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Abstract

The behavior of complex-Langevin field-theoretic simulations (CL-FTSs) of poly-

mer liquids is sensitive to the nature of saddle-point field configurations, which are so-

lutions of self-consistent field theory (SCFT). Recent work [Kang et al. Macromolecules

2024, 57, 3850] has shown that SCFT saddle-points with real fields are generally not

isolated solutions but rather members of a low-dimensional family of continuously-

connected complex-valued saddle-points sharing the same Hamiltonian value. We show

that this behavior is a natural consequence of the analyticity and translational in-

variance of the Hamiltonian, which together demand its invariance under generalized

translations by displacements with complex components. We also present a numerical

algorithm that minimizes the deleterious effects of this generalized symmetry on the

stability of CL-FTSs.
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Introduction

Several different types of polymer field theory play important roles in the study of polymeric

materials. The theories of interest here all relate the free energy of an interacting liquid to

the properties of a hypothetical gas of non-interacting polymers subjected to inhomogeneous

chemical potentials, referred to as fields, w. In self-consistent field theory (SCFT),1–3 an

inhomogeneous structure (or phase) is represented by the field configuration corresponding

to a saddle-point of the associated Hamiltonian functional, H[w]. Field-theoretic simulation

(FTS) methods,3–5 on the other hand, sample an ensemble of fluctuating fields, and they

are able to handle complicated systems6–11 that are beyond the capabilities of conventional

particle-based simulations.

FTS methods are based on an exact transformation of the partition function from an

integral over particle coordinates into a functional integral over fields. However, this trans-

formation leads to a complex-valued H[w], and thus to a complex generalized Boltzmann

weight, Pc[w] = exp(−H[w]/kBT ). Straightforward methods of sampling the resulting distri-

bution are susceptible to a severe ‘sign problem’ arising from rapid fluctuations in both the

real and imaginary components of Pc[w]. This sign problem can be effectively addressed by

adopting the complex-Langevin field-theoretic simulation (CL-FTS) method,12 in which the

fields are permitted to explore the entire complex domain and Pc[w] is replaced by a non-

negative real-valued weight, P [w]. Provided a CL-FTS reaches a steady state, the resulting

ensemble averages should be equivalent to those of the original model.5

The field-theoretic Hamiltonian for a polymeric system is typically expressed as

H[w] = −kBT lnZid[w] +Hf [w] (1)

whereHf [w] is a simple quadratic functional of the fields and Zid[w] is the partition function of

a hypothetical ideal gas of non-interacting polymers in which monomers of type i at position

r are subjected to a fluctuating complex field, wi(r). A CL-FTS can be performed in either
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a canonical or grand-canonical statistical ensemble by simply evaluating Zid[w] in the same

ensemble. In systems involving two monomer species, labeled A and B, the Hamiltonian

is a functional of two ‘species’ fields, wA(r) and wB(r). For convenience, however, H[w] is

generally expressed as a functional of two ‘exchange’ fields, defined as w±(r) = [wA(r) ±

wB(r)]/2.
13 Supporting Information presents explicit expressions for the Hamiltonian of a

diblock copolymer melt, as well as a detailed discussion of the analytic properties of Pc[w]

and H[w].

When applied to a liquid of long chains, with a large invariant degree of polymerization N̄ ,

the fields of a CL-FTS generally fluctuate about saddle-point configurations. Until recently,

it has generally been assumed that the relevant saddle-points in CL-FTSs are the usual ones

of SCFT involving real-valued monomer species fields. We hereafter refer to these as the

real-valued or real saddle-points. Furthermore, it has been assumed that these saddle-points

(also referred to as ‘physical’ saddle-points) are isolated from all other saddle-points. 14

The assumption that the saddle-points are real-valued and isolated was recently shown to

be false by Kang, Yong, and Kim (KYK).15 They found that each real-valued saddle-point

is instead a member of a low-dimensional space of continuously-connected complex-valued

saddle-points that share a common real value of H[w]. As one analytically tractable example,

KYK derived a family of complex saddle-points for an interface separating semi-infinite

phases of immiscible A and B homopolymers in the strong-segregation limit. In particular,

they generalized the real-valued solution obtained by Helfand and Tagami (HT),16,17 and

showed that it is part of a family of complex-valued saddle-points all corresponding to the

same real value of the Hamiltonian. KYK also presented numerical evidence for the existence

of analogous sets of complex saddle-points associated with SCFT solutions for the lamellar,

cylindrical, bcc spherical, and double-gyroid phases of diblock copolymer melts. Again, each

set of complex-valued saddle-points included the usual real-valued saddle-point as a special

case and exhibited the same real value for the Hamiltonian. Here, we provide a fundamental

explanation for this discovery by KYK.
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Generalized Translations

The observed invariance of H[w] within each infinite set of saddle-points suggests that their

field configurations are related by an underlying symmetry. Furthermore, a strong clue to

the nature of this symmetry is provided by the complex-valued solution derived by KYK for

a symmetric polymer-polymer interface, and its relationship to the real-valued HT solution.

Both solutions describe an interface in an incompressible blend of A and B polymers of equal

degree of polymerization, N , and equal statistical segment length, a, with a Flory-Huggins

interaction parameter χ, in the limit χN → ∞. In the HT solution of this problem, the fields

acting on the A- and B-type species, wA(z) = w+(z) + w−(z) and wB(z) = w+(z)− w−(z),

respectively, are given in terms of

w−(z) =
χN

2
tanh

(
2(z − z0)

dI

)
(2)

w+(z) =
3χN

4
tanh2

(
2(z − z0)

dI

)
(3)

where z denotes a coordinate normal to the interface and dI = 2a/
√
6χ is the width of the

interface. An unspecified parameter z0 is included in eqs 2 and 3 to account for the fact

that the position of the interface is arbitrary. As a result of this translational invariance, the

HT solution generates a 1D family of real-valued saddle-points parameterized by the real

variable z0.

The family of complex-valued solutions derived by KYK for this interface problem actu-

ally has an identical form to that of eqs 2 and 3. The only differences are that the parameter

z0 is replaced by a purely-imaginary number, given in their notation by z0 = −iθdI/2, while

the real function tanh(x) is replaced by its analytic continuation. This formal similarity sug-

gests an interpretation whereby the 1D family of solutions is generated through translations

of the real HT solution by imaginary displacements. Likewise, one could expect an even

larger family of solutions generated by complex displacements, where z0 assumes complex

values.
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Generalized Translational Invariance. In order to generalize this interpretation, we

hereafter restrict our attention to models in which the Hamiltonian, H[w], is translationally

invariant. This condition holds for all the situations considered by KYK, as their models did

not include any external field that could explicitly distinguish different positions in space.

Consequently, their models yield real SCFT solutions that can be translated by real displace-

ments without affecting the value of the Hamiltonian. Furthermore, we assume that H[w] is

an analytic functional of the fields, which is required for the validity of CL simulations.

It is straightforward to show that an invariance under generalized ‘complex’ translations

is an automatic feature of any model with a H[w] that is both translationally invariant

and analytic. For a polymeric system involving M monomer species in a D-dimensional

space, H[w] is a complex-valued functional of complex-valued species fields, wi(r), for i = 1,

2,...,M , which are all functions of a position vector, r, with real Cartesian components, rµ,

for µ = 1,2,...,D. The assumption that H[w] is analytic implies the following: If infinitesimal

perturbations of the fields, δwi(r), generate a perturbation of the Hamiltonian, δH, then field

perturbations of cδwi(r) must generate a Hamiltonian perturbation of cδH, for any complex

constant c. This statement is a straightforward generalization of how we define analyticity

for a function of a single variable. To characterize translational invariance, it is convenient

to consider an infinitesimal translation along some direction µ by a distance δvµ. Such a

translation yields a corresponding perturbation of the field by

δwi(r) = δvµ
∂wi(r)

∂rµ
(4)

which, in turn, causes a perturbation of the Hamiltonian by

δH[w] =
M∑

i=1

∫
δwi(r)

δH[w]

δwi(r)
dr (5)

If H[w] is translationally invariant, then δH[w] = 0 for any perturbation of the above form. If

H[w] is also analytic, then δH[w] = 0 for any infinitesimal complex displacement δvµ, because
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δvµ appears as a prefactor in the definition of δwi(r) given in eq 4. Thus, the combination of

analyticity and invariance under translations by infinitesimal real displacements necessarily

implies invariance under rigid translations by a broader class of ‘complex’ displacements.

Moreover, invariance under infinitesimal complex displacements implies invariance under

finite complex displacements, since these can be generated through the repeated application

of infinitesimal complex displacements.

The analysis by KYK focused entirely on the nature of saddle-point configurations. The

argument given above implies, however, that the invariance of H[w] is not a special property

of saddle-points. For any field configuration with components wi(r), which need not be a

saddle-point configuration, there exists an infinite set of field configurations with the same

value of H[w], where each member of the set, wi(r−v), is related to the original configuration

by a complex displacement, v.

Fourier-Space Representation. The effect of translation upon a field by a real dis-

placement is easy to visualize. However, the numerical examples presented by KYK demon-

strate that the effect by an imaginary displacement is more complicated and difficult to

visualize. However, it does have a simple representation in Fourier space. Here and through-

out, we focus our attention on fields that satisfy periodic boundary conditions, which is the

typical case in SCFT calculations and CL-FTSs. For those systems defined in infinite do-

mains, such as the HT interface problem, we can approximate the domain by a large finite

volume with periodic boundaries and take the limit where one or more of the dimensions

extends to infinity.

Now consider a complex-valued periodic function, f(r), with a Fourier series representa-

tion

f(r) =
1

V

∑

k

f̂(k)eik·r (6)

where the sum extends over all wavevectors k that are compatible with the periodic boundary

conditions (i.e., reciprocal lattice vectors). Using this Fourier representation, it is straight-
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forward to show that a translation by the complex vector v creates a displaced function

g(r) = f(r− v) (7)

with Fourier components of

ĝ(k) = f̂(k)e−ik·v (8)

The effect of translation by a real displacement v is to alter the phases of the Fourier

coefficients, while maintaining their absolute magnitudes. Consider instead a displacement

v = iu with purely imaginary components, where u is a real vector. The effect is to alter the

absolute magnitudes by increasing |ĝ(k)| for wavevectors where k · u > 0 and by decreasing

|ĝ(k)| for wavevectors where k · u < 0. Hence, an imaginary translation of a real-valued

function f(r) with f̂(−k) = f̂ ∗(k) produces a complex-valued function g(r) with ĝ(−k) ̸=

ĝ∗(k).

Implications for CL-FTS. In complex-Langevin (CL) simulations, the fields take on

arbitrary complex values at each point in space, and are sampled by a diffusion process

defined by the CL equations.3–5 The form of the CL equations for AB-type systems is speci-

fied in the Supporting Information. CL sampling is expected to provide correct averages for

observables, provided the CL diffusion process exhibits ergodic dynamics, i.e., if the proba-

bility distribution approaches a unique stationary distribution, P [w], in the limit of infinite

time, τ → ∞.5 This P [w] is a real-valued probability-density functional in a complex func-

tion space, and is distinct from the complex Boltzmann weight, Pc[w] = exp(−H[w]/kBT ).

Unlike for Pc[w], there is no known explicit expression for P [w].

If the Hamiltonian, H[w], of a field-theoretic model is translationally invariant, then

so are the associated CL equations, because the deterministic forces in the CL equations

are functional derivatives of the Hamiltonian and the distribution of the random forces

is independent of position. Furthermore, if a CL model has an analytic Hamiltonian that

is invariant under generalized translations and the model exhibits ergodic dynamics, then
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the associated equilibrium distribution, P [w], must also be invariant under all generalized

translations, as we will show below. Hence, in ergodic CL-FTSs of translationally-invariant

models, field configurations that are related by a rigid complex translation are visited with

equal frequency.

To prove the translational invariance of the equilibrium distribution, we consider the

Fokker-Planck equation for the time-dependent probability distribution P (τ, [w]) generated

by a CL diffusion process. The Fokker-Planck equation takes the form ∂P/∂τ = FP , where

F is a linear Fokker-Planck operator. Thus, stationary distributions are solutions of the

homogeneous equation, FP = 0. Let Tv denote a translation operator that applies a rigid

translation by a complex displacement v to a probability distribution functional. For any

translationally-invariant model with an analytic Hamiltonian, F and Tv must commute, such

that FTvP = TvFP for any complex v and any distribution P . If P is stationary, it then

follows that P ′ ≡ TvP is also stationary, since FTvP = TvFP = Tv0 = 0. Assuming there

exists only one stationary distribution, P = P ′ implying that P = TvP for any v. Hence,

the stationary distribution P [w] can only be unique if it is also translationally invariant.

Translationally-Invariant Analytic Observables. Results of CL-FTSs for observable

physical quantities are typically obtained from ensemble averages of operators, O[w], defined

as functionals of the fields. The theory underlying the CL method stipulates that valid

averages, ⟨O[w]⟩, can only be obtained for analytic functionals. The existence of translational

invariance further constrains the selection of quantities that can be unambiguously measured.

As a simple example, consider the process by which we identify the appearance of periodic

order. We know that an infinitely-long CL-FTS in a finite volume would, in principle, give

an uninformative homogeneous value for the average ⟨wi(r)⟩ of any field component. This is

true even for an ordered phase, because the ordered phase can drift in a manner that would

eventually wash out any inhomogeneities. The general lesson is that one should only measure

translationally-invariant observables when simulating a translationally-invariant system.

The emergence of translational order associated with a unit cell smaller than the simu-
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lation box can effectively be identified in a translationally-invariant manner by examining

the behavior of the structure factor, particularly through the appearance of Bragg peaks. 18

In CL-FTSs, the structure factor, which is the Fourier transform of a density correlation

function, is directly related to

Gij(k) =
1

V
⟨ŵi(k)ŵj(−k)⟩ (9)

where ŵi(k) is the Fourier amplitude of wi(r), as defined in eq 6. Using the Fourier repre-

sentation of generalized translations provided in eq 8, it is straightforward to confirm that

the value of Gij(k) remains invariant under arbitrary generalized translations. This ensures

that field configurations related by generalized translations yield equal values for Gij(k) and

any physical quantity (such as the structure factor) that can be expressed as a function of

Gij(k).

The arguments presented above for the invariance of H[w] under generalized rigid trans-

lations rely solely on the existence of analyticity and translational invariance. Therefore,

these arguments also extend to any observable that exhibits both of these properties. If O[w]

is a translationally-invariant analytic functional of a field configuration w, then the value

of O[w] will be identical for field configurations related by generalized rigid translations.

The invariance of Gij(k) under generalized translations is a special case of this principle,

as Gij(k) can be shown to be a translationally-invariant analytic functional of w. Gener-

ally, a functional of w that can be expressed as a polynomial in field components must be

analytic. A product of Fourier components evaluated at wavevectors that add to zero is

translationally invariant, whereas one where the sum of the wavevectors is not equal to zero

is not. Consequently, Gij(k) is both analytic and translationally invariant. The Leibler19 free-

energy functional derived for block copolymer melts is another example that satisfies these

criteria for analyticity and translational invariance. However, functionals that involve com-

plex conjugation or absolute magnitude operations are generally not analytic. For example,
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|wi(k)|n with a non-negative integer n is not analytic, whereas [wi(k)wj(−k)]n is analytic. In

CL-FTSs of translationally-invariant systems, it is therefore only safe to compute averages

of translationally-invariant analytic functionals of the fields. Such ‘allowed’ observables are

guaranteed to yield equal values for states related by generalized translations.

Self-Consistent Field Theory

In this section, SCFT is used to illustrate the effect of translation by imaginary displace-

ments (i.e., r → r − iu) on the interface of an A/B homopolymer blend and the lamellar

and cylindrical phases of an AB diblock copolymer melt. The SCFT calculations utilize the

standard Gaussian chain model (GCM), treating the systems as incompressible melts of con-

tinuous elastic threads subject to Flory-Huggins interactions.1 The SCFT calculations are

executed using the pseudospectral method,20 facilitating the straightforward application of

imaginary translations using eq 8. When an imaginary translation of v = iu is applied in

Fourier space, the fields ŵ±(k) transform to ŵ±(k)e
k·u, simplifying the process to multipli-

cation by appropriate exponential factors. Its implementation on equally-spaced Cartesian

grids is straightforward, although complex-to-complex Fast Fourier Transforms (FFTs) are

now employed for the complex SCFT calculation. As usual, the self-consistency conditions

for the fields are solved iteratively, but here we continue the iterations until the relative

change in the field drops below 10−9 to ensure precise saddle-point solutions.15

Homopolymer Interface. We begin by examining the A/B interface of the symmetric

homopolymer blend at χN = 40. The one-dimensional SCFT calculation is conducted in the

canonical ensemble for a system of size Lz = 5R0, where R0 = aN1/2, employing periodic

boundary conditions. To obtain high accuracy, we use a fine spatial grid with mz = 2000

points and discretize the polymer contour with steps of ds = 0.001. Once the real SCFT

solution is obtained, we apply an imaginary translation, transforming the fields w±(z) to

w±(z − iuz). For uz < 0.0015R0, the field transformation yields a nearly perfect complex
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saddle-point, where our self-consistency threshold is achieved after just one iteration. How-

ever, as the imaginary translation increases, it becomes necessary to apply more and more

iterations until eventually they fail to converge. The failure is attributed to numerical errors

introduced by exponentially growing multiplication factors. For instance, when a displace-

ment of δuz = 0.01R0 is applied for mz = 2000, the first harmonic for positive kz grows

by a factor of e2πδuz/Lz ≈ 1.0126. However, the second harmonic increases by 1.01262, and

ultimately the 999th harmonic increases by 2.831×105. Note that the final 1000th harmonic

is held constant, given that it does not depend on the sign of kz. We find that this minimizes

the numerical inaccuracy arising from the finite grid spacing.

Considering the size of the multiplication factors, it is not surprising that the SCFT

solution becomes inaccurate for large imaginary displacements. To stay within the family of

complex saddle-points, we apply small successive translations of δuz = 0.01R0 and adjust the

fields to satisfy the saddle-point conditions after each translation. Figure 1 shows the pro-

gression as the total distance from the real saddle-point, uz, increases. Initially, convergence

remains excellent, requiring only a few iterations to maintain self-consistency. However, as the

total translation increases, more iterations are needed. The successive translation approach

proves successful up to uz = 0.08R0, but beyond that the iteration fails to converge. Notably,

this distance is approaching the point uz = πdI/4, where both the real and imaginary parts

of the strong-segregation solution

w−(z) ≃
χN

2
tanh

(
2(z − iuz)

dI

)
(10)

diverge at the interface. This rapid growth of the fields is readily apparent in Figure 1.

Diblock Copolymer Melt. We now turn our attention to the lamellar phase of an

AB diblock copolymer melt at an A fraction of f = 0.5 and a segregation of χN = 12. In

this case, the box size is set to the equilibrium lamellar period, Lz = Deq = 1.40R0, and

the number of grid points is set to mz = 700. For the real solution, the composition field
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Figure 1: Complex saddle-point solution for an A/B homopolymer interface with χN =
40, plotted for increasing imaginary distance, uz, from the real saddle-point. The real and
imaginary parts of w−(z) are shown in plots (a) and (b), respectively, and the real and
imaginary parts of w+(z) are shown in plots (c) and (d), respectively. The insets show a
reduced scale to capture the large field values for uz = 0.08R0.
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w−(z) is dominated by the first harmonic, as depicted in Figure 2a. Conversely, the pressure

field w+(z), shown in Figure 2c, is dominated by a much smaller second harmonic. This is

a consequence of the A-B symmetry for f = 0.5. Figure 2 illustrates the result of successive

imaginary translations by δuz = 0.01R0, starting from the real saddle-point. As required,

the real value of the Hamiltonian is unaffected by the translations.
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Figure 2: Complex saddle-point solution for an AB diblock copolymer lamellar phase with
f = 0.5 and χN = 12, plotted for increasing imaginary distance, uz, from the real saddle-
point. The real and imaginary parts of w−(z) are shown in plots (a) and (b), respectively,
and the real and imaginary parts of w+(z) are shown in plots (c) and (d), respectively. The
insets show a reduced scale to capture the large field values for uz = 0.30R0.

As before, only a few iterations are required to maintain the self-consistent field equations

in the vicinity of the real saddle-point. In this regime, the segregation is weak and therefore

the composition field w−(z) is well approximated by

w−(z) ≃ A cos(k∗(z − z0 − iuz))

= A [cosh(k∗uz) cos(k
∗(z − z0)) + i sinh(k∗uz) sin(k

∗(z − z0))] (11)
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where k∗ ≡ 2π/Deq. Note that we set the real part of the translation to z0 = 0, such that

Re[w−(z)] and Im[w−(z)] are even and odd functions of z, respectively. As uz increases, the

growth of higher harmonics causes the segregation to increase, which eventually invalidates

the first-harmonic approximation in eq 11 and ultimately prevents the field iterations from

converging for displacements beyond uz = 0.30R0. In the previous study, KYK presented

saddle-points for a more segregated case, f = 0.5 and χN = 25. The results for this parameter

set are shown in Figure S1 of the Supporting Information, but this time parameterized by

the imaginary displacement, uz. Due to the inherently larger harmonics, we were only able

to translate the real saddle-point up to uz = 0.13R0.

The dimensionality of a family of complex saddle-points generally matches the dimen-

sionality of the block copolymer morphology. To illustrate this, we consider the effect of

imaginary displacements on a cylindrical morphology at f = 0.4 and χN = 12. For this

calculation, we utilize spatial grids with mx = 260 and my = 150, and we set ds = 0.01.

Images of its real saddle-point are displayed in Figure S2 of the Supporting Information.

Given the 2D periodicity of the morphology, the translations now depend on direction as

well as distance. To demonstrate the translation for a direction not aligned with any par-

ticular symmetry, we select δu = (0.006̂i + 0.008ĵ)R0 with a magnitude of δu = 0.01R0.

Again, we apply successive translations of δu and resolve the self-consistent conditions af-

ter each step. We achieved a maximum displacement of |u| = 0.32R0 before the fields fail

to converge. The result for |u| = 0.05R0 is depicted in Figure 3. Additional examples for

translations in the x- and y-directions are shown in Figures S2 and S3, respectively, of the

Supporting Information. They experience similar translation limits of |u| = 0.31R0.

The real saddle-points considered here, as well as those examined by KYK, all possess

inversion symmetry, wi(−r) = wi(r). Under imaginary translations, this symmetry gener-

alizes to wi(−r) = w∗
i (r). For this reason, KYK referred to their complex saddle-points as

Hermitian. However, we now have a better understanding of the nature of this symmetry.

The Hermitian property is not general and, in fact, it will not occur for morphologies without
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(a) (b)

Re[w−] Re[w+]

(c) (d)

Im[w−] Im[w+]

Figure 3: Complex SCFT solution for an AB diblock copolymer cylindrical phase with f = 0.4
and χN = 12, plotted for an imaginary displacement of u = (0.03̂i+ 0.04ĵ)R0 from the real
saddle-point. The real parts of w−(r) and w+(r) are shown in plots (a) and (b), respectively,
and the imaginary parts are shown in plots (c) and (d), respectively. The size of each image
is 2.70R0 × 1.56R0.

inversion symmetry, such as the single-gyroid phase.21,22

Complex-Langevin Field-Theoretic Simulations

We now illustrate the consequences of generalized translations on CL-FTSs of AB diblock

copolymer melts, where the fields are permitted to explore the entire complex space.4–6

The CL-FTSs are implemented as described in ref 23. In short, the diblock copolymers are

modeled as discrete chains each with N = 90 point-like beads connected by harmonic springs

with a natural length of ab. A fraction f of the beads are type A while the remaining beads

are type B. The A and B beads are subject to pairwise contact interactions of the standard

Flory-Huggins type, where χb controls the degree of immiscibility. The melt is compressible

with a Helfand compressibility factor of ζ = 1,17 which allows the local monomer density

to vary slightly from ρ0 = nN/V , where n is the total number of molecules and V is the

volume of the system. Note that ref 23 defined their fields as potential energies per monomer,
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whereas here we define them as potential energies per chain.

Although the CL-FTSs are performed on a different model from that of the SCFT calcula-

tions, we define effective parameters, a and χ, using a Morse calibration.24,25 This calibration

maps the simulation results onto the standard GCM, which has the added benefit of remov-

ing an ultraviolet divergence that occurs in FTSs involving contact forces. Our current study

is conducted at a high invariant polymerization index of N̄ ≡ a6ρ20N = 106, where the

UV divergence is relatively weak. Therefore, we approximate the effective segment length as

a ≈ ab and the effective Flory-Huggins parameter by the linear approximation χ ≈ z∞χb,

where the expression for the proportionality factor, z∞, can be found in ref 23.

Results. For simplicity, we limit our attention to the lamellar phase of symmetric AB

diblock copolymers (f = 0.5), where the family of complex saddle-points is 1D. The CL-FTSs

are performed on three lamellae oriented normal to the z direction in a cubic simulation box

with periodic boundaries. The box size is set to Lµ = 4.2R0, and the fields are represented

on a grid with mµ = 32 nodes in each dimension µ. For the resulting grid resolution, z∞ =

0.985. We select the same value χN = 12 examined by SCFT in the preceding section. At

this relatively weak segregation, the pressure field, w+(z), is approximately zero and the

composition field can be approximated by the first harmonic

w−(r) ≃ AR cos(k∗(z − zR)) + iAI cos(k
∗(z − zI)) (12)

where AR, AI , zR, and zI are real-valued. Although imaginary translations could potentially

cause the higher harmonics to become significant, we find that the CL-FTSs always break

down before this happens.

Figure 4 plots the amplitudes, AR and AI , in the upper graph and the relative phase

angle of the real and imaginary parts, θ ≡ k∗(zI − zR), in the lower graph from a CL-FTS

of duration τN = 106 initialized with an equilibrated configuration from an L-FTS26 (i.e.,

AI = 0 at τ = 0). Without loss of generality, we choose AR > 0 and 0 ≤ θ < π. Referring to
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Figure 4: (a) Amplitudes of the first harmonics of w−(r) and (b) phase angle between the
harmonics plotted as a function of simulation time, τ , during a CL-FTS of a lamellar phase
for χN = 12 and N̄ = 106.
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eq 11, we should expect the real and imaginary amplitudes to satisfy A2
R − A2

I ≈ A2, which

is confirmed by the gray curve in Figure 4a. Likewise, θ ≈ π/2 whenever AI develops an

appreciable magnitude as illustrated in Figure 4b. Thus, the CL-FTS is clearly fluctuating

about the line of complex saddle-points illustrated in Figure 2.
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Figure 5: (a) Real and (b) imaginary parts of the Hamiltonian, H, sampled during the same
CL-FTS from Figure 4. The large fluctuations for τN ≳ 8.2× 105 are due to the formation
of a hot spot.

As evident from Figure 4, the system moves slowly along the line of complex saddle-

points, so much so that there is no hope of thoroughly sampling the full space. Fortunately

though, the probability distribution for the complexified fields, P [w], and the observables of

interest are translationally invariant, allowing for accurate averages without doing so. Figure

5 plots the real and imaginary parts of the Hamiltonian, H, as a function of simulation
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time, τ . Notably, the distribution of H appears uncorrelated with the position along the

saddle-point line (we will confirm this later), at least for the initial part of the CL-FTS.

At τN = 8.2 × 105, however, a localized ‘hot spot’ emerges where the fields attain extreme

values, primarily affecting the imaginary part of H but also influencing the real part to

some extent. The occurrence of hot spots has been documented previously in refs 14 and

23. They are found to create tails in the distributions of observables, causing moments of

the distributions to diverge.23 This behavior is not new to CL simulations and is regarded

as a failure of the method.27–30 Nevertheless, the distributions remain well-behaved prior

to the hot spot. In this case, Figure 6 confirms that the real and imaginary parts of H

before τN = 8.2 × 105 are accurately described by Gaussian distributions. The real part

has a mean of Re[⟨H⟩ /nkBT ] = 3.4279 and a standard deviation of σR/nkBT = 0.00248,

while the imaginary part is consistent with a mean of zero and a standard deviation of

σI/nkBT = 0.00047. Note that the imaginary part of any observable must average to zero,

and indeed it always does when the CL-FTS is behaving properly.

Translation Cooling. Hot spots generally form when the system deviates significantly

from the real saddle-point.23 Indeed, the hot spot at τN = 8.2 × 105 emerged when |AI |

reached its most extreme value. There is also a small spike in Im[H] suggesting a hot spot

nearly formed at τN = 5.4 × 105, where |AI | acquired a similarly large value. The failure

of CL simulations in quantum chromodynamics (QCD) occurs in much the same way due

to a gauge invariance.30–33 In QCD, this is remedied by the continuous application of gauge

transformations during the simulation, a method referred to as ‘gauge cooling’. 34,35 Inspired

by this, we devise an analogous method, which we refer to as ‘translation cooling’, where small

imaginary translations of δu are repeatedly applied to w−(r) and w+(r) so as to shift the

system towards the real saddle-point. As illustrated previously, the equilibrium probability

distribution, P [w], should be invariant under complex translations, and therefore we expect

the ensemble average of any translationally-invariant observable to be unaffected by the

imaginary translations, just as it would be by real translations.
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Figure 6: Histograms of the (a) real and (b) imaginary parts of the Hamiltonian, H, in
CL-FTSs with (blue curves) and without (red curves) translation cooling, plotted on a log-
arithmic scale. The dashed curves are fits to Gaussian distributions.
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Given that the imaginary part of w−(r) is zero at the real saddle-point, we design the

translation cooling to minimize

Γ(δu) ≡
∫

|w−(r− iδu)− w∗
−(r− iδu)|2dr (13)

=
1

(2π)3

∫
|ek·δuŵ−(k)− e−k·δuŵ∗

−(−k)|2dk (14)

=
2

(2π)3

∫
|e2k·δuŵ−(k)|2dk+ constant (15)

where eq 15 is arrived at using Parseval’s theorem and the relation in eq 8. It follows that

the gradient of Γ(δu) is

∂Γ

∂δuµ

=
1

2π3

∫
kµe

2k·δu|ŵ−(k)|2dk (16)

≈ Bµ +
∑

ν=x,y,z

Jµνδuν (17)

where

Bµ =
1

2π3

∫
kµ|ŵ−(k)|2dk (18)

Jµν =
1

π3

∫
kµkν |ŵ−(k)|2dk (19)

Provided that the system remains in close proximity to the real saddle-point, the imaginary

translation required to minimize Γ(δu) should be well approximated by

δu = −J−1B (20)

Note that for the special case of a 1D lamellar phase, it is sufficient to apply the component

δuz normal to the lamellae. However, for the sake of algorithmic generality, we apply the full

vector δu.

The performance of this method is relatively insensitive to the frequency at which the
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translations are applied. Therefore, to reduce the computational cost, they are not applied

at every Langevin step, but nevertheless they are applied frequently. That way the system

never drifts far from the real saddle-point and the magnitude of δu remains small as assumed

by the linearization in eq 17. Having said that, there is no need for the gradient of Γ(δu)

to be accurately zero. All we require is that δu generally moves the system closer to rather

than further from the real saddle-point.

Figure 7 presents results from a CL-FTS similar to that of Figure 4, but with imagi-

nary translations applied at intervals of ∆τN = 5. With translation cooling, the imaginary

component of the field, AI , now remains close to zero, implying that the system is fluctuat-

ing about the real saddle-point. The distribution of H with translation cooling (red curve)

plotted in Figure 6 is indistinguishable from the previous distribution without cooling (blue

curve), to within the level of the statistical uncertainty. The difference now is that we can

run the CL-FTS indefinitely without the formation of hot spots.
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translation cooling

Figure 7: Analogous plot to Figure 4a, but with translation cooling.

We can, likewise, investigate different positions along the family of complex saddle-points,

corresponding to nonzero gradients of Cν = ∂Γ/∂δuν , by performing translations of

δu = J−1(C−B) (21)
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The amplitude of the fluctuations is similar, but the averages of AI are now shifted (see

Supporting Information) as are the averages of AR. Table 1 lists the averages for several

different values of Cz. The fact that ⟨AR⟩2 − ⟨AI⟩2 remains approximately constant con-

firms that the system is fluctuating about a complex saddle-point. The total distance of the

complex saddle-point from the real one can be estimated by

uz =
1

k∗ tanh
−1

( ⟨AI⟩
⟨AR⟩

)
(22)

However, there is a limited range of over which the simulations remain stable. If we set

Cz ≳ 1.8, the system starts to form hot spots.

In the absence of hot spots, the CL-FTS behaves well as evident by the fact that the

distribution of H remains Gaussian. Table 2 lists the mean and standard deviations of H at

different points along the line of saddle-points. Interestingly, ⟨H⟩ maintains a constant real

value across the entire line. Even the width of the Gaussians is constant for the real part

of H and nearly constant for the imaginary part. Admittedly, there is a small but notice-

able increase in σI as the imaginary distance from the real saddle-point, uz, increases (see

Supporting Information). We attribute this to hot-spot-like fluctuations, which presumably

become more frequent as the system moves away from the real saddle-point. Recall that the

hot spots have a more pronounced effect on the imaginary part of H than the real part.

Table 1: Average Amplitudes of the Real and Imaginary Parts of the Composition
Field and Imaginary Distance to the Real Saddle-Point.

Cz ⟨AR⟩ ⟨AI⟩
√

⟨AR⟩2 − ⟨AI⟩2 uz

R0

0.0 4.115 0.000 4.115 0.000
0.3 4.126 0.312 4.114 0.017
0.6 4.161 0.617 4.115 0.033
0.9 4.213 0.907 4.114 0.049
1.2 4.281 1.185 4.113 0.063
1.5 4.361 1.443 4.115 0.077

The distribution of the imaginary translations normal to the lamellae, δuz, required to
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Table 2: Mean and Standard Deviations of the Real and Imaginary Parts of the
Hamiltonian at Different Positions Along the Line of Complex Saddle-Points.

Cz
Re[⟨H⟩]
nkBT

σR

nkBT
Im[⟨H⟩]
nkBT

σI

nkBT

0.0 3.4279 0.00249 0.0000 0.00046
0.3 3.4280 0.00250 0.0000 0.00046
0.6 3.4279 0.00248 0.0000 0.00047
0.9 3.4280 0.00248 0.0000 0.00049
1.2 3.4279 0.00249 0.0000 0.00050
1.5 3.4280 0.00418 0.0000 0.00092

maintain fixed positions along the line of complex saddle-points is plotted in Figure 8. In all

cases, the distribution is centered about δuz = 0, indicating there is no effective force driving

the system in either direction along the line. Consequently, without the translation cooling,

the system would simply diffuse along the line of complex saddle-points. Interestingly, the

width of the distribution, and thus the diffusion constant, increases as the system moves

farther from real saddle-point. In any case, the fact that the motion is naturally diffusive

means that if the translation cooling were to be turned off then the system would eventually

reach a point where hot spots form.
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Cz = 0.9
<latexit sha1_base64="5oVewnvXlpb8mxxIQ5VHj1ZAW1s=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CVbB07JbFL0IhV48VrAf0C4lm2bb0CS7JFmhLv0RXjwo4tXf481/Y9ruQVsfDDzem2FmXphwpo3nfTuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HNdnfvuRKs1i+WAmCQ0EHkoWMYKNldr1/tOt71b75YrnenOgVeLnpAI5Gv3yV28Qk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzc+donOrDFAUK1vSoLn6eyLDQuuJCG2nwGakl72Z+J/XTU10E2RMJqmhkiwWRSlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEIlG4K//PIqaVVd/8r17i8rtbM8jiKcwClcgA/XUIM7aEATCIzhGV7hzUmcF+fd+Vi0Fpx85hj+wPn8AfOMjpA=</latexit>

Cz = 1.2

Figure 8: Distribution of the imaginary translations perpendicular to the lamellae, δuz, re-
quired to maintain different positions along the line of complex saddle-points.

In our study with χN = 12 and N̄ = 106, CL-FTSs remain stable with respect to the

formation of hot spots as long as |uz| ≲ 0.07R0. Unfortunately, this stability region mono-
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tonically shrinks and eventually vanishes as χN approaches the order-disorder transition,

and hot spots form even with translation cooling. The problem is further exacerbated as

N̄ is reduced. We thus envision translation cooling as being used in conjunction with other

methods of improving stability. We note that Delaney and Fredrickson6 were able to run

stable CL-FTSs down to N̄ ≈ 104 with the use of nonzero-range interactions, although the

range was unrealistically large. It is conceivable that a more reasonable range would suffice

if a nonzero-range interaction was supplemented with translation cooling.

Summary

In SCFT, the phases of a polymeric system are associated with real-valued saddle-points of

its field-theoretic Hamiltonian, H[w]. Kang, Yong, and Kim15 have recently found a number

of examples where the real-valued saddle-points are connected to continuous families of

complex-valued saddle-points that share the same real value of H[w]. Here, we showed that

this behavior is general to all systems with translational symmetry, such as the bulk phases

of a block copolymer melt. Assuming that H[w] is an analytic functional of the fields, wi(r),

it immediately follows that any system that is invariant under normal translations (i.e.,

r → r − v for real v) must also be invariant under translation by a complex displacement.

As such, a family of complex-valued saddle-points can be generated by applying imaginary

translations (i.e., v = iu) to the real saddle-point. As usual, translations have no effect

in directions where wi(r) remains constant, and thus the dimensionality of the continuous

family is equal to the number of independent directions in which wi(r) varies. Here, we

have demonstrated this for the 1D homopolymer-homopolymer interface, the 1D diblock

copolymer lamellar phase, and the 2D diblock copolymer cylindrical phase.

Although the complex saddle-points are unphysical SCFT solutions, they nevertheless

have profound implications for CL-FTSs. Rather than fluctuating about isolated real saddle-

points, the fields in a CL-FTS fluctuate about a continuous family of complex saddle-points
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emanating from a real saddle-point. Here, we demonstrated this for the 1D diblock copolymer

lamellar phase. We find that there is no effective force and therefore the system generally

diffuses along the line of saddle-points, although with a diffusion constant that increases with

|u|, the imaginary distance from the real saddle-point.

Our SCFT calculations demonstrate that the fields develop extreme values as |u| becomes

large relative to the width of the A/B interfaces. Consequently, the CL-FTSs will fail without

anything to prevent diffusion to large |u|. The failure generally occurs via the spontaneous

formation of delta-like ‘hot spots’, as observed previously.14,23 However, in many cases, we are

able to remedy the problem with translation cooling, where small imaginary translations,

δu, are continuously applied so as to maintain close proximity to the real saddle-point.

Unfortunately, the propensity to form hot spots becomes so great near the order-disorder

transition and at low N̄ that the CL-FTSs often fail even with the use of translation cooling.

Nevertheless, there is good reason to hope that translation cooling could be combined with

appropriate modifications to the polymeric model, such as nonzero-range interactions, to

produce robust CL-FTSs.

Supporting Information

Field-theoretic model for a diblock copolymer melt, discussion regarding the analyticity of

polymer field theory, additional SCFT examples for the lamellar and cylindrical phases of

diblock copolymer melts, and CL-FTS results for translation cooling with Cz ̸= 0.
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(29) Attanasio, F.; Jäger, B. Improved convergence of Complex Langevin simulations. EPJ

Web Conf. 2018, 175, 07039.

(30) Berger, C. E.; Rammelmüller, L.; Loheac, A. C.; Ehmann, F.; Braun, J.; Drut, J. E.

30



Complex Langevin and other approaches to the sign problem in quantum many-body

physics. Phys. Reports 2021, 892, 1–54.

(31) Seiler, E. Status of Complex Langevin. EPJ Web Conf. 2018, 175, 01019.
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Model and Notation

To clarify our notation and conventions, we discuss the construction of a field-theoretic

Hamiltonian for a system of polymers involving two monomer types, denoted by A and B.

This generally starts from a particle-based model with a potential energy of the form

U = Ubond + Uint (S1)

where Ubond and Uint represent the bonded and non-bonded interactions, respectively. For a

compressible system with contact forces, one usually chooses1,2

Uint = kBTv

∫ [
χρA(r)ρB(r) +

1

2
ζ [ρA(r) + ρB(r)− ρ0]

2

]
dr (S2)

where ρi(r) denotes the concentration of i-type monomers at position r, v is an energetically-

preferred monomer volume, ρ0 = 1/v, χ is the Flory-Huggins interaction parameter, and ζ

is a dimensionless compression modulus. The numerical examples in the associated paper

considered binary homopolymer blends and diblock copolymer melts. For concreteness, we

focus here on melts of n AB diblock copolymers in a region of volume V , where each diblock

contains N monomers of which a fraction f forms the A block.
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Field-Theoretic Hamiltonian. Use of Hubbard-Stratonovich transformations to de-

fine a field-theoretic representation of the partition function, Z, and adoption of complex-

Langevin sampling yields a polymer field theory in which physical quantities are related

to averages over configurations of two fields, wA(r) and wB(r). Details can be found in ref

2. Here, we defined our fields as dimensionless potential energies per chain, such that the

monomers of type i in a chain of polymerization N each contribute a potential energy of

wi(r)/N . Note that this is slightly different from ref 2, where their fields, Wi(r) = wi(r)/N ,

were defined as potential energies per monomer.

The field-theoretic representation of Z involves a generalized Boltzmann weight3–5

Pc[w] = e−H[w]/kBT (S3)

defined by a field-theoretic Hamiltonian of the form

H[w] = −kBT lnZid[w] +Hf [w] (S4)

The Hf [w] contribution is generally a quadratic functional of the fields. For the compressible

model with local interactions in eq S2,

Hf [w] =
kBT

vp

∫ [
w2

−(r)

χN
− w2

+(r)

(χ+ 2ζ)N
− w+(r) +

χN

4

]
dr (S5)

where vp ≡ Nv is a volume per polymer chain and

w±(r) = [wA(r)± wB(r)]/2 (S6)

The Zid[w] in eq S4 is the partition function of a hypothetical ideal gas with a potential

energy

Uid = Ubond +
kBT

N

∑
i=A,B

∫
ρi(r)wi(r)dr (S7)
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evaluated in the same statistical ensemble used to describe the interacting system. In the

canonical ensemble, it takes the form

Zid[w] =
1

n!
(V Q[w]/vp)

n (Canonical) (S8)

and in the grand-canonical ensemble, it is given by

Zid[w] =
∞∑
n=0

1

n!
eµn/kBT (V Q[w]/vp)

n

= exp
(
eµ/kBTV Q[w]/vp

)
(Grand canonical) (S9)

where µ is the polymer chemical potential. The functional Q[w] represents the partition

function for a single polymer chain in which the A and B monomers are acted upon by the

wA(r) and wB(r) fields, respectively. Explicit expressions for Q[w] will be provided later.

Complex-Langevin (CL) Sampling. In CL sampling, the w−(r) and w+(r) fields are

allowed to explore arbitrary complex values, and they evolve under the CL equations. The

discrete version of the CL equations for fields defined on a regular grid is given by

w
(k+1)
− (r) = w

(k)
− (r)− Λ

(k)
− (r) δτN +N (0, σ) (S10)

w
(k+1)
+ (r) = w

(k)
+ (r) + Λ

(k)
+ (r) δτN + iN (0, σ) (S11)

where w
(k)
± (r) are the field values at the k’th time step for grid position r, δτ = τ (k+1) − τ (k)

is the size of the k’th time step, Λ
(k)
± (r) are deterministic forcing terms evaluated at the k’th

time step, and N (0, σ) denotes a real-valued random number from a Gaussian distribution

with zero mean and a variance of

σ2 = 2δτN
vp
Vcell

(S12)

3



where Vcell is the volume per spatial grid point. The deterministic drift terms are given by

Λ−(r) =
vp
kBT

δH[w]

δw−(r)
= ϕ−(r) +

2w−(r)

χN
(S13)

Λ+(r) =
vp
kBT

δH[w]

δw+(r)
= ϕ+(r)− 1− 2w+(r)

(χ+ 2ζ)N
(S14)

where

ϕ±(r) = ϕA(r)± ϕB(r) (S15)

Here, ϕi(r) is a complex-valued generalization of the volume fraction of i ∈ {A,B} monomers

in the ideal gas reference system. In the canonical ensemble,

ϕi(r) = −V
δ lnQ[w]

δwi(r)
(Canonical) (S16)

and in the grand-canonical ensemble,

ϕi(r) = −V eµ/kBT δQ[w]

δwi(r)
(Grand canonical) (S17)

For a system with an analytic, translationally-invariant Hamiltonian, H[w], the Fokker-

Planck operator corresponding to the CL eqs S10 and S11 will be invariant under generalized

translations, i.e., under rigid translations of the w field configuration by any complex displace-

ment. This is because the Λ±(r) terms (i.e., deterministic forces) are expressed as functional

derivatives of H[w], and therefore they also undergo generalized translations. Furthermore,

the random forces are chosen independently at each grid point from the same Gaussian dis-

tribution, and therefore the coefficients of the diffusive terms in the Fokker-Planck operator

are independent of position and thus unaffected by generalized translations.
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Demonstrating Analyticity

In the polymer field theory (before the complexification of the fields), the ensemble average

of an observable O[w] is defined as a ratio of contour integrals,

⟨O[w]⟩ =
∫
O[w]Pc[w]Dw∫

Pc[w]Dw
(S18)

For AB-type systems, w−(r) is real and w+(r) is imaginary along the contour. The theory

underlying the CL-FTS method attempts to show that this average is equal to the time-

average of O[w] generated by the CL sampling process in the limit of infinite time (i.e., τ →

∞).4,5 Specifically, Gausterer and Lee6,7 have concluded that if the CL process is ergodic (i.e.,

if averages generated by CL sampling converge to unique limits and the associated probability

distribution, P [w], converges to a unique steady-state solution) and if Pc[w] and O[w] are

both entire analytic functions (i.e., are differentiable throughout the complex function space,

without branch cuts or poles), then the CL time average of O[w] will converge to that of eq

S18. Note that the reasoning used to reach this conclusion relies on the analyticity of Pc[w]

rather than H[w]. This distinction is relevant because we find below that, in the canonical

ensemble, Pc[w] is entire while H[w] is not.

Properties of Analyticity. We use the notation A[w] to indicate that A is a complex-

valued functional of w. Suppose δA is the infinitesimal perturbation of A[w] induced by

a perturbation δw of field w, defined by specifying an infinitesimal perturbation for each

field component, δwi(r), for i = 1, . . . ,M . If cδA equals the perturbation of A induced by

a perturbation cδw for any finite complex constant c, then A[w] is an analytic functional.

Using this property, one can easily confirm the following theorems:

(I) If A[w] is equal to a sum

A[w] = bB[w] + cC[w] (S19)

in which B[w] and C[w] are analytic functionals while b and c are complex constants,

5



then A[w] is also an analytic functional.

(II) If A[w] is equal to a product

A[w] = B[w]C[w] (S20)

of two analytic functionals B[w] and C[w], then A[w] is again analytic.

(III) If A[w] is defined as an integral

A[w] =

∫
f(w(r)) dr (S21)

in which f(w(r)) = f(w1(r), . . . , wM(r)) is a scalar complex-valued analytic function

of the multi-component field, and the integral is taken over all r within a periodic

domain, then A[w] is an analytic functional.

(IV) If A[w] is defined as

A[w] = f(B[w]) (S22)

where f(z) is an analytic complex-valued function of a complex argument z and B[w]

is an analytic functional of w, then A[w] is an analytic functional of w.

We will also need the fact that a power (monomial) function f(z) = zp with a non-negative

integer exponent is analytic in z throughout the complex plane, as is any sum of such

monomials (i.e., any polynomial), and as is the exponential function f(z) = ecz with any

complex constant c.

Generalized Boltzmann Weight. The generalized Boltzmann weight can be expressed,

using eq S4, as

Pc[w] = Zid[w] e
−Hf [w]/kBT (S23)

Referring to eq S5, Hf [w] is a spatial integral of a quadratic polynomial in the fields, and is

thus entire by theorem III. It follows that e−Hf [w]/kBT is also entire by theorem IV. Expressions
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for Zid[w] are given in eqs S8 and S9 for the canonical and grand-canonical ensembles,

respectively. In both cases, Zid[w] is an analytic function of Q[w], and therefore, by theorem

IV, Zid[w] is entire if Q[w] is entire. From this, we conclude from theorem II that Pc[w] will

be entire if Q[w] is entire.

Ideal Gas of Continuous Chains. Our SCFT calculations were performed using the

standard Gaussian chain model (GCM),8 where the system is treated as an incompressible

melt (ζ → ∞) of continuous Gaussian chains. The single-chain partition function for a

continuous chain is given by

Q[w] =
1

V

∫
q(r, 1)dr (S24)

where q(r, s) is the solution of the modified diffusion equation (MDE)

∂q(r, s)

∂s
=

[
a2N

6
∇2 − wα(s)(r)

]
q(r, s) (S25)

with an initial condition q(r, 0) = 1. Here, s ∈ [0, 1] is a contour coordinate along the chain

and α(s) denotes the monomer type at position s. For a diblock copolymer, α(s) = A if

s ∈ [0, f ] and α(s) = B if s ∈ [f, 1]. For simplicity, eq S25 assumes that the A and B

monomers have an equal statistical segment length, denoted by a.

By theorem III, it follows that Q[w] will be analytic provided q(r, s) is analytic. Thus,

we need to consider how the solution to the MDE changes under an infinitesimal change in

w. Suppose that q(0)(r, s) is the solution of the MDE in the presence of a multi-component

field, w
(0)
i (r), such that

[
∂

∂s
− a2N

6
∇2 + w

(0)
α(s)(r)

]
q(0)(r, s) = 0 (S26)

Let q(r, s) denote the solution of the MDE for infinitesimal perturbations of the field com-
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ponents, wi(r), such that

wi(r) = w
(0)
i (r) + δwi(r) (S27)

q(r, s) = q(0)(r, s) + δq(r, s) (S28)

Substituting these definitions into the MDE and retaining terms up to first order in δw, we

find that the perturbation δq induced by the perturbation δw must satisfy

[
∂

∂s
− a2N

6
∇2 + w

(0)
α(s)(r)

]
δq(r, s) = q(0)(r, s)δwα(s)(r) (S29)

Notice that eq S29 is linear in both δq and δw. Therefore, if δq is the change in q induced

by δw, then cδq is the change in q induced by cδw, where c is any finite complex constant.

This observation demonstrates that q(r, s) is an analytic functional of the fields.

Ideal Gas of Discrete Chains. Our CL-FTSs treated the system as a compressible

melt (ζ = 1) of discrete Gaussian chains with N = 90 monomers per chain, labeled i =

1, 2, 3, . . . , N . In this model,

Q[w] =
1

V

∫
qN(r)dr (S30)

where qN(r) is obtained by iterating the convolution integral

qi+1(r) = ewαi (r)/N

(
3

2πa2

)3/2 ∫
qi(r−R)e−3R2/2a2dR (S31)

starting from q1(r) = e−wα1 (r)/N . Here, αi denotes the type (A or B) of monomer i. In this

case, the analyticity of qi(r) follows from the repeated application of theorems II and III.

The analyticity of Q[w] is then a direct result of theorem III.

Note that, as mentioned in the main paper, the CL-FTSs can be mapped onto the stan-

dard GCM used for the SCFT calculations. This is done by performing the CL-FTSs with

χ replaced by χb in eq S5 and a replaced by ab in eq S31. Effective values for χ and a
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corresponding to the GCM are then calculated as described in ref 9.

Analytic Properties of the Hamiltonian. We now consider the analyticity of the

Hamiltonian, H[w]. Although Pc[w], defined in eq S3, is entire if H[w] is since f(z) = ecz

is an analytic function, the converse is not necessarily true. Referring to the expression for

H[w] in eq S4, the issue is whether lnZid[w] is also entire, since we have already established

that Hf [w] is entire. In the canonical ensemble,

lnZid = n ln(V Q[w]/vp)− ln(n!) (Canonical) (S32)

The presence of the natural logarithm requires the introduction of a branch cut, across which

the imaginary part of lnQ[w] and thus H[w] is discontinuous. Therefore, H[w] will not be

entire, even though Q[w] and Pc[w] are. On the other hand, in the grand-canonical ensemble,

lnZid = eµ/kBTV Q[w]/vp (Grand canonical) (S33)

is entire given that it is simply proportional to Q[w]. Hence, H[w] will be entire in the

grand-canonical ensemble.

For simplicity, the associated article assumed that H[w] is an analytic functional for all

w. Clearly, this is not true in the canonical ensemble, because of the branch cut required to

render lnQ[w] single-valued. We also note, however, that the above logic underlying the use

of the CL method to evaluate ensemble averages of analytic observables, O[w], only seems to

require that Pc[w] is entire, which is true in both ensembles. For instance, the deterministic

drift terms in the CL eqs S13 and S14 can be expressed as

Λ±(r) = − vp
Pc[w]

δPc[w]

δw±(r)
(S34)

which ensures that they are analytic and continuous everywhere that Pc[w] ̸= 0. The ar-

guments given in the accompanying article about the consequences of the analyticity and

9



translational invariance, though phrased as statements about H[w], could all have been

equally well phrased as statements about Pc[w], without changing any of our conclusions.

We thus believe that the justification for CL averages of analytic observables is valid in either

the canonical or grand-canonical ensemble.

The fact that H[w] requires a branch cut in the canonical ensemble does, however, imply

that treating H[w] as an observable is potentially problematic. If the value of Q[w] during a

CL-FTS in the canonical ensemble were to cross the branch cut of the logarithmic function,

which is generally placed along the negative part of the real axis, then the imaginary part

of lnQ[w], and hence of H[w]/nkBT , would change discontinuously by ±2π. However, the

fact that Q[w] is analytic and translationally invariant implies that it has the same positive

real value for the entire family of complex SCFT solutions, about which CL-FTSs fluctuate.

Provided that the fields do not fluctuate too far from these saddle-points, which is the case

in our CL-FTSs, Q[w] will remain far from the branch cut. Indeed, Figure 5b in the main

paper shows no evidence of a discontinuity in Im[H/nkBT ], at least while the CL-FTS is

behaving properly. Note that CL simulations of other systems with logarithmic terms have

encountered convergence problems when the argument of the logarithm (i.e., Q[w] in our

case) winds around the origin,10,11 but this too is not a problem in our CL-FTSs given that

Q[w] does not generally fluctuate far from the SCFT value.

SCFT Results

Here, we provide additional SCFT results for diblock copolymer melts to supplement the

ones in the main paper. In particular, Figure S1 provides analogous plots to Figure 2 for

the lamellar phase, but at a substantially stronger segregation. The top part of Figure S2

shows the fields of the real saddle-point for the cylindrical phase, while the bottom part

shows the complex saddle-point resulting from an imaginary translation in the x direction.

Figure S3 then shows the complex saddle-point resulting from an imaginary translation in

10



the y direction.
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Figure S1: Complex saddle-point solution for an AB diblock copolymer lamellar phase with
f = 0.5 and χN = 25, plotted for increasing imaginary distance, uz, from the real saddle-
point. The real and imaginary parts of w−(z) are shown in plots (a) and (b), respectively,
and the real and imaginary parts of w+(z) are shown in plots (c) and (d), respectively. The
insets show a reduced scale to capture the large field values for uz = 0.13R0.
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(a) (b)

w− (Real SCFT) w+ (Real SCFT)

(c) (d)

Re[w−] Re[w+]

(e) (f)

Im[w−] Im[w+]

Figure S2: Real SCFT solution for an AB diblock copolymer cylindrical phase with f = 0.4
and χN = 12. The fields w−(r) and w+(r) are plotted in (a) and (b), respectively. Complex
SCFT solution resulting from an imaginary displacement of u = 0.05R0î. The real parts of
w−(r) and w+(r) are shown in plots (c) and (d), respectively, and the imaginary parts are
shown in plots (e) and (f), respectively. The size of each image is 2.70R0 × 1.56R0.
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(a) (b)

Re[w−] Re[w+]

(c) (d)

Im[w−] Im[w+]

Figure S3: Complex SCFT solution resulting from an imaginary displacement of u = 0.05R0ĵ
from the real SCFT solution in Figure S2. The real parts of w−(r) and w+(r) are shown in
plots (a) and (b), respectively, and the imaginary parts are shown in plots (c) and (d),
respectively. The size of each figure is 2.70R0 × 1.56R0.

CL-FTS Results

Figure S4 shows CL-FTS results for the lamellar phase at different points along the line of

complex saddle-points. The position, uz, is controlled by adjusting the Cz parameter in eq 20

of the main paper (see Table I). The top graph confirms that translation cooling holds the

imaginary amplitude of w−(z), defined in eq 11 of the main paper, relatively constant. Note

that for Cz = 1.8 (gray curve), the CL-FTS crashed at τN ≈ 2.1× 105 due to the formation

of a hot spot. The bottom graph shows that Im[H] maintains a Gaussian distribution with

a mean of zero. The width of the distribution does, however, increase noticeably for Cz ≳ 1

presumably due to hot-spot-like fluctuations. Consistent with this, the Gaussian distribution

develops tails for Cz ≳ 1.5.
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Figure S4: CL-FTS results for an AB diblock copolymer lamellar phase with f = 0.5 and
χN = 12, where the Cz for translation cooling is adjusted to hold the system at different
positions, uz, along the line of complex saddle-points. Amplitudes of the imaginary part of
w−(r) are plotted as a function of simulation time in (a) and histograms of the imaginary
part of the Hamiltonian are plotted in (b).
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