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CrossMark
Abstract

We present a detailed exposition of a statistical method for estimating cosmo-
logical parameters from the observation of a large number of strongly lensed
binary-black-hole (BBH) mergers observable by next (third) generation (XG)
gravitational-wave (GW) detectors. This method, first presented in Jana (2023
Phys. Rev. Lett. 130 261401), compares the observed number of strongly
lensed GW events and their time delay distribution (between lensed images)
with observed events to infer cosmological parameters. We show that the pre-
cision of the estimation of the cosmological parameters does not have a strong
dependance on the assumed BBH redshift distribution model. Using the large
number of unlensed mergers, XG detectors are expected to measure the BBH
redshift distribution with sufficient precision for the cosmological inference.
However, a biased inference of the BBH redshift distribution will bias the
estimation of cosmological parameters. An incorrect model for the distribution
of lens properties can also lead to a biased cosmological inference. However,
Bayesian model selection can assist in selecting the right model from a set of
available parametric models for the lens distribution. We also present a way to

" Author to whom any correspondence should be addressed.

© 2024 IOP Publishing Ltd.
All rights, including for text and data mining, Al training, and similar technologies, are reserved. 1



Class. Quantum Grav. 41 (2024) 245010 S Janaet al

incorporate the effect of contamination in the data due to the limited efficiency
of lensing identification methods, so that it will not bias the cosmological
inference.

Keywords: cosmography, gravitational waves, gravitational lensing,
strong lensing

1. Introduction

The next (third) generation (XG) of gravitational-wave (GW) detectors will observe a large
number of compact binary mergers out to large distances. The expected detection rates of
binary-black-hole (BBH) and binary-neutron-star (BNS) mergers are ~10°-10° per year
[1, 2]. These detectors will observe BBH mergers out to redshifts as large as z ~ 100 [3],
providing new avenues to probe cosmology that complement other observations. For example,
any black holes (BHs) observed at very high redshifts (z = 10) are unlikely to be of stellar ori-
gin as this is before the epoch of star formation. Hence any observation of BBHs at such
redshifts will provide a strong hint on the existence of primordial BHs, which will also have
implications on our understanding of dark matter.

GW observations of compact binary mergers will allow us to measure the luminosity dis-
tance dp, accurately without using any distance ladders, as these objects are absolutely calib-
rated standard sirens [4, 5]. An electromagnetic (EM) counterpart of the merger will enable us
to measure their redshifts, thus allowing us to populate the Hubble diagram. Due to the limited
horizon of EM telescopes such measurements are likely to be possible only at lower redshifts
(z $0.5). Thus, such measurements will primarily track the Hubble law dy(z) ~ H, 'z, thus
providing precise measurement of the Hubble constant. The systematic errors of such GW-
based measurements are much better understood than, say, that of Type 1a supernovae. Hence,
such observations will greatly aid resolving the current Hubble tension [6, 7].

At high redshifts (z 2 0.5), it is difficult to observe EM counterparts of compact binary mer-
gers. Additionally, BBH mergers, which can be seen out to very high redshifts, are generally
not expected to produce EM counterparts. However, even in the absence of EM counterparts,
statistical correlation of the mergers with large scale structure will provide some way of infer-
ring cosmological parameters [8—12]. Here the Hubble diagram will contain imprints of other
cosmological parameters such as the dark matter energy density and the equation of state of the
dark energy. Thus they will provide strong tests of cosmological models, such as the currently
favoured ACDM model [13].

We are unable to measure cosmological redshifts from BBH observations because the
masses are degenerate with redshift in the GW signal, thanks to the absence of a preferred
mass scale in GR. However, non-gravity physics in compact objects and their progenitors could
introduce particular mass scales in compact binaries. For example, neutron stars have a max-
imum mass that depends on the nuclear equation of state [14] and the BH mass distribution
can have some features due to pair instability supernovae [15—-18]. If such features are well
understood (see e.g. [19, 20] for some caveats), they will enable redshifts measurements from
compact binaries purely using GW observations [21-26]. Such spectral sirens will also enable
GW cosmography.

GW standard sirens can also probe another signature of the dark energy sector that is not
accessible to EM observations. A generic modified gravity theory induces modifications in
the evolution of the cosmological background and perturbations, with respect to the standard
model of cosmology. In some modified theories, GWs propagate at the speed of light but their
amplitude will decrease differently from general relativity (GR). Consequently, the luminosity
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distance estimated from the GW standard sirens would differ from that estimated from their
EM counterparts. The next generation detectors will be able search for this deviation, probing
multiple classes of modified theories of gravity in the context of cosmology [27, 28].

GW observations will also probe the large scale structure of the Universe. The inhomogen-
eities in the spatial distribution of the observed compact binary mergers will be another tracer
of the large scale structure, which can be measured by the two-point (and higher order) cor-
relation functions [29]. This will complement the large-scale galaxy and quasar surveys using
EM telescopes: GW observations will probe much deeper in redshift, although their spatial
resolution will be much poorer than the EM surveys. GW observations of BNSs will be able
to accurately measure the scale of baryon acoustic oscillations [30], providing an independent
probe of the cosmological model.

In this paper, we discuss a new cosmological probe that GW observations will enable, mak-
ing use of strongly lensed GWs. GR predicts that intervening massive objects such as galaxies
and clusters between the GW source and the observer will deflect the GWs through the phe-
nomenon of gravitational lensing. If the lensing objects are sufficiently massive and compact,
and lie sufficiently close to the line of sight to the source, they can create multiple images
of the source. This phenomenon, called strong gravitational lensing, is routinely observed in
EM observations of galaxies, clusters, quasars, etc. The same objects should strongly lens GW
signals as well. The precise fraction of strongly lensed GW sources will depend on the distri-
bution of the GW sources, galaxies and clusters that act as lenses as well as the cosmological
model and parameters. According to recent calculations, this fraction is ~0.01%-0.05% for
current generation detectors [31, 32] and ~0.1%—1% for the XG detectors [33—41]. Since XG
detectors are expected to detect millions of compact binary mergers during their operation,
they will detect thousands or tens of thousands of strongly lensed GWs.

Although the theory of lensing of GWs is essentially similar to the lensing of EM waves,
there are some important practical differences. Thanks to their short wavelengths, EM observa-
tions will allow us to spatially resolve the multiple images of strongly lensed objects. However,
multiple images of strongly lensed GW sources cannot be spatially resolved due to their poor
sky localisation. In contrast, compact binary mergers produce transient GW signals, which can
be temporally localised to milliseconds. This means that the time delay between the lensed
images of the same merger can be measured with exquisite precision using GW observations,
which is hard to do in EM lensing.

The idea of the new method is that the precise number of strongly lensed GW events and the
distribution of their lensing time delay depends on the cosmological model and parameters,
apart from the distribution of GW sources and lenses [33]. If the latter two are known, then
this will provide a new means of probing the cosmological parameters. The distribution of
GW sources can be accurately determined by the large number of un-lensed signals that will
dominate the data (see, e.g. [42]). The knowledge of the distribution of large gravitational
lenses should come from cosmological simulations and EM observations’. However, we will
also show that the cosmological parameters and the model of the distribution of the lenses have
sufficiently different imprints on the number of strong lensed events and their time delays, so
that it is possible to disentangle these effects to a very good extent.

Our statistical method, based on the observation of a large number of strongly lensed BBH
events, does not require the presence of EM counterparts to the mergers. A complementary

3 See [34] for a complementary approach to constrain the distribution of the GW sources and lenses from the lensing
rate and time delay distribution, assuming a cosmology.
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approach, presented in [43—45], makes use of a much smaller number of strongly lensed mer-
gers having an EM counterpart. The concurrent observation of lensed EM and GW signals
will allow us to measure cosmological parameters from even a single event. However, due to
the limited observing horizon of EM telescopes, such observations will be able to probe only
low-redshift (z < 0.5) cosmology®.

This paper is organised as follows: In section 2 we briefly review the Bayesian method
that we use to constrain the cosmological parameters from the observation of a population of
strongly lensed GW signals. This method was first presented in [33]. In section 3, we forecast
the expected constraints on cosmological parameters assuming various astrophysical models
for the redshift distribution of BBH mergers. In the remaining sections we investigate the vari-
ous sources of systematic errors in our analysis, and show that it is possible to bring them
sufficiently small so that interesting measurements are possible in the future. In particular, in
section 4, we explore how the errors in the measurement of the luminosity distance of indi-
vidual GW events will limit our ability to reconstruct the true redshift distribution of GW
sources, hence biasing our cosmological inference. In section 5, we investigate how our inac-
curate understanding of the lens distributions will bias our cosmological inference. In section 6
we will explore how we can deal with contaminated data—that is, we develop a formalism deal
with the presence of a small number of unlensed GW signals in our lensing data, that are misid-
entified as lensed events due to our limited ability to distinguish between lensed and unlensed
GW signals.

2. Cosmography using strongly lensed gravitational waves

2.1. Bayesian inference of cosmological parameters

We assume that N lensed BBH mergers have been detected within an observation period Tops.
In this paper, we assume a singular isothermal sphere (SIS) lens model. Thus, each will pro-
duce two lensed copies of the GW signal. We also assume that these two images are detected,
from which the lensing time delays have been measured accurately. Since the time delays are
measured with millisecond precisions we can take them as point estimates, which we denote as
{A4; }Y_,. Given N and {A#; }Y_,, we wish to compute the posterior distribution of the cosmo-
logical parameters 0= {Ho,,} assuming a flat ACDM cosmological model. Using Bayes’
theorem:

p (81 M) p (N AAG} 6, Ty M)
p(NAAL ) | Tops, M)

p (G INAAG} T M) = M

where p(€ | M) is the prior distribution of {} given some model M while
p(N{Af;} | ©,Tops, M) is the likelihood of observing N lensed events with time delays
{Ar;}Y_, given the set of cosmological parameters Q) and model M. The normalisation
constant p (N, {Az;} | M) is the evidence of the assumed model M

PN (ALY | Taps, M) = /p (ﬁ | M)p (N,{Ati} | ﬁ,TobS,M) . @

6 Combing GW lensing observations with lenses detected in EM surveys (e.g. Euclid, CSST and JWST) could probe
cosmology at moderate redshifts (z < 2) [41, 46]. However, the exact method for this approach is yet to be developed.

4
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Above, M denotes a variety of model assumptions that we employ, including the cosmological
model, models of the mass distribution of dark matter halos that act as lenses, lens models, etc.
From here onwards, we will drop M from the expressions, for simplicity of notation.

Since N and {Af;} are independent data, the likelihood can be written as a product of
likelihoods of measuring N lensed events and the set of time delays {Af; }Y_,

p(NAAGY [ BT ) =p (V10 Tons ) p ({26} | 6 Tons ). 3

Here, the likelihood of observing N lensed BBH mergers can be described by a Poisson dis-
tribution with mean A (€2, Tobs)

A (Q, Tobs)N ¢ M)

p(N19.Tos) = = . @

Above, A(ﬁ, Tons ) is the expected total number of lensed events within the observation period
as predicted by the cosmological model with parameters Q. Assuming that BBH mergers are
independent events, the likelihood for observing the set of time delays {Az; }Y_| can be written
as the product of individual likelihoods

P ({Afi Fe | ﬁaTobs) = ﬂp (Ati | ﬁ7Tobs> : 5)
i=1

Above, p(At; | 3, Tops), can be thought of as a ‘model” time-delay distribution p(At | €3, Tops )
evaluated at the measured A¢; of a lensed merger. The shape of the model distribution is gov-
erned by the cosmological parameters 3. The model distribution p(Ar | §, Tyys) is obtained
from the expected (intrinsic) time delay distribution p(Ar | ﬁ), after applying the condition
that we can not observe the time delays which are greater than the observation time Tops:

P (At |63, Tobs> xp (At | Q) (Tops — A1) O (Tops — A1), 6)

where © denotes the Heaviside step function.

2.2. Modelling the expected number of lensed events and lensing time delays

The Bayesian inference presented in section 2.1 essentially involves comparing the observed
number of lensed events N and the distribution of their time delays {Az; }_, with the the-
oretical prediction of the expected number of lensed events A(Q, Tops) and their time delay
distribution, p(At | Q), as a function of the parameters €. Here we describe how these quantit-
ies can be modelled using a cosmological model. We assume the flat ACDM model. However,
similar calculations can be performed using more general cosmological models as well.

2.2.1. Expected number of lensed events.  To compute the expected number of lensed bin-
aries, we convolve the redshift distribution of merging binaries with the strong lensing prob-
ability at that source redshift

A (ﬁaTobs) =S (Tobs) X R/Z?m(ﬁ Pb (Zs'ﬁ) Py (zs@) dz,, (7

0



Class. Quantum Grav. 41 (2024) 245010 S Janaet al

Above, R is the BBH detection rate, pj, (zs\ﬁ) is the redshift distribution (probability density)
of merging binaries and Pg(zs\ﬁ) is the strong lensing probability for the source redshift z;.
Here we assume that the GW detectors are able to detect all the merging binaries out t0 Zmax-
For XG detectors, this is a good assumption for the 7,4, values that we use’. S(7, (Tobs) denotes
the selection effects due to the finite observing time

Tovs

S (Tops) = / (At|Q) (Taps — Af) dAL. ®)
Ar=0

This takes into account the fact that if the lensing time delay At is comparable to the observing

time T, the second (first) image will be be missed unless the first (second) image arrives at

the beginning (end) of the observing run.

We expect that the rate R of the BBH mergers and their redshift distribution pj(z,|$2) will
be accurately measured from the large (~10%) number of unlensed events that will domin-
ate the data®. However, these quantities are currently poorly known. To forecast the expected
precision in measuring the cosmological parameters, we take different theoretical models of
Du(zs |ﬁ) assuming a BBH detection rate of R = 5 x 10° per year. The corresponding forecasts
are described in section 3. In section 4 we explore the effect of the GW measurement errors in
the reconstruction of py, (zy|ﬁ) and hence on the inference of cosmological parameters.

To compute the expected number of lensed events using equation (7), we also need to know
the probability P, ( ZS|Q) that a source at redshift z; is strongly lensed. This will depend on
the distribution of lenses as well as cosmological parameters. We assume that the lenses are
modelled by the SIS model. Multiple images are produced when the projected location of the
source in the lens plane is within the Einstein radius of the lens, given by

() (2 E D)
s | sy

where o is the velocity dispersion of the lens, while Dy, D, and Dy, are the angular diameter
distance to the lens, to the source, and between the lens and the source, respectively. The strong
lensing probability is given by integrating the differential optical depth for strong lensing by
different lenses

PE Zs‘v / / ZhZé;o—vﬁ) dZ[dO'7 (10)
dZ@da

where the differential optical depth for strong lensing by a lens with velocity dispersion o
located at a redshift z, is given by the fraction of the full sky covered by lenses

d N dV. s = dn, . g (0, zz,zs,ﬁ)
. (ZS?ZE’U7Q) = 5 (ZZ7Q> X 72 <ZK’U,Q) X - 7 N (11)
dzedo dze dV.do A D% (Zm Q)

7 The Zmax predicted by a source population model (e.g. [47]) assumes the standard cosmology Qm‘e. For the population
models that we consider, zmax ~ 20. When we consider other values of €3, we rescale zmax appropriately.

8 What we measure from GW observations is the distribution pj(d;.) of luminosity distance of the sources, which
can then be converted into a redshift distribution p;,(zs\Q) assuming a set of cosmological parameters €. For the
forecast analysis presented in this paper, we create a luminosity distance distribution from a redshift distribution model,
assuming standard cosmological parameters e By varying €3, we can then obtain different redshift distributions
which we use to model the time delay distribution for that specific value of Q.



Class. Quantum Grav. 41 (2024) 245010 S Janaet al

where
v, ( G _ 4mc (1+20)* D} (Zbﬁ) 1)
- |\ %, ) = 7 N
dzy H, E <Z£, Q)
is the differential comoving volume and
dng = =
N A~ ’ ,Q) = c( ,Q) o \0, 13
AVdo (zz o ne\z2e,2) po (0,20) (13)

is the comoving number density of lenses with velocity dispersion ¢ at redshift z,. Here,
Do (0,z¢) is the probability density of the dispersion velocity of the lenses at a redshift zy
and n.(z¢) is the comoving number density of lenses at zy. In equation (12), E(zz,ﬁ) =
Vu[(1+2¢)% — 1]+ 1 assuming a flat ACDM cosmology.

In order to compute the distribution of lenses at a given redshift, we need to use some
models of structure formation

dN, W dN, N dM
, ,Q): ( ,M,Q) el 14
dV.do (Z‘f 7 av.dam \“ - a4

where the first term denotes the comoving number density of dark matter halos with mass M
at redshift z, predicted by the cosmological model with parameters Q. We consider several
models of the halo mass function (HMF) calibrated to cosmological simulations. The second
term is a Jacobian to convert the distribution of the halo mass to that of the dispersion velocity.
To compute the Jacobian, we assume that the halos are spherically symmetric and virialised,
with uniform density p and radius R. Thus,

[GM 4 M 3M
~y—, M=_7R’ === 15
7 R’ 3T = do o (15

We also need to use some minimum and maximum cutoff for o to compute the total optical
depth defined in equation (10). The natural choices are omin = 0(Mpin) and omax = 0 (Max)-
We assume Mpi, = 108 Mg and My, =~ 1013 M, since this the mass range of validity of most
of the HMF models that we use.

It is now easy to see from equation (11) why the cosmological parameters affect the lensing
optical depth and hence the number of detected lensed events. The first term describes a purely
geometrical effect of how the comoving volume at a given redshift varies with a change in
cosmological parameters. The second term describes the change in the distribution of lenses
due to changes in the structure formation. Third shows how the fractional area covered by
lenses at a given redshift varies due to the geometric effect.

2.2.2. Expected distribution of lensing time delays.  In the SIS lens model, the time delay
between the two images is given by (see, e.g. [48]):

D, (Ze, Q) Dy (Ze,Zs, ﬁ)
Dy (Zsa Q) ,

where y is the projected location of the source on the lens plane (in units of r¢). We compute the
expected time delay distribution p(Ar | §2) for different values of the cosmological parameters

(16)

At (zg,a,zs,y,ﬁ) = 32:2y (%)4 (1+2z¢)

7
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0 by marginalising the distribution of time delay over all other parameters X= {y,0,2¢,25} on
which the time delay depends

p(Az\ﬁ)z/p(AuX,ﬁ)p(MQ) ax, (17)

where p(x | ﬁ) denotes the expected distribution of the source position y, lens velocity disper-
sion o, lens redshift zy and source redshift z;, given the set of cosmological parameters 2. If we
assume isotropy of space, the distribution of y is independent of the cosmological parameters.
Hence

p(X19) =p0) p (02021 ). as)
where p(y) o y with y = (0, 1]. Above, p(z¢, 0,7, | 3) can be further split as

p(o.26a | 9) =p(o.ze ] 2.9) po (a1 ), 19

where py(z, | ) is the expected/measured distribution of source redshifts, while p(, z¢ | z,, Q)
is computed from the differential optical depth (equation (11))

(zs, ﬁ) . (20)

b S7ﬁ>
”(" la ) o

Thus, the essential ingredients for modelling the expected number of lensed events and their
time delay distribution are:

o The redshift distribution of GW sources: we expect that this can be measured with sufficient
precision from the large number ~10° of unlensed events that will dominate the data (see,
e.g. [42]). In section 3 we forecast the prospective constraints on cosmological parameters
assuming various theoretical models of the source redshift distribution (figure 1). In section 4
we study how uncertainties and errors in inferring the source redshift distribution can affect
the constraints on cosmological parameters (figure 2).

e A HMF model: this will need input from cosmological simulations. We show in section 5
that a wrong choice of the HMF model can bias our inference of cosmological parameters.
However, if the right HMF model is one among the many models that we consider, Bayesian
model selection can be used to identify the right model.

3. Effect of source distribution models

The redshift distribution of sources is a significant input for our method. The precision of
estimation of cosmological parameters depends on the redshift distribution of sources because
lensing optical depth increases with redshift (equation (10)). To examine how the source pop-
ulation affects the precision in estimating the cosmological parameters, we conduct a recovery
test similar to the one done in [33]. We examine various models for the redshift distribution
of mergers, including those predicted by population synthesis models such as [16, 47, 49], as
well as a model in which the merger rate is uniform in comoving volume. Additionally, we
explore merger distribution models obtained from a star formation rate given in [50] using
different delay time distributions as presented in [42]. We consider two different models for

8
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Figure 1. Left: different models for the distributions of redshifts for BBH mergers.
These include prediction from population synthesis studies by Dominik et al [47] and
Belczynski et al [16, 49], as well as uniform in comoving volume. Other models are
based on Madau-Dickinson star formation rate [50] and consider different distribu-
tions of the time delay between formation and merger. Middle: the distributions of
time delay between two lensed images of a source for different models of redshift dis-
tribution of BBH mergers shown in the left panel. Dashed lines represent the actual

time delay distributions p(Af | ﬁ) while solid lines represent time delay distributions
p(At| (_i, Tobs) that will be observable in 10 yrs. Time delay distributions are calculated
for (3 = {2, =0.316, Hy = 67.3}. Right: posteriors (95% credible region) on cosmo-
logical parameters (2, Ho) for different models of redshift distributions. This is done
considering a BBH merger rate of 5 x 10° yrs~! with observation time period of 10 yrs.
Dashed cross represents true cosmological parameters.

the distribution of time delays between the formation of the binary and its merger: an expo-
nential distribution with a characteristic time scale 7 = 0.1 Gyr and a distribution uniform in
logarithmic of time delay (see equations (6) and (7) of [42]). Apart from these two models, we
also consider the scenario where there is no time delay between formation and merger, which
implies that BH mergers follow the same redshift distribution as the star formation rate.

The left panel of figure 1 displays the redshift distributions of BBH mergers which we
consider. We consider a ‘true’ cosmology Qtrue ={Q,, =0.316, Hy = 67.3}. The true distri-
butions of lens redshift and parameters are calculated using a HMF model as described by [51],
implemented in HMFcALc package [52] as described in section 2.2. We assume a merger rate
of R =15 x 10° yrs~! for BBHs, with an observation time period Tops = 10 yrs. ,

To simulate one observational scenario where N lensed events with time delays {At,};j’
are detected, we draw one sample from a Poisson distribution with mean A(the, Tobs =
10 yrs) and then draw samples {At,}ijlv from p(At | le,TobS =10 yrs). We neglect the
selection effects of XG detectors, as XG detectors are expected to detect all the BBHs out to
very high redshifts. Time delay distributions considering different models of redshift distribu-
tion for BBH mergers are shown in the middle panel of figure 1 (for 0= ﬁtme).

Using the method outlined in section 2.1, we compute the posteriors on the cosmological
parameters () from the different observing scenarios corresponding to the different source red-
shift distributions. We also assume that the redshift distribution of the sources is measured with
sufficient precision from the observation of unlensed events. Posteriors for the cosmological
parameters are shown in the right panel of figure 1. When the source populations extend to high
redshift (e.g. Dominik, Uniform), the precision is better in comparison to populations where
the merger redshift does not have support at high redshift (e.g. Belczynski, flatlog, etc). This is
because the lensing optical depth increases with redshift, and therefore, populations that extend

9
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Table 1. Expected number of lensed events A for 0 = Qe and expected constraints
(68% and 95% credible intervals) on §2,, and Hy for different models of redshift distri-
bution of BBH mergers considering a merger rate of 5 x 10° yrs~! with an observation
time of 10 yrs.

Dominik Belczynski Uniform Flatlog 7=0.1 Gyr Zero-delay
A(Que) 37700 20594 36698 20448 22098 23433
Qu(68%) 031570000 031470000 031610006 0.317H0005 031470008 0.32010 00
Qu(95%) 031570013 031470018 031670013 031770010 031479916 0.32010 019
Ho(68%)  67.6%11 679114 g72fl2  grafld g7yt 66.7113
Ho(95%)  67.6%50 67.9737 67.273% 67.2737 67.7+21 66.7753

to high redshift are expected to have a larger number of lensed events than the populations that
do not extend to high redshift. The expected 95% credible intervals in the posteriors of the
cosmological parameters are summarised in table 1, for different source redshift distribution
models.

4. Effect of errors in measuring the source redshift distribution

In section 3, we assumed that the true redshift distribution of the sources is accurately known
from the observation of unlensed events. However, this is not an entirely valid assumption as
uncertainties and errors in the measurement of luminosity distance could bias our estimation
of the redshift distribution, leading to systematic errors as well as additional statistical uncer-
tainties in the estimation of cosmological parameters. Here we investigate the severeness of
this effect.

Combining the inferred luminosity distance posteriors from a number of BBH events and
assuming a cosmology, we will be able to reconstruct the redshift distribution of BBH mergers
in the Universe. This can be done either using a parametric model of the population properties
of BBHs (such as their mass and redshift distribution) or using non-parametric methods [53].
The errors in the reconstruction of the redshift distribution of BBH mergers using XG detectors
were studied in [42], using a parametric model. We use the results of their study for charac-
terising the corresponding errors in cosmological inference. As done in [42], we use a ‘true’
redshift distribution given by a model based on Madau—Dickinson star formation rate and
exponential delay time distribution with a time scale, 7 = 0.1 Gyr (red curves in figures 1
and 2).

We use the posterior predictive distributions of the merger rate density from [42], which
was derived from the posteriors on the parameters of the redshift distribution model (figures 4
and 5 of [42]). We take ~ 100 samples of the merger rate density distributions and convert them
into source redshift distributions. In the left panel of figure 2, the light cyan curves represent
these posterior predictive distributions while the solid cyan curve shows their average. These
reflect the uncertainties in the measurement of the redshift distribution, while the red curve
shows the ‘true’ distribution.

Now we simulate lensed events using the ‘true’ redshift distribution and infer cosmolo-
gical parameters using different posterior predictive redshift distributions (corresponding to
different light cyan lines in the left panel of figure 2). The middle panel of figure 2 shows the
posteriors of the cosmological parameters inferred using the ‘true’ redshift distribution (red
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Figure 2. Left panel: the red curve shows the redshift distribution model based on the
Madau-Dickinson star formation rate, with an exponential delay-time distribution with
7 = 0.1 Gyr. Light cyan curves show the reconstructed (posterior predictive) distribu-
tions as shown in figure 5 of [42], while the solid cyan curve shows their average. Middle
panel: the 95% credible regions of the posteriors of €2, and Hy. The lensed events are
simulated using the red curve in the left panel. The cosmological inference is done with
the ‘true’ redshift distribution (red contour), as well as with 100 reconstructed source
redshift distributions (light cyan contours, corresponding to the light cyan curves in the
left panel). The cyan posteriors are biased due to the biased reconstruction of the source
redshift distribution. Right panel: this panel shows the effect of the marginalisation over
the source redshift distribution uncertainties. Here, the lensed events are simulated using
the solid cyan curve in the left panel, so that there is no systematic bias. The solid cyan
contour shows the posterior estimated using the same redshift distribution. The dashed
blue contour shows the posterior that is marginalised over the source redshift distribution
uncertainties. The broadening of the posterior due to this effect is minimal.

line) and 100 sampled redshift distributions (thin cyan lines). It is evident that there is a sys-
tematic bias in the recovery, which is attributed to the biased reconstruction of the merger rate
density as seen in the left panel of figure 2.

We also explore a scenario in which the redshift distribution of BBHs is estimated without
any systematic biases, but with some statistical uncertainty. In order to simulate such a scen-
ario, we use the average of 100 sampled redshift distributions as the ‘true’ distribution (cyan
curve in the left panel of figure 2). We then use this ‘true’ distribution to simulate lensed events
and to infer cosmological parameters (right panel of figure 2). Here, the solid cyan contour rep-
resents the posterior (95% credible region) of cosmological parameters using the new ‘true’
redshift distribution, showing no systematic bias. When we factor in the uncertainties in the
estimation of source redshift distribution making use of the posterior predictive distributions
(light cyan curves in the left panel of figure 2), the posteriors of the cosmological paramet-
ers will have a scatter similar to the light cyan curves in the middle panel of figure 2. The
dashed dark blue contour shows the posterior that is marginalised over the uncertainties in the
estimation of the source redshift distribution. We can see that the broadening of the posterior
is minimal.

In summary, the expected statistical uncertainties in the estimation of the source redshift
distribution have a negligible effect on cosmological inference. However, the redshift distri-
bution needs to be estimated without any systematic bias. In this preliminary investigation,
we have neglected the correlation of the parameters of the source distribution model with
the cosmological parameters. We anticipate that this oversight will not significantly broaden
the posteriors on cosmological parameters, as the expected measurement error on the merger
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rate density is small [42]. Our future plans include conducting a comprehensive analysis that
considers all the parameters of the source redshift distribution along with the cosmological
parameters and marginalising over them.

5. Effect of lens distribution

The distribution of the redshift and other parameters of the lenses are determined using the
HMF models (see section 2.2). Here we investigate how selecting the incorrect model for the
lens distribution (both redshift and other parameters) can affect the inference of cosmological
parameters. We broadly follow the same steps as outlined in section 3. However, here we
assume the redshift distribution given by Dominik [47] to be the one presented by nature, and
we will vary the lens distribution while keeping the other parameters fixed. We consider four
different models of HMF, namely Behroozi [51], Jenkins [54], SMT [55], and Tinker08 [56].
We simulate N lensed events with time delays {A#;}Y_, using the Behroozi model. N is drawn
from a Poisson distribution with mean A(Qm‘e, Tons ), where ﬁm,e is the assumed ‘true’ value
of cosmological parameters. This is our simulated observational data. We then estimate the
cosmological parameters using all of these HMF models.

We observe that there is a bias in the inference of cosmological parameters when we choose
the wrong model of lens distribution. Figure 3 shows an example set of posteriors (95% cred-
ible regions) on the cosmological parameters when different HMF models are used in the
parameter estimation. The left (right) panel shows results corresponding to an assumed mer-
ger rate R =5 x 103 yrs~! (5 x 10* yrs~!) for an observation time of 10 yrs. In the left panel
the true cosmology is not recovered within 95% credible region except when the true HMF is
used in the parameter estimation, while the amount of bias is relatively small in the right panel
due to the decreased precision.

The posteriors in figure 3 show one realisation of the observation scenario. Each of the
posterior could be randomly shifted due to the finite number of observed events (Poisson
fluctuations). To get the statistical nature of the biases, we perform this analysis using ~10°
catalogs of observations of same statistical nature. The so-called probability—probability (p-
p) plots show in what fraction of the simulated observations, the true values are recovered
within a given credible interval (figure 4). If the theoretical models agree with the data, the p-p
plot should show a diagonal line. We see that diagonal p-p plots are obtained only when the
simulated HMF model is used in the parameter estimation.

While this is a cause of concern, we show below that Bayesian model selection generally
allows us to identify the correct model of the HMF. We compute the ratios of Bayesian evid-
ences (equation (2)) of different HMF models and show that the right HMF model is almost
always preferred. We simulate lensed events with time delays using model B (Behroozi) and
then recover the cosmological parameters using all these models. We observe that for the model
that consistently shows bias in its parameter estimates, the evidence is smaller than the ‘true’
model. The ratio of the evidences (the Bayes factor) between the true and false models is
greater than one for most of the simulations. For instance, in the parameter estimation using
the J (Jenkins) model typically causes large bias in the estimated parameters (see figure 3) .
However, the Bayes factor between B and J models is higher than one over ~80% of the time,
indicating that the true model is generally preferred (figure 5). In the parameter estimation
using the T (Tinker) model, the true model is preferred only for ~50% of the time; however,
the bias in the estimated parameters using the T model is generally smaller.

In order for this model selection to work, the space of models that we consider should
include the true model also. A more powerful method would be to create parametrised models
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Figure 3. Posteriors (95% credible regions) of cosmological parameters that illustrate
the bias in the inference due to the use of wrong models of the HMF. In the legends, BB,
BJ, BS and BT denote different scenarios when our simulated observation of lensed sig-
nals is produced using Behroozi model, and then cosmological parameters are recovered
using Behroozi, Jenkins, SMT and TinkerO8 models, respectively. Left panel: results
corresponding to a merger rate 5 x 10° yrs™'. We can see that true cosmology is not
recovered within 95% credible region except for the case of BB. However, the precision
for all cases remains almost the same. Right panel: results corresponding to a merger
rate 5 x 10* yrs !, Here, we can see that the amount of bias is relatively small due to
the decreased precision of the cosmological parameters.
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Figure 4. The cumulative distribution of the quantiles (p-p plots) in which the true cos-
mological parameters are recovered from ~10* recovery tests. The legend box shows
the scenarios considered (same as figure 3). Any deviation from the diagonal line sug-
gest there is a bias in the recovery. The larger the deviation, the greater is the bias in the
inference. Solid (dashed) lines show the recovery for €2, (Ho). In the left panel, the res-
ults corresponding to a merger rate of 5 x 10° yrs~! show that there are biases, except in
the BB scenario. In the right panel, the results for a merger rate of 5 x 10* yrs~! indicate
that there is relatively lower bias due to the decreased precision in the estimation of the
cosmological parameters.
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Figure 5. The cumulative distribution of log,, (Bayes factor) between the ‘right’ (B)
and ‘wrong’ (J, S or (T) HMF models, computed from ~10° simulated catalogs. The
results correspond to merger rates of 5 x 10° yrs~! (left) and 5 x 10* yrs ™! (right). We
can see that HMF models that cause significant bias in the parameter estimation have
low Bayes factors most of the time.

of the HMF that also incorporate modelling errors as extra parameters. These could be treated
as nuisance parameters in the cosmological parameter estimation and marginalised over. A
combination of EM observations and cosmological simulations can be used to further improve
our models of the distribution of lens properties.

There are similarity transformation degeneracies that prevent us from reconstructing the
lens mass and redshift simultaneously from a single event [57-60]. This is why the GW obser-
vations of individual lensed events, in the absence of EM observations, will not enable any
measurement of cosmological parameters [61]. However, this does not affect our method in a
serious way, since we assume the knowledge of the distribution of the lens properties in the
form of a HMF. Even if we do not know the ‘true’ HMF, if the true HMF is in the list of models
that we use, it will have the highest Bayes factor statistically. The reason is that the change
in the time delay distribution due to a different HMF model cannot be exactly mimicked by a
change in cosmology, i.e. the degeneracy between cosmology and HMF is not an exact one.

6. Effect of contamination

Any data analysis method that is used to identify strongly lensed signals in GW data will have a
true positive probability € and a false positive probability « (see, e.g. [40, 62, 63]). This means
that some unlensed GW signals will be incorrectly identified as lensed signals and some lensed
signals will be missed, thus biasing the detected number of lensed events and their time delay
distribution. In this section we develop a strategy that can incorporate this effect, thus evading
systematic biases in the estimation of cosmological parameters.

We assume that the total number Ny, of detected BBH mergers observed follows a Poisson
distribution of mean A, while the detected number of strongly lensed mergers N follows a
Poisson distribution of mean A. We define the contamination fraction x as the ratio between
the expected number of falsely identified lensed pairs and the number of truly identified lensed
pairs

2
N aly, 1 _« Aot
2 euly € 2u’

ey
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where u = A /A is the expected lensing fraction. Note that & is a function of cosmological
parameters and the observing period Tops as the lensing fraction depends on Q) and the total
number of observed events depends on T,,s. For simplicity of notation, we do not expli-
citly write down its dependence on Q) and Tobs- The contamination fraction also depends on
ko = /¢, which depends on the receiver operating characteristic of a given lensing identifica-
tion method. This can be estimated by performing the same analysis on simulated lensed and
unlensed GW events (see, e.g. [40]). To keep the contamination fraction low (about 10%), we
would need a ~ 10~ for A ~ 10° and u = 0.01. This is likely to be achievable in future GW
observations due to the increased precision of measurements.

It is easy to see that, with a contamination fraction x, the expected number of lensed events
will change to

Ac (QTobs) = e[l +xK]A (Q,Tobs) . (22)

Thus, once kg is known from simulations, it is possible to model the effect of contamination
on the expected number of lensed events. Similarly, the time delay distribution of the detec-
ted events will be a mixture of the lensed and unlensed time delays. We model the effect of
contamination on the time delay distribution as:

K

1 -
unlens At To S T, ens (At QvTo ﬂ) ) 23
1+ﬁpl‘( | b‘)+1_~_ﬁl?1‘ | bs (23)

Pe (At| ﬁaTobs) =
and use them for the cosmological parameter estimation. Above, piens (A | ﬁ, Tops) is given by
equation (6), while

Punlens (At | Tobs) X (Tobs - At) (S (Tobs - At) . (24)

To gauge the effect of contamination on the cosmological parameter inference, we simu-
late lensed events following the Dominick redshift distribution, assuming the true cosmology
Qrue = {Qn = 0.316,Hy = 67.3}, with R = 5 x 10° and Tops = 10 yrs. This corresponds to a
true expected detection of Ay =5 X 10° binaries. We assume that the lensing identification
method has a false positive probability of o = 10~°. We assume different true positive probab-
ilities: € = 0.4,0.5,0.6,0.8, corresponding to kg = /e = [2.5,2,1.67,1.25] x 10~°. Figure 6
shows the posteriors on the cosmological parameters from an analysis that takes into the
effect of contamination. When there is no contamination ko =0, we reproduce the results
from figure 1. Additionally, data contamination only worsens the precision of our measure-
ment, without causing any systematic biases (see p-p plot in figure 6). Table 2 tabulates the
expected precision in the measurement of cosmological parameters with different levels of
contamination.

7. Conclusions and future work

In this paper we presented a detailed exposition of a statistical method for cosmography from
the observation of a large number (~10%) of strongly lensed BBH mergers observable by XG
detectors. This method, first presented in [33], compares the observed number of strongly
lensed GW events and their time delay distribution (between lensed images) with observed
events to infer cosmological parameters. We showed that the prospective constraints from the
XG detectors are comparable to the current best measurements, but probing a cosmological
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Figure 6. Left panel: posteriors on the cosmological parameters (95% credible regions)
when we assume different amounts of data contamination. The legends show ko = /e
in units of 10™7, where « (¢) is the false (true) positive probability of the lensing iden-
tification algorithm. Data contamination only worsens the precision of the posteriors,
without causing any systematic biases. Right panel: p-p plot obtained from ~10° recov-
ery tests for o = 1072 and € =0.5. This indicates no systematic bias in cosmological
parameter recovery when we account for contamination. .

Table 2. Expected number A. of lensed events after considering contamination for
Q= QMe and expected constraints (68% and 95% credible intervals) on €2,, and Hy
for different values of the true positive probability e for the the data analysis method
that is used to identify lensed events (assuming a false positive probability ov = 107).
We assume a merger rate of 5 x 10° yrs~! and an observation time of 10 yrs.

No contamination kg = 2.5 ko=2 ko =1.67 ko=1.25
Ac (Que) 37700 27580 31350 35120 42660
0 (68%) 03157000 03117555 03175551 0.317550  0.312150%
n(95%) 0.3157501 03117555 031725530 0.3172501  0.3121518
Ho(68%) 67.67)] 68.3733  67.3%%  67.671¢ 679117
Ho(95%) 67.67%) 68.3%33 673731 67.6%3]  67.973%

epoch (z ~ 1 — 10) that is not probed by other observations. This can potentially shed some
light on the ‘tensions’ that exist between current cosmological observations [64], some hinting
at the failure of the flat ACDM model.

The observed number of lensed events and their time delay distribution will depend on
the distribution of GW sources as well as lenses, apart from the cosmological parameters.
Properties of the GW source distribution could be measured accurately from the large number
(~10°) of unlensed GW signals that will dominate the data. Since the distribution of the GW
source properties is currently largely unknown, we considered a few different astrophysical
models for the same, and showed that the expected constraints do not vary significantly. We
also showed that the statistical uncertainties in the reconstruction of source properties from
GW observations will not significantly affect the inference of cosmological parameters, as
long as the source redshift distribution can be reconstructed in an unbiased manner. We also
showed that the limited ability of our data analysis algorithms to distinguish between lensed
and unlensed GW events, resulting in some amount of contamination in the sample of lensed
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GW events, will not bias our inference. This can be avoided by incorporating the effect of data
contamination in our Bayesian likelihood models.

One of the major sources of error in our analysis is likely to come from the uncertainty in
the distribution of gravitational lenses. In this paper, we assumed that the properties of the lens
distribution can be extracted from theoretical HMF models. We used several HMFs that model
the expected mass distribution of dark matter halos at different redshifts. We then assumed that
these halos are spherical symmetric and used a simple prescription to map the mass of the dark
matter halo to the velocity dispersion of the lens in the SIS model. If the HMF model that we use
is significantly different from the ‘true’ model, that can bias the estimation of cosmological
parameters. However, in such situations, Bayesian model selection involving several HMF
models should enable us to identify the ‘true’ model of the HMF. In the future, we could
improve this method by employing parametric models of HMFs that include modelling errors,
which can be marginalised over in the Bayesian inference. A combination of EM observations
and cosmological simulations can be used to further improve our models of the distribution of
lens properties.

The SIS model that we use for lenses is also an oversimplified model. In a follow-up work
we plan to incorporate more realistic lens models in our analysis and better prescriptions for
mapping the mass distribution of dark matter halos to the lens properties. Our ongoing invest-
igations suggest that the changes in the mass distribution of dark matter halos is not degenerate
with changes in cosmological parameters. This suggests that the same method could also be
used to probe the mass distribution of dark matter halos at various redshifts, thus effectively
probing the structure formation and the nature of dark matter. This is explored in our ongoing
work.

While we focus on BBH mergers in this paper, observations of strongly lensed binaries
involving neutron stars could also be powerful. Since BNS could be observed only out to
a smaller redshifts (z < 2 even for XG detectors), their lensing optical depth will be smaller
compared to BBHs which could be observed out to very large redshifts (z ~ 10-100). However,
BNS mergers are expected to be large in number (~10° detections per year in XG [65]) and,
owing to their long signal duration in the detector band, their properties could be measured
with much better accuracy. Furthermore, some of them could also produce observable EM
counterparts. Strongly lensed BNSs could be very powerful in probing low-redshift cosmology.
We are exploring this in an ongoing work. In conclusion, future observations of strongly lensed
GWs will enable several powerful new probes of cosmology.
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