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ABSTRACT
Extreme Multi-label Text Classi�cation (XMC) involves learning a
classi�er that can assign an input with a subset of most relevant
labels from millions of label choices. Recent works in this domain
have increasingly focused on a symmetric problem setting where
both input instances and label features are short-text in nature.
Short-text XMC with label features has found numerous applica-
tions in areas such as query-to-ad-phrase matching in search ads,
title-based product recommendation, prediction of related searches.
In this paper, we propose Gandalf, a novel approach which makes
use of a label co-occurrence graph to leverage label features as
additional data points to supplement the training distribution. By
exploiting the characteristics of the short-text XMC problem, it
leverages the label features to construct valid training instances,
and uses the label graph for generating the corresponding soft-label
targets, hence e�ectively capturing the label-label correlations. Sur-
prisingly, models trained on these new training instances, although
being less than half of the original dataset, can outperform models
trained on the original dataset, particularly on the PSP@k metric
for tail labels. With this insight, we aim to train existing XMC al-
gorithms on both, the original and new training instances, leading
to an average 5% relative improvements for 6 state-of-the-art algo-
rithms across 4 benchmark datasets consisting of up to 1.3M labels.
G������ can be applied in a plug-and-play manner to various
methods and thus forwards the state-of-the-art in the domain, with-
out incurring any additional computational overheads. Code has
been open-sourced at www.github.com/xmc-aalto/InceptionXML.
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1 INTRODUCTION
Extreme Multilabel Classi�cation (XMC) has found numerous ap-
plications in the domains of related searches [15], dynamic search
advertising [31] and recommendation tasks, which require pre-
dicting the most relevant results that frequently co-occur together
[5, 13], or are highly correlated to the given product or search query.
These tasks are often modeled through embedding-based retrieval-
cum-ranking pipelines over millions of possible web page titles,
products titles, or ad-phrase keywords forming the label space.

Going beyond conventional tagging tasks for long textual docu-
ments consisting of hundreds of words, such as articles in encyclo-
pedia [30], and bio-medicine [39], contemporary research focus has
also widened to settings in which the input is just a short phrase,
such as a search query or product title. Propelled by the surge in
online search, recommendation, and advertising, applications of
short-text XMC ranging from query-to-ad-phrase prediction [9] to
title-based product-to-product [27] recommendation have become
increasingly prominent.

A major challenge across XMC problems is the extreme imbal-
ance observed in their data distribution. Speci�cally, these datasets
adhere to Zipf’s law [1, 42], i.e., following a long-tailed distribution,
where most labels are tail labels with very few ( 5) positive data-
points in a training set spanning � 106 total data points (Table 1).
With so few positive examples, training a successful classi�er on
these labels purely from instance-to-label pairs seems an insur-
mountable challenge. Therefore, recent methods have begun to
incorporate additional data sources.

Label features and label co-occurrence. In many of the set-
tings listed above, labels are not just featureless integers, but do
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Datasets N L APpL ALpP AWpP

LF-AmazonTitles-131K 294,805 131,073 5.15 2.29 6.92
LF-WikiSeeAlsoTitles-320K 693,082 312,330 4.67 2.11 3.01

LF-WikiTitles-500K 1,813,391 501,070 17.15 4.74 3.10
LF-AmazonTitles-1.3M 2,248,619 1,305,265 38.24 22.20 8.74

Table 1: Details of short-text benchmarks with label features.
APpL is the avg. points per label, ALpP being avg. labels per
point and AWpP is the length i.e. avg. words per point.

have a semantic meaning in and of themselves. For example, when
matching products, each product ID could be associated with the
name of the product. This is particularly attractive in the short-text
setting, when both inputs and labels come from the same space of
short phrases. Consequently, while earlier work mostly focused on
the nuances of short-text inputs [9, 21], more recent methods have
successfully incorporated the short-text label descriptors into their
pipeline [7, 8, 27, 28].

Yet, this still seems to underutilize the wealth of information
present in label features. In particular, we demonstrate that it is
possible to train a classi�er using only label information, that is,
without ever presenting to it any of the training instances, and
outperform the same classi�er trained on the original training data
on tail labels. This surprising feat is enabled by the exploitation of
label co-occurrence information.

In particular, using the interchangability of label features and
instances, instead of aiming for contrastive learning [7], we want
to use the label features as additional, supervised training points.
However, this requires them to be associated with some apriori
unknown label vector. In order to generate training targets, we
make the assumption that the probability of a label 9 being relevant
for the textual feature of another label 8 , is equal to the conditional
probability of observing 9 , given that 8 is also a relevant label.

Contributions. This insight yields a simple method, Gandalf
(Graph AugmeNted DAta with Label Features), which exploits the
unique setting of short-text XMC in a novel manner to generate ad-
ditional training data in order to alleviate the data scarcity problem.
As a data-centric approach, it is independent of the speci�c model
architecture, enabling its application to a wide range of both cur-
rent and potential future state-of-the-art models. The unchanged
model architecture also implies that not only the model inference
latency remains unchanged, but also peak memory consumption re-
quired during training is una�ected, contrary to some model-based
approaches that incorporate label metadata [6, 7, 27].

The additional training instances lead to overall longer training
time. Nonetheless, when keeping the compute budget �xed, we can
observe Gandalf signi�cantly outperforming the original dataset.
When trained until convergence, we show an average of 5% im-
provement on 5 state-of-the-art extreme classi�ers across 4 public
short-text benchmarks, with some settings seeing gains up to 30%.
In this way, XMC methods which inherently do not leverage label
features can beat or perform on par with strong baselines which
either employ elaborate training pipelines [7], large transformer en-
coders [8, 43, 45] or make heavy architectural modi�cations [27, 28]
to leverage label features.

Finally, we show that Gandalf could be considered an extension
of the GLaS [11] regularizer to the label feature setting. We inter-
pret it as tuning the bias-variance trade-o�, where the additional
error introduced by inaccurate additional training data is more
then compensated for by the decrease is variance, especially for
extremely noise tail labels [4].

2 PRELIMINARIES
For training, we have available a multi-label dataset D =⇣
{x8 , y8 }#8=1, {z; }!;=1

⌘
comprising of # data points. Each 8 2 [# ]

is associated with a small ground truth label vector y8 2 {0, 1}!
from ! ⇠ 106 possible labels. Further, x8 , z; 2 X denote the textual
descriptions of the data point 8 and the label ; which, in this setting,
derive from the same vocabulary universe V [7]. The goal is to
learn a parameterized function 5 : x8 7! y8 .

One-vs-All Classi�cation (OvA). A common strategy for han-
dling this learning problem is tomap instances and labels into a com-
mon Euclidean space E = R3 , in which the relevance B; (x) of a label
; to an instance is scored using an inner product, B; (x) = h�(x),w; i.
Here, �(x) is the embedding of instance x, and w; the ; ’th column
of the weight matrix W.

The prediction function selects the : highest-scoring labels,
5 (x) = top: (h�(x),Wi). Training is usually handled using the
one-vs-all paradigm, which applies a binary loss function ✓ to each
entry in the score vector. In practice, performing the sum over all
labels for each instance is prohibitively expensive, so the sum is
approximated by a shortlist of labels S(x8 ) that typically contains
all the positive labels, and only those negative labels which are
expected to be challenging for classi�cation [7–9, 21, 45]:

LD [�,W] =
#’
8=1

!’
;=1

✓ (y8; , h�(x),w; i)

⇡
#’
8=1

’
;2S(x8 )

✓ (y8; , h�(x),w; i) .
(1)

Even though these approaches have been used with success,
they still struggle in learning good embeddings w; for tail labels:
A classi�er that learns solely based on instance-label pairs has
little chance of learning similar label representations for labels
that do not co-occur within the dataset, even though they might
be semantically related. Consequently, training can easily lead to
over�tting even with simple classi�ers [11].

Label Features. To reduce the generalization gap, regularization
needs to be applied to the label weightsW, either explicitly as a new
term in the loss function [11], or implicitly through the inductive
biases of the network structure [27, 28] or by a learning algorithm
[7, 8]. These approaches incorporate additional label metadata –
label features – to generate the inductive biases. For short-text XMC,
these features themselves are often short textual description, com-
ing from the same space as the instances, as the following examples,
taken from (i) LF-AmazonTitles-131K (recommend related products
given a product name) and (ii) LF-WikiTitles-500K (predict relevant
categories, given the title of a Wikipedia page) illustrate:
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Figure 1: Gandalf augments the training dataset D by generating soft targets for each label based on label co-occurrence
statistics. These additional datapoints Z are simply concatenated to the traditional dataset for training.

Example 1: For “Mario Kart: Double Dash!!” on Amazon, we have
available: Mario Party 7 | Super Smash Bros Melee | Super Mario
Sunshine | Super Mario Strikers as the recommended products.

Example 2: For the “2022 French presidential election” Wikipedia
page, we have the available categories: April 2022 events in France |
2022 French presidential election | 2022 elections in France | Presiden-
tial elections in France. Further, a google search of the same query,
leads to the following related searches - French election 2022 - The
Economist | French presidential election coverage on FRANCE 24 |
Presidential Election 2022: A Euroclash Between a “Liberal... | French
polls, trends and election news for France, amongst others.

In view of these examples, one can a�rm two important ob-
servations: (i) the short-text XMC problem indeed requires rec-
ommending similar items which are either highly correlated or
co-occur frequently with the queried item, and (ii) the queried item
and the corresponding label-features form an “equivalence class”
and convey similar intent [7]. For example, a valid news headline
search should either result in a page mentioning the same headline
or similar headlines from other media outlets (see Example 2). As a
result, it can be argued that data instances are interchangeable with
their respective labels’ features. Exploiting this interchangeability
of label and instance text, Dahiya et al. [7, 8] proposes to tie encoder
and decoder together and require w; = �(z; ). While indeed yield-
ing improved test performance, the condition w; = �(z; ) turns out
to be too strong, and it has to allow for some �ne-tuning corrections
(; , yieldingw; = �(z; )+(; . Consequently, training of S������XML
and NGAME is done in two stages: a contrastive loss is minimized,
followed by �ne-tuning with a classi�cation objective.

Label correlations. Label-label dependencies can appear in
multi-label classi�cation in two di�erent forms: Conditional label
correlations, and marginal label correlations [10]. In the condi-
tional case, label dependencies are considered conditioned on each
individual query, that is, they are independent if1

P[Y | - ] = Œ
9 P

⇥
.9 | -

⇤
. (2)

1Capital- and Y denote the random variables associated with instance and labels, rsp.

As an example, consider the search query “Jaguar” : If we know
just this search term, the results pertaining to both, the car brand
and the animal, are likely to be relevant. However, knowing that
during a particular instance of this search, the user was interested
in the animal, one can conclude that car-based labels are less likely
to be relevant. In this way, the presence of one label gives informa-
tion beyond what can be extracted just from the search query.

On the other hand, similar labels will generally appear together.
Taking example 2 from the previous section, labels “2022 events in
France” and “2022 elections in France” will have an above-random
chance of occurring together; however, that information is already
carried in the query “2022 French presidential election”, so the pres-
ence of one of these labels doesn’t provide any new information,
given the query. In that sense, labels are marginally independent if

P[Y] = Œ
9 P

⇥
.9
⇤
. (3)

Given an instance, OvA classi�ers generate scores independently
for all labels. Thus, they are fundamentally incapable of modelling
conditional label dependence. However, as standard performance
metrics (P@k, PSP@k) are also decomposable into independent
contributions of each label, that is, they can be expressed purely in
terms of label marginals, they are similarly incapable of detecting
whether a classi�er models conditional label dependence [10].

This means that, as long as we want to focus on these standard
metrics (and not on inter-dependency aware losses such as Hüller-
meier et al. [14]), we only need to care about marginal correlations.
At �rst glance, this seems trivial: It can be shown that an OvA
classi�er, trained using a proper loss, is consistent for P@k [26, 40].
Unfortunately, consistency only tells us that, in the limit of in�nite
training data, we will get a Bayes-optimal classi�er. However, in
practice, the XMC setting is very far from in�nite data—most tail
labels will have less than �ve positive training examples.

Thus, the question we aim to tackle here is: Can we exploit knowl-
edge about marginal label correlations to improve training in the
data-scarce regime of long-tailed multi-label problems?
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LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

Training Data P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

original D 35.62 24.13 17.35 27.53 33.06 37.50 21.53 14.19 10.66 13.06 14.87 16.33
surrogate Z 29.68 21.47 16.04 28.76 33.75 38.27 22.88 16.02 12.44 22.03 23.69 25.55
G = Z [D 43.52 29.23 20.92 36.96 42.71 47.64 31.31 21.38 16.22 24.31 26.79 28.83
U(G,# ) 38.46 25.81 18.52 32.29 37.17 41.59 25.93 17.54 13.34 19.75 21.76 23.57
Z1 [D 37.59 25.25 18.18 30.75 35.54 40.06 24.43 16.16 12.15 16.89 18.45 20.02

G, ~;; 0 = f ((;; 0 ) 42.80 28.64 20.49 37.01 42.07 46.73 30.28 21.15 15.43 23.97 25.16 28.45
Table 2: Experiments showing the quality of the datasets created with label features on InceptionXML. While the baseline is
surpassed by training on the combined dataset G, it is also beaten by training onZ, where |Z| < |N |/2, underscoring its quality.

3 GANDALF: LEARNING FROM LABEL-LABEL
CORRELATIONS

By combining marginal label correlations with label features, we
can extend the self-annotation postulate of Dahiya et al. [7] to:

Postulate 3.1. Label-feature Annotation: Given a label 9 with label-
features z9 , we posit that if these features are posed as a data point,
its labels should follow the marginal label correlations, that is

P
⇥
.8 = 1 | - = z9

⇤
⇡ P

⇥
.8 = 1 | .9 = 1

⇤
. (4)

Note that this reduces to self-annotation by setting 8 = 9 , in
which case equation 4 becomes P

⇥
.9 | z9

⇤
⇡ P

⇥
.9 | .9

⇤
= 1.

In words, this means that, if the presence of label 9 indicates
that label 8 would occur with a certain probability for that same
instance, then we assume that this probability is also how likely
that label 8 is to be relevant to a data point that consists of the label
features of label 9 . The right side of equation 4 can be written as

P
⇥
.8 = 1 | .9 = 1

⇤
= P

⇥
.8 = 1,.9 = 1

⇤
/P

⇥
.9 = 1

⇤
. (5)

Thus, we can use the co-occurrence statistics⌧8 9 B P
⇥
.8 = 1,.9 = 1

⇤
to calculate the conditionals, and thus apply a plug-in approach
using empirical co-occurrence:

P
⇥
.8 = 1 | .9 = 1

⇤
⇡

⌧̂8 9

⌧̂ 9 9
,where, ⌧̂8 9 B

=’
B=1

~B8~B 9 .

Of course, in the data-scarce XMC regime, the co-occurrence matrix
M will be very noisy. In practice, we empirically �nd it bene�cial to
threshold the soft labels at X , so that label features as data-points
are annotated by:

~G8 9 B

(
⌧̂8 9/⌧̂ 9 9 if ⌧̂8 9/⌧̂ 9 9 > X

0 otherwise
. (6)

By approximating the left-hand side of equation 4 using a pa-
rameterized model  , and taking the empirical co-occurrence as a
noise estimate for the right-hand side, we can turn this equation
into a (surrogate) machine-learning task. This is the same problem
as the original XMC task equation 1, applied to a di�erent dataset
Z = {(z8 , yG8 )}!8=1. That is, we want to optimize

LZ[ ,W] B
!’

8, 9=1
~G8 9 , h (z9 ),w8 i) . (7)

In Table 2, we present results for training on this surrogate task
(row “Training on Z”), when evaluating the resulting classi�er on
the original test set. The results are striking, and provide a strong
con�rmation of the equivalence principle between label features
and input texts: Even though this model has never seen any actual
training instance, it performs adequate (AmazonTitles) or better
(WikiSeeAlsoTitles) than the original model in terms of precision at
: . Looking at PSP, which gives more weight to tail labels, it actually
outperforms the original model, in some cases with a large margin.

This tells us that we can, in fact, identify the two encoders in
equations 1 and 7,  ⌘ �, and train a single model on the combined
dataset G = D [Z, as illustrated in Figure 1. This combination
of data yields strong improvements on both regular and tail-label
performance metrics.

3.1 Bias-Variance Trade-o�
This improvement cannot be explained by the increased training
set size |G| = # + ! alone, as we can show with the following
simple experiment: We generate a new dataset G0 ⇠ U(G,# )
by uniformly sampling (without replacement) from the combined
dataset a subset that has the same size as the original training
set |D| = # . Table 2 shows that this already leads to signi�cant
improvements over the original training set.

To explain this phenomenon, we note that this augmented data is
qualitatively slightly di�erent from the original training instances:
the empirical co-occurrence matrix M̂ provides soft labels yG8 as
training targets. XMC dataset exhibit high variance [3, 4] because
of the long tail labels, whereas the soft labels of the augmented
points provide a much smoother training signal. On the other hand,
they are based on the approximation of Postulate 3.1, and as such,
will introduce some additional bias into the method, essentially
leading to a highly favourable bias-variance trade-o�.

In fact, the reduction in variance is so helpful to the training
process that even switching out equation 4 with one-hot labels
based purely on the self-annotation principle (~SA8 9 B 1[8 = 9] such
that Z1 = {(z8 , ySA8 )}!8=1), thus considerably increasing the bias in
the generated data, we still get signi�cant improvements over just
using the original training data (Table 2).

3.2 Connection to GLaS regularization
In order to derive a model for P[.; 0 = 1 | - = z; ], we can take
inspiration from the G��� regularizer [11]. This regularizer tries to
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(a) Results on LF-AmazonTitles-131K (b) Results on LF-WikiSeeAlsoTitiles-320K

Figure 2: G������ demonstrating improvements on the P@5 metric across various methods, separated into tail, torso and
head labels. On the x axis, the middle row indicates the number of labels in the bin, and the lowest row denotes the average
number of positives per label in that bin. Improvements in earlier bins (5 - 3) denote gains in tail label performance.

make the Gram matrix of the label embeddings hw8 ,w9 i reproduce
the co-occurrence statistics of the labels S,

RGLaS [W] = !�2
!’
8=1

!’
9=1

�
hw8 ,w9 i � (8 9

�2 . (8)

Here, S denotes the symmetrized conditional probabilities,

(8 9 B 0.5(P[.8 = 1 | .9 = 1] + P[.9 = 1 | .8 = 1])
⇡ 0.5(⌧̂8 9/⌧̂ 9 9 + ⌧̂8 9/⌧̂88 ) .

(9)

By the self-proximity postulate [7], we can assume w; ⇡ �(z; ).
For a given label feature instance with target soft-label (z; ,~GLaS;; 0 ),
the training will try to minimize ✓ (h�(z; ),w; 0 i,~GLaS;; 0 ). To be consis-
tent with Equation 8, we therefore want to choose ~GLaS

;; 0 such that
(;; 0 = argmin ✓ (·,~GLaS

;; 0 ). This is ful�lled for ~GLaS
;; 0 = f ((;; 0 ) for ✓

being binary cross-entropy, where f denotes the logistic function.
While the soft targets generated this way slightly di�er from

the ones of equation 6, as already observed, the bias introduced
by mildly incorrect training targets is o�set by far by the variance
reduction, and we �nd that this version performs only slightly
worse than Gandalf (Table 2).

4 EXPERIMENTS
Benchmarks, Baseline and Metrics. We benchmark our ex-

periments on 4 standard public datasets, the details of which are
mentioned in Table 1. To test the generality and e�ectiveness of our
proposed Gandalf, we apply the algorithm across a variety of state-
of-the-art short-text extreme classi�ers. These consist of (i) base
frugal models -A���� [9] and I��������XML [21] - which do not,
by default, leverage label text information, (ii) D���� [27], E�����
[28] and I��������XML�LF which equip the base models with ad-
ditional encoders to make use of label text and label correlation

information and, (iii) N���� + R���� - consisting of R���� [17],
which makes CUDA optimizations to train BCE loss over a classi�er
for ! labels without a shortlist. The transformer encoder is initial-
ized with pre-trained N���� (M1, dual encoder) [8]. We measure
the performance using standard metrics P@k, its propensity-scored
variant, PSP@k [16, 32], and coverage@k [37, 38].

4.1 Main Results
Improvements on tail labels. We perform a quantile analysis

across 2 datasets – LF-AmazonTitles-131K and the LF-WikiSeeAlso-
Titles-320K (Figure 2) with I��������XML – where we examine
performance (contribution to P@5 metric) over 5 equi-voluminous
bins based on increasing order of mean label frequency in the
training dataset. Consequently, performance on head labels can be
captured by the bin #1 and that of tail labels by bin #5. We note that
introducing the additional training data with Gandalf consistently
improves the performance across all label frequencies, with more
profound gains on bins with more tail labels. This is further veri�ed
by signi�cant performance boosts, with base models showing upto
11% improvements in the PSP@k metrics in Table 3.

Gandalf vs Architectural Additions (LTE, GALE). The �rst
formal attempt to externally imbue the model with label infor-
mation was made with D����, which essentially equips the base
model A���� with another base encoder (LTE) to learn label text
(z; ) embeddings along with the classi�er. The second attempt, in
the form of E�����, builds upon D���� by adding another base
encoder (GALE) to process and externally capture label correlation
information. To make our claim more general, we also evaluate on
I��������XML�LF, which consist of the same extensions on a more
recent base model I��������XML [21] with LTE and GALE compo-
nents (just as E����� adds LTE and GALE to A����). While such
architectural modi�cations help capture higher order query-label
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K LF-AmazonTitles-1.3M

S������XML 41.42 30.19 21.21 35.80 40.96 46.19 49.02 42.72 38.52 27.12 30.43 32.52

A���� 37.12 25.20 18.24 29.22 34.64 39.49 48.82 42.62 38.44 21.47 25.41 27.86
+ Gandalf 43.95 29.66 21.39 37.40 43.03 48.31 53.02 46.13 41.37 27.32 31.20 33.34

D���� 38.40 25.84 18.65 30.85 36.44 41.42 50.67 44.49 40.35 22.07 26.54 29.30
+ Gandalf 42.43 28.96 20.90 35.22 42.12 47.61 53.02 46.65 42.25 25.47 30.14 32.83

E����� 40.46 27.54 19.63 33.18 39.55 44.10 50.14 44.09 40.00 23.43 27.90 30.56
+ Gandalf 42.51 28.89 20.81 35.72 42.19 47.46 53.87 47.45 43.00 28.86 32.90 35.20

I��������XML 36.79 24.94 17.95 28.50 34.15 38.79 48.21 42.47 38.59 20.72 24.94 27.52
+ Gandalf 44.67 30.00 21.50 37.98 43.83 48.93 50.80 44.54 40.25 25.49 29.42 31.59

I��������XML�LF 40.74 27.24 19.57 34.52 39.40 44.13 49.01 42.97 39.46 24.56 28.37 31.67
+ Gandalf 43.84 29.59 21.30 38.22 43.90 49.03 52.91 47.23 42.84 30.02 33.18 35.56

N���� + R���� 46.05 30.81 22.04 38.47 44.87 50.33 56.04 49.91 45.32 28.54 33.38 36.14
+ Gandalf 45.86 30.53 21.79 40.49 45.83 50.96 56.88 50.24 45.47 26.56 31.69 34.60

LF-WikiSeeAlsoTitles-320K LF-WikiTitles-500K

S������XML 31.97 21.43 16.24 26.82 28.42 30.36 42.08 22.80 16.01 23.53 21.64 21.41

A���� 22.72 15.12 11.43 13.69 15.81 17.50 44.40 24.69 17.49 18.31 18.25 18.56
+ Gandalf 31.10 21.54 16.53 23.60 26.48 28.80 45.24 25.45 18.57 21.72 20.99 21.16

D���� 25.14 16.90 12.86 16.73 18.99 21.01 44.21 24.64 17.36 19.29 19.82 19.96
+ Gandalf 31.10 21.60 16.31 24.83 27.18 29.29 45.27 25.09 17.67 22.51 21.63 21.43

E����� 29.35 19.83 15.05 22.01 24.23 26.27 44.36 24.29 16.91 21.58 20.39 19.84
+ Gandalf 31.33 21.40 16.31 24.83 27.18 29.29 45.12 24.45 17.05 24.22 21.41 20.55

I��������XML 23.10 15.54 11.52 14.15 16.71 17.39 44.61 24.79 19.52 18.65 18.70 18.94
+ Gandalf 32.54 22.15 16.86 25.27 27.76 30.03 45.93 25.81 20.36 21.89 21.54 22.56

I��������XML�LF 28.99 19.53 14.79 21.45 23.65 25.65 44.89 25.71 18.23 23.88 22.58 22.50
+ Gandalf 33.12 22.70 17.29 26.68 29.03 31.27 47.13 26.87 19.03 24.12 23.92 23.82

N���� + R���� 30.79 20.65 15.57 20.81 24.46 27.05 - - - - - -
+ Gandalf 33.92 23.11 17.58 24.15 26.23 30.89 - - - - - -

Table 3: Results showing the e�ectiveness of Gandalf on state-of-the-art extreme classi�ers. The best results are in bold.
Results for N���� + R���� have been used from their publication, however, have not been reported for LF-WikiTitles-500K.

relations and increase empirical performance, they also increase
both, training time and the peak GPU memory required during
training by ⇠ 3⇥.

As Gandalf is a data-centric approach, the memory overhead is
eliminated by default. Further, we �nd that (i) D���� and E�����
still bene�t from using Gandalf augmented data implying architec-
tural modi�cations are complementary to Gandalf. However, (ii)
simply using Gandalf augmented data enables base models A����
and I��������XML outperform themselves by up to 30% and per-
form nearly at par with their more architecturally equipped counter
parts E����� and I��������XML�LF. While we posit that Gandalf
and GALE learn complementary data relations, both our quantita-
tive (Table 3) and qualitative (Table 5, Figure 2) results show that
Gandalf is more e�ective and e�cient at capturing these relations
(speci�cally, label correlations) compared to the latter.

Beyond model performances. We can also extract dataset spe-
ci�c insights with G������ from Table 3. Signi�cant improve-
ments on top of the base algorithm are particularly observed on
LF-AmazonTitles-131K and LF-WikiSeeAlsoTitles-320K. In contrast,
improvements on LF-WikiTitles-500K remain relatively mild. We
attribute this to the density of the datasets. Speci�cally, while the
former datasets consist of ⇠5 training instances per label, the lat-
ter consists of ⇠17. We posit a higher query-label density enables
algorithms to inherently learn su�cient label-label correlations
from existing data. However, we further see that using Gandalf is
e�ective for LF-AmazonTitles-1.3M, the largest public benchmark
for XMC with label features. Here, even though average training
instances per label is ⇠38, the average number of labels per instance
is ⇠22, as compared to maximum of ⇠4 on other datasets.
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(a) (b) (c) (d)

Figure 3: The (a) P@1 and (b) PSP@5 metric plotted against iterations for InceptionXML with and without Gandalf. The e�ect
of subsampling labels for Gandalf on the (c) P@1 and (d) PSP@5 metric. Both results are on the LF-AmazonTitles-131K dataset.

Gandalf vs Siamese Learning. Consequently, the third attempt
made at capturing label correlations via S������XML, which essen-
tially replaces the surrogate training task inA����with a two-tower
siamese learning framework. As argued in section 2, the condition
w; = �(z; ) turns out to be too strong, and consequently training
of S������XML and NGAME is done in two stages. Initially, a
contrastive loss needs to be minimized, followed by �ne-tuning
with a classi�cation objective which allows for some �ne-tuning
corrections (; , yielding w; = �(z; ) + (; . On the other hand, Gan-
dalf simply extends training data to learn from a-priori label co-
occurrence data in a supervised manner. Notably (from Table 3),
A���� + Gandalf outperforms S������XML by 5-10% on Amazon
datasets, while performing at par on Wikipedia datasets.

Applying Gandalf to Two-tower approaches. Although we
proposeG������ as a method suitable for training classi�ers, it can
also be used leveraged alongside two-tower approaches, likeN����.
This is done by �rst extending the dual encoder with a scalable
classi�er with R����, which simply trains OvA classi�ers on top of
the base model. Using G������ augmented data during this exten-
sion leads to signi�cant improvements, more prominently on the
LF-WikiSeeAlsoTitles-320K and LF-AmazonTitles-131K datasets.

Coverage Results. Coverage is an important metric in XMC
as it demonstrates the ability of the model to predict tail labels
e�ectively.We provide coverage results on InceptionXML in Table 4,
demonstrating that Gandalf learns to predict labels which were
previously not being predicted at all. This phenomenon can also be
seen in the qualitative results Table 5.

Method C@1 C@3 C@5 C@1 C@3 C@5

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

InceptionXML 22.33 39.98 46.29 7.54 15.11 18.93
+ Gandalf 31.04 51.63 58.03 13.28 26.01 32.21

Table 4: Coverage Results on InceptionXML with G������.

4.2 Ablations & Computational Analysis
Gandalf, is a data-centric approach that does not increase the com-
putational cost during inference. While the inclusion of label fea-
tures - which can often run in the order of millions - as additional
data points might seem to increase the computational cost during

training, through a series of observations, we show that this is
in fact not the case. On the contrary, Gandalf can help in reduc-
ing the memory footprint while training, enabling researchers to
use smaller GPUs, and reallocating their compute budget towards
longer training schedules. Secondly, we also study the e�ect of
subsampling the labels used for Gandalf to demonstrate how learn-
ing even some of the label-label correlations is bene�cial for XMC
models. This observation is particularly useful when inclusion of
all label-features as data points becomes intractable due to its scale.

Computational Costs during Training. For the LF-Amazon-
Titles-131K dataset, we plot the P@1 and the PSP@5 metric against
iterations for InceptionXML, trained with and without Gandalf in
Figure 3. As can be seen, using Gandalf gives better performance,
even on tail labels, right from the beginning. Moreover, where
the performance of InceptionXML saturates, the performance of
Gandalf continues to scale with increasing compute. Therefore,
given a �xed computational budget, a model trained with Gandalf
will outperform one trained without it. This can also be seen in
Table 2 where training on U(G,# ), i.e., under the exact same
computational budget as training on the the original dataset gives
performance improvements. In the same table, we can also observe
improvements when training on less than half the original compute
withZ 2. These observations �rmly place Gandalf as a compute-
e�cient method of leveraging label-features in XMC models.

E�ect of Subsampling Labels. We demonstrate the e�ect of
subsampling labels used for Gandalf under two schemes, (a) Ran-
domly sampling an expected percentage subset of labels and (b)
randomly sampling this subset from equi-voluminous bins of in-
creasing label frequency, i.e., prioritising tail labels for lower per-
centages. These results are shown for the P@1 and PSP@5 metric
on the LF-AmazonTitles-131K dataset in Figure 3.

Both the metrics grow linearly as the percentage sampled labels
are increased in steps of 25%. This goes ahead to show the lack of
label-label correlations being captured in existing methods, and
how learning even on a subset can be useful. Further, prioritising
tail-labels consistently outperforms the random sampling baseline,
underscoring the data-scarcity issue in XMC.

Qualitative Results. We further analyse qualitative examples
via the top 5 predictions obtained by training the base encoders

2These notations have been de�ned in Equation 2
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Method Datapoint Baseline Predictions Gandalf Predictions

I��������XML�LF Pontryagin duality, Topological order, Topological quantum �eld theory,
Topological quantum number, Quantum topology

Compact group, Haar measure, Lie group, Algebraic
group, Topological ring

D���� Topological group Topological quantum computer, Topological order, Topological quantum
�eld theory, Topological quantum number, Quantum topology

Compact group, Haar measure, Lie group, Algebraic
group, Topological ring

E����� Topological quantum computer, Topological order, Topological quantum
�eld theory, Topological quantum number, Quantum topology

Compact group, Topological order, Lie group, Algebraic
group, Topological ring

I��������XML�LF List of lighthouses in Scotland, List of Northern Lighthouse Board light-
houses, Oatcake, Communes of the Finistere department, Oat milk

Oatcake, Oatmeal, Oat milk, Porridge, Rolled oats

D���� Oat Oatcake, Oatmeal, Design for All (in ICT), Oatley Point Reserve, Oatley
Pleasure Grounds

Oatcake, Oatmeal, Oat milk, Porridge, Rolled oats

E����� Oatmeal, Oat milk, Parks in Sydney, Oatley Point Reserve, Oatley Pleasure
Grounds

Oatcake, Porridge, Rolled oats, Oatley Point Reserve,
Oatley Pleasure Grounds

I��������XML�LF Lunar Orbiter Image Recovery Project, Lunar Orbiter 3, Lunar Orbiter 5,
Chinese Lunar Exploration Program, List of future lunar missions

Surveyor program, Luna programme, Lunar Orbiter Im-
age Recovery Project, Lunar Orbiter 3, Lunar Orbiter 5

D���� Lunar Orbiter program Exploration of the Moon, List of man-made objects on the Moon, Lunar
Orbiter Image Recovery Project, Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Apollo program, Surveyor
program, Luna programme, Lunar Orbiter program

E����� Exploration of the Moon, Lunar Orbiter program, Lunar Orbiter Image
Recovery Project, Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Pioneer program, Surveyor
program, Luna programme, Lunar Orbiter program

I��������XML�LF
Colorado metropolitan areas, Front Range Urban Corridor, Outline of
Colorado, Index of Colorado-related articles, State of Colorado

Coloradometropolitan areas, Outline of Colorado, Index
of Colorado-related articles, Colorado cities and towns,
Colorado counties

D���� Grand Lake, Colorado
Colorado metropolitan areas, Front Range Urban Corridor, State of Col-
orado, Colorado municipalities, National Register of Historic Places listings
in Grand County, Colorado

Outline of Colorado, State of Colorado, Colorado cities
and towns, Colorado municipalities, Colorado counties

E�����
State of Colorado, Colorado cities and towns, Colorado counties, National
Register of Historic Places listings in Grand County, Colorado, Grand
County, Colorado

Outline of Colorado, Index of Colorado-related articles,
State of Colorado, Colorado cities and towns, Colorado
counties

I��������XML�LF
Royal Saudi Air Defense, Royal Saudi Strategic Missile Force, Saudi Royal
Guard Regiment, Terrorism in Saudi Arabia, Capital punishment in Saudi
Arabia

Military of Saudi Arabia, Royal Saudi Air Force, Royal
Saudi Air Defense, Royal Saudi Strategic Missile Force,
King Khalid Military City

D���� Armed Forces of Saudi Arabia
Saudi Arabian-led intervention in Yemen, Saudi-led intervention in
Bahrain, Human rights in Saudi Arabia, Legal system of Saudi Arabia,
Joint Chiefs of Sta� (Saudi Arabia)

Royal Saudi Air Force, Royal Saudi Navy, Royal Saudi
Air Defense, Royal Saudi Strategic Missile Force, Saudi
Arabian National Guard

E�����
List of armed groups in the Syrian Civil War, Military of Saudi Arabia,
Royal Saudi Strategic Missile Force, King Khalid Military City, Joint Chiefs
of Sta� (Saudi Arabia)

Military of Saudi Arabia, Royal Saudi Air Defense, Royal
Saudi Strategic Missile Force, King Khalid Military City,
Saudi Royal Guard Regiment

Table 5: Qualitative predictions from the LF-WikiSeeAlsoTitles-320K dataset. Labels indicate mispredictions.

with and without Gandalf augmented data points in Table 5. No-
tably, we can observe that queries with even a single keyword
(Oat), which have no correct predictions without G������, result
in 100% correct predictions with it. Furthermore, even the quality
of incorrect predictions improves and we suspect these labels are
more likely to be missed true positives. [16] For example, in case of
“Lunar Orbiter program”, the only incorrect Gandalf predictions
are “Lunar Orbiter 3”, “Lunar Orbiter 5” and “Pioneer program”
(US lunar and planetary space programs). Additionally, we show
semantic similarity between the annotated labels with G, and the
original label in Figure 4 in Appendix A.

Comparison against conventional data augmentation strate-
gies. We compare G������ with with existing data augmentation
techniques in Table 6. While no such techniques exist speci�cally
for XMC, we use three baselines: synonym replacement(randomly
replacing words in the input text with their synonyms, chosen via
BERT similarity), MixUp and Label-MixUp. While the �rst two are
standard data augmentations in NLP, Label-Mixup is a modi�ed
version of MixUp that combines the feature of a label feature and
input datapoint, which is more suitable for XMC. Notably, Gandalf
outperforms all of them with a signi�cant margin:

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

InceptionXML 35.62 24.13 17.35 27.53 33.06 37.50
+ Synonym Replacement 35.07 23.71 17.08 27.20 32.41 36.77

+ MixUp 35.63 24.15 17.37 27.55 33.00 37.63
+ Label-MixUp 37.25 25.02 17.98 29.25 34.58 39.09

+ Gandalf 43.52 29.23 20.92 36.96 42.71 47.64

LF-WikiSeeAlsoTitles-320K

InceptionXML 21.53 14.19 10.66 13.06 14.87 16.33
+ Synonym Replacement 20.08 13.13 9.92 12.00 13.50 14.90

+ MixUp 21.62 14.15 10.65 13.13 14.99 16.36
+ Label-MixUp 23.90 16.10 12.28 15.20 17.60 19.56

+ Gandalf 31.31 21.38 16.22 24.31 26.79 28.83

Table 6: Comparison of conventional data augmentation
strategies with the proposed G������ method.

Sensitivity to X . We examine Gandalf ’s sensitivity to X by train-
ing I��������XML�LF on data generated with varying values of
X . As shown in Table 7, the empirical performance peaks at a X
value of 0.1 which is su�cient to suppresses the impact of noisy
correlations. Higher values of X tend to suppress useful information.
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

InceptionXML 35.62 24.13 17.35 27.53 33.06 37.50 21.53 14.19 10.66 13.06 14.87 16.33
+ Gandalf G 43.71 29.30 21.14 37.25 43.01 47.89 31.42 21.54 16.37 24.78 27.36 28.98

+ Gandalf (G + Random Walk [28]) 43.52 29.23 20.92 36.96 42.71 47.64 31.31 21.38 16.22 24.31 26.79 28.83

I��������XML�LF 40.74 27.24 19.57 34.52 39.40 44.13 49.01 42.97 39.46 24.56 28.37 31.67
+ Gandalf (X = 0.0) 41.71 28.03 20.14 36.94 41.93 46.64 31.40 21.56 16.53 26.01 27.89 29.99
+ Gandalf (X = 0.1) 42.09 28.38 20.45 37.09 42.19 47.04 32.20 21.86 16.60 26.06 28.01 30.03
+ Gandalf (X = 0.2) 41.73 28.10 20.18 37.01 41.99 46.67 31.29 21.35 16.28 25.68 27.59 29.65

Table 7: Results demonstrating the e�ectiveness of Gandalf using both, a statistical co-occurrence matrix (G) and it’s modi�ed
version using a random walk as in [28]. The table also shows the method’s sensitivity to X , as de�ned in Equation 6.

Choice of label co-occurrence graph G. While with G������,
we leverage a statistical measure for G, we can also estimate it with
random walks [28] (used for GALE). We �nd that our method is
not signi�cantly a�ected by this choice, with the co-occurrence
graph giving slightly enhanced performance(Table 7). We hypoth-
esise this happens due to the noise introduced via random walks.
While both variants aim to model similar information, their dif-
fering usage determines their overall e�ectiveness. In particular,
leveraging it for G������ helps learn su�cient information on top
of GALE. Moreover, as discussed previously, our results are also
not signi�cantly a�ected by using the a symmetric variant of the
graph, consistent with the GLaS regularizer, shown in Table 2.

5 OTHER RELATEDWORK
Prior works in XMC focused on annotating long-text documents,
consisting of hundreds of word tokens, such as those encountered
in tagging for Wikipedia [2, 20, 36, 43] with numeric label IDs.
Most recent works under this setting were aimed towards scaling
up transformer encoders for the XMC task [22, 45].

Exploiting Correlations in XMC. For XMC datasets endowed
with label features, there exist three correlations that can be ex-
ploited for better representation learning : (i) query-label, (ii) query-
query, and (iii) label-label correlations. Recent works have been
successful in leveraging label features and pushing state-of-the-art
by exploiting the �rst two correlations. For example, S������XML
and NGAME [7, 8] employ a two-tower pre-training stage applying
contrastive learning between an input text and its corresponding
label features. G���XC [35] & PINA [6], motivated by graph con-
volutional networks, create a combined query-label bipartite graph
to aggregate predicted instance neighbourhood. This approach,
however, leads to a multifold increase in the memory footprint.
D���� and E����� [27, 28] make architectural additions to embed
label-text embeddings (LTE) and graph-augmented label embed-
dings (GALE) in each label’s OVA classi�er to exploit higher order
correlations from the random walk graph. PINA, in its pre-training
step, leverages label features as data points, but does so by expand-
ing the label space {0, 1}! to also include instances as {0, 1}!+#
leveraging the self-annotation property of labels [7] and inverting
the initial instance-label mappings to have instances x8 as labels for
label features z; as data points. This, however, leads to an explosion
in an already enormous label space. In this work, we �nd that a

signi�cant amount of information can be learned by modelling
label-label correlations, which existing methods fail to leverage.

Two-tower Models & Classi�er Learning. Typically, due to the
single-annotation nature of most dense retrieval datasets [18, 24,
29], two-tower models [19] solving this task eliminate classi�ers
in favour of modelling implicit correlations by bringing query-
document embeddings closer in the latent space of the encoders.
These works are conventionally aimed at improving encoder rep-
resentations by innovating on hard-negative mining [25, 41, 44],
teacher-model distillation [33, 34] and combined dense-sparse train-
ing strategies [23]. While these approaches result in enhanced
encoders, the multilabel nature of XMC makes them, in itself, insuf-
�cient for this domain. This has been demonstrated in two-stage
XMC works like Dahiya et al. [7, 8], Jain et al. [17] where these
frameworks go beyond two-tower training and train classi�ers with
a frozen encoder in the second stage for better empirical perfor-
mance. While a concurrent work [12] does show that dual-encoder
XMC models can outperform classi�ers, but requires signi�cant
computational resources to scale the contrastive loss across the
entire label space.

6 CONCLUSION
In this paper, we proposed Gandalf, a strategy to learn label correla-
tions, a notoriously di�cult challenge. In contrast to previous works
which model these correlations implicitly through model training,
we propose a supervised approach to explicitly learn them by lever-
aging the inherent query-label symmetry in short-text extreme
classi�cation. We further performed extensive experimentation by
implementing on various SOTA XMC methods and demonstrated
dramatic increases in prediction performances uniformly across all
methods. Moreover, this is achieved with frugal architectures with-
out incurring any computational overheads in inference latency or
training memory footprint. We hope our treatment of label corre-
lations in this domain will spur further research towards crafting
data-points with more expressive annotations, and further extend
it to long-text XMC approaches where the instance-label symmetry
is quite ambiguous.
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Figure 4: Correlations between labels and their �rst-order neighbours, as found by the label co-occurrence on the LF-WikiTitles-
500K dataset. The legend shows the label in question, the bar chart shows the degree of correlation with its neighbouring labels.
Correlated labels often share tokens with each other and/or may be used in the same context.

A ADDITIONAL VISUALIZATIONS
Similarity between Labels and their Annotations. Each label

and their annotations, as discovered by the co-occurrence graph, are

semantically similar; in that they share tokens with one another and
can be used in the same context.We show this pictorially by plotting
the labels and their annotations in order of their co-occurrence in
Figure 4.
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