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In nowadays biomedical research, there has been a growing demand for
making accurate prediction at subject levels. In many of these situations, data
are collected as longitudinal curves and display distinct individual charac-
teristics. Thus, prediction mechanisms accommodated with functional mixed
effects models (FMEM) are useful. In this paper, we developed a classified func-
tionalmixedmodel prediction (CFMMP)method, which adapts classifiedmixed
model prediction (CMMP) to the framework of FMEM. Performance of CFMMP
against functional regression prediction based on simulation studies and the
consistency property of CFMMP estimators are explored. Real-world applica-
tions of CFMMP are illustrated using real world examples including data from
the hormone research menstrual cycles and the diffusion tensor imaging.
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1 INTRODUCTION

1.1 Motivation

Developing technology has nowadays allowed collections of various types of functional data in increasing numbers of
scientific studies, where observations bear two typical features: (1) data are densely measured over numerous grid points,
and (2) the observational units of interest are curves with some between-curve variations at specific grid points.1,2 In
biomedical research, it has been quite common to observe biomarker profiles of individuals as curves measured over
time, and it is natural to model each curve as a function of time, especially when there are complex variations in the
longitudinal pattern. A typical example is the study of the hormone profiles of healthy women during their menstrual
cycles.3 Figure S1 in Appendix in the Supplemental Information shows the hormone release profiles of 91 cycles collected
from 51 subjects, grouped by conceptive status, with each curve corresponding to a unique cycle. The profiles show gen-
erally nonlinear trend over time in each group with distinct individual variations among cycles as well as between the
groups. Some biomarker profiles feature highly densely observed data with irregular patterns such as peaks or spikes over
finely spaced grid points. A common example of such type of profiles is a proteomic spectrometry that consists of spec-
tra data generated from surface-enhanced laser desorption and ionization time-of-flight (SEIDI-TOF) mass spectrometry
that measures intensities of a certain biomarker protein over mass-to-charge (M/Z) ratios. It has a broad application in
various biomedical research, especially cancer discrimination studies.

With the aforementioned examples, wemay consider twomotivating challenges associated with functional data anal-
yses in longitudinal studies. One typical question of interest, as we already mentioned, is to study the mean profile and
individual deviations from the mean. Traditional parametric models, such as the linear mixed effects model, are not
flexible enough to adequately capture the complex nonlinear trend of the curves and also face the problem of curse of
dimensions. Hence in such cases functional mixed effects models (henceforth referred to as functional mixed models, or
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FMEM) with non-parametric fitting approaches are more appropriate to use. Another challenge is motivated by curve
predictions and classifications. With an explosive increase in the quantity and availability of data brought by innova-
tions of information technology in modern scientific research, there has been a growing demand for making accurate
predictions at subject levels. As one of the purposes in precision medicine studies, new patients are classified into sub-
groups of the pre-identified patient population based on random individual characteristics so that effective treatments
tailoring down to subgroups of individuals can be developed.4 With all these being mentioned, prediction mechanisms
implemented with FMEMs are important to explore.

In the field of functional data analysis, classification has long been one important topic of interest. Most of the exist-
ing relevant work has been focused on classifying a curve of unknown class to a predefined discrete class. Muller,5 for
example, proposed a longitudinal data classification based on generalized linear models which links class identities to
functional predictors. Under the framework of FMEM, Zhu6 discussed classification using Gaussian wavelet-based func-
tional mixed models and robust wavelet mixed models for complex, high-dimensional functional data. Both work talked
about classification at a group mean level. Yet not much has been explored in terms of curve matching problems driven
by individual characteristics of the curve. Jiang et al.7 first proposed a classified mixed effects model (CMMP) prediction
method that matches a group of new observations based on the mixed effects predicted by a linear mixed-effects model
to one of the predefined groups in a given training set. A few extensions based on the original work have been published
since then.8–10

In this paper, our goal is to develop the classified functional mixed model prediction (CFMMP) method that extends
the established classified mixed model prediction (CMMP) method under the framework of linear mixed effects model
(LMEM) to the framework of FMEM.Wewill begin with revisiting the essential concepts of FMEM, followed by literature
reviews in selected implementationmethods of FMEM. Before we get into the details of the methodology of our proposed
CFMMP, we will briefly introduce CMMP and some of its extensions. The paper will cover the theoretical properties
of the proposed CFMMP, and simulation studies to evaluate the performance of CFMMP against functional regression
prediction (FRP). Two real-world data sets will be used to illustrate the application of CFMMP.

1.2 Functional mixed effects models

1.2.1 Cubic polynomial spline smoothing

There has been extensive research done in the field of functional mixed effects models. Some of the work modeled the
functional fixed effects or the functional random effects as parametric functions and some as nonparametric functions
for example, Wang.11 The limitation with this type of implementations is that the subject profiles may not be suffi-
ciently modeled in the case where the fixed effects and the random effects are of more arbitrary forms. Improvements
have been made in the flexibility of the fitting through approximating the fixed effects with nonparametric functions
and the subject-level curves with select smoothing methods12 or both fixed and random effects with smoothing splines.3
However, these methods modeled each fixed effect and random effect as a fixed function, which may not sufficiently
model the random effects and tends to underestimate of the between-curve variations. Guo13 adapted Brumback3 method
to a more general framework that allowed more flexible design matrices for the functional fixed and random effects,
and was able to yield relatively straight-forward inferences on the estimated functions. According to Guo,13 given a set
of observations Y = {Yi(ti)}ni=1 where Yi(ti) = (Yi(t1),Yi(t2), … ,Yi(tni))′ for i = 1, … ,n, with Yi(tij) (j = 1, … ,ni) denot-
ing the observation of the ith curve observed at grid point tij, the general form of functional mixed effects model is
given by

Yi(ti) = Xi𝜷(ti) + Zi𝜶i(ti) + ei, i = 1, … ,n, (1)

where Xi = [xi1, xi2, … , xip]⊗ Ini is the design matrix of the functional fixed effects and is invariant of t for a given i. Zi =
[zi1, zi2, … , ziq]⊗ Ini is the design matrix of the functional random effects. ei = {eij}

ni
j=1 are the random errors following

N(0, 𝜎2e Ini). 𝜷(ti) (nip × 1) is the functional fixed effect reflecting the mean profiles and 𝜶i(ti) = (𝛼′
i1(ti), … , 𝛼

′
iq(ti))

′ is the
niq × 1 functional random effects capturing the individual deviations from the mean profiles. The functional random
effect is a collection of a series Gaussian process (𝛼i1(ti), … , 𝛼iq(ti))’ and

𝜶i(ti) ∼ N(0,𝚺i) (2)
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LIU and JIANG 1331

with

𝚺i = G⊗ Ri, (3)

where G is the variance-covariance component matrix with the (i, j)th element being 𝜎2i when i = j, and 𝜎ij when i ≠ j,
for i, j = 1, … , q. Ri is the correlation matrix. When there are no missing observations in the training data, all curves are
observed over the same grid points T = {t1, … , tm}.

Two estimation procedures were proposed by Guo13 with respect to the general functional form (1). The first method
relates the functional form of the fixed and the random effects to cubic smoothing splines. Specifically, each component
of the functional fixed and the random effects evaluated at a single grid point t can be modeled as a Gaussian stochas-
tic process using Wahba’s Bayesian approach.14 The implementation method based on this approach is highly restricted
by dimension of the data as the algorithm involves inversion of high-dimensional covariance-variance matrix. Therefore,
Guo proposed a more efficient estimationmethod based on Kalman-filtering by expressing model (1) in the form of a sin-
gle series of multivariate state vectors.13 The estimation procedures are then achieved by Kalman filtering that includes
a forward filtering step followed by a backward smoothing. Marginal likelihood is used for parameter estimation. Com-
pared with the cubic smoothing-spline based approach, the multivariate state-space-model (SSM) approach reduced the
operation time from O((mn)3) to O(mn3)10,11 to model n curves over m grid points. Hypothesis testing and inferences of
the functional effects were also discussed by Guo.13

1.2.2 Wavelet-based functional mixed models

Though flexible in modeling the functional curves, smoothing-spline based FMEM assumes global smoothing properties
for all functional effects and hence does not workwell with functional data that are highly densely observed and featuring
irregular local patterns such as spikes or peaks. Morris1 developed a wavelet-regression-based functional mixed model
that transforms an FMEM to a linearmixed effectsmodel via discretewavelet transformation (DWT). TheDWTprocedure
decomposes the functional fixed and random effects into the sum of the products between a set of coefficients and a set of
orthonormalwavelet bases. The estimation procedure involves a Bayesianwavelet-based approach that applies non-linear
shrinkage to fixed effects and uses separate variance components for different functional random effects, thus allowing
more generalized estimation of the functional fixed effects as well as the correlation structures of the functional random
effects. Markov chain Monte Carlo (MCMC) methods are used to obtain the posterior samples which is then projected
back to the original data by inverse discrete wavelet transformation to get the approximated form of the posterior mean of
the functional fixed and random effects. The parameters are then estimated through marginalized likelihood functions.
Some of the extended work of DWT in FMEM includes the more general estimation and inference method as well as the
pertinent hypothesis testing procedure proposed by Antoniadisa and Sapatinas15 for the parameters in the profile and
restricted profile log-likelihood estimation based on the wavelet-based functional mixed models proposed by Morris.1

1.2.3 Multilevel functional principle component analysis

There have been also efforts made to analyze more complexed functional mixed effects models. Di et al16 proposed a
functional principle component analysis (FPCA) framework to estimate a two-way ANOVA functional model (aka the
“hierarchical functional model”) that involves nested functional random effects. In their proposed framework, the func-
tional fixed effects and random effects are first decomposed into a functional form of mean and covariance through
Karhunen–Loève (KL) expansion. Themean and the covariance function are then estimated throughmethod ofmoments,
with parameter estimates of the covariance function being obtained through eigenanalysis. The principle component
scores are estimated through MCMC or the best linear unbiased prediction.

1.2.4 Multivariate functional mixed model

Though the FPCA method can be used to capture the heterogeneity of patterns in the outcomes as well as correla-
tions among them, it does not explicitly model the correlations as is done in parametric models. Li et al17 proposed a

 10970258, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10007 by U
niversity O

f C
alifornia - D

avis, W
iley O

nline Library on [19/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1332 LIU and JIANG

multivariate functional mixed model framework that models outcomes through subject-specific deviations and subject-
and outcome-specific deviations from the mean. They proposed a joint survival and multivariate latent process model
by incorporating the MFMMwith disease progression time-to-event data. This joint model models multiple longitudinal
outcomes as multivariate sparse functional data. It featured reduced covariance functions compared to the multivariate
FPCA method and separates the shared latent process from the outcome-specific latent processes, thus increasing the
feasibility and interpretability of the model. According to Li et al, the mean and covariance functions were estimated
through smoothing splines with the parameters estimated via the Monte Carlo EM algorithm.

2 CLASSIFIED FUNCTIONAL MIXED EFFECTS MODEL PREDICTION

Our proposedmethod adapted the CMMP to the framework of FMEM through applying the classification to curves based
on the functionalmixed effects prediction, thus allowing amore flexible classification paradigmwith potentially improved
accuracy. In this section, we will first derive the algorithm of CFMMP, assuming that there is an exact match between the
training set and the new observations, that is, the new subject indeed belongs to one group of the training set (matched
scenario). In practice, there may not exist an exact match between the new group and the training data, whereas an
approximate match always exists. As shown by Jiang et al,7 even approximate match can help in improving prediction
accuracy. This will be demonstrated in our simulation studies in Section 4.

2.1 Prediction of functional mixed effects

Assuming there is a set of training curves {yi(ti)}ni=1 = {yi(t1), … , yi(tni)}
n
i=1 satisfying model (1), with each training curve

representing a unique group. Our goal is tomatch a group of test data {ynew,j(tj)}
nnew
j=1 = {ynew,j(t1), … , ynew,j(tmj)}

nnew
j=1 to one

of the training groups. The training curves and the test curves are all observed over a fixed interval t. Under the matched
scenario, the test group also satisfies model (1) and is assumed to belong to training group I with I ∈ {1, … ,n}, and the
value of I is unknown. It follows that

ynew,j(tj) = Xnew𝜷(tj) + Znew𝜶I(tj) + enew,j, j = 1, … ,nnew, (4)

whereXnew,Znew are known designmatrices and are shared by the same group of new curves, and enew,j = {{enew,ij}
mj

i=1}
nnew
j=1

are independently distribution random errors with E(enew,ij) = 0 and Var(enew,ij) = 𝜎

2
new. We assume all curves in the test

set are assumed to share the random effects. By taking the average across the common grid points s ⊂ T of the new curves,
we get

ynew(s) =
1

nnew

nnew∑

j=1
ynew,j(s), (5)

and use this as a naive estimator of the functional mixed effect of the test (new) group as discussed by Jiang et al.7 It
follows that the functional mixed effect of the new curve to be predicted is:

𝜃(s) = E(ynew(s)|𝜷(ti),𝜶I(ti)) = Xnew𝜷(s) + Znew𝜶I(s). (6)

The functional mixed effect of the new set predicted by matching to training group i then is E(𝜃(s)|yi). Based on the
assumptions of the model (1), it can be shown that

𝜃(s) ∼ N(Xnew𝛽(s),Znew𝚺sZ′
new),

According to the joint distribution of random Gaussian processes,18 it follows that

(
yi
𝜃(s)

)
∼ N

((
Xi𝜷(ti)
Xnew𝜷(s)

)
,

(
Zi𝜮ti,tiZ

′
i + 𝜎

2
e Imi Zi𝚺ti,sZ

′
new

Znew𝚺s,tiZ
′
i Znew𝚺s,sZ′

new

))
,

 10970258, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10007 by U
niversity O

f C
alifornia - D

avis, W
iley O

nline Library on [19/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



LIU and JIANG 1333

where

𝜮u,v = G⊗ R(u, v),u, v ∈ ti, s

with R(⋅) being the reproducing kernel function specified in Section 2.1. For the convenience of computation and theoret-
ical proof, let si be the common grid points between the target test curve and training group i, and let Xi, Zi and Xnew,Znew
be the corresponding design matrices for the training set and the test curve, respectively. Applying this representation to
corresponding parts in (6), we can show that, by Gaussian theory of Gaussian process regression:

E(𝜃(si)|yi(ti)) = Xnew𝜷(si) + Znew𝚺si,siZ
′
i (Zi𝚺si,siZ

′
i + 𝜎

2
e Imi)

−1(yi(si) − Xi𝜷(si)). (7)

It is easy to show that, again by Gaussian theory, the second part of the summation form on the right side of (7) is
ZnewE(𝜶i(si)|yi(si)), with E(𝜶i(si)|yi(si)) being the best predictor (BP) of 𝜶i(si) under FMEM (1). The right side of (7) is
the BP of 𝜃(si). By replacing the unknown parameters with their corresponding consistent estimators by using an appro-
priate model fitting method in Section 2.1, we obtain the empirical BP (EBP) of the functional fixed effect ̃𝜷(si) and the
functional random effect 𝛼̃i(si). Then the EBP of the functional mixed effect, ̃𝜃(i)(si), of the test curve based on training
group i can be expressed as:

̃
𝜃(i)(si) = Xnew ̃𝜷(si) + Znew𝜶̃i(si), (8)

Next wewill showhow to estimate I, the group index towhich the test data are classified to, using the similar approach
proposed for CMMP by Jiang et al.7

In order to find Î, the estimator of I, we consider the mean squared prediction error (MSPE) function of the EBP of
𝜃(si), defined as follows:

M(𝜃(⋅), i) = ||𝜃(si) − ̃
𝜃(i)(si)||2, (9)

where || ⋅ ||2 is the L2-norm. By ynew(si) defined in (5) as a naive estimator of 𝜃(si), Î is then obtained by minimizing the
MSPE of the predicted functional mixed effects over all training groups. That is,

Î = argmin
1≤i≤n

||ynew(si) − ̃
𝜃(i)(si)||2. (10)

By replacing i in (8) with Î and denoting the common grid points between the new curve and the Îth training group, the
resulted classified functional mixed-effects predictor (CFMEP) is ̃

𝜃Î(s).

2.2 Theoretical properties of CFMMP under matched scenario

Theorem 1. Continue with expression (7), assuming Assumptions (i)–(v) in the supplemental material hold, it
can be shown that the CFMEP is a consistent estimator, that is,

|| ̃𝜃(Î)(s) − 𝜃(s)||2
P
−−→ 0. (11)

Proof of Theorem 1 is given in Appendix in the Supplemental Information. According to the subset argument,19 if
the estimator of a certain parameter of interest derived based on a subset of a sample are consistent, the estimator of the
same parameter based on the entire sample is also consistent. Therefore, by showing that the CFMEP of the new group
based on a subset of the training data is consistent, we conclude that the CFMEP based on the full training set is also a
consistent estimator of the true functional mixed effects of the new group.

2.3 Prediction of future curves

In addition to curve classification, prediction of future curves is also a motivating question of interest. Assuming there is
a group of curves {yf,f (tf )}

nf
f=1 with tf = t1, … tmf to be predicted that belong to an unknown group I which matches one
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1334 LIU and JIANG

of the group (curve) in a training set: {yi(ti)}ni=1. Suppose that yf(tf ) satisfies (4), that is,

yf(tf ) = Xf𝜷(tf ) + Zf𝜶I(tf ) + ef, (12)

where Xf,Zf are the design matrices specified by the future observations. Our interest is to predict 𝜃f(tf ), the functional
mixed effects of the future curves. Under the proposed model, it follows that 𝜃f(tf ) = Xf𝜷(tf ) + Zf𝜶I(tf ). Based on the
model assumptions, the BP of future curve yf(tf ) is:

E(yf(tf )|y1(t1), … , yn(tn)) = E(𝜃f(tf )|y1(t1), … , yn(tn)). (13)

Similar to Jiang et al,7 it can be shown that the EBP of the prediction of future curve yf(tf ) is the same as the CFMEP. By
replacing the parameters in (13) with their consistent estimators following the same estimation method of CFMEP, we
get the CFMMP of future curve yf(tf ), ̃𝜃(Î)(tf ), where Î is obtained in the same way as (10).

2.4 CFMMP under unknown-matched scenario

So far we have been assuming that there is an exact match between the training set and the new curves. Now we discuss
the situation where the true matching status is unknown. In this case, we do not know whether there is an exact match
between the training groups and the new group, and the truth might be that there is a match (matched scenario) or
there is no such a match (no-matched scenario). Therefore, when the matching status is unknown, we implement the
CFMMPby considering bothmatched and no-matched assumptions and compare the CFMEP between the two scenarios.
The implementation of CFMMP under the matched situation is covered in Section 2.1. For the no-matched case, that is,
I ∉ {1, … ,n}, using the same notations in Section 4.1, the covariance between 𝛼I(sI) and 𝛼i(ti)(i = 1, … ,n) is zero. By
Gaussian theory, it follows that E(𝛼I(s)|yi(s)) = 0. Hence, the BP of 𝜃(t) under the no-matched scenario is

E(𝜃(sI)|yi(si)) = Xnew𝜷(si), (14)

and by replacing 𝜷(si)with its consistent estimator ̃𝜷(si)we obtain the EBP, ̃𝜃0(si) = Xf ̃𝛽(si), the of the CFMEP under the
no-matched scenario.

Consider the MSPE function M(𝜃(⋅), ̃𝜃(si)) = ||𝜃(si) − ̂
𝜃(si)||2, where ̂

𝜃(si) is the EBP of 𝜃(si) based on training group
i. Let ynew(si), the average observations over grid points si, be a naive estimator of 𝜃(s), and ̃

𝜃Î(sÎ) be the CFMEP under
matched-case assumption, omitting the grid point index i, the CFMEP under the matching-status-unknown scenario,
̃
𝜃(s), is obtained by the minimizer of the empirical MSPE between the matched and no-matched scenarios, that is:

argmin
̂
𝜃(s)∈{ ̃𝜃0(s), ̃𝜃(Î)(s)}

M(ynew(s), ̂𝜃(s)). (15)

2.5 Theoretical properties of CFMEP under unknown-matched scenario

Let ̃𝜃0(t) be the CFMEP of 𝜃(t), the true functional mixed effects of the new curve under unknown-matched scenario.
Assuming the following conditions are satisfied:

(i) 𝜶new(tj), i = 1, … ,n, 𝜶(ti), j = 1, … .,nnew are independent with the enew,j, ei and 𝜶new(tj) is independent with the
training data under the no-matched scenario, and enew = 1

nnew
Σnnewj=1 enew,j is independent with 𝛼i(ti) and ei for all i’s.

(ii) Each component of Xi and Xnew is bounded.
(iii) ̂𝜷(ti) is a consistent estimator of 𝜷(ti).
(iv) m → ∞, (logm)2𝜈∕nmin → 0, where nmin = min1≤i≤m ni, and nnew → ∞.

It can be shown that the CFMEP under unknown-matched scenario is point-wise consistent, that is,

E{( ̃𝜃0(tij) − 𝜃(tij))2} → 0, for i = 1, … ,nj, j = 1, … ,nnew.
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LIU and JIANG 1335

As the proof of point-wise consistency of ̃𝜃new(t) can be well adapted from the method of the proof of the consistency of
CMMP under unknown-matched scenario, we skipped the details of the proof in this paper. For details of the proof please
refer to the proof of the consistency under unknown-matched case for CMMP (Theorem 2 in the SupplementaryMaterial
by Jiang et al7).

3 PREDICTION BANDS

3.1 Prediction band of CFMEP of the functional mixed effects

Let ̃𝜃(t) be a consistent estimator of 𝜃(t). Considering the following expression of MSPE:

MSPE = E( ̃𝜃(t) − 𝜃(t))2

= E([E( ̃𝜃(t) − 𝜃(t))]2|y(t)) + E(Var( ̃𝜃(t)|y(t))).

Since ̃
𝜃(t) is a consistent estimator, that is, E( ̃𝜃(t)) = 𝜃(t), it follows that

MSPE = E(Var( ̃𝜃(t)|y(t))).

Assuming there is a new curve that satisfies (4) and a set of training curves that satisfy (1). Using the same notations
as model (1) and model (4), let t be the common grid points shared by training group i and the test curve. By the joint
distribution of Gaussian processes yi(t) and 𝜃new(t), we get the conditional variance

Var(𝜃new(t)|yi(t)) = Var(𝛼new(t)|yi(t)) (16)

with

Var(𝛼new(t)|yi(t)) = Znew𝚺tnewZ
′
new − Znew𝚺tnew,tiZ

′
i (Zi𝚺tiZ

′
i + 𝜎

2
e Imi)

−1Zi𝚺tnew,tiZ
′
new.

where𝚺tnew and𝚺ti is the variancematrix of 𝛼new(t) and 𝛼i(t) respectively. i𝚺tnew,ti is the variance-covariancematrix between
the functional random effect of the new curve and that of the training curve i.

Under the matched scenario, assuming the true matched training group is I, it follows that 𝛼new(t) shares the same
underlying distribution as 𝛼I(t), that is,

Var(𝛼new(t)|yI(t)) = Var(𝛼I(t)|yI(t)), (17)

where I can be estimated by CFMMP.
Under the no-matched scenario, 𝚺tnew,ti = 0, which gives

Var(𝛼̃new(t)|yI(t)) = Znew𝚺tnewZ
′
new. (18)

In this case there exists training group Î identified by CFMMP that yields the closest match (ie, minimizes the estimated
MSPE). We then estimate 𝚺tnew by estimating the posterior variance of the functional random effect Var(𝛼Î(t)|yÎ(t)).

Let ̃𝜃Î(t) be the CFMEP of 𝜃(t). By replacing the unknown parameters in the posterior variancematrices and 𝜎2e in (16)
with their consistent estimators estimated using one of the FMEM implementation methods in Section 1.2 (eg, Kalman
filtering through SSMs), we get the estimated posterior variance ̂Var(𝛼Î(t)|yÎ(t)). Then the 100 × (1 − 𝛼)% confidence band
for ̃𝜃(t) is

̃
𝜃(t) ± Φ−1(1 − 𝛼∕2)

{
̂Var(𝛼Î(t)|yÎ(t)

}− 1
2
. (19)

3.2 Prediction band of future observations

Consider a group of future curves yf(tf ) = (yf,1(t1), … , yf,nf(tnf))
′ that share the same individual profiles and satisfy (12).

The future prediction is for the mixed effect 𝜃f(t) of the new curve yf(t) defined similarly as (5). Let ̃𝜃f(t) be the CFMEP of
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1336 LIU and JIANG

yf(t) based on training group y(t) satisfying (1). It can be shown that the MSPE of ̃𝜃f(t) is

E(yf(t) − ̃
𝜃f(t))2 = E(𝜃f(t) + ef(t) − ̃

𝜃f(t))2

= Var( ̃𝜃f(t)|y(t)) + n−1f 𝜎

2
e I,

With the parameters replaced by their consistent estimators, the 100 × (1 − 𝛼)% prediction band for yf(t) is

yf(t) ± Φ−1(1 − 𝛼∕2)
{

̂Var( ̃𝜃f(t)|y(t)) + n−1new𝜎̂2e1
}− 1

2
. (20)

4 SIMULATION STUDY

In this section, we will compare the performance of CFMMP with functional regression prediction (FRP) through
finite-sample simulation studies. We consider an FMEM similar to the one proposed by Liu and Guo20 in Section 4, and
illustrate CFMMP for both the matched and no-matched scenarios.

Our training data are generated from the following FMEM:

yi(ti) = 5xi1sin(2𝜋ti) + 5xi2sin(𝜋ti) + ri(ti) + ei, (21)

where ti = (ti1, … , tini)
′ for i = 1, … ,n,ni ∈ (1, … ,m), with each i representing one unique group. For a fixed i, xi1 is a

random draw from a uniform distribution on [−0.5, 0.5] and xi2 is assigned as 0 or 1 equally likely. The functional fixed
effects are represented as 𝛽1(ti) = 5sin(2𝜋ti) and 𝛽2(ti) = 5sin(𝜋ti). ei ∼ N(0, 1). ri(ti) is the functional random intercept
and follows N(0, 𝜎2

𝛼

Σti) with 𝜎

2
𝛼

being the variance component and Σti being the correlation matrix of group i. The (i, j)th
component of Σti is computed by reproducing kernel functions through direct sum.

20,21 The test curve (group) ynew(t) has
the same underlying fixed effects generated under the same FMEM as (21). For the matched scenario, the functional ran-
dom effect of the test group is the same as one of the groups from the training set; under the unknown-matched scenario,
the random effect is generated randomly from the same distribution as ri(ti) in (21). For all the simulation scenarios cov-
ered in this section, we carry out 1000 runs and will assume an unknown-matched scenario for the CFMMP algoirthm,
regardless of the actual scenarios adopted for simulating the new group and the training groups. For the purpose of effi-
cient computation, the SSM approach with Kalman filtering discussed in sect. 2.1.2. was used for model representation
and parameter estimation. The SSM algorithm has been implemented in the Statistical Analysis System (SAS) software
through PROC SSM.22 The functional fixed and random effects effects are approximated by cubic smoothing splines and
auto-regressive model of order 1 (AR(1)). The empirical MSPE is computed to compare the performance of CFMMP
and FRP. The simulated data of an example training sample of 30 groups under scenario 𝜎

2
𝛼

= 500 and ni = 20 (Figure
S2) based on the above setups as well as all the simulation results discussed below are included in the Appendix in the
Supplemental Information.

4.1 Performance of CFMMP under matched scenario

First we would like to evaluate the impact of sample size nnew of the test group on the performance of CFMMP. We
set ni = m = 20, and simulate the test data under the matched scenario. Appendix in the Supplemental Information
shows the empirical MSPE of FRP and CFMMP as well as the percentage increase in the MSPE of FRP over CFMMP
with n = 30 training groups for nnew = 1, 5, 20 and 𝜎

2
𝛼

= 90, 500, 900, respectively. It shows that CFMMP consistently
yields a lower MSPE compared with FRP. When the rest of the simulation conditions remain equal, this performance
difference increases as the variance components of functional random effect becomes larger, and same trend is observed
with increasing sample size of the test group. This is expected as FRP does not consider individual-curve deviations and
mainly replies on the mean profile of the training group, which all test curves in the same group share. Therefore, the
performance of FRP does not changemuchwith the variance of the functional random effects of the test curves, while the
MSPE of CFMMP reduces with increasing sample size of the test group. This trend is enhanced with larger test sample
size.

When we increase the number of grid points of t for both the training set and the test curve to m = 40, and
carry out the simulations under nnew = 1 and n = 30, the resulted MSPE of FRP has greatly increased with denser

 10970258, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10007 by U
niversity O

f C
alifornia - D

avis, W
iley O

nline Library on [19/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



LIU and JIANG 1337

observations (Appendix Table S2). In contrast, the performance of CFMMP is not affected as much, with only slightly
increases in the MSPE. The chance that CFMMP identifies a matching under the matched scenario remains consistently
at relatively high percentages.

4.2 Comparing matched and no-matched scenarios

In this part of the simulation study, we compare the performance under the matched and the no-matched sce-
narios and evaluate how the performance comparison is affected by functional random effects and sample size of
the training set. Under the no-matched scenario, our new data were still simulated from model (21) but are inde-
pendent from the training data. We carry out simulations under the following scenarios for both matched and
no-matched scenarios: n = 10, 30; 𝜎2

𝛼

= 90,500, 900. We also examine the average matching percentage of CFMMP,
which is the proportion of times when the new group is finally matched to one of the training groups based
on the algorithm by CFMMP. In order to mimic a real-world situation where the number of observations usu-
ally differs between subjects, the data points are generated with a random missing probability of 0.2 across all
observations.

CFMMP performs better than FRP under both matched and no-matched scenarios and the performance of CFMMP
also improves with increasing sample size of the training set (Appendix Table S3). Under the matched scenario, the dif-
ference between the MSPE comparing CFMMP and FRP increases as the random effects become more dominant under
the matched scenario. The matching percentage is also generally higher under the matched scenario comparing to the
no-matched scenario, especially under larger component variance (𝜎2 = 500,900), which suggests that our algorithm is
effective in capturing the true matching status between the test group and the training set. An interesting thing to notice
is that even when there is no exact match to the training set, CFMMP still consistently outperforms FRP. This addi-
tional prediction accuracy over FRP can be attributed to the curve-specific deviations captured by the functional random
effects that enables the CFMMP to identify a group from the training set with characteristics as close to the test curve
as possible.

4.3 Performance of CFMEP confidence bands

We evaluated the performance of the confidence band of CFMEP under the similar scenarios of Section 4.2 based on
the widths and the coverage probabilities (CP) of the confidence bands (CB). We first explored the overall average
width and coverage probability across all grid points under matched scenario under the same simulation condi-
tions as Table S1. The overall average coverage probabilities are generally satisfactory (≥ 85%), and show increas-
ing trend with increasing test sample size at a given 𝜎

2
𝛼

(Table S4). The overall average width of the CB remains
almost stable with increasing test sample sizes. Comparing across 𝜎

2
𝛼

at a given test sample size, the average CP
reduce with increasing 𝜎

2
𝛼

. This could be due to that the relatively small increase in the average width is likely to
be offset by the larger increase within-curve variations controlled by 𝜎

2
𝛼

. is maintained and CP of the CBs show
an increasing trend as the variance of the random effects goes larger. overall higher CPs and smaller width are
observed in the matched scenario compared with those under the no-matched scenarios (Table S5). The point-wise
average width and point-wise average CP yield consistent conclusions comparing the matched and no-matched sce-
narios (Figures S3 and S4). In generally, the confidence bands of CFMEP display relatively satisfactory and stable
performance.

5 APPLICATION

In this section, we illustrate the CFMMP method on two real-world datasets. We compare the CFMEP with FRP, and
discuss about the flexibility of CFMMP with respect to longitudinal curves bearing different characteristics: one with
distinct subject-level variations, the other one featuring densely observed data. The same approach of model fitting in
Section 4 are used to implement the FMEMs in this section.
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1338 LIU and JIANG

5.1 Menstrual cycle data

5.1.1 Data description

The first example we use comes from a study of the dynamics of women’s hormone release during ovarian cycles.22
This dataset was analyzed as an example for the application of non-parametric functional data analysis using smoothing
splines (eg, Brumback and Rice3), and was also used by Selukar to illustrate the SSM fitting an FMEM.22 The dataset
contains daily levels of progesterone (PDG), a critical hormone for reproductive system, collected from 51 healthy women
with normal reproductive histories in an artificial insemination clinic research. The daily hormone levels were measured
over 22 conceptive and 69 non-conceptive menstrual cycles, and were aligned based on the day of ovulation which was
taken to be day 0 and were truncated at day 9 and day 15 before and after day 0 for equal length of cycle duration. This
yielded a total of 24 observations for each cycle. The initial research goal of this study was to characterize differences in
PDG profiles between the conceptive and non-conceptive cycles. The log-transformed PDG levels show non-linear trends
and distinct variations between cycles as well as subjects (Supplemental Information, Appendix Figure S1). It would be
of interest to study the similarities of the curve characteristics at subject level using CFMMP, which may provide further
implications to biomedical research on individualized therapy.

The test curve is selected from the 51 subjects in a leave-one-out manner. In other words, for each trial of the appli-
cation, we use one subject as a test group, and apply CFMMP by matching it to one of the groups in the training set
composed by the remaining 50 subjects. Since there are no predefined similarities among the subjects in this sample, we
assume the unknown-matching scenario for the CFMMP algorithm.

5.1.2 Model fitting and results

The menstrual data in Figure S1 feature generic group mean profile by conceptive conditions, with random deviations
from the mean profile at individual level, and the time points of the menstrual cycle data are not too densely distributed.
This is a typical example of longitudinal data that can be treated as functional data that fit into the general form of
a FMEM (1) in Section 2. The PDG levels observed over days are averaged across cycles for each patient so that each
subject has one PDG curve (mPDG). The average progesterone level is then normalized through logarithm transformation
(logmPDG) which is the outcome variable of the FMEM. Similar to the cortisol data example discussed in Guo,13 we
assume that the underlying variance-covariance structure of subject-level deviations are different between the conceptive
and non-conceptive groups which is modeled as the fixed effect, and set up the following functional mixed models with
one functional random intercept by group of conceptive methods:

Y (k)
i (ti) = 𝜷(k)(ti) + 𝜶

(k)
i (ti) + e(k)i , i = 1, … , 50; k = 1, 2, (22)

where k = 1, 2 corresponds to the conceptive group and the non-conceptive group, respectively. ti = (ti1, … , tim),m ≤

24, contain the cycle days observed for curve i. 𝜷 (k)(ti) describes the functional mean profile for conceptive condition
k, 𝜶(k)

i (ti) ∼ N(0,Gk ⊗ Σi) with the variance components Gk and correlation matrix Σi defined similarly for model (1).
e(k)i ∼ N(0, 𝜎2e I).

Figure S5 in the Supplemental Information shows theCFMMP results for the non-conceptive test group (Subject 1–29)
and conceptive test group (Subject 30–51). The CFMEP of each test curve corresponds well with the group mean profiles,
and well captures the observed curves. The CFMMP algorithm under an unknown-matched scenario yielded an average
matching percentage of 98.0%. For those test curves atwhichCFMMPconcludes amatch, a decent amount of resemblance
can be observed between the test curve and the training group the test curve is matched to, and CFMEP captures the
test profile much better than FRP. The 95% prediction bands generally suggest consistent prediction accuracy over the
observed grid points. There are relatively large standard errors of prediction at the ends of each test curve, compared
with the middle part, which may be justified by more missing observations at the beginning and ending of the menstrual
cycles. For subjects that displaymore variations over time, for example, test ID= 23 and test ID= 43, thematched training
curve also display relatively large deviations from the mean. The CFMEPs though based on smoothed functions do not
show as much variations as the observe average PDG levels of these test subjects, they do reveal larger fluctuations over
the grid points where irregular peaks are observed for the mean PDG levels, compared with the predicted curves of other
test subjects. Overall, our results suggest a relatively satisfactory prediction performance.
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LIU and JIANG 1339

5.2 Diffusion tensor imaging data

The second example is illustrated with the diffusion tensor imaging (DTI) data that were collected at Johns Hopkins
University and theKennedy-Krieger Institute available in the refundpackage ofR software.DTI tractography is amagnetic
resonance imaging (MRI) technique that studies the white-matter tract of diseases through measuring the diffusivity of
waterin the brain.23 The data we use to implement CFMMP are based on a subset of the source DTI dataset and contain
the fractional anisotropy tract profiles for the corpus callosum (CCA) of 142 subjects including multiple sclerosis (MS)
patients and controls. Each subject has the DTI tract data collected up to 93 locations of the brain.

We randomly select 82 subjects to form the training set, with each subject representing one unique group. The test
set comprises the rest sample. our goal is to match the DTI tracts of the test groups to the training set through applying
CFMMP algorithms. FMEM in (1) is used to fit the baseline DTI tract data, with the mean profile grouped by case of MS
or control. One subject-specific functional intercept is used to model the deviation of subject from the mean trend over
locations. The SSM approach is used to fit the FMEM and for parameter estimation. Assuming an unknown-matched
scenario, CFMMP yields 83.3% matching between the test set and training set. For the majority test subjects, where the
CFMMP identifies a match between the test and training curves, the CFMEP yield consistently closer capturing of the
observed test curve compared with FRP (Supplemental Information, Appendix Figure S6). The matching percentage
in this DTI example is lower than that of the hormone study, which is consistent with the simulation results which
suggested that matching percentages increase as random effects take over. The DTI data show relatively small variations
at individual level compared to the menstrual cycle data, and therefore a smaller estimated variance component of the
functional random effects. Among the 50 test subjects that a match with the training curve was identified, all 18 controls
and 32MS cases werematched correctly to the training set in terms of case status, that is, nomismatch of case and control
was identified. This not only showed the effectiveness of CFMMP in capturing the mean profile and its accurateness in
making predictions, but also suggested there maybe a distinct difference in the CCA patterns over locations between the
MS patients and the controls.

6 DISCUSSION

We have shown that the CFMEP is a consistent estimator of the functional mixed effects of the new group, and outper-
forms FRP based on the simulation studies. For the proof of the consistency property of CFMEP under the matched case,
we used the subset argument so that we can assume all training groups share the same grid points. To be more consistent
with the real world application where the grid points usually differ between training groups, we may consider proving
the theorem based on the case where the number of observations of each curve varies with groups. The concepts of future
curve prediction and the confidence bands were briefly discussed in this paper, and we used simulations to and appli-
cations to evaluate and illustrate the performance of confidence bands of CFMEP. It would be worthwhile exploring the
asymptotic properties of the confidence band of CFMEP.

As a prediction and classification tool, it would be worth comparing the CFMEP with other prediction and clas-
sification methods in longitudinal data analysis. We have done some preliminary explorations of another possible
extension of CMMP, the Bayesian CMMP, through concept development and simulation studies. With artificial intelli-
gence being a trending topic nowadays, comparing the CFMMP with other classification methods in machine learning
field will be another interesting extension of our work. In addition to the FRP we compared the performance of
CFMMP with in this paper, there are also other closely related models that would be interesting to evaluate against
CFMMP, for example, linear mixed models (LMM) with splines. Though it is plausible that the LMM with splines
may perform better in terms of model fitting or prediction, however, the application may not be as common as
CFMMP, especially in medical studies where the applicable problems of interest for the former are expected to be less
common.

The model fitting of the FMEM is a critical part of CFMMP. As indicated by its prediction mechanism, the CFMEP
is robust to the methods of fitting FMEM, as the prediction mainly replies on the finally estimated smoothed curves of
the functional fixed and random effects. Compared to the CFMEP, the confidence band tends to be impacted more by the
implementation approach of the FMEM, which the estimation of variance components of the random effects depends on.
It would be an insightful exercise to explore the performance and robustness of CFMMP under more complicated frame-
work of FMEMs, such as the multivariate FMEM and the multilevel hierarchical FMEMwith nested random effects,16,17
which is commonly used in complex disease settings.
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1340 LIU and JIANG

The grid points of the examples in the simulation studies and applications are relatively dense. The rate of missing
observations in the simulated data in Section 4.2 allows flexibility in the point density of the curves and we did not
observe an declining performance of the CFMMP comparing the no-missing scenarios with that under a missing rate of
0.2, and the CFMMP displayed certain robustness to increased density of the grid points. In real world medical research
longitudinal data are more often sparsely observed. It would be worth investigating the performance and property of
CFMMP for sparse data in further research.
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