀e∈Kcrit

fe >
∑

∀e∈Kcrit

fmax
e (1)

where, fe denotes the flow in the e
th line, fmax

e is the maxi-

mum flow allowed through that line, and Kcrit is a saturated

cut-set. A transmission corridor of the power system is likely

to be a part of one or more cut-sets. The FT algorithm, which

takes power injections as its inputs [12], [20], quickly identifies

and alleviates all saturated cut-sets for a given contingency,

and is mathematically expressed as,∑
∀e∈Kcrit

Δfe ≤ −ΔPKcrit ∀Kcrit ∈ κcrit (2)

where, κcrit is the set of all identified cut-sets, and ΔPKcrit

is the identified transfer margin, which is the overall amount

of power that must be reduced across the lines in the cut-set

to eliminate overloading.

B. Transient Stability using Machine Learning

Transient stability assessment and control evaluates the

capability of the power system to maintain synchronism after

a large disturbance, such as multiple frequent arc-faults. Dif-

ferent attributes of the system, including system configuration,

loading conditions, and fault location, influence the transient

stability assessment. In this paper, we focus on the rotor angle

stability, which is a key factor in determining transient stability

in presence of faults [21]. The rotor angle stability is quantified

by the transient stability index (TSI) shown below, where δmax

is the maximum difference in the sorted rotor angles of two

consecutive machines.

TSI =
360− δmax

360 + δmax
× 100 (3)

The system is stable if TSI > 0, and unstable otherwise. For
a contingency that causes TSI to become negative, the total
generation is split into two groups, one of which is composed

of the critical machines (CM) and the other is composed of

the non-critical machines (NM). A machine (i.e., a generator)

is deemed critical when it swings away from the rest of the

machines. Note that there can be more than one machine that

is identified as critical for a given contingency.

Given a contingency, transient stability control can be

done by the single machine equivalent (SIME) method [22],

which utilizes the equal area criterion (EAC) and multiple

time domain simulations (TDSs) per contingency. When an

instability occurs in a multi-machine system, the integrated

extended equal area criterion (IEEAC) can be employed to

correct for the instability. The IEEAC stipulates transferring

power (denoted by Ptr) from the unstable generators to the

stable generators, as shown below [23]:

ΔPtr ≥
(−ηus + ε

τ

)
.

(
M

MCM
+

M

MNM

)−1

(4)

where, M,MCM,MNM are the one machine infinite bus

(OMIB) inertia coefficients of the whole system, critical

machines (CM), and non-critical machines (NM), respectively,
ηus and ε are the unstable value and desired value of the
transient stability margin, and τ is a sensitivity factor. ΔPtr,

which is the TSCF, can be used to create the transient stability

constraint as shown below:∑
∀i∈CM

Δpi ≤ −ΔPtr (5)

Now, the calculation of ΔPtr depends on multiple TDSs for

a single contingency, which is computationally expensive to do
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in real-time. Furthermore, one must also consider the variabil-

ity of the loads. To account for both of these factors, we exploit

the quasi-linear relationship between the pre-contingency one

machine mechanical power and the transient stability margin

[23]. Specifically, we posit that a linear relationship exists
between the TSCF and the pre-contingency loading condition.
This is because the pre-contingency mechanical power is

linearly related to the loads (l) as
∑

i∈G pmi =
∑

i∈G pei =∑
j∈L lj , where pmi and pei denote mechanical and electrical

power, respectively, of the ith generator. Consequently, we
formulate a linear regression (LR) model with a mean squared

error (MSE) loss function that estimates the required TSCF for

a given loading condition, as shown below:

ΔP̂tr =
∑
j∈L

θj lj + θ0 = Υ(lj) (6)

J(θ) =
1

k

k∑
i=1

(ΔP̂tri −ΔPtri)
2 (7)

where, θ are the weights, J(θ) is the loss function, and k is
the batch size. This LR-based model for estimating the TSCF

is referred to as the TSCP algorithm, and is denoted by Υ.

III. CSCOPF FORMULATION AND IMPLEMENTATION

A. Objective and Constraints
CSCOPF is modeled as an optimal redispatch problem

to alleviate saturated cut-set, branch overloads, and transient

stability violations. The cost (F ) of generation dispatch con-
sidering a quadratic cost curve, can be expressed as:

Fi(pi) = ai + bipi + cip
2
i (8)

where, ai, bi, ci are the fixed, linear, and quadratic cost co-
efficients of the ith generator; we also dropped e from the

superscript of pei to avoid notational clutter. To derive the cost
of generation change, (8) is expressed as

ΔFi(Δpi) = {ai + bipi + cip
2
i } − {ai + bip

0
i + ci(p

0
i )

2}
= ciΔp2i + (bi + 2cip

0
i )Δpi

(9)

where, the superscript 0 in (9) refers to the pre-contingency

status. Including load shed (Δl), the overall objective becomes
minimizing redispatch as well as load shed, as shown below:

min
∑
∀i∈G

(ciΔp2i + diΔpi) +
∑
∀j∈L

(mjΔlj) (10)

where, di = (bi + 2cip
0
i ), mj is the cost of shedding load

j, and G and L are the sets of generators and loads in the

network. The coefficient mj is typically chosen to be higher

than the generation costs, to disincentivize load shedding.

B. Variable Limit Constraints
The generation rescheduling and load shed are limited by

the following equations, where the superscripts max and min
refer to the maximum and minimum values of the scripted

variables, respectively.

pmin
i − p0i ≤ Δpi ≤ pmax

i − p0i ∀i ∈ G (11)

lmin
j − l0j ≤ Δlj ≤ lmax

j − l0j ∀j ∈ L (12)

C. Branch Flow Constraints

The limits on power flows corresponding to the changes in

the generation and loads are given by,

fmin
u − f0

u ≤
∑
∀i∈G

PTDFr
u,iΔpi −

∑
∀j∈L

PTDFr
u,jΔlj

≤ fmax
u − f0

u ∀u ∈ B

(13)

where, PTDFr
u,i is the power transfer distribution factor of

branch u for one unit of power added at bus i and one unit of
power withdrawn from reference bus (r), B is the set of all

branches, and fu is the active power flowing in u.

D. Power Balance Constraint

This is ensured by making the aggregate change in genera-

tion equal the total load shed, as shown below:∑
∀i∈G

Δpi =
∑
∀j∈L

Δlj (14)

E. Branch Overload Constraints

The N− 1 security criteria must be preserved by the pro-
posed corrective action. This is ensured by using the line

outage distribution factor (LODF), as shown below,∑
∀i∈G

(PTDFr
u,i + LODFu,aPTDFr

a,i)Δpi

−
∑
∀j∈L

(PTDFr
u,j + LODFu,aPTDFr

a,j)Δlj

≤ fmax
u − f0

u + (LODFu,af
0
a ) ∀u, a ∈ B, ξ

(15)

∑
∀i∈G

(PTDFr
u,i + LODFu,aPTDFr

a,i)Δpi

−
∑
∀j∈L

(PTDFr
u,j + LODFu,aPTDFr

a,j)Δlj

≥ fmin
u − f0

u + (LODFu,af
0
a ) ∀u, a ∈ B, ξ

(16)

where, LODFu,k represents the percentage of power in branch

k that flows through branch u if there is an outage of branch
k, and ξ denotes the contingency set.

F. Cut-set and Transient Stability Constraints

The post contingency cut-set constraint is obtained from the

FT, as shown below:∑
∀i∈G

(
∑

∀u∈Kcrit

PTDFr
u,i)Δpi

−
∑
∀j∈L

(
∑

∀u∈Kcrit

PTDFr
u,j)Δlj

≤ −ΔPKcrit ∀Kcrit ∈ κcrit

(17)

Similarly the transient stability constraint derived from Υ
for a defined contingency is given by,∑

∀i∈CM

Δpi ≤ −Υ(l) (18)

Note that the CSCOPF formulation described above is

implemented on top of a regular economic dispatch; i.e., it

uses the prior economic dispatch solution as a warm start.
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G. Implementation

The steps that must be followed for implementing the

proposed CSCOPF are summarized in Algorithm 1. The

implementation occurs over two stages. In the day-ahead

stage, contingency analyses is performed for potential wildfire

scenarios1 using SIME to identify instability-inducing contin-

gencies. Identification of the appropriate contingency set is

followed by creating a dataset of potential loading conditions

obtained from historical load data. The TSCP model, Υ, is
then trained to calculate the TSCF for the loading conditions

and contingencies in the set. In real-time, the system is run

normally until a progressing wildfire is projected to intersect

a power transmission corridor. Once this happens, the con-

tingency analysis model is used to generate the cutset and

transient stability constraints. Since the CSCOPF constraints

are convex2, the optimization can quickly generate an optimal

redispatch solution that ensures a secure, stable, and economic

response to the unfolding wildfire scenario.

Algorithm 1 CSCOPF Implementation
Input: Historical load distributions, contingency information
(ξ), and real-time power injections
Output: Generation redispatch (Δp), and load shed (Δl)
Day-ahead Stage:
1: Perform random sampling from the historical load distri-

butions to determine potential loading conditions Ξ
2: Define empty list of constraints Φ
3: for loading condition in Ξ do
4: Perform TDS using ξ
5: if violations detected then
6: Generate transient stability constraint using (4)

7: Update Φ
8: end if
9: end for
10: Train Υ using Φ

Real-time Stage:
1: Define empty list of constraints Φ
2: Obtain real-time power injection information using [20]

3: Generate cut-set constraint using (17)

4: Generate transient stability constraint using Υ; see (18)
5: Update Φ with constraints (17) and (18)
6: while violations detected do
7: CSCOPF: Define objective (10), apply constraints

(11)-(16), and add constraints present in Φ
8: Solve CSCOPF to get Δp and Δl
9: Update dispatch and run power flow

10: Run FT and single TDS on updated dispatch

11: if violations detected then
12: Update Φ and Go to Step 7 of Real-time Stage
13: end if
14: end while

1The wildfire spread scenarios can be determined using FlamMap [15].
2Equations (11)-(18) are convex as they are a linear function of the decision

variables.

IV. RESULTS

The proposed formulation is tested on the well-known IEEE

118-bus system. The system has 54 generators, 186 transmis-

sion lines and 99 loads, with a total capacity of 9,966 MW.

Simulations and contingency analyses are performed using

Siemens’ PSSE� [24]. The optimization model is solved

using Gurobi [25], and the OPF is run using Pandapower
[26], an open-source package in Python. All computations are

done on a computer with an Intel Core (TM) i7-11800H CPU

@2.3GHz with 16GB of RAM and an RTX 3070Ti GPU.

Contingency details for an identified corridor of the 118-bus

system that is to be impacted by a progressing wildfire is given

in Table I (see first row). When the fire does enter the security

buffer [7] of the two lines, a set of five faults is assumed to

occur consecutively over a period of three seconds on both the

lines, at the end of which the lines suffer a permanent outage.

To vary the loads of the 118-bus system, we find typical load

variations occurring in the loads of the publicly available 2000-

bus Synthetic Texas system [27], and then superimpose those

variations on the 118-bus system loads using kernel density

estimation. We generate 28, 000 samples from the resulting

load values to create a dataset for training Υ. This dataset
captures the full spectrum of real-time load fluctuations and

is representative of the operational variability of the loads for

the time horizon considered.

A. Wildfire Contingency Impacts and TSCF Estimation Results

Table I shows the security and stability constraints that are

obtained when the contingency mentioned in the first row

occurs. Note that the required rescheduling is considerable

(second, fifth, and sixth rows). Furthermore, such a large

change leads to additional static security violations (over-

loaded cut-sets), as seen in the third and fourth rows.

TABLE I: Contingency details and alleviation actions

Property Value
Lines impacted (23,25),(26,30)
Generation at risk 534 MW
Saturated cut-sets (26-30,25-27)
Cut-set transfer margin -187.086 MW
Critical machines (CMs) 25,26
TSCF -118 MW

Using the contingency analysis and load variation infor-

mation, the data-driven TSCP algorithm is trained for TSCF

prediction in real-time. In Table II, the TSCF estimate obtained

using LR is compared with the one obtained using ridge re-

gression, support vector regression (SVR), XGBoost, random

forest (RF), elastic net, decision tree (DT), and least absolute

shrinkage and selection operator (LASSO). It is observed from

the root mean squared error (RMSE) and R2 scores that LR

and ridge regression give the best estimates, while RF, elastic

net, DT, and LASSO have comparatively poorer performance.

Now, since the loading conditions are themselves subject

to errors, the reliability of the estimation is investigated by

calculating the R2 robustness scores, which is the change in

R2 scores when the error in input is increased. The results
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TABLE II: TSCF estimation results using different models

Model RMSE R2 R2

Robustness MBD

Linear Regression 0.31 0.98 0.0024 −0.57e−4
Ridge Regression 0.31 0.98 0.0027 −0.57e−4
SVR 0.42 0.97 0.0028 0.02
XGBoost 0.94 0.85 0.0035 -0.004
Random Forest 1.51 0.61 0.0031 0.005
Elastic Net 2.13 0.22 -0.0003 −0.93e−4
Decision Tree 2.33 0.06 -0.0051 0.002
LASSO 2.34 0.06 0.0001 −0.28e−4

show that the models are generally resilient to errors in the

loads (which was capped at 5%), with LR giving the most

consistent outcomes. Finally, Table II shows the mean bias

deviation (MBD) results, which represents the average bias in

the predictions. It is an indication of whether the trained model

is under-estimating or over-estimating, and is calculated using:

MBD =

∑
k(y − ŷ)

k
(19)

Ideally, MBD should be 0. However, in our case, over-
estimation of TSCF is preferred, i.e., a negative value of MBD

is better. Again, it can be observed from Table II that LR gives

a very small negative value for MBD. These results justify our

assertion that a linear model is sufficient for TSCP.

B. CSCOPF Implementation Results

The proposed CSCOPF is used to quickly redispatch the

118-bus system when the projected path of the wildfire is

expected to impact the region identified by the first row of

Table I. The generator redispatch is shown in Fig. 2. In the

figure, a positive (blue) bar indicates increase in the generator’s

output, while a negative (red) bar indicates the opposite. The

majority of generation shed occurs from the CMs identified in

Table I. The FT algorithm and other security criteria ensure

that this rescheduling does not increase vulnerability in other

areas of the system (shown in subsequent results).

Fig. 2: CSCOPF redispatch schedule

A contingency analysis was done before and after im-

plementation of the CSCOPF (Algorithm 1). Rotor angle

trajectories for both cases are shown in Fig. 3. In the figure,

the two CMs are highlighted in red and orange colors. Without

any control, the CMs diverged and quickly lost synchronism.

With CSCOPF, they remained synchronized with the rest of

the system, effectively alleviating the transient instabilities.

(a) TDS without CSCOPF

(b) TDS with CSCOPF

Fig. 3: Rotor angle stability for the IEEE 118-bus system

Table III compares CSCOPF with a conventional real-

time security constrained economic dispatch (RT-SCED), and

a transient stability constrained OPF (TSCOPF). The RT-

SCED does not have cut-set or stability constraints while

the TSCOPF solution does not include cut-set constraints and

performs SIME in real-time. During implementation, the RT-

SCED did not reschedule sufficient generation for ensuring

transient stability as it did not have any dynamic information

(power from CMs was only lowered by 20 MW as compared

to the minimum needed 118 MW shown in Table I). Moreover,

in the identified cut-set, the power flow actually increased
instead of decreasing, making that region of the network even

more vulnerable to cascading line outages. In comparison,

TSCOPF successfully alleviated the transient instabilities, but

could not fully address the cut-set overloads (cut-set transfer

only reduced by 57 MW as compared to the minimum needed

186 MW shown in Table I). This meant that the system was

still at risk of cut-set saturation and line trips.

TABLE III: Comparative analysis of CSCOPF results

Result RT-SCED TSCOPF CSCOPF
CM generation shed (MW) 20.4 118 269.79
Cut-set desaturation (MW) -131.80 57.519 187.087
Total load shed (MW) 0 0 0
Transient stable No Yes Yes
Cut-set secure No No Yes
Time to solve (s) 0.066 0.256 0.066
Cost ($/hr) 126,459.97 126,222.28 128,187.95
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The proposed CSCOPF alleviated both static and dynamic

vulnerabilities resulting in a resilient operation without incur-

ring any load shed (see last column of Table III). The solution

time of CSCOPF is similar to RT-SCED and one-fourth

of TSCOPF, implying that the additional constraints do not

increase the computational burden of the optimization. From

an economic perspective, CSCOPF incurred an additional

cost of $1728/hr (over the RT-SCED solution). For context,

in absence of any control, the simulated wildfire-induced

contingency would have put about 534 MW of generation

at risk of tripping (see Table I), which would have led to

a loss in revenue of at least $12,650/hr calculated on the

generation side. Lastly, although load-shed was not required

for the contingency-under-study, it is important to incorporate

it in the problem formulation as a different contingency may

require both generation redispatch as well as load-shed.

V. CONCLUSION

In this paper, a comprehensive corrective action scheme ad-

dressing both static and dynamic insecurities was introduced to

ensure resilient power system operation during active wildfires.

The scheme is based on an advanced contingency analysis tool

that accurately analyses the impacts of such extreme event

scenarios. The tool includes: (i) a static security component

that is able to exhaustively desaturate cut-sets and prevent

cascading line outages, thereby going beyond traditional se-

curity approaches that only protect against branch overloads,

and (ii) a data-driven TSCP model that accurately and reli-

ably predicts the appropriate correction factor for mitigating

transient instabilities under varying loading conditions and

prevents cascade tripping of generators. Finally, the LR-based

implementation guarantees both transparency (in comparison

to black-box models) as well as solution optimality.

The numerical results indicate that the proposed model is

able to detect and alleviate cascading outage risks due to

overloaded lines, generators, as well as cut-sets, while bearing

minimal additional operational cost. Future work will analyse

the ability of the proposed approach in mitigating the impacts

of wildfires on renewable-rich systems from both stability as

well as economic perspectives.
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