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Abstract

In many practical problems, there is interest in the estimation of mixed effect projections

for new data that are outside the range of the training data. Examples include predicting

extreme small area means for rare populations or making treatment decisions for

patients who do not fit typical risk profiles. Standard methods have long been known to

struggle with such problems since the training data may not provide enough information

about potential model changes for these new data values (extrapolation bias). We

propose a new framework called Prediction Using Random-effect Extrapolation (PURE)

which involves constructing a generalized independent variable hull (gIVH) to isolate a

minority training set which is “close” to the prediction space, followed by a regrouping of

the minority data according to the response variable which results in a new (but

misspecified) random effect distribution. This misspecification reflects “extrapolated

random effects” which prove vital to capture information that is needed for accurate

model projections. Projections are then made using classified mixed model prediction

(CMMP) (?) with the regrouped minority data. Comprehensive simulation studies and

analysis of data from the National Longitudinal Mortality Study (NLMS) demonstrate

superior predictive performance in these very challenging paradigms. An asymptotic

analysis reveals why PURE results in more accurate projections. Supplementary materials

for this article are available online.
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1 Introduction

In many important practical problems, there is interest in the prediction for new data that

are outside the range of the training data—the so-called extrapolation prediction or

projection problem which standard prediction methods have a difficult time with.

Extrapolation as a topic has intrigued researchers back to the time of Archimedes who

developed among the first methods for function extrapolation for numerical analysis

(Walz 1991). In statistical circles, the focus has been on predictive modeling with interesting

distinctions being made between predictability and prediction (Ehrenberg and Bound

1993). As noted there, the most interesting prediction extrapolation problem asks the

question if a result found from one set of data will hold for some other, different data

(e.g., for a sample from another population). The main issue then boils down to the

choice of model form relating the response of interest to a set of available covariates.

Typically, even if the training model is correct, extrapolated prediction intervals widen

dramatically. If the training model is incorrect, then bias enters the equation as well.

Here is a typical example. An older individual with later stage cancer is deciding whether

or not to undergo chemotherapy treatment. His doctors are encouraging him to do so

indicating a significantly increased remaining life span over doing nothing. However, the

patient also suffers from co-morbidities including significant kidney disease resulting in

markedly reduced kidney function and reduced cardiac function that has required him to

have had significant bypass surgery. The doctors indicate that their estimate for increased

length of remaining life is really not based on a model which could easily account for the

co-morbidities and on top of that, is not really designed for patients of advanced ages. So

any prediction would represent an extrapolation from the training model. The best advice

they can give is to use their estimate as an upper bound. When weighing such big

decisions, this proves less than satisfactory. Yet, as we know, this type of problem occurs

regularly in practice and frankly reflects a lack of diversity (age, gender, race, etc) in

research training data models. If the promise of precision medicine is to be more fully

realized, then not only should research involve more diverse patient populations, but

more accurate methods for extrapolation should be developed as well.

This above example is a projection of a response associated with new data and the

underlying model could be a linear mean residual life model (Chen and Cheng 2006). In

Linear mixed model settings (which is our focus here), the projection of a mixed effect

associated with new data is also of interest. For instance, in small area estimation (SAE)

(Rao and Molina 2015), we use mixed models to derive model-based estimators of area

mixed effects, such as small area means, using mixed model prediction (MMP) (Jiang and

Lahiri 2006) or classified mixed model prediction (CMMP) (Jiang et al. 2018). When new

areas present as outside of the range of the auxiliary variables in the training data, the

goal is to generate a mixed model projection of the mixed effect for those areas. In the

SAE literature, to date we can point to work by Saei and Chambers (2005b) who looked at

out-of-sample estimation for the area level model where they relaxed the independent

area effects assumption and allowed random effects to be spatially correlated. The same

authors developed an earlier similar approach for the case where unit level data are

available from the in-sample areas (Saei and Chambers 2005a).

While older literature has come to the conclusion that extrapolation methods have had

mixed success at best Armstrong (1984), as we know, an explosion of work has been done

in the area of machine learning or predictive modeling in the last 25 years. These models

(which also include ensembles) usually make use of more local structure in the data and

are hence more flexible. They are also inherently more computationally intensive than

traditional statistical models. However, it has been noted that these models do not

remedy the challenges of extrapolation prediction

(http://freerangestats.info/blog/2016/12/10/extrapolation).

Nevertheless, there are some ways to make in-roads here. If the training data are

grouped in a nested error structure, then we could “map” the test data to one of the more

representative groups and use the recently developed classified mixed model prediction

(CMMP) approach of Jiang et al. (2018) (more details to follow). Similarly, if we could

identify a subset of the training data that are “closer” to the test data, then we can build a

training model using these as advocated by Fine (1970). Both of these methods can

provide improved mean squared prediction error (MSPE) in some cases. In this study, we

will do something quite different. We will identify a set of minority data points which are

close to the test data and then fit a regrouped nested error mixed effects model to these.

As we will show, the regrouped random effects are in a sense extrapolated from the full

training data random effects. Predictions made using this regrouped structure yield a

method we call Prediction Using Random-effects Extrapolation (PURE).

1.1 Illustrative Example

A simple example illustrates how this method works. It is assumed that, for 𝑖 = 1,…,𝑚,𝒚(𝑘)

follow a mixed model as follows:

𝒚𝑖
(𝑘) = 𝑋𝑖

(𝑘)𝜷𝑘 + 𝑍𝑖
(𝑘)𝒃𝑖 + 𝜺𝑖,

(1) where 𝒚𝑖
(𝑘) = (𝑦𝑖𝑗)1 ≤ 𝑗 ≤ 𝑛𝑖

(𝑘) ,𝑋𝑖
(𝑘) = (𝑥𝑖𝑗

(𝑘))
1 ≤ 𝑗 ≤ 𝑛𝑖

(𝑘)

𝑇
 is a matrix of known covariates, 𝑍𝑖

(𝑘) is a

matrix of known covariates, 𝜷𝑘 is a p-vector of unknown regression coefficients (the fixed

effects), 𝒃𝑖 is q-vector of group-specific random effects, and 𝜺𝑖 is an vector of errors. The

subscript (k) denotes the population k, and 1 ≤ 𝑘 ≤ 𝐾. It is assumed that 

𝒃𝑖 ∼ 𝑁(0,𝐺), 𝜺𝑖 ∼ 𝑁(0,𝑅𝑖) and they are independent, and the covariance matrices G and R

depend on a vector 𝝍 of variance components. Note 𝜷𝑘 is different for different

population k, and the random effects 𝒃𝑖 are the same across k populations. The total

number of observations in each population is 𝑛(𝑘) = ∑𝑖 = 1
𝑚 𝑛𝑖

(𝑘), and the overall total

population 𝑛 = ∑𝑖 = 1
𝐾 𝑛(𝑘). Note that 𝑛 = ∑𝑖 = 1

𝑚 𝑛𝑖 where n  is the number of observations in

the group i. If the data follows (1), people usually fit a one component mixed model that

assumed only one set of fixed effects parameters when the true model information is

unknown, which results in a convenient but “misspecified” model fit.

Assume new test observations, which follow:

𝑦𝑛, 𝑗 = 𝑥𝑛′ 𝜷𝑛 + 𝑧𝑛′ 𝒃𝐼 + 𝜀𝑛, 𝑗, 1 ≤ 𝑗 ≤ 𝑛new,

(2) where x  and z  are known vectors, and I belongs to one of the m groups. The new

errors 𝜀𝑛, 𝑗 are independent with mean zero, and variance 𝑅new and are assumed

independent of the training data. Notice 𝜷𝑛 ≠ 𝜷𝑘, 1 ≤ 𝑘 ≤ 𝐾. The mixed effect we wish to

predict is 𝜃𝑛 = 𝐸(𝑦𝑛, 𝑗 ∣ 𝑏𝐼) = 𝑥𝑛′ 𝜷 + 𝑧𝑛′ 𝒃𝐼 where 𝐼 ∈ {1,…,𝑚} but we do not know which group

I belongs to.

Let K = 2; then we have 𝜷𝑛 ≠ 𝜷1 ≠ 𝜷2, where 𝜷1 denotes the fixed effects parameter for the

majority data, and 𝜷2 denotes the fixed effects parameter for the minority data. Assume

the training data is composed of two sub-populations: 60% of the training data has 

𝜷1 = (0.5, 0.4, 0.3, 0.2, 0.1, 0)′, and fixed covariates X were generated from a normal

distribution with 𝝁1 = (30, 150, 105, 0, 0)′ and 𝛴1 = diag{40, 40, 40, 1, 1}; the other 40% of the

training data has 𝜷2 = (0.55, 0.45, 0.35, 0.2,  0.1, 0)′, and fixed covariates X were generated

from a normal distribution with 𝝁2 = (90, 250, 140, 0, 0)′ and the same 𝛴1. We will consider

m = 30 and 𝑛𝑖 = 10, 1 ≤ 𝑖 ≤ 𝑚. For the random effects, we assume a random intercept

model with random effect variance G = 20. We further assume independent sampling

errors with R = I.

The first three covariates could for instance represent age, weight, and blood pressure

and differ in their effect on the response between the two sub-populations. Note that the

minority data are represented in each of the m groups. In real applications, the groups

could refer to different hospitals, and in each hospital, there are some elderly patients

who are overweight with high blood pressure (that represent minority data).

For the test data, we assumed the matched case where the test data is assumed to come

from one of the m groups. For the test data, we generated 100 sets of new observations

where each set contains five observations. The test data covariates are simulated from a

multivariate normal with 𝝁𝑛 = (100, 280, 150, 0, 0)′ and the variance is the same as 𝛴1.

Notice that the mean vector is even larger than the minority data. In addition, the test

data is assumed to have larger fixed effects parameters, that is 

𝜷𝑛 = (0.65, 0.20, 0.35, 0.2, 0.1, 0)′. What this means is that we generated new test data fixed

effects and attached training data random effects to them at random thus preserving the

grouping structure. Once again, we assume independent sampling errors with R = I.

We fit the following models: (i) usual regression prediction (RP) which uses the population

average value of the random effects (i.e., zero); (ii) classified mixed model prediction

(CMMP) which attaches to a test observation, a classified random effect from the training

data associated with a group with minimal prediction error; (iii) a usual linear mixed

model using mixed model prediction for test observations (Lmer); (iv) a regrouped linear

mixed model in which the training observations are reclustered according to their

response values and (v) CMMP with regrouped data. We also then fit the same models

using a subset of the training data identified to be closest to the test data based upon

only their covariate values (details to follow). This is the data-based identification of

minority data. We term CMMP on regrouped minority data as prediction using random

effect extrapolation (PURE).We also included random forests and gradient boosted

regression trees as competitors. All results are based on averages over 100 simulation

runs.

Prediction performance results over the 100 simulation runs are presented in .

The PURE prediction method clearly produces the most accurate predictions of all

methods examined. Interestingly, flexible machine learning methods like random forests

and gradient boosting are not competitive. This seems to confirm previously found

limitations of these methods for extrapolation problems.

A scatterplot of the data is shown in  with the majority, minority, and test

(extreme) data points colored differently. To better illustrate how the test data points are

outside the range of the training data, a scatterplot with respect to the first principal

component is also shown. Clearly, the test data does not overlap with any of the training

data. Fitted lines (from one realization of the simulation) running through the test set

predicted means using the full data (yellow), the minority data (green) are overlaid on the

plot. Clearly, the full data or minority data do not provide an adequate fit when trying to

extrapolate to the test data points. Additionally, PURE predictions are shown in blue with

a fitted line through them.

Fig. 1 Scatterplot (raw on the left, with respect to the first principal component on the
right), with overlaid fitted lines (fitted to predicted test means) from introductory example.

 shows the estimated G and R values averaged over the 100 runs of the simulation

with empirical standard errors in parentheses in both the original grouped and

regrouped situations. Notice how the regrouping has markedly increased the G/R ratio

from the original grouping scenario—in a sense, extrapolating the random effects.

Clearly PURE prediction is intriguing at the very least. The gains in prediction accuracy for

extrapolated projections are enormous in this example. By simply focusing on minority

data and regrouping the observations, we see remarkable decreases in prediction error.

So in this article we will detail what PURE prediction is and why exactly it works using a

detailed asymptotic analysis. The article is organized as follows. We first provide a

background of CMMP prediction. We then show how to identify a minority subset using a

generalized independent variable hull (gIVH) adapted to the mixed model setting. We

then put everything together as PURE prediction and conduct extensive empirical studies

using simulations. The next section details an asymptotic analysis of the whole procedure

which shows why MSPE can be lowered using PURE. A detailed real data analysis is

conducted where the focus of interest is predicting age to start smoking for different

racial groups from the National Longitudinal Mortality Study (NLMS). We finally end with

some conclusions.

Remark 1.

It is natural to consider using 𝑦En as a naive estimator of θ. When 𝑛new is large, we

certainly expect the PURE to be close to 𝑦En. This is a property that resembles what is

sometimes called design consistency (e.g., in small area estimation problems)—that is,

the model-based predictor is close to the design-based one (see e.g., Jiang and Lahiri

2006). Clearly, for smaller sample sizes, the CMMP should be preferable as it borrows

strength from other sources through the model. In addition, covariate information is

generated from sometimes expensive studies like large scale surveys and not making use

of this information can be difficult to justify.

2 Classified Mixed Model Prediction

In the work of Jiang et al. (2018), they proposed classified mixed model prediction (CMMP)

as a means to predict subject level values in a mixed model context. They showed that

CMMP can have significantly reduced the MSPE by identifying a group that a new test

subject belongs to and then using that classification by attaching to the test observation

the corresponding group random effect(s). Consider the linear mixed regression model,

Suppose we have a set of training data 𝑦𝑖𝑗, 𝑖 = 1,…,𝑚, 𝑗 = 1,…,𝑛𝑖, and the linear mixed

model for the training data is

𝒚𝑖 = 𝑋𝑖𝜷 + 𝑍𝑖𝒃𝑖 + 𝜺𝑖,

(3) where 𝒚𝑖 = (𝑦𝑖𝑗)1 ≤ 𝑗 ≤ 𝑛𝑖
,𝑋𝑖 = (𝑥𝑖𝑗𝑇 )1 ≤ 𝑗 ≤ 𝑛𝑖

 is a matrix of known covariates, Z  is a design

matrix for the random effects, 𝜷 is a p-vector of unknown regression coefficients (the

fixed effects), 𝒃𝑖 is q-vector of group-specific random effects, and 𝜺𝑖 is an vector of errors.

It is assumed that 𝒃𝑖 and 𝜺𝑖 are the same as in (1). The total number of observations 

𝑛 = ∑𝑖 = 1
𝑚 𝑛𝑖.

The particular version of CMMP of interest here attempts to make a classified prediction

for the conditional mean value associated with a set of new observations, 𝑦𝑛, 𝑗, 1 ≤ 𝑗 ≤ 𝑛new
, where the subscript n refers to “new.” For the new observations:

𝑦𝑛, 𝑗 = 𝑥𝑛′ 𝜷 + 𝑧𝑛′ 𝒃𝐼 + 𝜀𝑛, 𝑗, 1 ≤ 𝑗 ≤ 𝑛new,

(4) where x  and z  are known vectors, and I either belongs to one of the m groups, or I

does not match to any of the m groups. The new errors 𝜀𝑛, 𝑗 are independent with mean

zero, and variance 𝑅new. Notice that here 𝜷 is assumed to be the same for the test

observations.

We wish to predict the mixed effect associated with the new observations at x :

𝜃𝑛 = 𝐸(𝑦𝑛, 𝑗 ∣ 𝑏𝐼) = 𝑥𝑛′ 𝜷 + 𝑧𝑛′ 𝒃𝐼 .

(5)

We can construct the best predictor under the linear mixed model for each group as in

Jiang et al. (2018). Estimators 𝜷̂ and 𝝍̂  of parameters 𝜷 and 𝝍 can be obtained through

Maximum Likelihood (ML), Restricted Maximum Likelihood (REML), or other available

approaches like the Best Predictive Estimator (BPE) (Jiang, Nguyen, and Rao 2011). By (5),

it follows that the estimator of mixed effects for each group is 𝜃̃(𝑖) = 𝑥𝑛′ 𝜷̂ + 𝑧𝑛′ 𝒃̂ 𝑖. Note 𝒃̂ 𝑖 is

the estimator of the random effects for the group i. For example, in the nested-error

regression model (Battese, Harter, and Fuller 1988), 𝜃̃(𝑖) = 𝑥𝑛′ 𝜷̂ + 𝑛𝑖 𝐺̂
𝑅̂ + 𝑛𝑖 𝐺̂

( 𝑦E𝑖 · − 𝑥E𝑖 · 𝜷̂)

where 𝑦E𝑖 · = 𝑛𝑖
−1∑𝑗 = 1

𝑛𝑖 𝑦𝑖𝑗, 𝑥E𝑖 · = 𝑛𝑖
−1∑𝑗 = 1

𝑛𝑖 𝑥𝑖𝑗, and 𝐺̂  and 𝑅̂  are consistent estimators of

G and R.

Then I is classified as i for 𝑖 = 1,…,𝑚 by minimizing the mean squared prediction error

(MSPE) of the best predictor for each group defined as

MSPE𝑖 = 𝐸{𝜃̃(𝑖) − 𝜃}
2
= 𝐸{𝜃̃(𝑖)

2
− 2𝜃̃(𝑖) 𝑦E𝑛 + 𝜃2} .

The new observations are thus classified into one of the groups i that has minimum

observed MSPE , which means

𝐼̂ = argmin
𝑖
{𝜃̃(𝑖)

2
− 2𝜃̃(𝑖) 𝑦E𝑛} .

(6)

Then the classified mixed effect predictor is 𝜃̂𝑛 = 𝜃̃( 𝐼̂ ). An unmatched version of CMMP

was also proposed where the new observations were not assumed to belong to one of

the original m groups.

Remark 2.

Jiang et al. (2018) developed a version of CMMP which can be used to predict the

response associated with future observations. It assumes the existence of an additional

intermediate set of data where both responses and covariates are observed and which

area assumed to come from the same group as the new observations for which

predictions are desired. More recently Sun et al. (2018) developed a matching procedure

which does not require an intermediate dataset. While our focus is on the projection of a

mixed effect associated with new observations, the projection of future observations can

be handled using the same regrouped mixed model idea (to follow) and then appealing to

either Jiang et al. (2018) or Sun et al. (2018) depending on whether intermediate data was

available or not.

3 Generalized Independent Variable Hull

Extrapolation is different from interpolation which is a reciprocal problem making

predictions base on new data points within the range of observed data point. Thus, the

key point to separate extrapolation and interpolation is to define the range of observed

data. Conn, Johnson, and Boveng (2015) proposed one possible definition of “the range of

observation data” which turns to early works on outlier detection in simple linear

regression analysis. Cook (1979) referred that the smallest convex set containing all

design points of a full-rank linear regression model as the independent variable hull (IVH).

A linear regression model can be written as

𝑦 = 𝑋𝜷 + 𝜺,
(7) where y is the n-vector observed response, X is the n × p design matrix, and 𝜺 is an n-

vector of independent and identically distributed Gaussian errors. Let H be the hat matrix,

𝐻 = 𝑋(𝑋𝑇𝑋)
−1
𝑋𝑇, and h denote the maximum diagonal element of H. Then, a new design

point, x  is within the IVH whenever

𝑥0(𝑋𝑇𝑋)
−1
𝑥0𝑇 ≤ ℎ .

(8)

The IVH definition is based on linear model (7) which require full rank of design matrix

and iid Gaussian error. Therefore, it can not be applied to generalized models such as

binary response or random effects. Cook (1979) notes that design points with maximum

prediction variance will be located on the boundary of IVH, then Conn, Johnson, and

Boveng (2015) defined a generalized independent variable hull (gIVH) as a set of all

predicted locations 𝑺0 for which

var(𝜆𝑖) ≤ max(var(𝝀𝑺)),
(9) where 𝑖 ∈ 𝑺0, λ  corresponds to the mean prediction at i, S denoted the set of

locations where data are observed, and 𝝀𝑺 denotes predictions at 𝑺. Conn, Johnson, and

Boveng (2015) proposed that the gIVH can be applied to determine whether predictions

are interpolations (predictive design points lying inside the gIVH) or extrapolations

(predictive design points lying outside the gIVH). This uses the generalization,

𝝁 = 𝑋aug𝜷aug,

(10) where 𝑋aug is an augmented design matrix to accommodate the random effects

design matrix Z and 𝜷aug is the corresponding regression parameter vector. We can then

write the prediction variance as,

var(𝝀̂) = var( 𝝁̂ ) = 𝑋augvar(𝜷̂aug)𝑋aug
′ .

(11)

One possibility is to use a flexible generalized additive model (GAM) (Hastie and Tibshirani

1990) and then estimate the appropriate form of var(𝜷̂aug). If y is not on the linear

predictor scale (e.g., generalized linear models outside of the normal model), then the

delta method can be used to estimate var(𝝀̂) (Conn, Johnson, and Boveng 2015). Outside

of these situations, simulation based methods like bootstrapping can be used to estimate

the variance.

Let’s illustrate gIVH with one example. Suppose we have training data that follows a linear

relationship, where 𝜷0 = (0.5, 0.4, 0.3, 0.2, 0.1)′, and design matrix X were generated from a

normal distribution with 𝝁0 = (30, 150, 105, 0, 0)′,𝛴0 = diag{40, 40, 40, 1, 1}, and the random

errors were generated from the standard normal distribution. We generated 200 data

points as the training data. For the test data, the first set of test data are simulated in the

same way as the training except with 𝝁test1 = (40, 150, 105, 0, 0)′, and the second set of test

data has 𝝁test2 = (70, 150, 105, 0, 0)′. We generated 30 data points for test set 1 and test set

2.

Using Conn, Johnson, and Boveng (2015), gIVH can be calculated conditioned on a fitted

GAM model. So we first fit a GAM model, and use the delta method (Dorfman 1938) to

calculate the variance-covariance matrix on the response scale (call this 𝑉obs). Then we

solved for max(var(𝝀̂𝑺)) as the maximum diagonal element of 𝑉obs. Then we make

predictions on the test dataset, and calculate the variance-covariance on the response

scale for all prediction locations. Then, for all 𝑖 ∈ 𝑺0, we have var(𝜆̂𝑖) and .

From , test set 1 is within gIVH, since the maximum in the range is still less than 

max(var(𝝀̂𝑺)). On the other hand, the majority of the test set 2 are outside the hull.

 shows the response 𝒚 versus x , where x  is the first column of the design matrix.

The test set 1 is more “closer” to training data than test set 2, therefore, test set 1 is within

the hull while the test set 2 is not.

Fig. 2 gIVH y versus x .

4 Prediction Using Random-Effects Extrapolation (PURE)

Suppose we have a set of training data and test data as in (1) and (2). Let π  denote the

percentage of the population that comes from the population k, and ∑𝑘 = 1
𝐾 𝜋𝑘 = 1. If K = 2,

we have π  percent of the population comes from the minority and the rest 1 − 𝜋1

population comes from the majority. We define the following relevant features:

1. Extreme data: This is the test dataset which may or may not be outside of range of

the training data. Both cases can be handled here.

2. Majority data: Notationally, we can concatenate all observations in the full training

data as ℒ = {(𝑥𝑙, 𝑦𝑙); 𝑙 = 1,…, (𝑛1 + 𝑛2 +⋯ + 𝑛𝑚)}. Then define the majority dataset as

those further away from the test data. Let ‡  denotes the majority, we have a

distance measure 𝑑 ‡ = |median(var(𝜆 ‡ ))-max(var(𝝀𝑺))| where var(𝜆 ‡ ) >  max(var(𝝀𝑺))

and 𝜆 ‡  denotes the λ that calculated from the majority data. Similarly, 𝑑 †  denotes

the distance measure for the minority data and 𝑑 ‡ > 𝑑 † . Therefore:

ℒ ‡ = {(𝑥𝑙, 𝑦𝑙) |𝑑 ‡ > 𝑑 † } .

The original groupings are maintained so the majority data can be re-expressed

according to the groupings.

1. Minority data: This portion of the data that is the complement of the majority data.

This is found by a minority data decision rule to be described.

ℒ † = {(𝑥𝑙, 𝑦𝑙) |𝑑 † ≤ 𝑑 ‡ } .

Again, the original groupings are maintained so the minority data can be re-expressed

according to these groupings.

1. Regrouped minority data ℒ𝑅
† : For this, we take the minority data and regroup it

according to a hierarchical clustering algorithm with respect to the responses 𝒚

resulting in 𝑚𝑟 = 𝑚 groupings with potentially revised memberships.

The full PURE algorithm can then be detailed as follows:

PURE prediction algorithm

1. Fit a Generalized Additive Model (GAM) to the training data using the

augmented design matrix where 𝑋aug = [𝑋𝑍]. Then use the delta method to

construct the gIVH based on this training set. The GAM is not implicitly

necessary and can be replaced by a linear model fit however, the additional

flexibility provided by the GAM can capture non-linearities which may

otherwise be missed.

2. Use the delta method to estimate variance for predictions for the test data

observations; if a prediction is inside the gIVH, use the regular CMMP

approach; if a prediction is outside the gIVH, then go to Step 3.

3. Cluster the training data X , using model-based clustering (Fraley and Raftery

2002), and select the cluster that is closest to the test data using the minority

data decision rule described in the next section. Designate this as the training

minority data.

4. Regroup the training minority data based on the responses y using bottom-up

hierarchical clustering with the number of groups 𝑚𝑟 = 𝑚 fixed as the original

training data.
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training data.

5. Fit a regrouped linear mixed-model based on the regrouped minority data and

then apply CMMP to obtain the PURE mixed-effects projection for the new test

observations denoted 𝜃̂𝑛, 𝐼̂ 𝑅

For step 4, we use a bottom-up hierarchical clustering with average linkage to cluster the

training data with respect to the response y. The number of groups is set to be the same

as in the original training data. Regrouping thus reorganizes the patterns within groups.

Its role and effect will be explored later under an asymptotic analysis.

4.1 Minority Data Decision Rule

As previously explained, Conn, Johnson, and Boveng (2015) defined a generalized

independent variable hull (gIVH) as a set of all predicted locations 𝑺0 for which (9) is true.

In PURE, the way to select the minority data is through gIVH. Since the test data is

considered extreme data that is outside of the range of the training data, we are not

expecting that the test data will fall inside any one of the K gIVHs constructed from K

groups of the training data. In applications, if this happens, the test data is not as

“extreme” as we thought, we certainly can use the algorithm to make the prediction.

However, the larger gains for our new method happen when the test data is not inside

any K gIVHs. In this case, we can always find the sub-group of the training data that is the

closest to the test data and designate this as our minority training group.

For K groups of the training data, on the boundary of gIVH, we have the maximum

prediction variance of the training sets, which denotes as max(var(𝝀𝑺))𝑘, 1 ≤ 𝑘 ≤ 𝐾. For the

test data, we have var(𝜆𝑖)𝑘 for 1 ≤ 𝑖 ≤ 𝑛new. Note λ  corresponds to the mean prediction at i

for the test data, and this prediction is different based on different groups of the training

data. For each k, we have:

𝑑𝑘 = |median(var(𝜆𝑖))𝑘-max(var(𝝀𝑺))𝑘 | ,

(12) where var(𝜆𝑖) > max(var(𝝀𝑺)) for each k, and 1 ≤ 𝑘 ≤ 𝐾. We use median(var(𝜆𝑖)) to

quantify the overall distance of the test data as a whole to the training data. Among K

choices of d , the minority data index 𝑘̂ is

𝑘̂ = arg min
𝑘

𝑑𝑘 .

(13)

Therefore, the test data is assumed to be the closest to the 𝑘̂ th training set. The initial K

groups in the training data are first identified and fed into the minority data decision rule.

Cluster identification is done using model-based clustering in order to stay consistent

with the framework 3. In particular, the method of Fraley and Raftery (2002) can be used

with the total number of clusters K being tuned by using a Bayesian information criterion

(BIC).

In PURE, gIVH is calculated conditioned on a fitted GAM model. In particular, the variance-

covariance matrix on the response scale is denoted as 𝑉obs. Let 𝑣max
(𝑘)  equal the maximum

diagonal element of 𝑉obs for the kth training set. Then we can calculate the variance-

covariance on the response scale for all test data locations (call this 𝑉pred), and let 𝑉pred
diag

denote all the diagonal elements of 𝑉pred. We can calculate the distance d as

𝑑𝑘 =
|
||median(𝑉pred

diag ) − 𝑣max
(𝑘) |

|| ,

(14) where all elements in 𝑉pred
diag  are larger than 𝑣max for each k. Here (14) is one

frequentist approach of (12), and 𝑘̂ is the same as in (13). There is also a Bayesian

approach for constructing gIVH, the details of which are described in Conn, Johnson, and

Boveng (2015). Finally, the set of training data that has 𝑑𝑘̂ is the closest to the test data

since its 𝑣max has the minimum distance from the median of 𝑉pred
diag . Note (12) and (14) are

useful when the test data are outside the hull and we want to see how “far” away they’re

outside the hull. If all the test data are within the hull, then all 𝑉pred
diag  are less than 𝑣max, and

d  is not defined in this domain.

In this sense, 𝑑𝑘̂ is a quantitative measurement of the distance for the 𝑘̂ th population to

the test data. Therefore, if the d s are very close to each other, the distances of the test

data to each of the population are close. However, if 𝑑𝑘̂ is smaller than other d , then a

minority dataset can be identified. Therefore, it is important to examine whether 𝑑𝑘̂ is

truly smaller than the rest. To do so, we order the d s from the smallest to the largest

denoted as 𝑑(1),𝑑(2)…,𝑑(𝐾). Then we require that 𝑑(2) − 𝑑(1) should be larger than 5% × 𝑑(1).

This establishes a threshold for a minority data decision rule. If the threshold is not

satisfied, these two datasets are combined and we perform the analysis again. If K equals

to 2, this means we only have two datasets—the majority and the minority. The difference

max(𝑑1,𝑑2)-min(𝑑1,𝑑2) should then be larger than 5% ×min(𝑑1,𝑑2).

5 Simulation Studies

Several simulation studies were carried out to investigate the performance of our new

method in comparison with some other competitor approaches. The methods we used

for comparison were:

RP: The least square estimator(RP) method prediction when the grouping information

is not known where we only use the fixed effects covariates for prediction.

CMMP: The original classified mixed model prediction method.

Lmer*: The method Lmer* uses the random effects for the prediction by assuming

the grouping information for the test data observations is known. This method is

included comparison purposes, and cannot performed in the real applications if the

grouping information for the test data is unknown.

Regrouped-Lmer*: The same as the above Lmer* method but using the regrouped

membership for training.

Regrouped-CMMP*: The same as the above CMMP method but using the regrouped

membership for training.

PURE: The proposed new method Prediction Using Random-effects Extrapolation

using minority data only.

ULMM: unified linear mixed model (ULMM).

Random forests and gradient boosting.

Test data response mean: As indicated in Jiang et al. (2018), 𝑦E𝑛 is another natural

estimator that could be used but has limitations. When 𝑛new is large, we expect the

performance to be similar to CMMP, otherwise, CMMP will be preferable because it

borrows strength from other sources through the model.

The ULMM is what we term the unified linear mixed model (ULMM). This fits the model in

(1) to the training data. Now suppose a unified LMM is 𝑦𝑖𝑗 = 𝑤𝑖𝑗
′ 𝜷 + 𝛼𝑖 + 𝜀𝑖𝑗 where i

represents the group for the random effects, 𝜷 = (𝜷1
′ , 𝜷2

′ )′,𝑤𝑖𝑗
′ = (𝑥𝑖𝑗

′ , 0) if x  belongs to

majority, and 𝑤𝑖𝑗 = (0,𝑥𝑖𝑗
′ ) if x  belongs to minority. The same random effect group may

include both majority and minority individuals. Specifically, if x  belongs to majority, we

have 𝑦𝑖𝑗 = 𝑥𝑖𝑗
′ 𝜷1 + 𝛼𝑖 + 𝜀𝑖𝑗; and if x  belongs to minority, we have 𝑦𝑖𝑗 = 𝑥𝑖𝑗

′ 𝜷2 + 𝛼𝑖 + 𝜀𝑖𝑗.

The predictors have been extended from 6 to 11 (the predictors do not double since one

predictor is the intercept, so we have 6 × 2 − 1 = 11). If we want to make predictions based

on this model, then the test data should be expanded as well. For the test data, 𝜷𝑛 does

not equal either 𝜷1 or 𝜷2. Therefore, the test data are expanded for both sides—that is, 

(𝑥𝑖𝑗′ , 0) and (0,𝑥𝑖𝑗′ ), and we obtain two solutions. The model is fit to the full data only since

for the minority data, we cannot fit the extended model (some columns are all zero, so

they’re linearly dependent). Then CMMP is applied.

We will use the same setup as the example in the Introduction but with different

scenarios (indexed by Case numbers). Specifically, we change the 𝜷 vectors as in .

Case 1 corresponds to the original example in the Introduction. Case 2 sets 𝜷2 closer to 𝜷1
compared with Case 1. Therefore, Case 1 is expected to see more of a minority effect

since the difference of majority and minority groups is larger. The methods RP, CMMP,

and Lmer using the full data are expected to perform better in Case 2 since the difference

between the majority and minority groups is smaller than in Case 1. Thus, these models

are less “misspecified” compared with Case 1. Case 3 examines the situation when we

have the same 𝜷1 and 𝜷2, but a more extreme 𝜷𝑛.We expect the minority effect to be

eliminated. We can, however, expect to observe the regrouping effects more clearly in

Case 3. Again, RP, CMMP, and Lmer with the full data are expected to perform better than

in Case 1 since the difference of the majority and minority groups gone. Case 4 shows an

example where the PURE method (and other methods) would be expected to break down

since the 𝜷𝑛 is quite different. For Case 4, 𝑥𝑛′ 𝜷𝑛 is much larger compared with Case 1

producing much larger response values. This can be observed by evaluating a t-test of the

extreme responses and the training data responses. The mean t statistic over 100 sets of

training and test is –36.68. For Case 1, 2, and 3, the mean t statistics are −17.31, − 21.91,

and −17.31,  respectively. Case 5 reflects the situation where the test data does not have

extreme parameters but instead shares the same regression parameter with the minority

data. If some part of the training data relationship is representative of the test data

relationship as in Case 5, we would expect that RP, CMMP, and Lmer will work reasonably

well and PURE may be not needed. Case 6 is the case where all parameters are equal. It is

expected the minority data models will lose efficiency because of the reduced sample size

effects, and there is no reason to use PURE in this case.

For the ULMM in the results tables, the column “Average” gives the prediction solution,

since the test data is independent of both the majority and the minority and in practice all

the true parameters are unknown. Therefore, the solution is obtained by expanding the

test data as the majority, then as the minority, and finally, take the average of the two. For

all cases, 100 realizations of the simulation were done and the fixed effects design matrix

remained constant throughout. We report the average empirical test set mean squared

prediction error (MSPE), it’s the standard error and the percent decrease in MPSE relative

to RP.  present the results for Cases 1–3 and results tables for Cases 4–6 are

presented in the supplementary file. The results can be summarized as follows:

1. For Cases 1, 2, and 3, the full data models and minority data (as estimated by gIVH)

models are really mixtures of different linear regressions. Hence, random forests and

gradient boosting perform better than RP.

2. For Case 4, the extreme data is much further away from the training data and all

methods degrade significantly.

3. For Cases 1 and 2, the minority effect is observed with lower MSPEs based on RP than

using the full data.

4. Regrouping effects are observed for Cases 1, 2, and 3 with breakdown happening in

Case 4.

5. For Cases 1, 2, and 3, regrouped CMMP and PURE behave very similarly indicating

that regrouping has a larger relative effect on reducing MSPE than does also using

the minority data regrouping. However, PURE still wins indicating that additional

gains are still possible induced by the minority data effect.

6. If the training data follows the same relationship between the majority and minority

groups, that is 𝜷1 = 𝜷2 as in Case 3, the benefit of using PURE relative to Regrouped

CMMP using full data decreases. The effect of regrouping also decreases when 

𝜷1 = 𝜷2 where the full data may contain more information.

7. For ULMM method, 𝜷1 and 𝜷2 are the same for Case 3 and Case 6, using ULMM only

doubles the number of parameters, so this unified model does not have advantages.

For these two cases, the “Average” result is very close to the solutions from the

previous two columns(left extension and right extension). The three columns of

ULMM give similar solutions.

8. PURE performs better than ULMM for Cases 1, 2, 3, and 5. The ULMM has nearly

twice the parameters, so there is a tradeoff of a larger sample size for a more

complex model. When it comes to prediction, it matters which prediction error

contributes more, the majority or minority. The true model ULMM accounts for these

errors. For the PURE, however, we move closer to the test data, so the error is

reduced.

9. Using the test data response mean as an estimator generally does not perform as

well as regrouped CMMP or PURE. The exception to this is in Case 4 (supplementary

file) where the test data response mean performs well because the test data is in fact

much further away from the training data and hence the training data is of limited

value.

6 Asymptotic Analysis

6.1 Misspecified LMM

It is assumed that 𝒚(𝑘) follow a misspecified mixed model from (1). Our goal is to show the

bias with PURE is smaller than the bias induced by fitting the standard linear mixed model

if (i) the prediction for new data are outside the range of the training data and (ii) the

training data has a minority group that is closer to the new data. In order to compare the

bias, we first study the asymptotic behavior of 𝜷 under the misspecified LMM. The reason

we call it misspecified LMM is because our setting assumes the training data has at least

two populations: majority population and minority population. To simplify the asymptotic

analysis, we focus on K = 2 where the training data only composed of two populations. For

K = 2, the majority population is the population that is assumed to have a larger sample

size, so we have:

𝒚𝑖
(1) = 𝑋𝑖

(1)𝜷1 + 𝑍𝑖
(1)𝒃𝑖 + 𝜺𝑖,

(15) where 𝑖 = 1,…,𝑚. From this population, assume a total sample size is 𝑛(1).

The minority population is the population that is closer to the test data and this

population is detected by gIVH. For the minority model (assume k = 2 is the minority), and

we have:

𝒚𝑖
(2) = 𝑋𝑖

(2)𝜷2 + 𝑍𝑖
(2)𝒃𝑖 + 𝜺𝑖,

(16) where 𝑖 = 1,…,𝑚. From this population, assume a total sample size is 𝑛(2). Note that

m is the same for the majority population and the minority population. That means in

each of the m groups we have a mixture of majority and the minority data.

In the matrix format, let 

𝒚 = (𝒚1
𝑇,…,𝒚𝑚

𝑇 )𝑇 ∈ ℝ𝑛,𝑍 = diag{𝑍1,…,𝑍𝑚} ∈ ℝ𝑛 × (𝑚𝑞),𝒢 = diag{𝐺,…,𝐺} ∈ ℝ𝑚𝑞 × (𝑚𝑞),𝑅 = diag{𝑅1,…,𝑅𝑚} ∈ ℝ𝑛 × 𝑛

, and w be a n × n matrix with off-diagonal elements equal to zero, and the diagonal

elements equal 1 if the observation belongs to the majority, equals 0 if the observation

belongs to the minority. Then we have

𝒚 ∼ 𝑁(𝑤𝑋𝜷1 + (𝐼 − 𝑤)𝑋𝜷2,𝑉),

(17) where 𝑉 = 𝑍′𝒢𝑍 + 𝑅 and w as defined below.

Let X  be the matrix consisting of 𝑋𝑖
(1) and 𝑋𝑖

(2), and let X denote the combined fixed design

matrix. Note in each group of X, we have some rows belong to the majority and some

rows belong to the minority datasets. Then Z has the similar construction. Now we use a

w matrix to “pick up” the observations comes from the majority and the minority. This w

matrix is a n × n matrix. so wX pick up all the observations in the majority. Note that w has

only diagonal elements, and if the data comes from the majority, the diagonal element

equals 1, otherwise it equals 0. As a result wX is a n × n matrix, but the rows belonging to

the minority dataset are 0 vectors. Similarly, (𝐼 − 𝑤)𝑋 has nonzero rows for the minority

dataset and the rows belonging to the majority dataset are 0 vectors.

The above model is the true model from which the data are generated but when we fit

the data we assume there is only one set of 𝜷, so this is where we call the model

“misspecified.” For the “misspecified” part, we assume 𝜷1 = 𝜷2. For the misspecified model,

we have 𝒚 ∼ 𝑁(𝑋𝜷,𝑉) since 𝑤𝑋𝜷 + (𝐼 − 𝑤)𝑋𝜷 = 𝑋𝜷 when 𝜷1 = 𝜷2.

Let 𝜸 represent the vector of all the variance components in V, and let all the parameters

be 𝝍 = (𝜷′, 𝜸′)′. Then the log-likelihood function under misspecified LMM is as follows,

𝓁(𝒚,𝝍) = 𝑐 − 1
2log ( |||𝑉

|
|| ) −

1
2(𝒚 − 𝑋𝜷)′𝑉−1(𝒚 − 𝑋𝜷),

(18) where c is some constant. The derivatives of 𝓁 regarding 𝜷 are:

∂
∂𝜷
𝓁(𝒚,𝝍) = 𝑋′𝑉−1𝒚 − 𝑋′𝑉−1𝑋𝜷,

(19)

∂
∂𝜸𝑗

𝓁(𝒚,𝝍) = 1
2{(𝒚 − 𝑋𝜷)′𝑉−1 ∂𝑉∂𝜸𝑗

𝑉−1(𝒚 − 𝑋𝜷)

− tr(𝑉−1 ∂𝑉∂𝜸𝑗
)}, 𝑗 = 1,…, 𝑞 * ,

(20) where 𝜸𝑗 is the jth component of 𝜸, and it has dimension 𝑞 * . Let (𝜷̂, 𝜸̂) denotes the

MLE. In Jiang (2007), the MLE of 𝜷 is

𝜷̂ = (𝑋′ 𝑉̂
−1
𝑋)

−1
𝑋′ 𝑉̂

−1
𝒚,

(21) where 𝑉̂ = 𝑉(𝜸̂). Once we have MLE of 𝜸, the MLE of 𝜷 is given by (21). As for the

MLE of 𝜸, see Jiang (2007) for the detail. We now assume the following regularity

conditions.

A1.There exists a unique 𝝍 * = (𝜷 *
′ , 𝜸 *

′ )′ ∈ 𝚿0, the interior of 𝚿, where 𝑀(𝝍 * ) = sup
𝝍 ∈ 𝚿

𝑀(𝝍)

with 𝑀(𝝍) = 𝐸(𝓁(𝒚,𝝍)).

A2.One can differentiate 𝐸{𝓁(𝒚,𝝍)} with respect to 𝝍 under the expectation, that is, 
∂
∂𝝍𝐸{𝓁(𝒚,𝝍)} = 𝐸{ ∂

∂𝝍𝓁(𝒚,𝝍)}.

A3.As 𝑚 →∞, we have,

(i) limsup𝜆max[
1
𝑚∑𝑖 = 1

𝑚 ∂2

∂ψψ′𝐸{𝓁𝑖(𝒚𝑖,𝝍 * )}] < 0;

(ii) limsup 1
𝑚∑𝑖 = 1

𝑚 𝐸{ ∂
∂𝜓𝑟

𝓁𝑖(𝒚𝑖,𝝍 * )}
2

< ∞;

(iii) 1
𝑚2∑𝑖 = 1

𝑚 𝐸{ ∂2

∂𝜓𝑟 ∂𝜓𝑠
𝓁𝑖(𝒚𝑖,𝝍 * )}

2

→ 0; and,

(iv) 𝑚−3/2∑𝑖 = 1
𝑚 𝐸{ sup

𝝍 ∈ 𝑆𝜌(𝝍 * )

|

|
|
|

∂3

∂𝜓𝑟 ∂𝜓𝑠 ∂𝜓𝑡
𝓁𝑖(𝒚𝑖,𝝍 * )

|

|
|
|} → 0 where for some 𝜌 > 0 and any 

1 ≤ 𝑟, 𝑠, 𝑡 ≤ 𝑞′ where 𝑞′ is the dimension of the 𝝍, and 𝑆𝜌(𝝍 * ) = {𝝍 ∈ 𝚿: |𝝍 − 𝝍 * | ≤ 𝜌}.

Condition A1 and A2 are similar to those in Jiang, Nguyen, and Rao (2011). Condition A1

states 𝝍 *  is identifiable since it is assumed to be the “true” parameter in the sense of

maximizing the 𝑀( · ) function. Condition A2 is a regular condition. Condition A3, (i) is an

“information assumption” similar as in Jiang, Nguyen, and Rao (2011). The remainder of

A3 are moment conditions. These are mild conditions that are usually satisfied. See Jiang,

Nguyen, and Rao (2011) for an example for the illustration of some conditions.

With 𝑀(𝝍 * ) = 𝐸(𝓁(𝒚,𝝍 * )), and under (19, 20) and A2 we let

𝐸{ ∂
∂𝜷
𝓁(𝒚,𝝍 * )} =

∂
∂𝜷
𝐸{𝓁(𝒚,𝝍 * )} =

∂
∂𝜷
𝑀(𝝍 * ) = 0,

(22) and

𝐸{ ∂
∂𝜸𝑗

𝓁(𝒚,𝝍 * )} = ∂
∂𝜸𝑗

𝐸{𝓁(𝒚,𝝍 * )} = ∂
∂𝜸 *

𝑀(𝝍 * ) = 0,

(23) which yield

𝐸{ ∂∂𝜷𝓁(𝒚,𝝍 * )} = 𝑋′𝑉 *
−1(𝑤𝑋𝜷1 + (𝐼 − 𝑤)𝑋𝜷2)

− 𝑋′𝑉 *
−1𝑋𝜷 * = 0,

(24) and

𝐸{ ∂
∂𝜸𝑗

𝓁(𝒚,𝝍 * )}

= 1
2(𝑤𝑋𝜷1 + (𝐼 − 𝑤)𝑋𝜷2 − 𝑋𝜷 * )′𝑉 *

−1 ∂𝑉
∂𝜸𝑗

𝑉 *
−1

(𝑤𝑋𝜷1 + (𝐼 − 𝑤)𝑋𝜷2 − 𝑋𝜷 * )

+ 1
2tr{𝑉 *

−1 ∂𝑉
∂𝜸𝑗

𝑉 *
−1(𝑉 − 𝑉 * )} = 0.

(25)

We now characterize the convergence of 𝜷̂ in the following theorem.

Theorem 1.

Under the conditions A1–A3, there exists with probability tending to one as 𝑚 →∞a local

maximizer 𝝍̂  of 𝓁(𝒚,𝝍) in a neighborhood of 𝝍 * , such that 𝑚√ ( 𝝍̂ − 𝝍 * ) = 𝑂𝑃(1).

Therefore, focusing on 𝜷, we have 𝜷̂ − 𝜷 * →
𝑝

0 as 𝑚 →∞, and 

𝜷 * = {𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1(𝑤𝑋𝜷1 + (𝐼 − 𝑤)𝑋𝜷2), where 𝑉 *  is given by the solution of (24) and

(25).

The proof of Theorem 1 is given in the supplementary materials.

In Theorem 1, 𝜷 *  is some value between 𝜷1 and 𝜷2 and 𝑉 *  is given in the appendix. If the

full data only has the majority population with 𝜷1, then the above equation reduces to 

𝜷 * = (𝑋1
′ 𝑉 *

−1𝑋1)
−1
(𝑋1

′ 𝑉 *
−1𝑋1)𝜷1 = 𝜷1. If the full data only has the minority population with 𝜷2,

then 𝜷 * = (𝑋2
′ 𝑉 *

−1𝑋2)
−1
(𝑋2

′ 𝑉 *
−1𝑋2)𝜷2 = 𝜷2. If the full data has both the majority and the

minority, then 𝜷 *  is a linear combination of 𝜷1 and 𝜷2.

An example is given below to further illustrate the limit of 𝜷 *  where a special case with p 

= 1 is considered. When p = 1, we have

𝛽 * = {𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1(𝑤𝑋𝛽1 + (𝐼 − 𝑤)𝑋𝛽2)

= ({𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1𝑤𝑋)𝛽1

+ ({𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1(𝐼 − 𝑤)𝑋)𝛽2 .

(26)

Note ({𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1𝑤𝑋) and ({𝑋′𝑉 *
−1𝑋}

−1
𝑋′𝑉 *

−1 (𝐼 − 𝑤)𝑋) are now scalars. Let 

𝑣1 = 𝑋′𝑉 *
−1𝑤𝑋 and 𝑣2 = 𝑋′𝑉 *

−1(𝐼 − 𝑤)𝑋, it is clear 𝑣1 + 𝑣2 = 𝑋′𝑉 *
−1𝑋, so 𝛽 *  is the weighted sum

of β  and β , and the weights are 𝑣1
𝑣1 + 𝑣2

 and 𝑣2
𝑣1 + 𝑣2

. Note v  involves the data from the

majority because of w, and v  involves the data from the minority because of I – w.

Therefore, in this case, 𝛽̂ → 𝛽 *  where 𝛽 *  is the weighted sum of β  and β . In real-world

applications, the standard approach is to fit one linear mixed model for the training data

resulting in the MLE 𝛽̂. The approximate squared bias is [𝐸(𝛽 * − 𝛽𝑛)]
2. Alternatively, by

PURE, the approximate squared bias is [𝐸(𝛽2 − 𝛽𝑛)]
2 after the minority data is correctly

selected by gIVH. By design, β  is closer to β , hence, [𝐸(𝛽2 − 𝛽𝑛)]
2 ≤ [𝐸(𝛽 * − 𝛽𝑛)]

2, since

the weighted contribution of β  in 𝛽 *  pulls it away from β .

6.2 The Regrouping Effect

The next theorem details what we term the regrouping effect and how this leads to lower

MPSE for PURE as compared to the CMMP prediction from the misspecified LMM.

Conditions B1-B6 are defined as follows. Conditions B1-B4 are from Jiang et al. (2018)

supplementary materials (from now on called JRFN suppl (2018)) for consistency of the

usual CMMP estimator.

B1. 𝒃𝑖, 1 ≤ 𝑖 ≤ 𝑚,𝒃new are independent with the 𝜀𝑖𝑗’s where 𝒃new refers to the test data

random effects; 𝒃new is independent with the training data when it is a new random

effect, and 𝜀�𝑛 is independent with all of the 𝒃𝑖’s and 𝜀𝑖𝑗’s.

B2. |𝑥𝑖𝑗 | , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖, and x  are bounded.

B3. 𝜷̂ → 𝜷 *  in L , where 𝜷 *  is the same 𝜷 *  from Theorem 1.

B4. 𝑚 →∞, ( log 𝑚)2𝑣/𝑛min → 0, where v is a positive constant, 𝑛min = min1 ≤ 𝑖 ≤ 𝑚𝑛𝑖, and 

𝑛new →∞, where 𝑛new is the size of the test data.

B5. For any 1 ≤ 𝑖 ≤ 𝑚, the function ℎ𝑖(𝜌) = (𝑥𝑛 − 𝑥E𝑖)′𝜷 * , where 𝜷 * = (1 − 𝜌)𝜷1 + 𝜌𝜷2 and 

𝜌 ∈ [0, 1], is nondecreasing in ρ. Also, for 1 ≤ 𝑖 ≤ 𝑚, we have, 

𝑥𝑛′ 𝜷2 < 𝑥𝑛′ 𝜷𝑛,  and  𝑥E𝑖 ·
′ 𝜷1 < 𝑥E𝑖 ·

′ 𝜷2 .

B6. After regrouping, for each minority group i, |𝐸( 𝑦E𝑖 · ) − 𝑥E𝑖 ·
′ 𝜷2 | → 0 where 𝜷2 is the

minority parameter vector.

Conditions B1–B4 are regularity conditions similar to those in Jiang, Lahiri, and Wan

(2002), Das, Jiang, and Rao (2004), and Jiang et al. (2018). Condition B5 indicates the

setting of our extrapolation problem. The new observation is more extreme than the

observations in group i. This means that x  is “larger” than 𝑥E𝑖 · ; therefore, the difference 

𝑥𝑛 − 𝑥E𝑖 ·  is “positive.” Then, as ρ increases from 0 to 1, 𝜷 *  “increases” from 𝜷1 to 𝜷2.

Therefore, the function ℎ𝑖(𝜌) increases as 𝜷 *  increases. For the second part of Condition

B5, it indicates that the new observations are closer to the minority data than the majority

data. Condition B6 says that the regrouping asymptotically preserves the correct mean

function, which seems to be a reasonable assumption. Note that this assumption is

actually weaker than assuming that the regrouping consistently identifies the correct

minority groups (i.e., one can have incorrect grouping but still get the mean right).

We can then state the following theorem regarding the regrouping effect:

Theorem 2.

Under the conditions B1–B6, when 𝑛min →∞ we have

limsup𝐸(𝜃̂𝑛, 𝐼̂ 𝑅 − 𝜃𝑛)
2
≤ limsup𝐸(𝜃̂𝑛, 𝐼̂ − 𝜃𝑛)

2
,

where 𝜃̂𝑛, 𝐼̂ 𝑅 is the CMMP estimator for the regrouped data, and 𝜃̂𝑛, 𝐼̂  is the CMMP

estimator for the original data.

The proof of Theorem 2 is detailed in the supplementary materials.

7 Real-Data Example: Predicting Age of Smoking Onset from the

National Longitudinal Mortality Study

The National Longitudinal Mortality Study (NLMS)

(https://www.census.gov/did/www/nlms/about/projectDescription.html))  consists of a

database developed for the purpose of studying the effects of demographic and socio-

economic characteristics on differentials in U.S. mortality rates. The NLMS is a unique

research database in that it is based on a random sample of the non-institutionalized

population of the United States. It consists of U.S. Census Bureau data from Current

Population Surveys, Annual Social and Economic Supplements and a subset of the 1980

Census combined with death certificate information to identify mortality status and cause

of death. The study currently consists of approximately 3.8 million records with over

550,000 identified mortality cases.

We used the tobacco-use data from the NLMS, which has a maximum follow-up time of 5

years and consists of data centered around the year 2000. This gave us 192, 764

observations where the variables age at onset of smoking (agesmk), race, age, sex, marital

status, weight, number in the household, and follow-up time have no missing values. We

were interested in trying to predict agesmk from the other predictors. We randomly

sampled 2% observations from the data resulting in a training dataset with the following

distribution by race:

We will start out by entertaining the idea that the non-White subjects could be considered

an extreme test set for which predictions built on training data from White and Black

individuals would be considered an extrapolation ( ).

To generate groups of test observations from which we will predict the associated mixed

effect as in Jiang et al. (2018), we need to first estimate the grouping structure in the test

data. Thus, we clustered the test responses using hierarchical clustering and estimated

the number of groups using the cross-validation method of Wang (2010), we estimate the

number of test data groups to be 𝑚̂ = 2. We then constructed groups of five test

observations each with a fixed x  value resulting in a total of 290 observations for the test

data. Specifically, we were guided by the approach used by Jiang et al. (2018) with a twist.

After we fit a linear mixed model to the test data, we then generated additional mixed

effects as in Jiang et al. (2018). However, the random effects were not matched to the

training data random effects but instead, the estimated test data random effects were

attached to the newly generated test data fixed effects. Hence, for the real data analysis,

we are in the “unmatched” setting and our methodology is trying to find the closest value

to the test data random effects from amongst the training data groups. For the full

training data, we estimated 𝑚̂ = 20 by clustering the responses using hierarchical

clustering and estimated the number of clusters again using the cross-validation method

of Wang (2010).

Using the gIVH approach, majority and minority datasets were separated with 2218 and

1517 observations, respectively.  shows the empirical mean squared prediction

errors for predicting the test set mixed effects. It’s clear that the minority effect is present

but less impactful than the regrouping. PURE predictions do a bit better than regrouped

CMMP predictions using the full data or the majority data with empirical MSPE of 0.02638

versus 0.05956. This is because the minority data is somewhat closer to the non-White

test observations.
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Table 8 NLMS cohort broken down by race.
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, shows boxplots of the variance for prediction locations based on the full training

data, majority and minority datasets (as defined by our gIVH algorithm) and the gIVH

boundaries as indicated by the red points for the non-White test observations. It’s quite

clear that indeed the non-White subjects are well outside the range of the other datasets

and that the minority dataset is indeed closer to the test data than the majority dataset is.

Fig. 3 Boxplots of GIVH.

7.1 Data-based Identification of an Extreme Test Set

One might wonder if a data-based strategy for identifying an extreme dataset could be

used instead of using the non-White individuals apriori (even though they were well

outside of the gIVH). So, we combined White, Black, and non-White individuals as the full

data and did a principal components analysis of the variance-covariance matrix of the

predictors.  shows the first principal component (PC1) plotted against the second

principal component (PC2). It seems a large number of observations are clustered

together with PC1 values less than 0. Thus, it might be reasonable to consider those with 

𝑃𝐶1 > 0 as an extreme test dataset. The racial composition for new training and test

datasets defined in this way are shown in  and , respectively.

Fig. 4 Scatterplot of PC1 versus PC2 for all of the data.

We use the larger set as the training set and the smaller set as the test set. The full test

data has 202 observations, and 𝑚̂  is estimated to be 2. After once again generating five

test responses per x , we have 1010 total test observations. For the majority and minority,

we set 𝑚̂  to be 20. The hierarchical clustering algorithm and gIVH is used to decide on

majority or minority data and the data separated as two clusters with 1345 and 2246

observations for each respectively.  shows the variance-covariance for all

prediction locations (predictions for the test data), which indicates the separation of the

training data into majority and minority based on PCA is not as clear as it was before

when the non-whites were considered an extreme dataset.

Fig. 5 Boxplots of gIVH with data-based estimation of extreme dataset.

 shows a zoomed-in version of  and it’s quite clear that the test data is

now at times within the gIVH hull of the minority data.  shows another view of this

plotting the scaled variance on one y-axis and the response log(agesmk) on the other y-

axis against the predictor log(age). The dashed line at the bottom is the gIVH boundary

based on the minority data. The individual data points on the plot are the raw data values

for the minority data. The jagged line is the gIVH for individual test data points. It’s clear

that a few of them are below the gIVH boundary and thus within the gIVH hull of the

minority data.

Fig. 6 Boxplots of GIVH (Enlarged for detail).

Fig. 7 gIVH of minority(two y-scales).

Fig. 8 Scatterplot of random effects for CMMP versus PURE.

 shows the MSPE results from this analysis. Clearly, massive gains in prediction

accuracy are realized when using PURE with over 99% reduction in MSPE relative to RP.

However, similar trends are also seen for other regrouping approaches.

Remark.

We found that the random sampling of 2% of the observations from the full dataset to

create training data can sometimes result in majority and minority datasets being less

well-separated. In this case, standard CMMP typically performs the best.

7.2 Comparison of Classified Random Effects—Evidence of Extrapolation

We further explored the degree of empirical evidence for random effect extrapolation

using PURE based on the PCA analysis approach.  plots the absolute values of the

classified random effects of CMMP against PURE.  plots the same thing using

regrouped CMMP versus PURE. Once again, the random effect extrapolation is clearly

evident due to regrouping and PURE. In fact, the regrouped CMMP using the full training

data often produced classified random effects with larger magnitudes than PURE.

Fig. 9 Scatterplot of random effects for Regrouped CMMP versus PURE.

8 Discussion

In this article we developed a novel prediction method for generating more accurate

model projections which is inherently difficult due to a lack of observed training data. As a

result, accuracy of such predictions with traditional methods (and even some more

modern machine learning approaches) is very low. We have shown that for certain types

of model structure, our PURE method can make use of a novel statistical construct we

term an extrapolated random effect, which as in the original CMMP methodology, acts

like a sponge to capture what is uncaptured by the model. However in PURE, the role of

the classified random effects is even more important. The extrapolated random effects

amount to using an extrapolated model for the variance structure which acknowledges

the additional uncertainty inherent to extrapolation problems. Importantly, this can be

derived with a simple regrouping and relocating strategy as we showed.
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