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Abstract

The behavior of complex-Langevin field-theoretic simulations (CL-FTSs) of poly-
mer liquids is sensitive to the nature of saddle-point field configurations, which are so-
lutions of self-consistent field theory (SCFT). Recent work [Kang et al. Macromolecules
2024, 57, 3850] has shown that SCFT saddle-points with real fields are generally not
isolated solutions but rather members of a low-dimensional family of continuously-
connected complex-valued saddle-points sharing the same Hamiltonian value. We show
that this behavior is a natural consequence of the analyticity and translational in-
variance of the Hamiltonian, which together demand its invariance under generalized
translations by displacements with complex components. We also present a numerical
algorithm that minimizes the deleterious effects of this generalized symmetry on the

stability of CL-FTSs.
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Introduction

Several different types of polymer field theory play important roles in the study of polymeric
materials. The theories of interest here all relate the free energy of an interacting liquid to
the properties of a hypothetical gas of non-interacting polymers subjected to inhomogeneous
chemical potentials, referred to as fields, w. In self-consistent field theory (SCFT),'3 an
inhomogeneous structure (or phase) is represented by the field configuration corresponding
to a saddle-point of the associated Hamiltonian functional, H[w]. Field-theoretic simulation
(FTS) methods,*® on the other hand, sample an ensemble of fluctuating fields, and they
are able to handle complicated systems® ! that are beyond the capabilities of conventional
particle-based simulations.

FTS methods are based on an exact transformation of the partition function from an
integral over particle coordinates into a functional integral over fields. However, this trans-
formation leads to a complex-valued H|[w], and thus to a complex generalized Boltzmann
weight, P.[w] = exp(—H|w]/kpT). Straightforward methods of sampling the resulting distri-
bution are susceptible to a severe ‘sign problem’ arising from rapid fluctuations in both the
real and imaginary components of P.[w]. This sign problem can be effectively addressed by
adopting the complex-Langevin field-theoretic simulation (CL-FTS) method,!? in which the
fields are permitted to explore the entire complex domain and P.[w] is replaced by a non-
negative real-valued weight, P[w]. Provided a CL-FTS reaches a steady state, the resulting
ensemble averages should be equivalent to those of the original model.?®

The field-theoretic Hamiltonian for a polymeric system is typically expressed as

H[w] = —k}BT In Zid[w] + Hf[w] (1)

where H[w] is a simple quadratic functional of the fields and Zj4[w] is the partition function of
a hypothetical ideal gas of non-interacting polymers in which monomers of type 7 at position

r are subjected to a fluctuating complex field, w;(r). A CL-FTS can be performed in either



a canonical or grand-canonical statistical ensemble by simply evaluating Ziq[w] in the same
ensemble. In systems involving two monomer species, labeled A and B, the Hamiltonian
is a functional of two ‘species’ fields, wa(r) and wg(r). For convenience, however, H[w] is
generally expressed as a functional of two ‘exchange’ fields, defined as wy(r) = [wa(r) £
wp(r)] /2.1 Supporting Information presents explicit expressions for the Hamiltonian of a
diblock copolymer melt, as well as a detailed discussion of the analytic properties of P.[w]
and Hw].

When applied to a liquid of long chains, with a large invariant degree of polymerization N,
the fields of a CL-F'TS generally fluctuate about saddle-point configurations. Until recently,
it has generally been assumed that the relevant saddle-points in CL-FTSs are the usual ones
of SCFT involving real-valued monomer species fields. We hereafter refer to these as the
real-valued or real saddle-points. Furthermore, it has been assumed that these saddle-points
(also referred to as ‘physical’ saddle-points) are isolated from all other saddle-points. '

The assumption that the saddle-points are real-valued and isolated was recently shown to
be false by Kang, Yong, and Kim (KYK).!® They found that each real-valued saddle-point
is instead a member of a low-dimensional space of continuously-connected complex-valued
saddle-points that share a common real value of H[w]. As one analytically tractable example,
KYK derived a family of complex saddle-points for an interface separating semi-infinite
phases of immiscible A and B homopolymers in the strong-segregation limit. In particular,

16,17 and

they generalized the real-valued solution obtained by Helfand and Tagami (HT),
showed that it is part of a family of complex-valued saddle-points all corresponding to the
same real value of the Hamiltonian. KYK also presented numerical evidence for the existence
of analogous sets of complex saddle-points associated with SCF'T solutions for the lamellar,
cylindrical, bee spherical, and double-gyroid phases of diblock copolymer melts. Again, each
set of complex-valued saddle-points included the usual real-valued saddle-point as a special

case and exhibited the same real value for the Hamiltonian. Here, we provide a fundamental

explanation for this discovery by KYK.



Generalized Translations

The observed invariance of H[w] within each infinite set of saddle-points suggests that their
field configurations are related by an underlying symmetry. Furthermore, a strong clue to
the nature of this symmetry is provided by the complex-valued solution derived by KYK for
a symmetric polymer-polymer interface, and its relationship to the real-valued HT solution.
Both solutions describe an interface in an incompressible blend of A and B polymers of equal
degree of polymerization, N, and equal statistical segment length, a, with a Flory-Huggins
interaction parameter x, in the limit x N — oo. In the HT solution of this problem, the fields
acting on the A- and B-type species, wa(z) = wi(z) + w_(z) and wp(z) = wi(z) —w_(z),
respectively, are given in terms of

w_(z) = % tanh (2(zd—:20>> (2)

w(z) = % tanh? <2(Zd—_120>) (3)

where z denotes a coordinate normal to the interface and d; = 2a/+/6x is the width of the
interface. An unspecified parameter z; is included in eqs 2 and 3 to account for the fact
that the position of the interface is arbitrary. As a result of this translational invariance, the
HT solution generates a 1D family of real-valued saddle-points parameterized by the real
variable z.

The family of complex-valued solutions derived by KYK for this interface problem actu-
ally has an identical form to that of eqs 2 and 3. The only differences are that the parameter
2o is replaced by a purely-imaginary number, given in their notation by zy = —ifd;/2, while
the real function tanh(x) is replaced by its analytic continuation. This formal similarity sug-
gests an interpretation whereby the 1D family of solutions is generated through translations
of the real HT solution by imaginary displacements. Likewise, one could expect an even
larger family of solutions generated by complex displacements, where 2, assumes complex

values.



Generalized Translational Invariance. In order to generalize this interpretation, we
hereafter restrict our attention to models in which the Hamiltonian, H|w], is translationally
invariant. This condition holds for all the situations considered by KYK, as their models did
not include any external field that could explicitly distinguish different positions in space.
Consequently, their models yield real SCF'T solutions that can be translated by real displace-
ments without affecting the value of the Hamiltonian. Furthermore, we assume that H|[w] is
an analytic functional of the fields, which is required for the validity of CL simulations.

It is straightforward to show that an invariance under generalized ‘complex’ translations
is an automatic feature of any model with a H[w] that is both translationally invariant
and analytic. For a polymeric system involving M monomer species in a D-dimensional
space, H[w] is a complex-valued functional of complex-valued species fields, w;(r), for i = 1,
2,...,M, which are all functions of a position vector, r, with real Cartesian components, 7,
for p = 1,2,...,D. The assumption that H[w] is analytic implies the following: If infinitesimal
perturbations of the fields, Jw;(r), generate a perturbation of the Hamiltonian, § H, then field
perturbations of cdw;(r) must generate a Hamiltonian perturbation of ¢dH, for any complex
constant c¢. This statement is a straightforward generalization of how we define analyticity
for a function of a single variable. To characterize translational invariance, it is convenient
to consider an infinitesimal translation along some direction g by a distance év,. Such a

translation yields a corresponding perturbation of the field by

which, in turn, causes a perturbation of the Hamiltonian by

LIOEDY / Sw;(r) gf [(7“:; dr (5)

If H[w] is translationally invariant, then 0 H[w] = 0 for any perturbation of the above form. If

Hwl] is also analytic, then 0 H [w] = 0 for any infinitesimal complex displacement dv,,, because



dv, appears as a prefactor in the definition of dw;(r) given in eq 4. Thus, the combination of
analyticity and invariance under translations by infinitesimal real displacements necessarily
implies invariance under rigid translations by a broader class of ‘complex’ displacements.
Moreover, invariance under infinitesimal complex displacements implies invariance under
finite complex displacements, since these can be generated through the repeated application
of infinitesimal complex displacements.

The analysis by KYK focused entirely on the nature of saddle-point configurations. The
argument given above implies, however, that the invariance of H[w] is not a special property
of saddle-points. For any field configuration with components w;(r), which need not be a
saddle-point configuration, there exists an infinite set of field configurations with the same
value of H[w|, where each member of the set, w;(r—v), is related to the original configuration
by a complex displacement, v.

Fourier-Space Representation. The effect of translation upon a field by a real dis-
placement is easy to visualize. However, the numerical examples presented by KYK demon-
strate that the effect by an imaginary displacement is more complicated and difficult to
visualize. However, it does have a simple representation in Fourier space. Here and through-
out, we focus our attention on fields that satisfy periodic boundary conditions, which is the
typical case in SCFT calculations and CL-FTSs. For those systems defined in infinite do-
mains, such as the HT interface problem, we can approximate the domain by a large finite
volume with periodic boundaries and take the limit where one or more of the dimensions
extends to infinity.

Now consider a complex-valued periodic function, f(r), with a Fourier series representa-
tion

f) = & 37 e ©)

where the sum extends over all wavevectors k that are compatible with the periodic boundary

conditions (i.e., reciprocal lattice vectors). Using this Fourier representation, it is straight-



forward to show that a translation by the complex vector v creates a displaced function

g(r) = f(r—v) (7)

with Fourier components of

g(k) = f(k)e ™ (8)

The effect of translation by a real displacement v is to alter the phases of the Fourier
coefficients, while maintaining their absolute magnitudes. Consider instead a displacement
v = ju with purely imaginary components, where u is a real vector. The effect is to alter the
absolute magnitudes by increasing |§(k)| for wavevectors where k - u > 0 and by decreasing
|g(k)| for wavevectors where k - u < 0. Hence, an imaginary translation of a real-valued
function f(r) with f(—k) = f*(k) produces a complex-valued function ¢(r) with §(—k) #
7 (k).

Implications for CL-FTS. In complex-Langevin (CL) simulations, the fields take on
arbitrary complex values at each point in space, and are sampled by a diffusion process
defined by the CL equations.®® The form of the CL equations for AB-type systems is speci-
fied in the Supporting Information. CL sampling is expected to provide correct averages for
observables, provided the CL diffusion process exhibits ergodic dynamics, i.e., if the proba-
bility distribution approaches a unique stationary distribution, P[w], in the limit of infinite
time, 7 — 00.? This P[w] is a real-valued probability-density functional in a complex func-
tion space, and is distinct from the complex Boltzmann weight, P.[w]| = exp(—H[w]/kgT).
Unlike for P [w], there is no known explicit expression for Pw].

If the Hamiltonian, H[w], of a field-theoretic model is translationally invariant, then
so are the associated CL equations, because the deterministic forces in the CL equations
are functional derivatives of the Hamiltonian and the distribution of the random forces
is independent of position. Furthermore, if a CL model has an analytic Hamiltonian that

is invariant under generalized translations and the model exhibits ergodic dynamics, then



the associated equilibrium distribution, P[w], must also be invariant under all generalized
translations, as we will show below. Hence, in ergodic CL-FTSs of translationally-invariant
models, field configurations that are related by a rigid complex translation are visited with
equal frequency.

To prove the translational invariance of the equilibrium distribution, we consider the
Fokker-Planck equation for the time-dependent probability distribution P(7, [w]) generated
by a CL diffusion process. The Fokker-Planck equation takes the form dP/dr = F P, where
F' is a linear Fokker-Planck operator. Thus, stationary distributions are solutions of the
homogeneous equation, F'P = 0. Let T, denote a translation operator that applies a rigid
translation by a complex displacement v to a probability distribution functional. For any
translationally-invariant model with an analytic Hamiltonian, F' and 7T, must commute, such
that F'I,P = T, F P for any complex v and any distribution P. If P is stationary, it then
follows that P’ = T, P is also stationary, since F'I,P = T, FP = T,0 = 0. Assuming there
exists only one stationary distribution, P = P’ implying that P = T, P for any v. Hence,
the stationary distribution P[w] can only be unique if it is also translationally invariant.

Translationally-Invariant Analytic Observables. Results of CL-FTSs for observable
physical quantities are typically obtained from ensemble averages of operators, O[w], defined
as functionals of the fields. The theory underlying the CL method stipulates that valid
averages, (O[w]), can only be obtained for analytic functionals. The existence of translational
invariance further constrains the selection of quantities that can be unambiguously measured.

As a simple example, consider the process by which we identify the appearance of periodic
order. We know that an infinitely-long CL-FTS in a finite volume would, in principle, give
an uninformative homogeneous value for the average (w;(r)) of any field component. This is
true even for an ordered phase, because the ordered phase can drift in a manner that would
eventually wash out any inhomogeneities. The general lesson is that one should only measure
translationally-invariant observables when simulating a translationally-invariant system.

The emergence of translational order associated with a unit cell smaller than the simu-



lation box can effectively be identified in a translationally-invariant manner by examining
the behavior of the structure factor, particularly through the appearance of Bragg peaks.®
In CL-FTSs, the structure factor, which is the Fourier transform of a density correlation

function, is directly related to
L, . .
Gis(16) = o (i) iy (k) Q)

where w;(k) is the Fourier amplitude of w;(r), as defined in eq 6. Using the Fourier repre-
sentation of generalized translations provided in eq 8, it is straightforward to confirm that
the value of G;;(k) remains invariant under arbitrary generalized translations. This ensures
that field configurations related by generalized translations yield equal values for G;;(k) and
any physical quantity (such as the structure factor) that can be expressed as a function of
Gij(k).

The arguments presented above for the invariance of H[w] under generalized rigid trans-
lations rely solely on the existence of analyticity and translational invariance. Therefore,
these arguments also extend to any observable that exhibits both of these properties. If Ofw]
is a translationally-invariant analytic functional of a field configuration w, then the value
of O[w] will be identical for field configurations related by generalized rigid translations.
The invariance of G;j(k) under generalized translations is a special case of this principle,
as Gj;(k) can be shown to be a translationally-invariant analytic functional of w. Gener-
ally, a functional of w that can be expressed as a polynomial in field components must be
analytic. A product of Fourier components evaluated at wavevectors that add to zero is
translationally invariant, whereas one where the sum of the wavevectors is not equal to zero
is not. Consequently, G;;(k) is both analytic and translationally invariant. The Leibler ¥ free-
energy functional derived for block copolymer melts is another example that satisfies these
criteria for analyticity and translational invariance. However, functionals that involve com-

plex conjugation or absolute magnitude operations are generally not analytic. For example,
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|w;(k)|™ with a non-negative integer n is not analytic, whereas [w;(k)w;(—k)]" is analytic. In
CL-FTSs of translationally-invariant systems, it is therefore only safe to compute averages
of translationally-invariant analytic functionals of the fields. Such ‘allowed’ observables are

guaranteed to yield equal values for states related by generalized translations.

Self-Consistent Field Theory

In this section, SCFT is used to illustrate the effect of translation by imaginary displace-
ments (i.e., r — r — iu) on the interface of an A/B homopolymer blend and the lamellar
and cylindrical phases of an AB diblock copolymer melt. The SCFT calculations utilize the
standard Gaussian chain model (GCM), treating the systems as incompressible melts of con-
tinuous elastic threads subject to Flory-Huggins interactions.! The SCFT calculations are
executed using the pseudospectral method,?° facilitating the straightforward application of
imaginary translations using eq 8. When an imaginary translation of v = 4u is applied in

ku simplifying the process to multipli-

Fourier space, the fields wy (k) transform to wy(k)e
cation by appropriate exponential factors. Its implementation on equally-spaced Cartesian
grids is straightforward, although complex-to-complex Fast Fourier Transforms (FFTs) are
now employed for the complex SCFT calculation. As usual, the self-consistency conditions
for the fields are solved iteratively, but here we continue the iterations until the relative
change in the field drops below 107 to ensure precise saddle-point solutions. *?
Homopolymer Interface. We begin by examining the A/B interface of the symmetric
homopolymer blend at YN = 40. The one-dimensional SCFT calculation is conducted in the
canonical ensemble for a system of size L. = 5R,, where Ry = aN'/?, employing periodic
boundary conditions. To obtain high accuracy, we use a fine spatial grid with m, = 2000
points and discretize the polymer contour with steps of ds = 0.001. Once the real SCFT

solution is obtained, we apply an imaginary translation, transforming the fields wy(z) to

wx(z — iu,). For u, < 0.0015R,, the field transformation yields a nearly perfect complex
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saddle-point, where our self-consistency threshold is achieved after just one iteration. How-
ever, as the imaginary translation increases, it becomes necessary to apply more and more
iterations until eventually they fail to converge. The failure is attributed to numerical errors
introduced by exponentially growing multiplication factors. For instance, when a displace-
ment of du, = 0.01R, is applied for m, = 2000, the first harmonic for positive k, grows
by a factor of e?™"=/L= ~ 1.0126. However, the second harmonic increases by 1.01262, and
ultimately the 999th harmonic increases by 2.831 x 10°. Note that the final 1000th harmonic
is held constant, given that it does not depend on the sign of k.. We find that this minimizes
the numerical inaccuracy arising from the finite grid spacing.

Considering the size of the multiplication factors, it is not surprising that the SCFT
solution becomes inaccurate for large imaginary displacements. To stay within the family of
complex saddle-points, we apply small successive translations of du, = 0.01 Ry and adjust the
fields to satisfy the saddle-point conditions after each translation. Figure 1 shows the pro-
gression as the total distance from the real saddle-point, u,, increases. Initially, convergence
remains excellent, requiring only a few iterations to maintain self-consistency. However, as the
total translation increases, more iterations are needed. The successive translation approach
proves successful up to u, = 0.08 Ry, but beyond that the iteration fails to converge. Notably,
this distance is approaching the point u, = 7d;/4, where both the real and imaginary parts
of the strong-segregation solution

w(2) ~ %tanh (2(25—[2“)) (10)

diverge at the interface. This rapid growth of the fields is readily apparent in Figure 1.
Diblock Copolymer Melt. We now turn our attention to the lamellar phase of an

AB diblock copolymer melt at an A fraction of f = 0.5 and a segregation of YN = 12. In

this case, the box size is set to the equilibrium lamellar period, L, = Do, = 1.40R,, and

the number of grid points is set to m, = 700. For the real solution, the composition field
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Figure 1: Complex saddle-point solution for an A/B homopolymer interface with yN =
40, plotted for increasing imaginary distance, u,, from the real saddle-point. The real and
imaginary parts of w_(z) are shown in plots (a) and (b), respectively, and the real and
imaginary parts of w, (z) are shown in plots (c¢) and (d), respectively. The insets show a
reduced scale to capture the large field values for u, = 0.08 Ry.
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w_(z) is dominated by the first harmonic, as depicted in Figure 2a. Conversely, the pressure
field w, (z), shown in Figure 2¢, is dominated by a much smaller second harmonic. This is
a consequence of the A-B symmetry for f = 0.5. Figure 2 illustrates the result of successive
imaginary translations by du, = 0.01Ry, starting from the real saddle-point. As required,

the real value of the Hamiltonian is unaffected by the translations.

IP{e[2w+/XN]
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~ ~
| +
3 3
) Q,
(_‘
=2 fu, = 0.00R, 1 '—E<
u, = 0.10Ry -
u, = 0.20Ry
u, = 0.30Ry
4 i \ ‘
-0.5 0 0.5

Figure 2: Complex saddle-point solution for an AB diblock copolymer lamellar phase with
f =0.5and YN = 12, plotted for increasing imaginary distance, u,, from the real saddle-
point. The real and imaginary parts of w_(z) are shown in plots (a) and (b), respectively,
and the real and imaginary parts of wy(z) are shown in plots (c¢) and (d), respectively. The
insets show a reduced scale to capture the large field values for u, = 0.30R,.

As before, only a few iterations are required to maintain the self-consistent field equations
in the vicinity of the real saddle-point. In this regime, the segregation is weak and therefore

the composition field w_(z) is well approximated by

w_(z) ~ Acos(k™(z — zo — iuy))

= A|cosh(k™u,) cos(k™(z — 29)) + isinh(k™u,) sin(k*(z — 2¢))] (11)
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where k* = 21/D,,. Note that we set the real part of the translation to z; = 0, such that
Re[w_(z)] and Im[w_(z)] are even and odd functions of z, respectively. As u, increases, the
growth of higher harmonics causes the segregation to increase, which eventually invalidates
the first-harmonic approximation in eq 11 and ultimately prevents the field iterations from
converging for displacements beyond u, = 0.30Ry. In the previous study, KYK presented
saddle-points for a more segregated case, f = 0.5 and x N = 25. The results for this parameter
set are shown in Figure S1 of the Supporting Information, but this time parameterized by
the imaginary displacement, u,. Due to the inherently larger harmonics, we were only able
to translate the real saddle-point up to u, = 0.13Ry.

The dimensionality of a family of complex saddle-points generally matches the dimen-
sionality of the block copolymer morphology. To illustrate this, we consider the effect of
imaginary displacements on a cylindrical morphology at f = 0.4 and xN = 12. For this
calculation, we utilize spatial grids with m, = 260 and m, = 150, and we set ds = 0.01.
Images of its real saddle-point are displayed in Figure S2 of the Supporting Information.
Given the 2D periodicity of the morphology, the translations now depend on direction as
well as distance. To demonstrate the translation for a direction not aligned with any par-
ticular symmetry, we select du = (0.00Gi + 0.00Sj)Rg with a magnitude of du = 0.01R,.
Again, we apply successive translations of du and resolve the self-consistent conditions af-
ter each step. We achieved a maximum displacement of |u| = 0.32R, before the fields fail
to converge. The result for |u| = 0.05R, is depicted in Figure 3. Additional examples for
translations in the z- and y-directions are shown in Figures S2 and S3, respectively, of the
Supporting Information. They experience similar translation limits of |u| = 0.31Ry.

The real saddle-points considered here, as well as those examined by KYK, all possess
inversion symmetry, w;(—r) = w;(r). Under imaginary translations, this symmetry gener-
alizes to w;(—r) = w}(r). For this reason, KYK referred to their complex saddle-points as
Hermitian. However, we now have a better understanding of the nature of this symmetry.

The Hermitian property is not general and, in fact, it will not occur for morphologies without
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Figure 3: Complex SCFT solution for an AB diblock copolymer cylindrical phase with f = 0.4
and YN = 12, plotted for an imaginary displacement of u = (0.03i + 0.04j)R0 from the real
saddle-point. The real parts of w_(r) and w, (r) are shown in plots (a) and (b), respectively,
and the imaginary parts are shown in plots (c¢) and (d), respectively. The size of each image
is 2.70 Ry x 1.56 Ry.

inversion symmetry, such as the single-gyroid phase. 2?2

Complex-Langevin Field-Theoretic Simulations

We now illustrate the consequences of generalized translations on CL-FTSs of AB diblock
copolymer melts, where the fields are permitted to explore the entire complex space.*
The CL-FTSs are implemented as described in ref 23. In short, the diblock copolymers are
modeled as discrete chains each with N = 90 point-like beads connected by harmonic springs
with a natural length of a;. A fraction f of the beads are type A while the remaining beads
are type B. The A and B beads are subject to pairwise contact interactions of the standard
Flory-Huggins type, where x; controls the degree of immiscibility. The melt is compressible
with a Helfand compressibility factor of ¢ = 1,'” which allows the local monomer density
to vary slightly from po = nN/V, where n is the total number of molecules and V' is the

volume of the system. Note that ref 23 defined their fields as potential energies per monomer,
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whereas here we define them as potential energies per chain.

Although the CL-FTSs are performed on a different model from that of the SCF'T calcula-
tions, we define effective parameters, a and y, using a Morse calibration. ?*2% This calibration
maps the simulation results onto the standard GCM, which has the added benefit of remov-
ing an ultraviolet divergence that occurs in F'T'Ss involving contact forces. Our current study
is conducted at a high invariant polymerization index of N = a®p2N = 10°, where the
UV divergence is relatively weak. Therefore, we approximate the effective segment length as
a ~ ap and the effective Flory-Huggins parameter by the linear approximation x & zsXs,
where the expression for the proportionality factor, z.,, can be found in ref 23.

Results. For simplicity, we limit our attention to the lamellar phase of symmetric AB
diblock copolymers (f = 0.5), where the family of complex saddle-points is 1D. The CL-FTSs
are performed on three lamellae oriented normal to the z direction in a cubic simulation box
with periodic boundaries. The box size is set to L, = 4.2Ry, and the fields are represented
on a grid with m, = 32 nodes in each dimension p. For the resulting grid resolution, 2, =
0.985. We select the same value YN = 12 examined by SCFT in the preceding section. At
this relatively weak segregation, the pressure field, w, (z), is approximately zero and the

composition field can be approximated by the first harmonic

w_(r) ~ Agcos(k™(z — zgr)) + 1A cos(k™(z — z1)) (12)

where Ag, Ay, zg, and z; are real-valued. Although imaginary translations could potentially
cause the higher harmonics to become significant, we find that the CL-FTSs always break
down before this happens.

Figure 4 plots the amplitudes, Az and A;, in the upper graph and the relative phase
angle of the real and imaginary parts, § = k*(z; — zg), in the lower graph from a CL-FTS
of duration 7N = 10° initialized with an equilibrated configuration from an L-FTS? (i.e.,

A; =0 at 7 =0). Without loss of generality, we choose Agr > 0 and 0 < 6 < 7. Referring to
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Figure 4: (a) Amplitudes of the first harmonics of w_(r) and (b) phase angle between the
harmonics plotted as a function of simulation time, 7, during a CL-F'TS of a lamellar phase

for yN =12 and N = 10°.
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eq 11, we should expect the real and imaginary amplitudes to satisfy A% — A% ~ A?  which
is confirmed by the gray curve in Figure 4a. Likewise, § ~ 7/2 whenever A; develops an
appreciable magnitude as illustrated in Figure 4b. Thus, the CL-FTS is clearly fluctuating

about the line of complex saddle-points illustrated in Figure 2.
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Figure 5: (a) Real and (b) imaginary parts of the Hamiltonian, H, sampled during the same
CL-FTS from Figure 4. The large fluctuations for 7N > 8.2 x 10° are due to the formation
of a hot spot.

As evident from Figure 4, the system moves slowly along the line of complex saddle-
points, so much so that there is no hope of thoroughly sampling the full space. Fortunately
though, the probability distribution for the complexified fields, P[w], and the observables of
interest are translationally invariant, allowing for accurate averages without doing so. Figure

5 plots the real and imaginary parts of the Hamiltonian, H, as a function of simulation
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time, 7. Notably, the distribution of H appears uncorrelated with the position along the
saddle-point line (we will confirm this later), at least for the initial part of the CL-FTS.
At 7N = 8.2 x 10°, however, a localized ‘hot spot’ emerges where the fields attain extreme
values, primarily affecting the imaginary part of H but also influencing the real part to
some extent. The occurrence of hot spots has been documented previously in refs 14 and
23. They are found to create tails in the distributions of observables, causing moments of
the distributions to diverge.?3 This behavior is not new to CL simulations and is regarded
as a failure of the method.?” 3" Nevertheless, the distributions remain well-behaved prior
to the hot spot. In this case, Figure 6 confirms that the real and imaginary parts of H
before TN = 8.2 x 10° are accurately described by Gaussian distributions. The real part
has a mean of Re[(H) /nkgT| = 3.4279 and a standard deviation of or/nkgT = 0.00248,
while the imaginary part is consistent with a mean of zero and a standard deviation of
or/nkgT = 0.00047. Note that the imaginary part of any observable must average to zero,
and indeed it always does when the CL-FTS is behaving properly.

Translation Cooling. Hot spots generally form when the system deviates significantly
from the real saddle-point.?? Indeed, the hot spot at 7N = 8.2 x 10° emerged when |A;|
reached its most extreme value. There is also a small spike in Im[H| suggesting a hot spot
nearly formed at 7N = 5.4 x 10°, where |A;| acquired a similarly large value. The failure
of CL simulations in quantum chromodynamics (QQCD) occurs in much the same way due
to a gauge invariance.®*33 In QCD, this is remedied by the continuous application of gauge
transformations during the simulation, a method referred to as ‘gauge cooling’.3*35 Inspired
by this, we devise an analogous method, which we refer to as ‘translation cooling’, where small
imaginary translations of du are repeatedly applied to w_(r) and w, (r) so as to shift the
system towards the real saddle-point. As illustrated previously, the equilibrium probability
distribution, Plw], should be invariant under complex translations, and therefore we expect
the ensemble average of any translationally-invariant observable to be unaffected by the

imaginary translations, just as it would be by real translations.
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Figure 6: Histograms of the (a) real and (b) imaginary parts of the Hamiltonian, H, in
CL-FTSs with (blue curves) and without (red curves) translation cooling, plotted on a log-
arithmic scale. The dashed curves are fits to Gaussian distributions.
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Given that the imaginary part of w_(r) is zero at the real saddle-point, we design the

translation cooling to minimize

I'(5u) = / . (r — i) — w* (r — iu)Pdr (13)
_ 1 ek-5uuA) _ 6—k~6uw* C1.)12
g [ 1 ) (KK (14)
__2 20Uy 2 constan
_(2ﬂ)3/| _(k)|*dk + constant (15)

where eq 15 is arrived at using Parseval’s theorem and the relation in eq 8. It follows that

the gradient of I'(du) is

or 1

- k 2k-du b (k Qdk 16
S5~ ) i) (16)
~ B+ > Judu, (17)
V=2x,Y,2
where
1 - 2

Bu=5— [ kuld-(k)|"dk (18)

1
T =5 [ i 1) P (19)

e

Provided that the system remains in close proximity to the real saddle-point, the imaginary

translation required to minimize I'(du) should be well approximated by

fu=-J'B (20)

Note that for the special case of a 1D lamellar phase, it is sufficient to apply the component
du, normal to the lamellae. However, for the sake of algorithmic generality, we apply the full
vector ou.

The performance of this method is relatively insensitive to the frequency at which the
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translations are applied. Therefore, to reduce the computational cost, they are not applied
at every Langevin step, but nevertheless they are applied frequently. That way the system
never drifts far from the real saddle-point and the magnitude of du remains small as assumed
by the linearization in eq 17. Having said that, there is no need for the gradient of I'(du)
to be accurately zero. All we require is that du generally moves the system closer to rather
than further from the real saddle-point.

Figure 7 presents results from a CL-FTS similar to that of Figure 4, but with imagi-
nary translations applied at intervals of A7 N = 5. With translation cooling, the imaginary
component of the field, A;, now remains close to zero, implying that the system is fluctuat-
ing about the real saddle-point. The distribution of H with translation cooling (red curve)
plotted in Figure 6 is indistinguishable from the previous distribution without cooling (blue
curve), to within the level of the statistical uncertainty. The difference now is that we can

run the CL-FTS indefinitely without the formation of hot spots.
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Figure 7: Analogous plot to Figure 4a, but with translation cooling.

We can, likewise, investigate different positions along the family of complex saddle-points,

corresponding to nonzero gradients of C, = 9I'/du,,, by performing translations of

Su=J1C-B) (21)
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The amplitude of the fluctuations is similar, but the averages of A; are now shifted (see
Supporting Information) as are the averages of Ag. Table 1 lists the averages for several
different values of C.,. The fact that (Ag)> — (A;)* remains approximately constant con-
firms that the system is fluctuating about a complex saddle-point. The total distance of the
complex saddle-point from the real one can be estimated by

u, = %tanhl (%) (22)

However, there is a limited range of over which the simulations remain stable. If we set
C, 2 1.8, the system starts to form hot spots.

In the absence of hot spots, the CL-FTS behaves well as evident by the fact that the
distribution of H remains Gaussian. Table 2 lists the mean and standard deviations of H at
different points along the line of saddle-points. Interestingly, (H) maintains a constant real
value across the entire line. Even the width of the Gaussians is constant for the real part
of H and nearly constant for the imaginary part. Admittedly, there is a small but notice-
able increase in o; as the imaginary distance from the real saddle-point, wu,, increases (see
Supporting Information). We attribute this to hot-spot-like fluctuations, which presumably
become more frequent as the system moves away from the real saddle-point. Recall that the

hot spots have a more pronounced effect on the imaginary part of H than the real part.

Table 1: Average Amplitudes of the Real and Imaginary Parts of the Composition
Field and Imaginary Distance to the Real Saddle-Point.

C.  (An)  {A) AR (A =

0.0 4.115 0.000 4.115 0.000
0.3 4.126 0.312 4.114 0.017
0.6 4.161 0.617 4.115 0.033
0.9 4.213 0.907 4.114 0.049
1.2 4.281 1.185 4.113 0.063
1.5 4.361 1.443 4.115 0.077

The distribution of the imaginary translations normal to the lamellae, du,, required to
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Table 2: Mean and Standard Deviations of the Real and Imaginary Parts of the
Hamiltonian at Different Positions Along the Line of Complex Saddle-Points.

C Re[(H)] IR Im[(H)] ar
2 nkgT nkgT nkgT nkgT

0.0 3.4279 0.00249 0.0000 0.00046
0.3 3.4280 0.00250 0.0000 0.00046
0.6 3.4279 0.00248 0.0000 0.00047
0.9 3.4280 0.00248 0.0000 0.00049
1.2 3.4279 0.00249 0.0000 0.00050
1.5 3.4280 0.00418 0.0000 0.00092

maintain fixed positions along the line of complex saddle-points is plotted in Figure 8. In all
cases, the distribution is centered about du, = 0, indicating there is no effective force driving
the system in either direction along the line. Consequently, without the translation cooling,
the system would simply diffuse along the line of complex saddle-points. Interestingly, the
width of the distribution, and thus the diffusion constant, increases as the system moves
farther from real saddle-point. In any case, the fact that the motion is naturally diffusive
means that if the translation cooling were to be turned off then the system would eventually

reach a point where hot spots form.
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Figure 8: Distribution of the imaginary translations perpendicular to the lamellae, du,, re-
quired to maintain different positions along the line of complex saddle-points.

In our study with YN = 12 and N = 105, CL-FTSs remain stable with respect to the

formation of hot spots as long as |u,| < 0.07Ry. Unfortunately, this stability region mono-
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tonically shrinks and eventually vanishes as y/N approaches the order-disorder transition,
and hot spots form even with translation cooling. The problem is further exacerbated as
N is reduced. We thus envision translation cooling as being used in conjunction with other
methods of improving stability. We note that Delaney and Fredrickson® were able to run
stable CL-FTSs down to N ~ 10* with the use of nonzero-range interactions, although the

range was unrealistically large. It is conceivable that a more reasonable range would suffice

if a nonzero-range interaction was supplemented with translation cooling.

Summary

In SCFT, the phases of a polymeric system are associated with real-valued saddle-points of
its field-theoretic Hamiltonian, H[w]. Kang, Yong, and Kim'® have recently found a number
of examples where the real-valued saddle-points are connected to continuous families of
complex-valued saddle-points that share the same real value of H[w]. Here, we showed that
this behavior is general to all systems with translational symmetry, such as the bulk phases
of a block copolymer melt. Assuming that H[w] is an analytic functional of the fields, w;(r),
it immediately follows that any system that is invariant under normal translations (i.e.,
r — r — v for real v) must also be invariant under translation by a complex displacement.
As such, a family of complex-valued saddle-points can be generated by applying imaginary
translations (i.e., v = du) to the real saddle-point. As usual, translations have no effect
in directions where w;(r) remains constant, and thus the dimensionality of the continuous
family is equal to the number of independent directions in which w;(r) varies. Here, we
have demonstrated this for the 1D homopolymer-homopolymer interface, the 1D diblock
copolymer lamellar phase, and the 2D diblock copolymer cylindrical phase.

Although the complex saddle-points are unphysical SCFT solutions, they nevertheless
have profound implications for CL-FTSs. Rather than fluctuating about isolated real saddle-

points, the fields in a CL-FTS fluctuate about a continuous family of complex saddle-points
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emanating from a real saddle-point. Here, we demonstrated this for the 1D diblock copolymer
lamellar phase. We find that there is no effective force and therefore the system generally
diffuses along the line of saddle-points, although with a diffusion constant that increases with
|u|, the imaginary distance from the real saddle-point.

Our SCFT calculations demonstrate that the fields develop extreme values as |u| becomes
large relative to the width of the A /B interfaces. Consequently, the CL-FTSs will fail without
anything to prevent diffusion to large |u|. The failure generally occurs via the spontaneous
formation of delta-like ‘hot spots’, as observed previously. 1423 However, in many cases, we are
able to remedy the problem with translation cooling, where small imaginary translations,
ou, are continuously applied so as to maintain close proximity to the real saddle-point.
Unfortunately, the propensity to form hot spots becomes so great near the order-disorder
transition and at low IV that the CL-FTSs often fail even with the use of translation cooling.
Nevertheless, there is good reason to hope that translation cooling could be combined with
appropriate modifications to the polymeric model, such as nonzero-range interactions, to

produce robust CL-FTSs.

Supporting Information

Field-theoretic model for a diblock copolymer melt, discussion regarding the analyticity of
polymer field theory, additional SCFT examples for the lamellar and cylindrical phases of

diblock copolymer melts, and CL-FTS results for translation cooling with C, # 0.
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Supporting Information: Complex Implications of

Translational Invariance in Polymer Field Theory
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E-mail: mwmatsen@uwaterloo.ca; morse012@umn.edu

Model and Notation

To clarify our notation and conventions, we discuss the construction of a field-theoretic
Hamiltonian for a system of polymers involving two monomer types, denoted by A and B.

This generally starts from a particle-based model with a potential energy of the form
U= Ubond + Uint (Sl)

where Upong and Uiy represent the bonded and non-bonded interactions, respectively. For a

compressible system with contact forces, one usually chooses!?

U = ko [ [pr<r>pB<r>+§c (pa(X) + ps(r) — po]? | dr (52)

where p;(r) denotes the concentration of i-type monomers at position r, v is an energetically-
preferred monomer volume, py = 1/v, y is the Flory-Huggins interaction parameter, and ¢
is a dimensionless compression modulus. The numerical examples in the associated paper
considered binary homopolymer blends and diblock copolymer melts. For concreteness, we
focus here on melts of n AB diblock copolymers in a region of volume V', where each diblock

contains N monomers of which a fraction f forms the A block.
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Field-Theoretic Hamiltonian. Use of Hubbard-Stratonovich transformations to de-
fine a field-theoretic representation of the partition function, Z, and adoption of complex-
Langevin sampling yields a polymer field theory in which physical quantities are related
to averages over configurations of two fields, wa(r) and wg(r). Details can be found in ref
2. Here, we defined our fields as dimensionless potential energies per chain, such that the
monomers of type ¢ in a chain of polymerization N each contribute a potential energy of
w;(r)/N. Note that this is slightly different from ref 2, where their fields, W;(r) = w;(r)/N,
were defined as potential energies per monomer.

The field-theoretic representation of Z involves a generalized Boltzmann weight 3

P.Jw] = e Hlwl/ksT (S3)

defined by a field-theoretic Hamiltonian of the form

Hlw] = —kpT In Zig[w] + Hi[w] (S4)

The H¢[w] contribution is generally a quadratic functional of the fields. For the compressible

model with local interactions in eq S2,

_ kgT w? (r) w? (r) xN
Hifu] = 22 /[ et ORI o O (35)
where v, = Nv is a volume per polymer chain and
w(r) = [wa(r) £ wp(r)]/2 (S6)

The Zig[w] in eq S4 is the partition function of a hypothetical ideal gas with a potential

energy

kT
led — Ubond + L Z /pz wz (87)

i=A,B



evaluated in the same statistical ensemble used to describe the interacting system. In the

canonical ensemble, it takes the form
1
Ziq|w] = E(VQ[w]/vp)" (Canonical) (S8)

and in the grand-canonical ensemble, it is given by

o0

Zulw] = 3 e M (V Qlu]fuy)"

= exp (e’“‘/ TV Qlw] /vy (Grand canonical) (S9)

where g is the polymer chemical potential. The functional Q[w] represents the partition
function for a single polymer chain in which the A and B monomers are acted upon by the

wa(r) and wp(r) fields, respectively. Explicit expressions for Qw] will be provided later.

Complex-Langevin (CL) Sampling. In CL sampling, the w_(r) and w.(r) fields are
allowed to explore arbitrary complex values, and they evolve under the CL equations. The

discrete version of the CL equations for fields defined on a regular grid is given by

wgﬂﬂ)(r) _ w(_k)(r) . A(_’“)(r) 67N 4+ N(0,0) (510)
W (1) = w® (1) + AP (£) 57N +iN (0, 0) (S11)

where wf)(r) are the field values at the k’th time step for grid position r, 67 = 7+ — 7 (k)

is the size of the k’th time step, Agf)(r) are deterministic forcing terms evaluated at the k’th
time step, and A (0, ) denotes a real-valued random number from a Gaussian distribution

with zero mean and a variance of
Up

2
o° =20TN
V::ell

(S12)



where Vo is the volume per spatial grid point. The deterministic drift terms are given by

vy 0H[w] 2w_(r)
A_(r) = TpT 5w (r) ¢—(r) + N (513)
vy 0H[w] 2w, (r)
Ai(r) = FsT ow, (v) ¢4(r) —1— O+ 20N (514)
where
¢+(r) = pa(r) £ ¢p(r) (S15)

Here, ¢;(r) is a complex-valued generalization of the volume fraction of ¢ € {A, B} monomers

in the ideal gas reference system. In the canonical ensemble,

¢i(r) = —V%C?I[_Z)U] (Canonical) (516)
and in the grand-canonical ensemble,
¢i(r) = —Ve”/kBT%[(wr]) (Grand canonical) (S17)

For a system with an analytic, translationally-invariant Hamiltonian, H[w|, the Fokker-
Planck operator corresponding to the CL eqs S10 and S11 will be invariant under generalized
translations, i.e., under rigid translations of the w field configuration by any complex displace-
ment. This is because the AL (r) terms (i.e., deterministic forces) are expressed as functional
derivatives of H[w], and therefore they also undergo generalized translations. Furthermore,
the random forces are chosen independently at each grid point from the same Gaussian dis-
tribution, and therefore the coefficients of the diffusive terms in the Fokker-Planck operator

are independent of position and thus unaffected by generalized translations.



Demonstrating Analyticity

In the polymer field theory (before the complexification of the fields), the ensemble average

of an observable O[w] is defined as a ratio of contour integrals,

| Olw]P.[w] Dw
Ol = b ] Dw

(S18)

For AB-type systems, w_(r) is real and w,(r) is imaginary along the contour. The theory
underlying the CL-FTS method attempts to show that this average is equal to the time-
average of Ofw] generated by the CL sampling process in the limit of infinite time (i.e., 7 —
00).%? Specifically, Gausterer and Lee®” have concluded that if the CL process is ergodic (i.e.,
if averages generated by CL sampling converge to unique limits and the associated probability
distribution, P[w], converges to a unique steady-state solution) and if P.[w] and OJw] are
both entire analytic functions (i.e., are differentiable throughout the complex function space,
without branch cuts or poles), then the CL time average of O[w] will converge to that of eq
S18. Note that the reasoning used to reach this conclusion relies on the analyticity of P.[w]
rather than H[w]. This distinction is relevant because we find below that, in the canonical

ensemble, P.[w] is entire while H[w] is not.

Properties of Analyticity. We use the notation A[w] to indicate that A is a complex-
valued functional of w. Suppose 0A is the infinitesimal perturbation of A[w] induced by
a perturbation dw of field w, defined by specifying an infinitesimal perturbation for each
field component, dw;(r), for i = 1,..., M. If ¢cdA equals the perturbation of A induced by
a perturbation cdw for any finite complex constant ¢, then A[w| is an analytic functional.

Using this property, one can easily confirm the following theorems:

(I) If Aw] is equal to a sum
Alw] = bBlw] + ¢Cw] (519)

in which Bw] and C[w] are analytic functionals while b and ¢ are complex constants,
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then Afw] is also an analytic functional.

(IT) If A[w] is equal to a product
Alw] = Blw]Cw] (520)

of two analytic functionals B[w] and Cfw], then AJw] is again analytic.

(ITI) If Afw] is defined as an integral

Alwl = [ Fwe) dr (s21)

in which f(w(r)) = f(wi(r),...,wp(r)) is a scalar complex-valued analytic function
of the multi-component field, and the integral is taken over all r within a periodic

domain, then A[w] is an analytic functional.

(IV) If AJw] is defined as
Alw] = f(B[w]) (522)

where f(z) is an analytic complex-valued function of a complex argument z and B|w]

is an analytic functional of w, then Afw] is an analytic functional of w.

We will also need the fact that a power (monomial) function f(z) = 2z with a non-negative
integer exponent is analytic in z throughout the complex plane, as is any sum of such

cz

monomials (i.e., any polynomial), and as is the exponential function f(z) = e with any

complex constant c.

Generalized Boltzmann Weight. The generalized Boltzmann weight can be expressed,
using eq S4, as

P.[w] = Zig|w] e~ Hilwl/ksT (S23)

Referring to eq S5, H¢[w] is a spatial integral of a quadratic polynomial in the fields, and is

thus entire by theorem II1. It follows that e~ [*I/k5T i5 also entire by theorem IV. Expressions



for Zig[w] are given in eqs S8 and S9 for the canonical and grand-canonical ensembles,
respectively. In both cases, Ziq[w] is an analytic function of Q[w], and therefore, by theorem
IV, Ziqw] is entire if Q[w] is entire. From this, we conclude from theorem II that P.[w] will

be entire if Q[w] is entire.

Ideal Gas of Continuous Chains. Our SCFT calculations were performed using the
standard Gaussian chain model (GCM),® where the system is treated as an incompressible
melt (( — o0) of continuous Gaussian chains. The single-chain partition function for a

continuous chain is given by

Qlul = / o(r, 1)dr (524)

where ¢(r, s) is the solution of the modified diffusion equation (MDE)

dalr,s) _ [aQN

s 6 AV wa(s)(r)} q(r,s) (S25)

with an initial condition ¢(r,0) = 1. Here, s € [0, 1] is a contour coordinate along the chain
and «(s) denotes the monomer type at position s. For a diblock copolymer, a(s) = A if
s € [0, f] and a(s) = B if s € [f,1]. For simplicity, eq 525 assumes that the A and B
monomers have an equal statistical segment length, denoted by a.

By theorem III, it follows that Q[w] will be analytic provided ¢(r, s) is analytic. Thus,
we need to consider how the solution to the MDE changes under an infinitesimal change in
w. Suppose that ¢(®(r, s) is the solution of the MDE in the presence of a multi-component

field, wgo) (r), such that
— - —V’+ w(o))(r) ¢9(r,s) =0 (526)

Let ¢(r, s) denote the solution of the MDE for infinitesimal perturbations of the field com-



ponents, w;(r), such that
wi(r) = wi”(r) + dw;(r) (S27)

q(r,s) = ¢ (r, 5) + dq(r, 5) (528)

Substituting these definitions into the MDE and retaining terms up to first order in dw, we

find that the perturbation dg induced by the perturbation dw must satisfy

8 CL2NV2 1 w(g)

% o 6 a(s) (I‘) 5(](1', S) - q(O) (I', 8)6wa(s) (I') <S29>

Notice that eq S29 is linear in both d¢ and dw. Therefore, if dqg is the change in ¢ induced
by dw, then cdq is the change in ¢ induced by cow, where ¢ is any finite complex constant.

This observation demonstrates that ¢(r, s) is an analytic functional of the fields.

Ideal Gas of Discrete Chains. Our CL-FTSs treated the system as a compressible
melt (( = 1) of discrete Gaussian chains with N = 90 monomers per chain, labeled i =

1,2,3,..., N. In this model,

Qlw] = % / g (r)dr (830)

where gy (r) is obtained by iterating the convolution integral

3/2
G (r) = em (i) [t~ Rje SR ($31)

2ma?

starting from q;(r) = e *=1™)/N_ Here, o; denotes the type (A or B) of monomer i. In this
case, the analyticity of ¢;(r) follows from the repeated application of theorems II and III.
The analyticity of Q[w] is then a direct result of theorem III.

Note that, as mentioned in the main paper, the CL-FTSs can be mapped onto the stan-
dard GCM used for the SCF'T calculations. This is done by performing the CL-FTSs with

X replaced by x; in eq S5 and a replaced by a;, in eq S31. Effective values for y and a



corresponding to the GCM are then calculated as described in ref 9.

Analytic Properties of the Hamiltonian. We now consider the analyticity of the
Hamiltonian, H[w]. Although P.[w], defined in eq S3, is entire if H[w]| is since f(z) = e**
is an analytic function, the converse is not necessarily true. Referring to the expression for
Hw] in eq S4, the issue is whether In Zjg[w] is also entire, since we have already established

that H[w] is entire. In the canonical ensemble,

In Ziq = nIn(VQ[w]/v,) — In(n!) (Canonical) (S32)

The presence of the natural logarithm requires the introduction of a branch cut, across which
the imaginary part of In Q[w] and thus H[w] is discontinuous. Therefore, H[w] will not be

entire, even though Q[w] and P,[w] are. On the other hand, in the grand-canonical ensemble,

In Zig = "7V Qlw] /v, (Grand canonical) (S33)

is entire given that it is simply proportional to @Q[w]. Hence, H|[w] will be entire in the
grand-canonical ensemble.

For simplicity, the associated article assumed that H[w] is an analytic functional for all
w. Clearly, this is not true in the canonical ensemble, because of the branch cut required to
render In Q[w] single-valued. We also note, however, that the above logic underlying the use
of the CL method to evaluate ensemble averages of analytic observables, O[w], only seems to
require that P.[w] is entire, which is true in both ensembles. For instance, the deterministic

drift terms in the CL eqs S13 and S14 can be expressed as

Ay(r) = — (S34)

which ensures that they are analytic and continuous everywhere that P.[w] # 0. The ar-

guments given in the accompanying article about the consequences of the analyticity and



translational invariance, though phrased as statements about H[w], could all have been
equally well phrased as statements about P.|[w], without changing any of our conclusions.
We thus believe that the justification for CL averages of analytic observables is valid in either

the canonical or grand-canonical ensemble.

The fact that H|[w] requires a branch cut in the canonical ensemble does, however, imply
that treating H[w| as an observable is potentially problematic. If the value of Q[w] during a
CL-FTS in the canonical ensemble were to cross the branch cut of the logarithmic function,
which is generally placed along the negative part of the real axis, then the imaginary part
of In Q[w], and hence of H[w]/nkgT, would change discontinuously by +27. However, the
fact that Q[w] is analytic and translationally invariant implies that it has the same positive
real value for the entire family of complex SCF'T solutions, about which CL-FTSs fluctuate.
Provided that the fields do not fluctuate too far from these saddle-points, which is the case
in our CL-FTSs, Q[w] will remain far from the branch cut. Indeed, Figure 5b in the main
paper shows no evidence of a discontinuity in Im[H/nkgT], at least while the CL-FTS is
behaving properly. Note that CL simulations of other systems with logarithmic terms have
encountered convergence problems when the argument of the logarithm (i.e., Q[w] in our
case) winds around the origin,'®!! but this too is not a problem in our CL-FTSs given that

Q[w] does not generally fluctuate far from the SCFT value.

SCFT Results

Here, we provide additional SCFT results for diblock copolymer melts to supplement the
ones in the main paper. In particular, Figure S1 provides analogous plots to Figure 2 for
the lamellar phase, but at a substantially stronger segregation. The top part of Figure S2
shows the fields of the real saddle-point for the cylindrical phase, while the bottom part
shows the complex saddle-point resulting from an imaginary translation in the x direction.

Figure S3 then shows the complex saddle-point resulting from an imaginary translation in

10



the y direction.

Re[2w_ /xN]

2
= |
\l 0
3
2,
é fu, = 0.00Ry —— -1 8
-9 |u, = 0.08Ry —— ]
lu. =0.10Ry, —— ]
= 0.13R) —— . ) . 0.5 0 0.5
-0.5 0 0.5 -0.5 0 0.5
Z/Ro Z/R()

Figure S1: Complex saddle-point solution for an AB diblock copolymer lamellar phase with
f =0.5and xN = 25, plotted for increasing imaginary distance, u,, from the real saddle-
point. The real and imaginary parts of w_(z) are shown in plots (a) and (b), respectively,
and the real and imaginary parts of wy(z) are shown in plots (c¢) and (d), respectively. The
insets show a reduced scale to capture the large field values for u, = 0.13Ry.
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Figure S2: Real SCF'T solution for an AB diblock copolymer cylindrical phase with f = 0.4
and yN = 12. The fields w_(r) and w,(r) are plotted in (a) and (b), respectively. Complex
SCF'T solution resulting from an imaginary displacement of u = 0.05Roi. The real parts of
w_(r) and wy (r) are shown in plots (c¢) and (d), respectively, and the imaginary parts are
shown in plots (e) and (f), respectively. The size of each image is 2.70Ry x 1.56 R,.

(e)
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Figure S3: Complex SCFT solution resulting from an imaginary displacement of u = O.OSROj
from the real SCFT solution in Figure S2. The real parts of w_(r) and w, (r) are shown in
plots (a) and (b), respectively, and the imaginary parts are shown in plots (c¢) and (d),
respectively. The size of each figure is 2.70Ry x 1.56 R.

CL-FTS Results

Figure S4 shows CL-FTS results for the lamellar phase at different points along the line of
complex saddle-points. The position, u,, is controlled by adjusting the C, parameter in eq 20
of the main paper (see Table I). The top graph confirms that translation cooling holds the
imaginary amplitude of w_(z), defined in eq 11 of the main paper, relatively constant. Note
that for C, = 1.8 (gray curve), the CL-FTS crashed at 7N ~ 2.1 x 10° due to the formation
of a hot spot. The bottom graph shows that Im[H] maintains a Gaussian distribution with
a mean of zero. The width of the distribution does, however, increase noticeably for C, 2 1
presumably due to hot-spot-like fluctuations. Consistent with this, the Gaussian distribution

develops tails for C, 2 1.5.

Y
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Figure S4: CL-FTS results for an AB diblock copolymer lamellar phase with f = 0.5 and
YN = 12, where the C, for translation cooling is adjusted to hold the system at different
positions, u,, along the line of complex saddle-points. Amplitudes of the imaginary part of
w_(r) are plotted as a function of simulation time in (a) and histograms of the imaginary
part of the Hamiltonian are plotted in (b).
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