SAFARI: Speech-Associated Facial Authentication for AR/VR
Settings via Robust Vlbration Signatures

Tianfang Zhang" Qiufan Ji* Zhengkun Ye
Rutgers University New Jersey Institute of Technology Temple University
tz203@scarletmail.rutgers.edu qj39@njit.edu Zhengkun.ye@temple.edu
Md Mojibur Rahman Ahmed Tanvir Mahdad Cong Shi
Redoy Akanda Texas A&M University New Jersey Institute of Technology
Texas A&M University mahdad@tamu.edu cong.shi@njit.edu
redoy.akanda@tamu.edu
Yan Wang Nitesh Saxena Yingying Chen’
Temple University Texas A&M University Rutgers University
y.wang@temple.edu nsaxena@tamu.edu yingche@scarletmail. rutgers.edu

ABSTRACT

In AR/VR devices, the voice interface, serving as one of the primary
AR/VR control mechanisms, enables users to interact naturally
using speeches (voice commands) for accessing data, controlling
applications, and engaging in remote communication/meetings.
Voice authentication can be adopted to protect against unautho-
rized speech inputs. However, existing voice authentication mech-
anisms are usually susceptible to voice spoofing attacks and are
unreliable under the variations of phonetic content. In this work,
we propose SAFARI, a spoofing-resistant and text-independent
speech authentication system that can be seamlessly integrated
into AR/VR voice interfaces. The key idea is to elicit phonetic-
invariant biometrics from the facial muscle vibrations upon the
headset. During speech production, a user’s facial muscles are de-
formed for articulating phoneme sounds. The facial deformations
associated with the phonemes are referred to as visemes. They carry
rich biometrics of the wearer’s muscles, tissue, and bones, which
can propagate through the head and vibrate the headset. SAFARI
aims to derive reliable facial biometrics from the viseme-associated
facial vibrations captured by the AR/VR motion sensors. Partic-
ularly, it identifies the vibration data segments that contain rich
viseme patterns (prominent visemes) less susceptible to phonetic
variations. Based on the prominent visemes, SAFARI learns on the
correlations among facial vibrations of different frequencies to ex-
tract biometric representations invariant to the phonetic context.
The key advantages of SAFARI are that it is suitable for commodity
AR/VR headsets (no additional sensors) and is resistant to voice
spoofing attacks as the conductive property of the facial vibrations
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prevent biometric disclosure via the air media or the audio chan-
nel. To mitigate the impacts of body motions in AR/VR scenarios,
we also design a generative diffusion model trained to reconstruct
the viseme patterns from the data distorted by motion artifacts.
We conduct extensive experiments with two representative AR/VR
headsets and 35 users under various usage and attack settings. We
demonstrate that SAFARI can achieve over 96% true positive rate
on verifying legitimate users while successfully rejecting different
kinds of spoofing attacks with over 97% true negative rates.
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1 INTRODUCTION

With the capability to deliver immersive and interactive experi-
ences, face-mounted AR/VR devices have emerged as prominent
contenders to personal computers. Leading technology companies
(e.g., Apple [1], Meta [2], and Microsoft [3]) are at the forefront
of promoting spatial computing [47], a paradigm where users can
interact with digital media/programs displayed in a 3D virtual space
through gestures and voice. This paradigm shift inevitably migrates
a large volume of sensitive data and functionalities from computers
and mobile devices into AR/VR headsets, such as accounts, photos,
financial records, and medical information. To protect the security
and privacy of AR/VR users, voice authentication [44, 46, 56, 60]
has emerged as a promising technology. The authentication mech-
anism leveraging the voice biometrics inherent in speech can be
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Figure 1: Illustration of the proposed AR/VR speech authen-
tication system based on facial vibrations of visemes (i.e., the
facial couterparts of phonemes).

applied to voice commands to access the sensitive data or control
the AR/VR programs. The user can also be swiftly authenticated
during voice communication (e.g., virtual meetings, virtual social
interactions) without interrupting the workflow or communication.
Therefore, voice authentication is considered as both transparent
and intuitive for AR/VR users.

However, the adoption of voice authentication in AR/VR plat-
forms faces two key problems. (i) Susceptibility to Voice Spoofing
Attacks: The open nature of sound propagation leaves voice authen-
tication extremely vulnerable to voice spoofing attacks. In AR/VR
settings, where remote voice communications are prevalent, an
adversary can easily obtain the victim’s voice samples through a
shared audio channel (e.g., a VR voice chat, a virtual meeting, a
social interaction session) or the victim’s public speeches. The voice
samples can then be used to reproduce or synthesize speech with
the user’s voice biometrics, bypassing the authentication mecha-
nism [12, 27, 41]. (ii) Variability in Phonetic Patterns: Voice biomet-
rics heavily depend on speech content, specifically the phonemes,
which are the smallest sound units in speech. The biometric rep-
resentations of a phoneme (e.g., formant frequencies and spectral
characteristics) can vary significantly depending on its phonetic
context (i.e., the other phonemes around it), which is called the
co-articulation effect [21]. Therefore, text-independent voice au-
thentication that identifies a user regardless of the speech content
typically requires extensive training voice data [22, 45].

In this work, we introduce SAFAR], the first spoofing-resistant
and text-independent speech authentication system for AR/VR
headsets. Our system can be seamlessly integrated into mainstream
headsets to secure voice inputs, such as those used in voice dictation,
navigations, and app controls. The key idea of SAFARI is to capture
facial geometry deformations during speeches by leveraging minute
facial vibrations upon the headset. We illustrate SAFARI in Figure 1.
During speech production, a user’s face geometry is deformed due
to the movements of facial muscles for articulating phoneme sounds.
Such facial deformations are referred to as visemes, the facial coun-
terparts of phonemes [11]. As the headset is mounted on the user’s
head, these deformations can induce minute vibrations upon the
headset, thereby encoding the viseme patterns into the motion sen-
sor readings. Visemes are consistent across speech content at two
levels [8]: First, visemes have less diversity compared to phonemes,
as multiple phonemes that appear visually similar when spoken are
grouped under a single viseme [8, 11]. For instance, the phonemes
/p/, /b/, and /m/ have the same facial deformations where the mouth
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closes at the beginning, followed by a release of air pressure. The
facial deformations of the three phonemes are mapped into one
viseme Vp a1 p. Second, the same viseme shows highly consistent
facial deformations across different speech content (e.g., viseme
/b/ in “begin”, “browse”, and “battery”). These two properties of
visemes allow SAFARI to profile facial vibrations on only a small
set of visemes (i.e., 11 visemes in English) instead of extensive voice
data covering various speech content [22, 45]. More importantly,
visemes carry rich biometric characteristics of the user’s facial mus-
cles, tissues, and bones, which are confined to the human body.
The internal propagation mechanism of viseme-associated facial
vibrations makes our system resilient to voice spoofing attacks re-
lying on voice biometric theft via the air media or an audio channel.
Even when the facial vibrations can be acquired (e.g., through a
malicious AR/VR app), it is difficult for the adversary to reproduce
the same vibrations on the headset.

Capturing effective viseme patterns poses significant challenges
in AR/VR headsets. Traditional vision-based methods [4, 17] that
rely on cameras to record images/videos of faces are impractical
in AR/VR headsets equipped only with outward-facing cameras.
Therefore, SAFARI utilizes the headset’s built-in motion sensors to
capture facial vibrations, thereby sensing visemes. While motion
sensors are insensitive to airborne sounds [5], they can pick up con-
ductive facial vibrations induced by visemes. This conductive prop-
erty also makes SAFARI resilient to acoustic interferences in the
environment (e.g., ambient noises and speeches of nearby people).
The design of AR/VR headsets covers only the upper region of the
face (e.g., cheeks, nose bridge, and forehead). The lower facial areas,
particularly near the mouth, lower jaw, and chin, tend to produce
weaker and less consistent vibration patterns, which compromises
viseme sensing via facial vibrations. To overcome this problem,
SAFARI focuses on identifying facial vibration segments that ex-
hibit pronounced and consistent viseme patterns. We find that the
formation of a vowel viseme coupled with its adjacent consonant
viseme often involves a complete mouth open-and-close cycle, such
as /b1/ in “begin” and /mow/ in “motion”. We refer to these viseme
combinations as prominent visemes, characterized by substantial
deformations in the upper face region and a richer array of biomet-
ric properties (e.g., muscle movement patterns and facial structures).
Centered on the prominent viseme segments, we develop a correla-
tion learning scheme that contrast different frequency components
within the prominent viseme, deriving phonetic-invariant facial
biometrics for speech authentication.

We face several technical challenges to realize SAFARI: (1) Sig-
nificant distortions caused by body motions: In AR/VR environments,
users may engage in strong and continuous body motions while
utilizing SAFARI (e.g., playing games, exploring the virtual world).
Our system should be able to recover subtle viseme patterns from
such significant distortions to enable reliable authentication. (2) Dif-
ficulty in prominent viseme segmentation: To enable reliable authen-
tication, SAFARI needs to identify regions of prominent visemes.
However, the smooth and continuous transitions between visemes
make the segmentation particularly challenging. We must develop
algorithms that accurately detect the starting and ending points
from the prominent visemes. (3) Unknown biometrics related to
visemes: The influence of viseme-related biometrics in the facial
vibrations has not been studied in prior work. It is necessary to
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extract reliable viseme-associated biometric representations from
the vibration patterns.

To mitigate the motion-induced distortions, we design a diffusion-
based generative model for viseme pattern reconstruction. This
model is trained by iteratively adding the noises of different body
motions in AR/VR settings, and it reconstructs the motion sensor
data to the original state that is unaffected by body movements.
In addition, we design a two-step scheme to identify and segment
temporal regions of prominent visemes with rich biometrics, each
containing a complete mouth open-and-close cycle. The first step
involves detecting vowel sounds by analyzing high-frequency facial
muscle vibrations captured in the motion sensor readings, which
occurs predominantly during speech. This approach effectively
distinguishes visemes from non-speech facial expressions, such
as smiling or showing anger. In the second step, our system lo-
cates the temporal positions of mouth opening and closing around
these vowel sounds based on low-frequency facial movements,
which refines the detection of prominent visemes. Furthermore,
SAFARI utilizes a correlation learning strategy for deriving facial
biometrics that are phonetically consistent. This strategy contrasts
low-frequency facial movements with high-frequency facial muscle
vibrations, providing a dual-perspective analysis of each promi-
nent viseme. The correlation helps in dynamically weighting on
the stable components within the facial vibration data. Based on
the weighted vibration data, a transformer model is utilized to
extract phonetic-invariant facial biometrics for text-independent
authentication. Our main contributions are summarized as follows:

o We present SAFARI, a spoofing-resistant and text-independent
speech authentication system that can be seamlessly integrated
into mainstream AR/VR devices. It is the first work that shows
distinctive phonetic-invariant and viseme-associated facial bio-
metrics can be extracted using built-in AR/VR motion sensors.

e We design a generative diffusion model, which is capable of
reconstructing viseme patterns to a state unaffected by human
motions. We further develop a scheme to accurately identify and
segment prominent visemes containing rich viseme patterns for
speech authentication.

e We develop a correlation learning strategy with a transformer
architecture to reliably link viseme patterns with users’ unique
facial biometrics. Through contrasting different frequency com-
ponents within the prominent visemes, the strategy extracts
biometric representations that are distinctive for individual users
while being invariant to the phonetic context.

e We validate SAFARI by conducting extensive experiments using
two commercial AR/VR headsets on 35 users with ages ranging
from 18 to 37, including native and non-native English speak-
ers. Through training on 20 short voice commands, SAFARI can
achieve over 96% true positive rates in authenticating enrolled
users. The system can also successfully defend against blind at-
tack, vibration replay attack, and observe-and-mimic attack with
over 97% true negative rates.

2 PRELIMINARIES
2.1 Kinetics of Viseme Production

Visemes are produced during speech articulations. As depicted in
Figure 2, they are shaped by the movements and vibrations of facial
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Figure 2: Illustration of facial muscle vibrations of visemes
during human speech articulation.

muscles, synchronized with the distinct phoneme sounds in the
speech. Thus, visemes are the facial counterpart of phonemes. The
viseme patterns are unique to each user, distinguished by individ-
ual facial characteristics such as facial landmarks, cheekbones, and
nose structure. The deformations primarily result from the facial
muscle movements. Specifically, five categories of facial muscles
contribute to viseme production: orbicular, zygomatic, mandibular,
frontal, and vertical muscles [8]. During speech production, the
frontal and zygomatic muscles in the upper face areas can influence
the headset’s position and orientation, which can be captured in
the motion sensor readings. The orbicular, mandibular, and vertical
muscles in the lower face areas may indirectly affect the motion sen-
sor readings by altering the tension and shape of adjacent muscles
and tissues. However, the visemes only involving these muscles,
particularly many consonant visemes (e.g., /f/, /r/, /w/), tend to
produce weak and inconsistent facial vibration patterns. Besides,
the facial muscles also carry minute vibrations originated from
vocal organs (e.g., vocal cords and vocal tract), which serve as an
auditory element of visemes. While these internal muscle vibrations
are not visible on the user’s face, they are closely correlated with
the visemes at the user’s face. These vibrations also carry unique
biometric information about the user’s vocal organs and muscle
structures, resulting in distinctive vibration patterns for different
users producing the same viseme.

2.2 Sensing Viseme-associated Facial Vibrations

To study the feasibility of sensing visemes through facial vibra-
tions, we conduct preliminary experiments using Meta Quest head-
set, which is one of the most popular VR headset. The headset is
equipped with a three-axis accelerometer and gyroscope. In SA-
FARI, we mainly leverage the accelerometer which is more sensitive
to vibration patterns [57]. The sampling rate of the accelerometer is
1000Hz. In the experiments, a participant wearing the Meta Quest
headset is asked to pronounce four distinct phonemes (visemes):
/p/ (Vpem), /d/ (Vp.1.5), /ou/ (V4), and /1/ (V}). We simultaneously
collect data from both the headset’s accelerometer and its micro-
phone. We visualize the time-frequency patterns (spectrograms)
of the collected accelerometer and audio data of the phonemes in
Figure 3. As illustrated in Figure 3, the temporal regions of viseme
articulation have markedly higher spectrum energy compared to
those where the viseme is absent. Therefore, we utilize the spec-
trum energy as a baseline to effectively locate the viseme patterns
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Figure 3: Spectrograms of viseme-associated facial vibrations
captured by the accelerometer (Z-axis) and phoneme-related
voice sound recorded by the microphone. The facial vibra-
tions cannot be recorded by the microphone.

in the motion sensor readings. Moreover, we observe that the spec-
trograms of accelerometer exhibit strong energy at a low-frequency
range (i.e., < 100Hz) during phoneme production. Different with
phoneme sounds at higher frequency, these patterns are associated
with visemes, specifically the facial muscle movements to articulate
the phonemes. These findings show that the headset’s accelerome-
ter can indeed respond to individual visemes. Further comparisons
between accelerometer readings and audio spectrograms reveal
that these low-frequency responses to visemes are not captured by
the headset’s microphone, which is designed to pick up air pressure
changes rather than conductive movement patterns. In addition to
muscle movements, the accelerometer also detects high-frequency
vibrations (i.e., > 100Hz) transmitted through the muscles. Orig-
inated from the vocal cords, these vibrations undergo complex
attenuation, reflection, and refraction within the head, thus con-
taining unique facial muscle characteristics. It exhibits substantial
different frequency responses compared to those recorded in the
microphone. These observations conform the feasibility of captur-
ing visemes through facial vibration sensing on AR/VR headsets.
These studies also validate the internal propagation characteristics
of facial vibrations, which prevent the leakage of viseme biometrics
via the audio channel.

3 THREAT MODEL

We consider an adversary who targets private information (e.g.,
accounts, photos, financial records) or unpermitted operations (e.g.,
making payments, installing malware) on the user’s AR/VR devices.
We assume the adversary is familiar with the authentication mech-
anism of SAFARI and can wear the user’s AR/VR headset. Based
on the prior knowledge and techniques available to the adversary,
we categorize the following three attack types:
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Table 1: 11 different visemes with their corresponding
phoneme sets and representative word examples.

Consonants
Viseme Phoneme Word examples
VicH &/, 147, 111, I3/ jump, chat, motion, vision
Vp.Mm.B /p/, /b/, /m/ pick, bit, make
Vr,v /t1, Iv/ fat, value
Vew I/, Iwl/ run, water

Vp,1,5 /d/, 141, Isl, 12/, 181, 18/
Vox,N | /gl /k/,/n/,n/, 1V, lyl, /h/

desk, take, sad, zoom, think, that
gap, cat, net, ping, lip, yes, has

Vowels
Viseme Phoneme ‘Word examples
Va /az/, /av/, [a1/, /a/ car, out, fly, cup
Vg lel, le],/=/, [al, |eal, /3:/ egg, save, apple
Vi it/ /1a/, 11/ beat, ship
Vo a1/, 191/, [au/, la/ door, boy, nose
Vu /v/, [va/, Jui/ book, boot

Blind Attack. The adversary does not have any prior knowledge
on the viseme patterns of legitimate users. To deploy the attack,
the attackers wear the user’s headset and use voice interactions
with their own visemes, with the expectation that the random facial
expression might bypass the user authentication scheme.

Vibration Replay Attack. We consider the situations in which
the adversary can obtain the users’ voice samples. This can be
achieved by stealthy recording the user’s sound using a microphone.
He/she replays the voice recordings using a playback device (e.g.,
a smartphone) in direct contact with the headset. The adversary
hopes the conductive vibrations of the playback device can results
in patterns similar to facial vibrations. Although the motion sensors
do not show significant response to air-borne sounds [5], they can
capture the direct vibrations. The adversary can also leverage voice
synthesis techniques [41, 50] to generate voice samples with the
same speech content and voice biometrics of the legitimate users
for deploying vibration replay attack.

Observe-and-mimic Attack. For this attack, we assume the
adversary can observe the visemes of legitimate users while they
use SAFARI, which can be realized via observation or video tap-
ping. The adversary then attempt to imitate the facial deformations
of legitimate users while they pronounce speech. Note that the
adversary can also have a similar face shape with the victim user.

4 SYSTEM DESIGN

4.1 Enabling Text-independent Speech
Authentication via Viseme Profiling

The idea of SAFARI is to learn phonetic-invariant facial biometrics
associated with visemes. The utilization of visemes is beneficial in
this task on two levels. On the first level, visemes are inherently
less diverse than phonemes due to their many-to-one relationship.
As illustrated in Table 1, facial deformations corresponding to 44
phonemes are typically categorized into 11 distinct visemes, based
on the similarities among the facial landmarks of visemes [28, 30].
This reduced diversity in visemes makes it easier for SAFARI in
profiling the entire range of viseme-related facial biometrics. For
instance, the viseme Vg includes six phonemes (/e/, /e1/, /e/, /3/,
/eal, /3:/), all sharing similar facial deformations and associated
biometrics. On the second level, visemes exhibit strong consistency
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Figure 4: Comparisons between visemes and phonemes in
isolated units and different words.

in facial deformations across different speech contexts. To demon-
strate this, we analyze the spectrograms of isolated visemes and
compare them with the same visemes within speech contexts, such
as /ou/ (Vp) in “go” and /t/ (Vp r,s) in “take”. We ask a volunteer
to pronounce these two viseme-word pairs and show the spectro-
grams in Figure 4. We can observe that visemes maintain their
facial vibration patterns even when articulated within the words,
showing their consistency under phonetic variations. In contrast,
the vibration patterns of phonemes like /ou/ and /t/ are significantly
influenced by adjacent phonemes due to co-articulation effects. The
two levels of consistency in viseme-associated facial vibrations ben-
efit SAFARI in realizing text-independent speech authentication.

4.2 Challenges

Significant Distortions Caused by Body Motions. While using
SAFAR], users may interact with AR/VR devices with body gestures
(e.g., looking around, interacting with virtual objects). These arti-
facts generated by body motions can significantly distort the viseme
patterns in motion sensor readings. A simple band-pass filter cannot
effectively remove these artifacts given that the responses overlap
with the frequency of facial muscle movements (e.g., 0~100Hz).
Therefore, it is essential to recover the viseme patterns from such
significant motion artifacts to enable reliable authentication.

Difficulty in Prominent Viseme Segmentation. Prominent
visemes do not exhibit clear and consistent boundaries. The transi-
tions between the consecutive visemes can be smooth, thus posting
challenges for pinpointing their exact starting or ending points.
Developing an accurate prominent viseme segmentation approach
is a critical step for extracting phonetic-invariant components.

Unclear User Biometrics Related to Visemes. The relation-
ships between visemes and speech-induced facial muscle vibrations
are not clear. To realize text-independent authentication with low
enrollment costs, it is essential to extract representative viseme-
associated features that remain consistent across different speech
contents from a limited set of commands. Moreover, these extracted
features should carry distinct and unique biometrics, thus ensuring
clear discrimination between legitimate users and attackers.

4.3 System Overview

To address the aforementioned challenges, we design a suite of
techniques. The overview of SAFARI is illustrated in Figure 5.
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Figure 5: System overview of SAFARL

Viseme Pattern Reconstruction. To mitigate the effects of mo-
tion artifacts on facial vibrations, we develop a generative diffusion
model, which is designed to restore facial vibrations to their original
state, unimpacted by body motions. The model training comprises
two distinct sub-processes: forward diffusion and reverse diffusion.
In the forward diffusion process, we simulate the motion artifacts
by integrating them with clean facial vibration data. These artifacts
are synthesized based on typical body movements encountered in
AR/VR environments, such as head rotations and arm movements.
Subsequently, the reverse diffusion process focuses on training
the model to accurately reconstruct the clean vibration data. This
involves gradually removing the synthesized motion artifacts to
recover the original, undistorted facial vibration patterns.

Prominent Viseme Segmentation. We develop a two-step
segmentation scheme to detect the temporal regions of prominent
visemes that contain a complete mouth open-and-close cycle. In
the first step, our method identifies vowel sounds by examining the
high-frequency facial muscle vibrations (e.g., > 100Hz), which is
exclusive to vowel sound production. This ensures the segmented
region containing viseme rather than arbitrary facial expressions
(e.g., smiling, yawning). In the second step, the scheme determines
the starting and ending positions of the viseme by analyzing low-
frequency facial movements below 100Hz, which effectively cap-
tures the opening and closing gestures of the mouth.

Speech authentication Based on Correlation Learning. Lever-
aging prominent viseme segments, SAFARI employs a transformer-
based correlation learning strategy to extract phonetic-invariant
facial biometrics. The learning strategy involves contrasting low-
frequency facial movements with high-frequency muscle vibra-
tions, providing a dual-perspective analysis of each viseme. To
exploit the correlation between two types of facial vibrations, we
have developed a reliability scoring model. This model dynamically
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assigns weights to more stable components of the spectrogram,
thereby ensuring that the biometric representations remain consis-
tent across varying speech contents. A transformer-based model
then processes these weighted spectrograms to extract phonetic-
invariant biometric representations. For each enrolled user, SAFARI
constructs a binary classifier that distinguishes the user’s biometric
signature from others, including specific anchor users. When voice
commands normally contain multiple prominent visemes, SAFARI
aggregates the authentication results from all prominent visemes
using a max-vote strategy. This aggregation further enhances the
robustness of the speech authentication. Additionally, SAFARI can
accommodate multi-user enrollment, such as family settings where
a single headset is shared. This is achieved by creating separate user
profiles, each represented by a unique binary classifier, allowing
individualized authentication for each legitimate user.

5 VISEME RECONSTRUCTION VIA
GENERATIVE DEEP LEARNING MODEL

In practical AR/VR scenarios, users may interact with the head-
sets through various types of body movements (e.g., rotating heads,
manipulating controllers) while issuing voice commands. These mo-
tion artifacts can be mixed with viseme-associated facial vibrations,
distorting the viseme patterns. To ensure reliable viseme biometric
extraction, we design a reconstruction scheme that reverses the
motion sensor data to a state that only contain facial vibrations.
Diffusion-based Viseme Reconstruction. Diffusion-based
generative model has achieved state-of-the-art performance com-
pared to other deep-learning-based generative techniques, such as
Generative Adversarial Network (GAN) and Variational Autoen-
coders (VAE), in text [52], image [24], and audio generation [40]
tasks. Motivated by its effectiveness, we develop a diffusion-based
generative model to reconstruct visemes from body motions. The
viseme reconstruction can be formulated as a parameterized sto-
chastic process with variational noises for training and denoised
viseme samples as outputs. We separate this process into two sub-
processes, forward diffusion and reverse diffusion as illustrated in
Figure 6. Specifically, we model the forward diffusion q(xg|xo) as
a Markov chain that gradually adds randomly-generated motion
artifact E, to the clean viseme x(, which can be formulated as:

R
q(xrlxo) = [ | q(xrlxr-1), )
r=0

where q(x,|xr—1) = x,—1 + Er—1 denotes the diffusion function that
generates the noise viseme x, by mixing motion artifact E,_; and
noisy viseme x,_1 generated at step r — 1. E, = N(Er-1,h, 7, ar)
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Figure 7: Viseme pattern reconstruction for open ([ou]) and
library ([la1]) under continuous walking with the headset.

refers using a pre-defined sampling function N to generate the
motion artifact E,. h refers the motion artifact with length L that
is randomly selected from a pre-collected motion dataset H and
the motion artifact segment E, is sampled at the starting time of
7 € [0, L —1] from h. Then the clean viseme xj can be reconstructed
by gradually removing the body motion artifact E, from the noisy
viseme x, via a reverse procedure, which can be described as:

Xp—1 = Xp — Eﬁ(xr, ar),r € [0,...,R], (2)

where Eg(-,-) denotes the motion artifact prediction model that
extracts body motion artifact E, from the noisy viseme x, and its
magnitude ratio «,. The model for body motion artifact prediction
can be optimized through minimizing the following object:

N R
arg min Z Z |Eg (xir r) — Eir
B i=1r=1
where x;, and E;, represent the ith noisy viseme sample from
step r and its corresponding motion artifact from the training set
D= {(xi’r, Eip),i=1.., N}. N refers to the total number of sam-
ples in the training set D.  denotes the trainable parameters of
the motion artifact prediction model and Eg(-, -) can be utilized to
expose the body motion artifact in the noisy viseme pattern x, after
optimization. The reconstructed viseme can be then obtained by
subtracting the estimated motion artifact E, from the noisy viseme
data x,. To realize the diffusion-based viseme pattern reconstruc-
tion, we build a model based on the structure of U-Net [39], which
employs a multi-layer perception architecture to embed the features
associated with the noise magnitude and a convolutional layer to
encode the viseme pattern. Then these embedded features are fed
into a structure that contains five down-sampling and up-sampling

layers, and finally outputs the predicted body motion artifacts.
Training Procedure. To build the diffusion model, a set of clean
viseme samples are collected. We also collect the motion sensor
readings associated with a set of common body movements in
AR/VR scenarios, including head rotation, walking around, swing
controller, squatting, and turning around to create the body motion
dataset H. E, is generated using the random sampling fuction N
on the motion artifact dataset H, and the training set D is con-
structed by mixing E; , with corresponding clean viseme x;9. We
set the length of motion artifact segment [ to 3 seconds and the
ratio @, as @, = 0.01 X r. The step number R of the diffusion and
reverse procedure is fixed as 100. An example viseme spectrogram
reconstructed from continuous walking is illustrated in Figure 7,
where the motion artifacts caused by continuous walking can been
effectively removed, and the viseme patterns are restored.

| ®)
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(c) Segmenting accelerometer data of prominent visemes

Figure 8: Illustration of our prominent viseme segmentation
scheme that first detects the regions of vowel sounds (i.e., tf
and t§) and then searches mouth opening and closing (i.e.,
tf/ and tk ’) of the visemes from “What’s my battery”.

6 PROMINENT VISEME SEGMENTATION

SAFARI first locates the prominent visemes that are embedded with
strong and consistent visemes within facial vibrations. In particular,
we define prominent visemes as either the first vowel viseme (Vo in
“open”) or the first viseme combination that involves a consonant
and a vowel, as they contain a complete open-and-close cycle of
human mouth. While pronouncing visemes, users typically bring
their mouth close, then open the mouth, move the lips forward
(especially during speaking the vowel sounds), and finally close
their mouth again [8]. These distinctive cycles of mouth move-
ments make these visemes distinguishable to be separated from
motion sensor readings. To precisely detect and separate promi-
nent visemes, we design a two-step viseme segmentation scheme,
including vowel sound detection and viseme region determination.
Firstly, our scheme detects the pronunciation of vowel sounds by
examining the existence of high-frequency facial muscle vibrations
(e.g., > 100Hz), which are distinguishable from the viseme spectro-
grams. Secondly, based on the identified region of the vowel sounds,
our scheme searches for the starting and ending points of mouth
closing by analyzing low-frequency facial muscle movements (e.g.,
< 100Hz). With this approach, we can effectively prevent the in-
correct detection of speech-irrlevant facial expressions in AR/VR
scenarios (e.g., smiling, yawning) as prominent visemes.

Vowel Sound Detection. To detect the vowel sounds, our scheme
first applies element-wise summation on the spectrograms from
the z-axis readings of accelerometer. Based on the summed spectro-
grams, we accumulate the spectrogram energy across frequencies
above 100Hz to measure the energy distribution of facial muscle
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vibrations. An example is illustrated in Figure 8(a), which demon-
strates that the energy peak always locates within the vowel sound
region. To precisely detect vowel sounds, a peak selection algorithm
is developed to find the points (e.g., p¥) with prominent energy
compared with other adjacent peaks [51]. Our scheme then searches
for a pair of closest points where the mean and variance of energy
show abrupt changes (e.g., t! and t) [29] larger than a pre-defined
threshold. Examples of detected peaks and change points of the
vowel sounds [5], [ai], and [e] are shown in Figure 8(a).

Viseme Region Determination. Given that users open their
mouths to enlarge the vocal tract in preparation for sound produc-
tions (e.g., [ou], [0], [e]), the low-frequency facial muscle move-
ments are produced prior to the associated facial muscle vibrations.
Moreover, the facial movements will maintain for a duration af-
ter users complete the sound production. Therefore, the regions
of prominent visemes should be larger and completely cover the
detected vowel sounds. To determine the regions of prominent
visemes, we apply moving variance upon motion sensor readings,
where a large moving variance indicates the existence of a signifi-
cant facial movement. An example of using moving variance for
mouth opening and closing detection is shown in Figure 8(b). Simi-
lar with vowel sound detection, we detect the points with abrupt
changes of the spectrogram energy to determine the starting time tf
and ending time t‘]f of the viseme corresponding to the Kkt detected
vowel. We then search for the second change point ¢ " closest to tk
with tf’ < tf and t"f/ closest to t"f with t§’ > tf. The examples of
detected prominent visemes and associated accelerometer readings
(e.g., z-axis) are elaborated in Figure 8(b) and Figure 8(c).

7 AUTHENTICATION FRAMEWORK BASED
ON VISEME CORRELATION LEARNING

7.1 Model Overview

To perform reliable user authentication, we design a correlation
learning framework to derive viseme-associated biometrics. The
idea is to contrast facial movements and vibrations within each
prominent viseme, which highlights the phonetic-invariant compo-
nents (e.g., face shape, bone and muscle properties) shared among
these two types of dynamics. It thus reliably links the viseme pat-
terns with users’ unique biometrics. The framework takes facial
muscle movement spectrogram x,, and vibration spectrogram x,
as inputs. The two spectrograms are fed into two scoring mod-
els, G (+) and Gy(-), which dynamically adjust their weights to
highlight the phonetic-invariant parts of spectrograms. The two
weighted spectrograms, f;;; and f, are then concatenated, which is
referred as f = [ fin, fo], and fed into a transformer-based encoder
D(+) to extract biometric representations. For user authentication,
we build a binary classifer for each legitimate user (e.g., U/) (-) for
user j), which determines whether the representations belong to
the legitimate user (e.g., user j) or not.

7.2 Reliability Scoring Model for Facial Muscle
Movement and Vibration

To extract the emphasized spectrogram of prominent visemes, we
develop two reliability score models based on Convolutional Neu-
ral Networks (CNNs). In particular, the scoring models take facial
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Figure 9: Model overview of the viseme correlation learning framework.

movement spectrogram x,;, € REXT*Fm and facial vibration spec-
trogram x, € RE*T*Fo a5 inputs and generate two sets of reliability
scores, which are denoted as M,,, € REXT*Fm and M, € REXT*Fo,
C isreferred as the input channels associated with the 3-axis motion
sensor readings. T and F, /F, denote the numbers of points in the
temporal (e.g., ~0.2s) and frequency dimensions (e.g., < 100Hz and
> 100Hz). High reliability scores highlight the phonetic-consistent
part of prominent visemes that may facilitate user biometric deriva-
tion and differentiation, which can be described as:

fm =Xm + M © X, fo = X0 + My © X,

4
where f;,;, and f, denotes the emphasized spectrograms of facial
movements and vibrations, which are then concatenated along the
frequency dimension to generate the combined emphasized viseme
f = [fm fo] € REXTXF wwith F = Fy, + F,,. Through the reliabil-
ity scoring model, we highlight the phonetic-invariant features
from prominent visemes, which are further utilized to extract facial
representations for effective user authentication.

7.3 Facial Representation Extraction Based on
Spectrogram Transformer

Transformer-based deep learning models, such as Audio Spectro-
gram Transformer (AST) [20], have outperformed traditional mod-
els (e.g., ResNet [23] and LSTM [25]) on speech and speaker recog-
nition. Particularly, the multi-head self-attention mechanism of
transformer enables itself to focus on different segments of input
sequences, which also facilitates capturing spacial and temporal
features from human visemes. Inspired by the design of AST, we
develop a transformer-based viseme representation extractor to
derive viseme-associated facial biometrics from individual users.
Specifically, the transformer-based representation extractor takes
the emphasized viseme spectrogram f as input and split it into sev-
eral spectrogram patches. Multiple pre-trained convolutional layers
are employed to embed these separated patches for a transformer-
based encoder, which includes 7 heads with self-attention layers to
derive users’ distinctive facial representations.

7.4 Training Procedure for Representation
Extractor and User Authentication Model

Representation Learning. We optimize the trainable parame-
ters of the reliability scoring models G, () and G,(-) and the

transformer-based representation extractor D(-) to derive facial
representations. To validate that the extracted embeddings are ef-
fective to differentiate users, we build a user identifier P(-) with
two fully-connected layers. During the training phase, we apply
cross-entropy loss to optimize the scoring models G, (-) and G, (-),
the representation extractor D(-), and the user classifier P(-). The
loss function Ly used for optimization is formulated as:

LS feto

where y; € [1,..., M] denotes the label of facial muscle vibration
spectrogram x; », and facial muscle vibration spectrogram x; ;. N
refers the total number of viseme samples involved during training.
Note that the user identifier P(+) is only involved in the training
process to facilitate the extraction of representive user embeddings,
and it will not be employed in the user authentication phase.
User Authentication Model. During the training phase of user
authentication model, we fix the parameters of the reliability scor-
ing models G, () and G, (+) and the transformer-based extractor
D(-). For each registered user j, we build a binary classifier Ui ()
with two fully-connected layers to determine whether the input
representation d is from user j or not. The learnable parameters of

(IGm (xim), Go(xia) ). )

the classifier U() () are updated via the loss function L((]j ) corre-
sponding to user j, which can be described as:
Ly =

1 X A
ﬁzyi 'log(U(])(di)), (6)
i1

where y; represents the user label of the viseme representation
d; extracted by the transformer-based extractor D(-). To improve
accuracy, we perform authentication based on individual prominent
visemes of speech and fuse their predictions with max-vote. This
aggregation can further improve the robustness of SAFARL

8 USER AUTHENTICATION PERFORMANCE

8.1 Experimental Methodologies

AR/VR Headsets. We evaluate the user authentication perfor-
mance of SAFARI on two widely-used standalone AR/VR headsets:
Meta Quest and Meta Quest 2. Both of them are equipped with in-
dependent motion sensor modules for continuous motion tracking.
For Meta Quest, it uses a motion sensor board with the series num-
ber of 330-00193-03, which is originally developed by Meta. Meta
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Figure 10: Overall authentication performance of SAFARI.

Quest 2 is equipped with a motion sensor board with the series
330-00829-04. Both Meta Quest and Meta Quest 2 operate on an
Android-based system. Under this platform, we utilize Meta Mobile
SDK [36] to develop an application and collect the accelerometer
readings from the headsets. During the experiments, we set the
sampling rates of motion sensors as 1000Hz on both devices.

Voice Commands. We select a set of voice commands and col-
lect the visemes from AR/VR accelerometers while users pronounce
these commands. In particular, we choose 30 voice commands that
are commonly used in AR/VR scenarios (e.g., “Open Beat Saber”),
which have encompassed all 11 different visemes. The accelerom-
eter readings of visemes are then divided into several prominent
viseme segments lasting for 1.6 seconds. The average word count of
the commands is 3.1, with the shortest and longest command includ-
ing 1 word and 7 words, respectively. Our selected 30 representative
voice commands are illustrated in Table 4 in Appendix A.

Participants & Data Collection. We collect the visemes from
a total of 35 participants with ages ranging from 18 to 37, including
native and non-native English speakers. For Meta Quest, we involve
25 participants, with 22 males and 3 females aged from 20 to 33.
For Meta Quest 2, we recruit 10 participants, including 7 males
and 3 females with ages ranging from 17 to 37. Each participant is
asked to wear the headset and pronounce the 30 voice commands
for 10 repeats each. During data collection, we place a sound level
meter 30cm away from the participants’ mouths to measure the
sound pressure levels (SPLs) during command pronunciation. In
the experiments, we constrain the SPLs within 65dB to 75dB and
set no specific restrictions on users’ movements. In total, we collect
95,570 and 38, 228 viseme samples from the accelerometers of Meta
Quest and Meta Quest 2. The data collection procedures have been
approved by our university’s Institutional Review Boards (IRB).

Evaluation Metrics. We employ the following evaluation met-
rics to evaluate the user authentication performance of SAFARI. (1)
True Positive Rate (TPR): The percentage of legitimate users who
are correctly verified as such. (2) True Negative Rate (TNR): The
percentage of unauthorized users who are correctly verified as such.
(3) Balanced Accuracy (BAC): An evaluation metric that combines
TPR and TNR with an equal weight. It is also important to note
that the Receiver Operating Characteristic (ROC) curve is not uti-
lized to evaluate the performance of SAFARI. The reason is that the
classification boundary is determined by the deep-learning-based
user authentication model in our design.

8.2 Overall User Authentication Performance

Setup: We utilize the viseme dataset collected from Meta Quest to
evaluate the overall user authentication performance of SAFARL
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Table 2: The authentication performance of SAFARI with
and without Viseme Pattern Reconstruction (VPR).

Head Rotation Walking Around
Without VPR | With VPR | Without VPR | With VPR
TPR 15.04% 96.44% 20.28% 95.55%
TNR 94.73% 99.87% 96.76% 99.22%
BAC 54.88% 98.15% 58.52% 97.38%

Specifically, we take turns selecting each of the 25 participants as
legitimate user and the remainings as unauthorized users. During
the training phase, we randomly select 20 different commands
and use the extracted prominant visemes as the training set. The
visemes from the remaining 10 commands are employed as the
testing set. Note that the voice commands of the testing set are
entirely different from the training set to evaluate the performance
of text-independent user authentication. The BAC of each user is
calculated to evaluate the user authentication performance.

Results: The BACs of SAFARI corresponding to different users
are illustrated in Figure 10. The results show that SAFARI achieve
the BAC of more than 91.28% for most participants while only one
individual viseme is utilized for authentication. After employing
max vote across multiple visemes within one command, the BAC
of SAFARI can be further improved, with more than 95.71% for
most participants. High authentication accuracy demonstrates that
SAFARI realize effectively user authenticate via establish corre-
lations between visemes and users. The results also validate the
effectiveness of SAFARI’s text-independent authentication given
the entirely different commands in training and testing sets.

8.3 Impacts of Motion Artifact

Setup: To evaluate SAFARI’s authentication performance against
human motions, we conduct experiments on Meta Quest by re-
cruiting 10 participants and instructing them to pronounce the
aforementioned commands while engaging in two pre-defined body
motions. (1) Head rotation. The participants randomly rotate their
heads in different directions. (2) Walking around. The participants
randomly walk around within the boundary of the AR/VR virtual
environment. In total, two viseme datasets corresponding to these
two body motions are collected from the AR/VR accelerometer. To
construct the authentication model, we utilize the extracted promi-
nent visemes from the first 20 commands as the training set and
the remaining 10 commands as the testing set. The average TPR,
TNR, and BAC of all 10 participants are summarized to evaluate
the user authentication performance.

Results: The average TPR, TNR, and BAC of SAFARI without
and with motion artifact removal based on viseme reconstruction
are illustrated in Table 2. The results show that the user authentica-
tion performance of SAFARI is compromised by the body motions
in AR/VR scenarios, with TPR, TNR and BAC below 15.04%, 94.73%
and 54.88%, respectively. After utilizing viseme reconstruction for
mitigating motion artifacts, the TPR and TNR under head rota-
tion and walking around is significantly improved, which achieve
more than 96.44% and 99.87%. The BAC of SAFARI is also signif-
icantly enhanced, with more than 98.15% and 97.38% under head
rotation and walking around scenarios. In summary, the substantial
improvements of user authenticcation performance demonstrate
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Figure 11: Impact of the number of training voice commands
and repeats for each command.

the effectiveness of our designed motion artifact removal scheme
via viseme reconstruction and SAFARTI’s robustness against body
motions in practical AR/VR usage scenarios.

8.4 Impacts of Training Size

Setup: Although increasing the number of commands or repeats
could facilitate authentication accuracy, it brings additional costs for
user enrollment. An efficient and effective authentication system
should maintain high accuracy while minimizes the number of
commands required for enrollment. Based on this, we measure the
BAC associated with different numbers of commands or repeats to
explore the authentication performance with different training sizes.
Specifically, we involve 10 participants and collect their visemes
on Meta Quest. During training, we build the authentication model
with 4~20 different commands or 1~10 repeats from the voice
command datasets. In the testing phase, the visemes extracted from
the remaining 10 voice commands are employed for evaluation.

Results: We summarize the BAC of SAFARI with varying num-
bers of voice commands for training in Figure 11(a). In particular,
SAFARI attains a BAC of more than 96.29% while only 4 different
commands are collected for user enrollment, which demonstrates
that SAFARI has realized user authentication with low data collec-
tion and training costs. The BAC of SAFARI with different numbers
of repetitions for each voice command during model construc-
tion are illustrated in Figure 11(b). The results show that SAFARI
achieves the BAC of more than 97.56% while only one repetition
of each voice command is collected from the user. High authenti-
cation accuracy validates that SAFARI successfully authenticates
users with limited numbers of voice samples for constructing user
profiles. In summary, the high authentication accuracy with limited
commands or repetitions for training demonstrates SAFARI’s low
costs on model construction and user enrollment.

8.5 Impacts of Headset Models

Setup: To explore SAFARI’s effectiveness on different AR/VR de-
vices, we evaluate its authentication performance on Meta Quest
and Meta Quest 2. Compared with Meta Quest, Meta Quest 2 is
built with lightweight materials and a more advanced motion sen-
sor board (details in Section 8.1). Specifically, we collect two viseme
datasets from the same 10 users on both Meta Quest and Meta Quest
2. The visemes extracted from 20 different commands and the re-
maining 10 commands are employed for training and testing. We
summarize the average TPR, TNR, and BAC to evaluate SAFARI’s
authentication performance on two different headset models.
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Figure 12: Authentication results of Meta Quest (Q1) and Meta
Quest 2 (Q2) with Individual Viseme (IV) and Max Vote (MV).

Results: The TPR, TNR, and BAC of SAFARI on Meta Quest
and Meta Quest 2 are shown in Figure 12. For Meta Quest, SAFARI
achieves TPR, TNR, and BAC of more than 95.85%, 99.37%, and
97.61% with one individual viseme. After involving max-vote for
authentication, the TPR, TNR, and BAC are improved to 99.78%,
99.98%, and 99.88%. For Meta Quest 2, SAFARI reaches TPR, TNR,
and BAC of more than 86.90%, 96.37%, and 91.64% if only one in-
dividual viseme is used. After applying max-vote, the TPR, TNR,
and BAC can achieve more than 94.36%, 99.16%, and 96.76%, respec-
tively. An explanation for Meta Quest’s better performance could
be attributed to its heavier head-mounted display. This characteris-
tic makes the user’s face in closer contact with Meta Quest, thus
facilitating effective viseme capturing. Nevertheless, consistently
high accuracy indicates that SAFARI can accurately authenticate
users while deployed on different devices.

8.6 Impacts of Different Headset Placements on
Human Face

Setup: To explore SAFARI’s robustness against different headset
placements on human faces, we conduct experiments on Meta Quest
with 10 participants. We instruct the participants to wear the head-
set and maintain a consistent position in the virtual environment
while collecting visemes associated with 30 different commands,
which is referred as Placement 1 (P1). The participants then take off
the headset and rewear it after a while to collect another group of
visemes associated with the same 30 commands, which is defined as
Placement 2 (P2). We summarize the average TPR, TNR, and BAC
with (1) visemes of 20 commands in P1 for training and the other
10 commands in P2 for testing, and (2) visemes of 20 commands in
P2 for training and the other 10 commands in P1 for testing.

Results: The TPR, TNR, and BAC of SAFARI under different
headset placements on humans’ faces are illustrated in Figure 13.
In particular, SAFARI achieves TPR, TNR, and BAC of more than
89.94%, 98.66%, and 94.30% with P2 for training and P1 for testing
with one individual viseme for authentication. After involving max-
vote on multiple visemes, the TPR, TNR, and BAC are improved to
97.86%, 99.60%, and 98.73%. With P1 for training and P2 for testing,
SAFARI realizes TPR, TNR, and BAC of more than 89.82%, 99.03%,
and 94.43% with one individual viseme. After applying max vote, the
TPR, TNR, and BAC achieve more than 98.08%, 99.98%, and 99.03%.
Consistently high accuracy indicates that SAFARI has realized ef-
fective user authentication under different headset placements on
user faces during practical AR/VR usage.
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Figure 13: Authentication results of two headset placements
(P1 and P2) using Individual Viseme (IV) and Max Vote (MV).

8.7 Evaluation of Computational Delay

Setup: While realizing user authentication schemes in practical
scenarios, short inference time is crucial for achieving real-time
user authentication and better user experience. To validate that
SAFARI can be deployed to authenticate users in practical AR/VR
scenarios, we evaluate the average computational time of different
modules in SAFARI. In particular, we conduct experiments using
a NVIDIA 4090 GPU and Intel-13900K CPU with a batch size of
64 for 1000 visemes to measure the average computational time
of viseme pattern reconstruction, reliability scoring, transformer-
based representation extractor, and user verification.

Results: We summarize the average computational time corre-
sponding to different modules of SAFARI. Compared with other
modules, the reliability scoring model has the longest computational
time, with the average of 115ms. For viseme pattern construction,
transformer-based representation extractor, and user verification,
the average computational time are 56ms, 14ms, and 75ms, which in-
dicates that SAFARI takes approximate 260ms in average to process
a single viseme input and authenticate user. Short computational
time cost validates that SAFARI can be deployed in practical AR/VR
scenarios for realizing real-time user authentication.

9 ROBUSTNESS TO SPOOFING ATTACK

9.1 Robustness to Blind Attack

Setup: During blind attack, adversaries attempt to bypass SAFARI
using their own visemes without any prior knowledge on the legit-
imate users’ visemes. To simulate this attack, we collect visemes
associated with 30 different commands from 10 participants on
Meta Quest. Each user takes turns serving as the legitimate user,
and the training and testing set include the visemes of 20 commands
and the remaining 10 commands. We then randomly select other 10
participants as adversaries, and collect the visemes of the remain-
ing 10 commands in the testing set. For evaluation, we combine
the visemes from both legitimate users and adversaries and then
summarize the average TNR, TPR, and BAC.

Results: The authentication performance of SAFARI against
blind attack is illustrated in Figure 14(a). In particular, SAFARI
achieves TPR and TNR of more than 94.04% and 92.94% with one
individual viseme for user authentication. After employing max
vote, SAFARI can realize TPR and TNR of more than 97.95% and
96.33%. For BACs, SAFARI remains high accuracy with more than
93.49% and 97.14% using one individual viseme and max vote for
authentication. The results show that SAFARI successfully resists
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Figure 14: Authentication performance on defending blind
attack and observe-and-mimic attack.

blind attack while maintaining effective user authentication, which
can be attributed to the robust extraction of distinctive viseme
representations related to the shape and structure of human face.

9.2 Robustness to Vibration Replay Attack

Setup: In vibration replay attack, the adversaries attempt to by-
pass SAFARI by replaying commands with a loudspeaker, which
is placed in direct contact with the headset to facilitate vibration
capturing of the accelerometer. To evaluate SAFARI’s robustness
against vibration replay attack, we utilize an iPhone 13 smartphone,
which is placed 50cm away from the legitimate users to record
their command pronunciation. During attack, the adversary places
the smartphone in direct contact with the headset and replay the
recorded commands to generate sound vibrations. The experimen-
tal setup is illustrated in Figure 15(a). To build the authentication
model, we collect visemes from 10 participants on Meta Quest, with
each taking turns as the legitimate user. The collected visemes cor-
responding to 20 different commands are served as the training set.
For the testing data, we collect the viseme samples (i.e., legitimate
users) and the audio recordings (i.e., adveraries) of the remaining
10 commands. The average TNR, TPR, and BAC are measured to
evaluate SAFARI’s robustness against vibration reply attack.

Results: The authentication performance of SAFARI under vi-
bration replay attack is summarized in Figure 15(b). While using
one individual viseme for authentication, SAFARI achieves TPR,
TNR, and BAC of more than 89.75%, 97.62%, and 93.68%. After incor-
porating max-vote, the TPR, TNR, and BAC against vibration replay
attack are further improved, with more than 98.35%, 100.00%, and
99.17%. The results demonstrate that SAFARI maintain effective
and robust against vibration replay attack, which can be attributed
to the difference between the air-propagated sound vibrations and
visemes as described in Section 2.

9.3 Robustness to Observe-and-mimic Attack

Setup: During the observe-and-mimic attack, the adversaries aim
to bypass SAFARI via observing the speech articulation and mimick-
ing the facial muscle vibrations of the legitimate users. To simulate
observe-and-mimic attack, the viseme data associated with 20 dif-
ferent commands is first collected from 10 participants using Meta
Quest for training the authentication model. We then randomly
select other 10 participants as the adversaries and instruct them to
observe the facial deformations of the 10 legitimate users during
voice command pronunciation. During the testing phase, we col-
lect the viseme samples corresponding to the remaining 10 voice
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Figure 15: Experimental setup and authentication perfor-
mance on defending vibration replay attack.

commands from both the adversaries with the mimicked facial
deformations and the legitimate users, and combine them as the
set for testing. The average TPR, TNR, and BAC are measured to
evaluate SAFARI’s robustness against observe-and-mimic attack.

Results: The average TPR, TNR, and BAC of SAFARI against
observe-and-mimic attack are shown in Figure 14(b). Specifically,
SAFARI achieves TPR, TNR, and BAC of more than 94.08%, 97.81%,
and 95.95% using only one individual viseme for user authentication.
While applying max vote for authenticating users, SAFARI achieves
TPR, TNR, and BAC with more than 98.69%, 99.14%, and 98.92%,
respectively. To ensure the adversary can accurately mimic the
users’ facial movements, we also conduct experiments on attacks
where the adversary can learn the users’ facial movements through
a pre-recorded video of users issuing voice commands. It can be
considered the best-case scenario as the adversary can repeatedly
watch the video and practice before launching the attack. Moreover,
we ask a third person watching the adversary to confirm the proper
mimicry of facial expressions of the legitimate users. Specifically,
3 adversaries are asked to watch the videos of a user issuing 30
voice commands and try to replicate the user’s facial expression.
Each adversary repeats this process multiple times to ensure a high
degree of mimicry. Even under such actions, the adversaries are not
able to bypass SAFARI with a TNR of more than 98%. The results
demonstrate that SAFARI exhibits strong resilience against observe-
and-mimic attack and our designed viseme-associated biometrics
are validated to be challenging for attackers to replicate through
observing facial deformations.

10 RELATED WORK

User Authentication on AR/VR. Traditional password-based
authentication methods (e.g., passwords [19], PINs [53], and lock
patterns [38]) originally designed for computers and smartphones
have been adapted for AR/VR platforms. However, these methods
are ill-suited to AR/VR’s novel input interfaces via gestures. Unlike
physical keyboards and touchscreens, AR/VR users are required
to enter credentials using controllers or hand gestures, a process
that can be both time-consuming and inconvenient. While two-
factor authentication systems, such as those involving barcodes or
smartphone messages [32], enhance security, they can disrupt the
immersive AR/VR experience. Recent research has explored behav-
ior biometrics of gestures, including gestures [13, 26, 37, 49, 55].
Other approaches have investigated user authentication via head-
conducted vibrations [31] and sound signals [48]. These methods, re-
quiring additional challenge signals like vibrations or sound chirps
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Table 3: SAFARI in comparison with existing authentication
schemes on feature type, text independence, built-in device,
spoofing resilience, and gesture requirement.

Authentication Feature Text- | Built-in | Spoofing | Gesture
System Extraction | Indep. | Device | Resilience Free
Variani et al. [46] MFCC v v X v
Snyder et al. [44] | Filter banks
VoiceLive [59] Phoneme
CaField [54] Sound field

Blue et al. [10] Vocal tract

ANENEN FEIRNEN RN
NIX XX X[ X |X[S[S
ANANRN NN ENESEIR
NIX XX X |SNIS[X (S

VoiceGesture [58] Acoustic
WiVo [33] features
VAuth [18] Speech

WearlD [42] vibrations
SAFARI (ours) Viseme

to extract biometrics, which can be intrusive and often impractical
without hardware modifications. Compared with these existing
AR/VR authentication, SAFARI is transparent as it does not re-
quires additional actions or active involvement of users. It is also
compatible with mainstream AR/VR headsets.

Voice Authentication and Liveness Detection. Prior research
has explored voice authentication using acoustic features, such as
Filter Banks [44] and Mel-Frequency Cepstral Coefficients (MFCC) [46,
56, 60]. While these methods have shown potential, they typically
require extensive training data to develop a robust voiceprint for
each user and are susceptible to spoofing attacks. In contrast, SA-
FARI accomplishes text-independent authentication with only 15
to 20 short voice commands (each under 5 seconds), enhancing
efficiency and user-friendliness. Furthermore, these voice authenti-
cation methods are often vulnerable to spoofing attacks, including
speech synthesis and replay attacks. Differently, SAFARI leverages
facial vibrations that are confined to the human body and offers
resilience against biometric leakage through the audio channel and
subsequent attacks. To counteract voice spoofing, liveness detection
techniques can be integrated with voice authentication to improve
security. These techniques aim to distinguish between live human
speech and machine-generated sounds by exploiting features in-
herent to either the human vocal tract structure [10], the magnetic
field from loudspeakers [14], the time difference-of-arrival (TDoA)
from two microphones [59], sound-field characteristics [54], or vi-
brations induced by the human body or speech [18, 42]. However,
these liveness detection methods often necessitate the integration
of specialized microphones or additional sensors, which introduce
additional overhead for AR/VR users. SAFARI, on the other hand,
leverages the built-in motion sensors readily available in most com-
mercial AR/VR headsets, providing a more seamless and integrated
solution. A comparative comparison of SAFARI with existing voice
authentication and defense systems is presented in Table 3.

Speech Sensing Based on Motion Sensors. Existing studies
have been utilizing MEMS motion sensors for speech sensing on
smartphones [5, 6, 34, 57]. For example, Accelword [57] designs a
benign application to sense speech content using the smartphone’s
accelerometer. While AccelEve [7] and Speechless [5]investigate
the potential for speech privacy leaks through accelerometers and
gyroscopes in smartphones. A more recent study, Face-Mic [43],
delved into the possibility of inferring sensitive user information,
such as gender, identity, and speech content, through AR/VR motion
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sensor data. Particularly, Face-Mic captures the speech-related fa-
cial dynamics of headset wear and utilizes a deep learning model for
the privacy attack. However, due to the reliance on speech patterns,
the performance of Face-Mic is still susceptible to the variations of
speech content. In contrast, SAFARI takes a different approach by
focusing on the extraction of phonetic-invariant biometrics from fa-
cial vibrations. It detects and segments prominent visemes from the
facial vibrations to realize text-independent speech authentication.

11 LIMITATION

Limited Sample Size. To validate the effectiveness and robust-
ness of SAFARI, we collect viseme samples with a group of 35
participants, including 29 males and 6 females. Based on these sam-
ples, we first explore the feasibility of leveraging viseme-associated
biometrics to realize text-independent and spoofing-resistant user
authentication for AR/VR voice interfaces. While the sample size
of 35 participants may be limited, we believe that SAFARI can be
generalized to authenticate more users. The viseme-associated bio-
metrics capture the user’s face shape, bone properties, and muscle
characteristics, which are distinctive across large populations. To
further demonstrate that SAFARI can realize general authentication
on large groups of users, we plan to involve more participants and
collect a more extensive set of viseme samples in our future work.
Risk of Biometric Information Leakage. Similar to existing
biometrics (e.g., fingerprints, iris, faces), viseme-associated biomet-
rics may contain sensitive information (e.g., the user’s facial proper-
ties and behaviors). A potential solution to protect these biometrics
from leakage while ensuring the authentication performance is to
incorporate on-device machine learning techniques [15, 35] while
constructing the authentication model of SAFARI. By employing
on-device learning approaches, users can create their profiles us-
ing viseme-associated biometrics that are stored locally on AR/VR
devices. SAFARI will also safeguard this local data from poten-
tial leakage, thus ensuring secure authentication. Moreover, multi-
party computation mechanisms [9, 16] can be utilized to protect
the viseme-associated biometrics from privacy leakage. In this case,
the users’ facial representations are jointly generated by multiple
cloud servers. The adversaries cannot derive users’ biometrics by
analyzing the data leakage from only one or several servers.

12 DISCUSSION

Impacts of Environmental Noise and Low Voice Volumes.
Traditional voice applications in AR/VR scenarios usually rely on
built-in microphones to pick up human sound signals. The per-
formance of these applications could be significantly downgraded
under noisy environments or voice inputs with low volumes. Com-
pared with traditional voice applications using microphones for
sound capturing, SAFARI utilizes motion sensors to derive human
visemes. Validated by previous works [5, 6], the motion sensors
can pick up conductive vibrations (e.g., viseme-associated facial
vibrations) and are insensitive to air-conducted sound vibrations.
Therefore, SAFARI is inherently robust to airborne environmental
noises. Additionally, SAFARI leverages speech-induced facial move-
ments to realize user authentication, which does not directly rely
on voice sound. With low volume voice inputs, SAFARI will also
maintain robust performance on authenticating users.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Robustness to Brute-force Attacks. To bypass SAFAR]I, ad-
versaries can repeat the utterance until SAFARI fails to reject the
adversaries’ voice input. For instance, considering the SAFARI’s per-
formance in defending the blind attack in Section 9.1, SAFARI may
accept another adversary as the legitimate user in 3 of 100 attempts
given the TNR of 97%. In practical usage scenarios, SAFARI can
also integrate system lockouts following consecutive unsuccessful
attempts to defend against brute force attacks (e.g., repeating an
utterance until a false acceptance occurs). For instance, the possi-
bility of the adversary being continuously rejected by SAFARI for
3 attempts will be more than 91.2% and the system will be locked
if the adversary still cannot bypass SAFARI after 3 attempts. With
this design, SAFARI can successfully defend against brute-force
attacks while maintaining effective user authentication.

Attacks With a Dummy Robot Head. To bypass SAFARI a
possible attack is to deceive the system by involving a dummy robot
head, which mimics the facial patterns of the victims. Meanwhile,
the adversary should employ a strategy to capture high-quality
video recordings while the victims are speaking, which enables
the robot to replicate corresponding facial deformations. However,
crafting a dummy head with materials that exactly replicate the
composition of facial tissue and head structure remains challeng-
ing. Furthermore, capturing and precisely reconstructing unique
facial deformation poses another challenge for potential adver-
saries. Consequently, such an imaginary attack is demonstrated as
highly intricate, which could be effectively thwarted with SAFARI
by leveraging unique viseme representations of different users.

Attack by Eavesdropping Motion Sensors. Adversaries may
potentially deploy another attack against SAFARI through mali-
cious applications, which eavesdropp and record the facial muscle
vibrations from AR/VR motion sensors for impersonate attacks.
However, such attacks require social engineering skills from ad-
versaries to fool users to install the malicious applications, which
could inadvertently reveal the malicious intent. Additionally, it is
still challenging for adversaries to physically “replay” the visemes
even if the motion sensor readings are available since this pro-
cess requires accurate reconstruction of facial deformations and a
well-controlled dummy robot head as we discuss previously.

Scalability to Different Headsets. The design of AR/VR head-
sets usually shares common features that isolate the virtual envi-
ronment from external surroundings. Therefore, the AR/VR head-
sets come into close contact with specific facial areas, such as the
muscles around cheeks, nose, and temples. The consistent design
facilitates facial muscle vibration capturing and viseme represen-
tation extraction for differentiating individual users regardless of
the AR/VR device models. Moreover, the effectiveness of viseme
sensing can be affected by the materials/designs of the headsets
and sensitivity of the built-in motion sensor. To further validate the
effectiveness of our design, we plan to realize SAFARI on a wider
range of AR/VR devices, which constitutes part of our future works.

13 CONCLUSION

In this paper, we present SAFAR], the first spoofing-resistant and
text-independent speech authentication system for AR/VR headsets.
SAFARI stands out by its ability to extract unique facial biometrics
of users through sensing viseme-associated facial vibrations via the
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built-in accelerometer. Particularly, our system adeptly identifies
and segments prominent visemes that contain significant facial
deformations and rich biometric content for speech authentication.
To mitigate the impacts of motion artifacts, we design a generative
diffusion model. This model effectively reconstructs viseme pat-
terns to their original state that are unaffected by body motions.
Furthermore, We design a two-step scheme to segment the tempo-
ral regions containing prominent visemes. Based on the prominent
viseme segments, a transformer-based correlation learning strategy
is designed to contrast the facial muscle movements and vibrations
to elicit phonetic-invariant facial biometrics for speech authenti-
cation. Extensive experiments show that SAFARI can authenticate
users with over 96% ture positive rates. Moreover, SAFARI can suc-
cessfully defend various spoofing attacks, including blind attacks,
vibration replay attacks, and observe-and-mimic attacks.

ACKNOWLEDGMENT

This work was partially supported by the National Science Foun-
dation Grants CNS2114220, CNS2120276, CNS2145389, CNS2201465,
CNS2154507, CCF2211163,11S2311596, 11S2311597, and OAC2139358.

REFERENCES

[1] 2023. Apple Vision Pro. https://www.apple.com/apple-vision-pro/. (2023).

[2] 2023. Meta Quest 3. https://www.meta.com/quest/quest-3/. (2023).

[3] 2023. Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens/. (2023).

[4] Zakaria Aldeneh, Anushree Prasanna Kumar, Barry-John Theobald, Erik Marchi,
Sachin Kajarekar, Devang Naik, and Ahmed Hussen Abdelaziz. 2021. On the
role of visual cues in audiovisual speech enhancement. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
8423-8427.

[5] S.A. Anand and N. Saxena. 2018. Speechless: Analyzing the Threat to Speech
Privacy from Smartphone Motion Sensors. In Proceedings of IEEE Symposium on
Security and Privacy (SP). 1000-1017.

[6] S Abhishek Anand, Chen Wang, Jian Liu, Nitesh Saxena, and Yingying Chen. 2019.
Spearphone: A speech privacy exploit via accelerometer-sensed reverberations
from smartphone loudspeakers. arXiv preprint arXiv:1907.05972 (2019).

[7] Zhongjie Ba, Tianhang Zheng, Xinyu Zhang, Zhan Qin, Baochun Li, Xue Liu, and
Kui Ren. 2020. Learning-based practical smartphone eavesdropping with built-in
accelerometer. In Proceedings of the Network and Distributed Systems Security
Symposium (NDSS). 23-26.

[8] Helen L Bear and Richard Harvey. 2017. Phoneme-to-viseme mappings: the good,

the bad, and the ugly. Speech Communication 95 (2017), 40-67.

Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system

for secure multi-party computation. In Proceedings of the 15th ACM Conference on

Computer and Communications Security (CCS *08). Association for Computing Ma-

chinery, New York, NY, USA, 257-266. https://doi.org/10.1145/1455770.1455804

[10] Logan Blue, Kevin Warren, Hadi Abdullah, Cassidy Gibson, Luis Vargas, J.
O’Dell, Kevin R. B. Butler, and Patrick Traynor. 2022. Who Are You (I Really
Wanna Know)? Detecting Audio DeepFakes Through Vocal Tract Reconstruc-
tion. In USENIX Security Symposium. https://api.semanticscholar.org/CorpusID:
249059207

[11] Luca Cappelletta and Naomi Harte. 2012. Phoneme-to-viseme mapping for visual

speech recognition. In International Conference on Pattern Recognition Applications

and Methods, Vol. 2. SCITEPRESS, 322-329.

Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,

Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden Voice Commands.

In USENIX Security Symposium. 513-530.

[13] Jagmohan Chauhan, Hassan Jameel Asghar, Anirban Mahanti, and Mohamed Ali
Kaafar. 2016. Gesture-based continuous authentication for wearable devices:
The smart glasses use case. In Applied Cryptography and Network Security: 14th
International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings
14. Springer, 648-665.

[14] Si Chen, Kui Ren, Sixu Piao, Cong Wang, Qian Wang, Jian Weng, Lu Su, and
Aziz Mohaisen. 2017. You can hear but you cannot steal: Defending against
voice impersonation attacks on smartphones. In Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on. IEEE, 183-195.

[15] Sauptik Dhar, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh Kurup,

and Mohak Shah. 2021. A Survey of On-Device Machine Learning: An Algorithms
and Learning Theory Perspective. ACM Trans. Internet Things 2, 3, Article 15 (jul

2021), 49 pages. https://doi.org/10.1145/3450494

[9

=

[12

[16

(17

[18

[20

[21

[22

[23

™
=)

[25

[26]

[27]

[28

™~
20,

[30

[31

[32

(34

(35]

[36]

S
=

[38

[39

Tianfang Zhang et al.

Wenliang Du and Mikhail J. Atallah. 2001. Secure multi-party computation
problems and their applications: a review and open problems. In Proceedings of the
2001 Workshop on New Security Paradigms (NSPW °01). Association for Computing
Machinery, New York, NY, USA, 13-22. https://doi.org/10.1145/508171.508174
Pif Edwards, Chris Landreth, Eugene Fiume, and Karan Singh. 2016. Jali: an
animator-centric viseme model for expressive lip synchronization. ACM Trans-
actions on graphics (TOG) 35, 4 (2016), 1-11.

Huan Feng, Kassem Fawaz, and Kang G Shin. 2017. Continuous authentication
for voice assistants. In Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking. ACM, 343-355.

Ceenu George, M. Khamis, Emanuel von Zezschwitz, Marinus Burger, Henri
Schmidt, Florian Alt, and Heinrich Hussmann. 2017. Seamless and Secure VR:
Adapting and Evaluating Established Authentication Systems for Virtual Reality.
https://api.semanticscholar.org/CorpusID:6671814

Yuan Gong, Yu-An Chung, and James Glass. 2021. Ast: Audio spectrogram
transformer. arXiv preprint arXiv:2104.01778 (2021).

Bill Hardcastle and Kris Tjaden. 2008. Coarticulation and speech impairment.
The handbook of clinical linguistics (2008), 506—524.

Rosa Gonzalez Hautamiki, Tomi Kinnunen, Ville Hautamiki, Timo Leino, and
Anne-Maria Laukkanen. 2013. I-vectors meet imitators: on vulnerability of
speaker verification systems against voice mimicry. In Interspeech. Citeseer, 930—
934.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning
for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015), 770-778. https://api.semanticscholar.org/CorpusID:
206594692

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840-6851.
Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory. Neu-
ral Computation 9 (1997), 1735-1780. https://api.semanticscholar.org/CorpusID:
1915014

Yi-Ta Hsieh, Antti Jylhd, Valeria Orso, Luciano Gamberini, and Giulio Jacucci.
2016. Designing a willing-to-use-in-public hand gestural interaction technique
for smart glasses. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 4203-4215.

Tomi Kinnunen, Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Nicholas
Evans, Junichi Yamagishi, and Kong Aik Lee. 2017. The ASVspoof 2017 challenge:
Assessing the limits of replay spoofing attack detection. (2017).

Oscar Koller, Hermann Ney, and Richard Bowden. 2015. Deep Learning of Mouth
Shapes for Sign Language. In 2015 IEEE International Conference on Computer
Vision Workshop (ICCVW). 477-483. https://doi.org/10.1109/ICCVW.2015.69
Marc Lavielle. 2005. Using penalized contrasts for the change-point problem.
Signal processing 85, 8 (2005), 1501-1510.

Soonkyu Lee and Dongsuk Yook. 2002. Audio-to-Visual Conversion Using Hidden
Markov Models. In Pacific Rim International Conference on Artificial Intelligence.
https://api.semanticscholar.org/CorpusID:32064363

Feng Li, Jiayi Zhao, Huan Yang, Dongxiao Yu, Yuanfeng Zhou, and Yiran Shen.
2023. VibHead: An Authentication Scheme for Smart Headsets through Vibration.
arXiv preprint arXiv:2306.17002 (2023).

Florian Mathis, Hassan Ismail Fawaz, and M. Khamis. 2020. Knowledge-driven
Biometric Authentication in Virtual Reality. Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems (2020). https://api.
semanticscholar.org/CorpusID:212997365

Yan Meng, Zichang Wang, Wei Zhang, Peilin Wu, Haojin Zhu, Xiaohui Liang,
and Yao Liu. 2018. WiVo: Enhancing the Security of Voice Control System
via Wireless Signal in IoT Environment. Proceedings of the Eighteenth ACM
International Symposium on Mobile Ad Hoc Networking and Computing (2018).
https://api.semanticscholar.org/CorpusID:49354919

Yan Michalevsky, Dan Boneh, and Gabi Nakibly. 2014. Gyrophone: Recognizing
Speech from Gyroscope Signals. In Proceedings of USENIX Security Symposium.
1053-1067.

M. G. Sarwar Murshed, Christopher Murphy, Daging Hou, Nazar Khan, Ganesh
Ananthanarayanan, and Faraz Hussain. 2021. Machine Learning at the Network
Edge: A Survey. ACM Comput. Surv. 54, 8, Article 170 (oct 2021), 37 pages.
https://doi.org/10.1145/3469029

Oculus.  2023. Oculus PC  SDK  v23. (2023).
https://developer.oculus.com/downloads/ package/oculus-sdk-for-windows/.
Ilesanmi Olade, Charles Fleming, and Hai-Ning Liang. 2020. BioMove: Biometric
User Identification from Human Kinesiological Movements for Virtual Reality
Systems. Sensors (Basel, Switzerland) 20 (2020). https://api.semanticscholar.org/
CorpusID:218908243

Ilesanmi Olade, Hai-Ning Liang, Charles Fleming, and Christopher Cham-
pion. 2020. Exploring the Vulnerabilities and Advantages of SWIPE or Pat-
tern authentication in Virtual Reality (VR). Proceedings of the 2020 4th In-
ternational Conference on Virtual and Augmented Reality Simulations (2020).
https://api.semanticscholar.org/CorpusID:218830937

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. ArXiv abs/1505.04597 (2015).


https://www.apple.com/apple-vision-pro/
https://www.meta.com/quest/quest-3/
https://www.microsoft.com/en-us/hololens/
https://doi.org/10.1145/1455770.1455804
https://api.semanticscholar.org/CorpusID:249059207
https://api.semanticscholar.org/CorpusID:249059207
https://doi.org/10.1145/3450494
https://doi.org/10.1145/508171.508174
https://api.semanticscholar.org/CorpusID:6671814
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:1915014
https://doi.org/10.1109/ICCVW.2015.69
https://api.semanticscholar.org/CorpusID:32064363
https://api.semanticscholar.org/CorpusID:212997365
https://api.semanticscholar.org/CorpusID:212997365
https://api.semanticscholar.org/CorpusID:49354919
https://doi.org/10.1145/3469029
https://api.semanticscholar.org/CorpusID:218908243
https://api.semanticscholar.org/CorpusID:218908243
https://api.semanticscholar.org/CorpusID:218830937

SAFARI: Speech-Associated Facial Authentication for AR/VR Settings via Robust Vlbration Signatures

[40]

[41

[42

S
&

[44

[45]

[46]

[47

[48

[49]

[50

(51

[52]

[53]

https://api.semanticscholar.org/CorpusID:3719281

Flavio Schneider. 2023. Archisound: Audio generation with diffusion. arXiv
preprint arXiv:2301.13267 (2023).

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al.
2018. Natural tts synthesis by conditioning wavenet on mel spectrogram pre-
dictions. In 2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 4779-4783.

Cong Shi, Yan Wang, Yingying Chen, Nitesh Saxena, and Chen Wang®. 2020.
WearlD: Low-Effort Wearable-Assisted Authentication of Voice Commands via
Cross-Domain Comparison without Training. In Annual Computer Security Ap-
plications Conference (ACSAC). 829-842.

Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian Liu, Nitesh
Saxena, Yingying Chen, and Jiadi Yu. 2021. Face-Mic: inferring live speech and
speaker identity via subtle facial dynamics captured by AR/VR motion sensors.
In Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking. 478—490.

David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur. 2017.
Deep Neural Network Embeddings for Text-Independent Speaker Verification. In
Interspeech. 999-1003.

David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. 2018. X-vectors: Robust dnn embeddings for speaker recognition.
In 2018 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 5329-5333.

Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier
Gonzalez-Dominguez. 2014. Deep neural networks for small footprint text-
dependent speaker verification. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 4052-4056.

Ethan Waisberg, Joshua Ong, Mouayad Masalkhi, Nasif Zaman, Prithul Sarker,
Andrew G Lee, and Alireza Tavakkoli. 2023. The future of ophthalmology and
vision science with the Apple Vision Pro. Eye (2023), 1-2.

Ruxin Wang, Long Huang, and Chen Wang. 2023. Low-effort VR Headset User
Authentication Using Head-reverberated Sounds with Replay Resistance. 2023
IEEE Symposium on Security and Privacy (SP) (2023), 3450-3465. https://api.
semanticscholar.org/CorpusID:260003730

Xue Wang and Yang Zhang. 2021. Nod to auth: Fluent ar/vr authentication with
user head-neck modeling. In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems. 1-7.

Yuxuan Wang, R] Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron ] Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. 2017.
Tacotron: Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135
(2017).

Wikipedia. 2023. Topographic Prominence. (2023). https://en.wikipedia.org/
wiki/Topographic_prominence.

Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao
Zheng, Juntao Li, Zhongyu Wei, Jian Guo, et al. 2023. AR-Diffusion: Auto-
Regressive Diffusion Model for Text Generation. arXiv preprint arXiv:2305.09515
(2023).

Dhruv Kumar Yadav, Beatrice Ionascu, Sai Vamsi Krishna Ongole, Aditi Roy, and
Nasir D. Memon. 2015. Design and Analysis of Shoulder Surfing Resistant PIN
Based Authentication Mechanisms on Google Glass. In Financial Cryptography
Workshops. https://api.semanticscholar.org/CorpusID:16027399

[55

[56

o
=)

[58

[59

=
2

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

[54] Chen Yan, Yan Long, Xiaoyu Ji, and Wenyuan Xu. 2019. The Catcher in the Field:

A Fieldprint based Spoofing Detection for Text-Independent Speaker Verification.
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019). https://api.semanticscholar.org/CorpusID:207944110

Shanhe Yi, Zhengrui Qin, Ed Novak, Yafeng Yin, and Qun Li. 2016. Glassgesture:
Exploring head gesture interface of smart glasses. In IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications. IEEE,
1-9.

Chunlei Zhang, Kazuhito Koishida, and John H. L. Hansen. 2018. Text-
Independent Speaker Verification Based on Triplet Convolutional Neural Network
Embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing
26,9 (2018), 1633-1644. https://doi.org/10.1109/TASLP.2018.2831456

Li Zhang, Parth H Pathak, Muchen Wu, Yixin Zhao, and Prasant Mohapatra.
2015. Accelword: Energy efficient hotword detection through accelerometer. In
Proceedings of the Annual International Conference on Mobile Systems, Applications,
and Services (ACM MobiSys). ACM, 301-315.

Linghan Zhang, Sheng Tan, and Jie Yang. 2017. Hearing Your Voice is Not Enough:
An Articulatory Gesture Based Liveness Detection for Voice Authentication. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 57-71.

Linghan Zhang, Sheng Tan, Jie Yang, and Yingying Chen. 2016. Voicelive: A
phoneme localization based liveness detection for voice authentication on smart-
phones. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1080-1091.

Yingke Zhu and Brian Mak. 2023. Bayesian Self-Attentive Speaker Embeddings

for Text-Independent Speaker Verification. IEEE/ACM Transactions on Audio,
Speech, and Language Processing 31 (2023), 1000-1012. https://doi.org/10.1109/

TASLP.2023.3244502

A APPENDIX

Table 4: Voice commands involved in viseme collection.

Index Voice command Index Voice command
1 Open Facebook.com. 16 Find some racing games.
2 What’s my battery? 17 Show my favorite videos.
3 Open Beat Saber. 18 Show me events.
4 How do I change my profile picture? 19 Go to Photoshop.
5 Show me my packages. 20 Use with gaze.
6 Send a message. 21 Hide menu.
7 Call my mother. 22 Thank you.
8 Set the volume to full. 23 Hey, Facebook.
9 Turn off Bluetooth. 24 Open library.
10 Teleport. 25 Lower the volume to three.
11 Take a picture. 26 Reset view.
12 Shut down. 27 Reset guardian.
13 Disable airplane mode. 28 Turn on airLink
14 Turn on airplane mode. 29 Restart.
15 What'’s the weather next week? 30 Show me my alarms.
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