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Abstract

We present a symmetric formulation of polymer field theory for incompressible

systems containing any number M of monomer types, in which all monomers are

treated on an equal footing. This is proposed as an alternative to the multi-species

exchange formulation, which imposes incompressibility by eliminating one monomer

type. The symmetric formulation is shown to correspond to the incompressible limit

of a corresponding compressible model, and to reduce in the case M = 2 to the usual

formulation of field theory for incompressible AB systems. An analysis of ABC systems

(M = 3) identifies ranges of interaction parameter values in which a fully fluctuating

field theory requires one, two or three imaginary-valued fields. ABC systems with

parameters that satisfy the Hildebrand solubility parameter approximation are shown

to require only one imaginary pressure-like field, much like AB systems. Generalization

of the partial saddle-point approximation to M > 2 is discussed.
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Introduction

Stochastic field theoretic simulation (FTS) methods have matured over the past 20 years

into powerful tools for studying heterogeneous polymer materials.1–12 Such methods are

based on a transformation of an underlying particle-based model into a functional integral

over a set of monomer chemical potential fields. The simplest field theoretic approach, self-

consistent field theory (SCFT), identifies a single field configuration that is a saddle-point of

a corresponding field theoretic Hamiltonian functional. Stochastic FTS methods go beyond

SCFT by randomly sampling a statistical ensemble in which each possible field configuration

is assigned a weight that is determined by the value of this Hamiltonian. Existing FTS

methods can be primarily divided into fully fluctuating (FF) methods, which are equivalent

to a corresponding particle-based model, and methods that rely a partial saddle-point (PS)

approximation, which improve computational efficiency at some cost in accuracy.

Most prior FTS studies of block copolymers and polymer mixtures have focused on sys-

tems with only two types of monomer, which we refer to as AB systems. In the standard

formulation of field theory for such systems, chemical potentials associated with species A

and B are expressed in terms of a pressure-like field W+ and and an exchange field W−.3,11

The resulting fully fluctuating formulation of the partition function as a functional integral

for an AB system with a positive Flory Huggins parameter χ > 0 requires that contributions

to these monomer chemical potentials arising from W+ be imaginary, while those arising

from W− be real. In a partial saddle-point approximation for an AB system, W+ is approxi-

mated by its value at a partial saddle-point. This is equivalent to the use of a self-consistent

field approximation to treat the incompressibility constraint. The partial saddle-point ap-

proximation yields a theory in which the monomer chemical fields and the Hamiltonian are

real, thereby allowing the use of conventional Monte-Carlo and Brownian dynamics sampling

methods. In what follows, we will sometimes refer to fully fluctuating simulation methods

as FF-FTS methods, and those that rely on a partial saddle-point approximation as PS-

FTS methods. Studies of AB systems with PS-FTS methods by Matsen and coworkers have
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shown an encouraging balance between accuracy and computational expense,8–12 making

PS-FTS an attractive intermediate alternative to SCFT and FF-FTS.

Many properties of complex polymer materials are adequately described by coarse-grained

models that treat these materials as incompressible. When this approximation is appropriate,

its validity is the result of a disparity in real materials between the large free energy penalties

for changes in total monomer density (characterized by a bulk modulus) and much smaller

penalties for changes in composition at fixed density (often characterized by Flory-Huggins

interaction pararatmers). Most SCFT studies have relied on an incompressible model. Dif-

ferent FTS methods differ in their treatment of compression. Most FF-FTS studies have

used complex Langevin (CL) sampling to study compressible models with a “smeared” (i.e.,

nonlocal) interaction between monomers.6,7 This choice is motivated primarily by compu-

tational considerations, because compressibility and nonlocal interactions are both found to

alleviate numerical instabilities that would otherwise plague CL simulations. The use of an

incompressible model thus appears, as a practical matter, to be incompatible with complex

Langevin sampling. Studies that use PS-FTS methods have, however, generally been based

on an incompressible model of AB systems with local interactions that is closely analogous

to the standard incompressible model of SCFT.8–12 The formulation of a fully fluctuating

field theory for incompressible models given here is thus intended primarily as a starting

point for PS-FTS studies of systems with M > 2, where M denotes the number of monomer

types.

The only existing formulation of polymer field theory that was designed explicitly for in-

compressible systems withM > 2 is the multi-species exchange (MSE) formulation of Düchs,

Delaney and Fredrickson.5 In this formulation, incompressibility is imposed by expressing

the concentration of one type of monomer as a function of the other M−1 monomer concen-

trations, thus explicitly eliminating one monomer type. The MSE formulation requires an

arbitrary choice of which monomer type to eliminate, and yields working equations whose

forms reflect this choice, though all final results for observable quantities are independent of
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this choice.5 (Throughout this work, we refer to monomer “types”, rather than “species”,

but retain the name of the MSE formulation chosen by its authors, in which the word species

refer to what we call a monomer type).

Section 2 of this article presents a “symmetric” formulation of incompressible field theory

forM ≥ 2 that treats all monomer types on an equal basis, which we propose as an alternative

to the MSE formulation. This symmetric formulation is based on the introduction of a so-

called projected χ matrix. This quantity, denoted here by χ̃, is defined by an orthogonal

projection of the fullM×M matrix of Flory-Huggins χ parameters into theM−1 dimensional

subspace associated with composition fluctuations at fixed total monomer concentration.

The result of this projection is a singular M ×M symmetric matrix of rank M − 1 that has

M − 1 eigenvectors with generally nonzero eigenvalues, and a null space spanned by vector

that is associated with changes in total monomer concentration (i.e., compression). In the

symmetric formulation of fully fluctuating polymer field theory, negative eigenvalues of χ̃

are associated with real-valued chemical potential field components (i.e., components that

yield real contributions to the fields associated with specific monomer types), while positive

and vanishing eigenvalues are associated with imaginary components. We show in section 3

that the usual treatment of incompressible AB systems is recovered as a special case of the

symmetric formulation. We also show in section 6 how the symmetric formulation can be

obtained by taking the incompressible (infinite compression modulus) limit of an analogous

compressible model.

Section 4 of this paper discusses ABC systems, with M = 3. A general analysis of such

systems gives criterion for ranges of values of the interaction parameters for which χ̃ has

different possible number of negative eigenvalues, corresponding to different number of real-

or imaginary-valued field components. We also consider a restricted model in which the χ

parameters are assumed to obey the Hildebrand solubility parameter approximation, which

is a useful but approximate guide to the behavior of simple non-polar mixtures. We show

that this approximation leads to a set of interaction parameters for which one of the two
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nontrivial eigenvalue exactly vanishes, causing fluctuations of the auxiliary field associated

with this eigenvalue to be completely suppressed as a result. The result is a formulation

for this class of ABC systems that is closely analogous to the standard formulation for AB

systems, with one real-valued field and on imaginary pressure-like field.

Section 5 proposes a generalization of the partial saddle-point approximation to systems

with M > 2, and discusses the expected accuracy of the resulting approximation.

The present work was motivated by the fact that all of its authors are involved in the

development of open-source software packages that provide both SCFT and PS-FTS methods

for polymer liquids. Two authors (D.C.M and K.C) contribute to the PSCF package13,14 in

which PS-FTS methods are currently being implemented. The third (D.Y.) is the primary

developer of a newer package that enables use of machine-learning methods to accelerate

identification of the partial-saddle point in PS-FTS methods.15 This work was thus motivated

for all of us by an interest in extending PS-FTS methods to systems with M > 2, and the

desire for a more convenient and elegant mathematical formalism around which to design

algorithms and software. Among other purposes, this work is thus intended to explain and

document the theory underlying the PS-FTS algorithms that are used or planned for use in

both of these software packages.

Incompressible Field Theory

Consider a mixture of polymers and solvents containing M types of monomer. Let ci(r)

denote the concentration of monomers of type i at point r within the mixture in a specific

mechanical microstate (i.e., a specific list of monomer positions). We focus here on incom-

pressible models in which the sum of the monomer concentration must satisfy a constraint

requiring that
M∑
i=1

ci(r) = c0 (1)
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for all r, in which c0 is the prescribed constant total monomer concentration. Let v = 1/c0

denote the corresponding monomer volume.

Consider a model with a potential energy (excluding any penalty added to enforce the

above constraint) of the form

U = Uid + Uint + Uext , (2)

in which Uid is the intramolecular potential energy of a gas of non-interacting molecules, and

Uint =
v

2

∫
dr χijci(r)cj(r)

Uext = −
∫
dr yi(r)ci(r) . (3)

Here, χij is an element of a symmetric matrix of dimensionless Flory-Huggins interaction

parameters, while y1(r), . . . , yM(r) are external “source” fields. Here and hereafter, we use an

Einstein convention for summations over repeated indices i or j that represent monomer type

indices, which are sums from 1, . . . ,M . The external source fields can be used either to rep-

resent real physical effects, such as the effect of a confinement potential, or as formal devices

to allow derivation of expressions for correlation functions via functional differentiation.

The partition function Z for such a fluid may be expressed to within an irrelevant mul-

tiplicative constant as a configurational integral

Z =

∫
Dr e−Uid−Uint−Uext δ

(
M∑
i=1

ci(r)− c0

)
(4)

in which a δ-functional imposes the incompressibility constraint.
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Orthogonal Projection

Let c(r) denote M component column vector with elements given by the monomer concen-

trations c1(r), . . . , cM(r) at position r. Let e denote a M component column vector

e =



1

1

...

1


(5)

with equal components ei = 1 for all i = 1, · · · ,M . In this notation, the incompressibility

constraint requires that

eTc(r) = c0 , (6)

for all r.

The symmetric formulation of polymer field theory considered here is based on a decom-

position of c(r) and other vectors into components parallel and orthogonal to e. To describe

this, we define the M ×M orthogonal projection matrices

Q =
1

M
eeT , P = I−Q , (7)

where I is the M ×M identity matrix. Note that Qe = e and Pe = 0, and that Q and

P are both symmetric. Multiplying a column vector by Q yields the orthogonal projection

onto e, while multiplying by P yields the projection into the M − 1 dimensional subspace

orthogonal to e.

Let c̃(r) denote the orthogonal projection of c(r) into the subspace orthogonal to e, given

by

c̃(r) ≡ Pc(r) . (8)

By construction, eT c̃(r) = 0 for all r, because eTP = 0. Multipling c by I = P +Q yields
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the decomposition

c(r) = c̃(r) +
1

M
c0 e (9)

for states that satisfy the constraint requiring that eTc(r) = c0.

Let χ̃ denote an M ×M symmetric matrix defined by the matrix product

χ̃ ≡ PχP , , (10)

which we refer to as the projected χ matrix. Let χ̃ij denote element ij of matrix χ̃. By

construction, the vector e is always an eigenvector of χ̃ with a zero eigenvalue, since Pe = 0,

implying that χ̃ is a singular matrix.

By substituting Eq. (9) for ci(r) into Eq. (3) for Uint, while setting CM(r) = c0, we

obtain an expression for Uint as a sum of the form

Uint = U
(2)
int + U

(1)
int + U

(0)
int (11)

in which

U
(2)
int =

v

2

∫
dr χ̃ij c̃i(r)c̃j(r)

U
(1)
int =

∫
dr sic̃i(r) (12)

U
(0)
int = SMc0V/2 ,

using Einstein notation for summations, where we have defined a vector

s ≡ χe/M (13)

with components si ≡ χijej/M for all i = 1, . . . ,M , and a scalar

SM ≡ eT s/M = eTχe/M2 . (14)
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The use of the symbol SM for the quantity defined in Eq. (14) is chosen for consistency with

a convention for vector components that is introduced below.

Eigenvector Decomposition

A diagonal representation of U
(2)
int may be created by expanding c(r) in the a basis of eigen-

vectors of the projected χ matrix, χ̃. Let v1, . . . ,vM denote M independent eigenvectors of

χ̃, and let λ1, . . . , λM be corresponding eigenvalues, such that

χ̃vα = λαvα (15)

for all α = 1, . . . ,M . As already noted, e is always an eigenvector with a zero eigenvalue.

By convention, we e to be the last eigenvector, defining

vM = e , (16)

so that λM = 0. Because χ̃ is symmetric, it eigenvalues λ1, . . . , λM are real, and we may take

v1, . . . ,vM to be real and orthogonal. The eigenvectors v1, . . . ,vM−1 thus span the M − 1

dimensional subspace orthogonal to e = vM . We choose a normalization in which

vT
αvβ = δαβM (17)

for all α, β = 1, . . . ,M . Note that this choice is compatible with the normalization of e = vM ,

for which eTe =M .

Let Cα(r) denote a component of concentration in a basis of these eigenvectors, given by

Cα(r) = vT
αc(r) (18)

for any α = 1, . . . ,M . Note that, because vM = e, the incompressibility of Eq. (6) requires
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that CM(r) = c0. We may expand c̃i(r) in a basis of the first M − 1 eigenvectors as a sum

c̃i(r) =
1

M

M−1∑
α=1

Cα(r)vαi , (19)

or express ci(r) as a corresponding sum that includes an additional term with α =M . Using

these expansions of c̃ and c, we obtain

U
(2)
int =

v

2M

M−1∑
α=1

∫
dr λαC

2
α(r)

U
(1)
int =

M−1∑
α=1

∫
dr SαCα(r) (20)

Uext = −
M∑
α=1

Yα(r)Cα(r) ,

where we have defined components

Sα ≡ 1

M
vT
αs Yα(r) ≡

1

M
vT
αy(r) (21)

for all α = 1, . . . ,M , where y(r) = [y1(r), . . . , yM(r)]T . Here and hereafter, we use lower

case Greek letters α or β for eigenvector indices and small Latin letters i, j, . . . for monomer

type indices, while using the Einstein summation convention and/or matrix multiplication

only to represent sums over repeated monomer type indices. Note that, because vM ≡ e,

Eq. (21) yields a definition of the last element, SM , that is identical to that given in Eq.

(14).

Field components associated with positive or negative eigenvalues of χ̃ must be treated

differently when constructing a functional integral representation of Z. Let L denote the

number of negative eigenvalues of χ̃. By convention, for systems with 0 < L < M − 1, we

take the first L eigenvalues λ1, . . . , λL to be negative and take eigenvalues L+ 1, . . . ,M − 1

10



to be non-negative, while λM = 0. For each α = 1, . . . ,M , let

λα = −σ2
α|λα| , (22)

with σα = 1 for α = 1, . . . , L (or λα < 0) and σα = i for α = L+1, . . . ,M−1. By convention,

we also define σM = i.

Functional Integrals

A field-theoretic representation of Z may be obtained by using a Hubbard-Stratonovich

transformation3 to express the Boltzmann factor exp(−U (2)
int ) as a functional integral over

M − 1 auxiliary fields ω1(r), . . . , ωM−1(r), of the form

e−U
(2)
int =

1

N

∫
Dω′ (23)

× exp

{
−

M−1∑
α=1

∫
dr

[
Mω2

α

2v|λα|
+ σαωαCα

]}
,

where
∫
Dω′ denotes a functional integral over the fields ω1, . . . , ωM−1, and where

N ≡
∫

Dω′ exp

{
−

M−1∑
α=1

∫
dr

Mω2
α

2v|λα|

}
(24)

is a constant.

The δ-functional that constrains the total monomer concentration CM(r) may also be

expressed as a functional integral

δ(CM(r)− c0) =

∫
DωM exp

{
−i
∫
dr ωM [ CM − c0 ]

}
(25)

in which ωM(r) is a fluctuating Lagrange multplier field that imposes the constraint requiring

that CM(r) = c0, for all r, and
∫
DωM is a functional integral over this field.

Combining Eq. (23) with Eq. (25) for the δ-function constraint, while using the defini-
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tions of Ω1, . . . ,ΩM , we obtain a partition function

Z = N−1

∫
Dω e−Hf

∫
Dr e−Uid−Hc , (26)

in which
∫
Dω denotes an integral over all M real fields ω1, . . . , ωM ,

Hf =

∫
dr

{
−

M−1∑
α=1

MΩ2
α

2vλα
− ΩMc0

}
+ U

(0)
int (27)

Hc =
M∑
α=1

∫
dr Wα(r)Cα(r) . (28)

Here, we have defined Wick rotated fields

Ωα(r) ≡ σαωα(r) (29)

for all α = 1, . . . ,M , with σM = i, and fields W1, . . . ,WM that are given by

Wα(r) ≡ Ωα(r) + Sα − Yα(r) (30)

for α = 1, . . . ,M − 1 and

WM(r) ≡ ΩM(r)− YM(r) , (31)

for α = M . Hamiltonian component Hf depends only on the auxiliary fields (so that the

subscript f denotes “field”), while component Hc introduces a coupling between auxiliary

fields and the monomer concentrations (so that c denotes “concentration” or “coupling”).

Let w1(r), . . . wM(r) denote monomer chemical potential fields given by

wi(r) =
M∑
α=1

Wα(r)vαi Wα(r) =
1

M

M∑
j=1

vαjwj(r) (32)

for all i = 1, . . . ,M and α = 1, . . . ,M . Using this definition, Hc can also be expressed as a
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sum

Hc =
M∑
i=1

∫
dr wi(r)ci(r) . (33)

The fields w1, . . . , wM are the monomer chemical potential fields used within the solution of

modified diffusion equation to compute single-polymer partition functions.

The functional integral for the canonical partition function Z may be expressed as an

integral

Z = N−1

∫
Dω e−H[ω] (34)

in which

H = Hf − lnZid (35)

is an effective Hamiltonian, and

Zid[w] =

∫
Dr e−Uid−Hc (36)

is the partition function of a hypothetical gas of non-interacting molecules in which monomers

of type i are subjected to a field wi(r).

In what follows, we use the notation ⟨· · · ⟩id to denote averages over particle positions eval-

uated for a hypothetical ideal gas subjected to an external potential Hc, as in the definition

of Zid. We define average volume fraction fields as

ϕi(r) = v⟨ci(r)⟩id (37)

Φα(r) = v⟨Cα(r)⟩id = vαiϕi(r) . (38)

for all i, α = 1, . . . ,M . Because these are evaluated for a gas with an external potential Hc,

these volume fraction fields are functionals of the w fields.
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Functional Derivatives

Expressions for functional derivatives of H with respect to the auxiliary fields are needed

to identify saddle-point field configurations and to design Langevin simulations. Let Dα(r)

denote the functional derivative

Dα(r) =
1

σα

δH

δωα(r)
=

δH

δΩα(r)
, (39)

for any α = 1, . . . ,M , with σM = i. A straightforward calculation that is presented in

supporting information (SI) yields

Dα(r) =
1

v

[
−M
λα

Ωα(r) + Φα(r)

]
(40)

for all α = 1, . . . ,M − 1, and

DM(r) =
1

v
[ΦM(r)− 1] , (41)

for α =M , where ΦM(r) = v⟨CM(r)⟩id.

Saddle-points of h are field configurations for which Dα(r) = 0 for all r and all α =

1, . . . ,M . We confirm in the SI that the resulting set of saddle-point equations is equivalent

to the conventional formulation of the SCF equations for monomer species in terms of volume

fractions ϕ1, . . . , ϕM .

Structure Factor

Let Sij(k) denote the structure factor matrix

Sij(k) ≡
1

V
⟨δĉi(k)δĉj(−k)⟩ , (42)
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where k is a wavevector and

δĉi(k) =

∫
dr e−ik·rδci(r) . (43)

denotes the Fourier transform of the concentration fluctuation δci(r) = ci(r)− ⟨ci(r)⟩. It is

shown in SI that the structure function of an an incompressible system can be expressed for

any M ≥ 2 as a sum

Sij(k) ≡
M−1∑
αβ=1

vαivβj

{
1

v2λαλβ
Gαβ(k)−

1

vMλα
δαβ

}
(44)

in which

Gαβ(k) =
1

V
⟨δŴα(k)δŴβ(−k)⟩ , (45)

and δŴα(k) is the Fourier transform of δWα(r) = Wα(r)− ⟨Wα(r)⟩.

Two Monomer (AB) Systems

Consider a system with two types of monomer, M = 2, which we refer to as an AB system.

Previous PS-FTS numerical studies have only considered this case. For M = 2, the subspace

orthogonal to e is one dimensional, and is spanned by a vector

v = v1 = [1,−1]T , (46)

giving a projection matrix

P =
1

2
v1v

T
1 =

1

2

 1 −1

−1 1

 . (47)
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Suppose we have a generic symmetric unprojected χ matrix with elements denoted by χij,

with χ12 = χ21. The corresponding projected χ matrix can be expressed as a product

χ̃ = −χP (48)

in which we have defined a scalar χ parameter

χ ≡ −vT
1 χv1/2 =

1

2
[2χ12 − χ11 − χ22] . (49)

The resulting matrix χ̃ has a single nonzero eigenvalue λ1 = −χ associated with eigenvector

v1, and constant values S1 = (χ11 − χ22)/4 and S2 = (2χ12 + χ11 + χ22)/4.

We focus in the remainder of this section on systems that satisfy the convention for

interaction parameters used in previous simulation studies, in which χ11 = χ22 = 0 and

χ12 = χ21 = χ. We refer this here as a standard AB system. For such systems, the

symmetric formalism yields S1 = 0 and S2 = χ/2. If we adopt notation analogous to that

of Matsen and Beardsley (MB),11 in which the subscripts 1 and 2 are replaced by − and +,

so that ω− = ω1 and ω+ = ω2, we obtain monomer fields

w1(r) = +ω−(r) + iω+(r)

w2(r) = −ω−(r) + iω+(r) , (50)

in analogy to Eq. (17) of MB,11 and a Hamiltonian

H = − lnZid +
1

v

∫
dr

{
ω2
−
χ

− iω+ +
χ

4

}
, (51)

in analogy to their Eq. (12). The symmetric formulation given here thus reduces for standard

AB systems to the formulation used by previous authors.
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Three Monomer (ABC) Systems

We now consider the behavior of the eigenvalues of the projected matrix χ̃ for a system

with three monomer types, M = 3, which we refer to as an ABC system. We focus here

on how the number of positive or negative eigenvalues of χ̃ depends on the values of the

binary interaction parameters. For simplicity, we assume throughout this section that, by

convention, diagonal elements of the full χ matrix vanish, so that χ11 = χ22 = χ33 = 0.

General Analysis

The projected χ matrix for a system withM = 3 is a singular 3×3 matrix that, by construc-

tion, has one vanishing eigenvalue associated with eigenvector e. We focus hereafter on the

two remaining nontrivial eigenvalues, whose values depend on the values of the interaction

parameters.

In a calculation that is presented in the SI, we show how an orthogonal transformation

of χ̃ to any basis in which one of the basis vectors is colinear with e transforms this matrix

to a form that in which all nonzero elements lie in a 2 × 2 block. The eigenvalues of this

remaining 2×2 block are then the desired nontrivial eigenvalues of χ̃. These two eigenvalues

are given by the roots of a quadratic equation, which are denoted here by λ− and λ+, with

λ− < λ+. Because the labelling of monomers is arbitrary, and the symmetric formulation

considered here preserves the symmetry under permutations of monomer types labels, the

eigenvalues are conveniently expressed in terms of three quantities

L ≡ χ12 + χ13 + χ23

K ≡ χ2
12 + χ2

13 + χ2
23

J ≡ χ12χ13 + χ12χ23 + χ13χ23 (52)

that are invariant under such permutations of labels, with L2 = K + 2J . A calculation
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presented in SI yields two nontrivial eigenvalues

λ± =
1

3

(
−L± 2

√
K − J

)
. (53)

It is straighforward to show that the product of these two eigenvalues is given by

λ−λ+ = (2J −K)/3 . (54)

This product is positive, indicating that these two eigenvalues have the same sign, if and

only if 2J > K. In the usual case in which the sum of the three χ parameters is positive

(i.e., when L > 0), the smaller eigenvalue λ− is always negative, and so the larger eigenvalue

λ+ is also negative if 2J > K.

Jiang, Xu and Zhang (JXZ)16 have previously considered how the analytic character of

the SCFT saddle point for incompressible ABC systems depends on the values of the Flory-

Huggins χ parameters. Their analysis was performed using an MSE formalism similiar to

that of Düchs, Delaney and Fredrickson.5 JXZ obtained an expression for the surface along

which the index of this saddle point changes that is equivalent to the expression obtained

here for the surface along which λ+ = 0, as given by Eq. (53) or (54).

To visualize regions in the space of χ parameter values, it is convenient to adopt a

convention for monomer labels for which χ13 is the interaction parameter of greatest absolute

magnitude (|χ13| > |χ12|, |χ23|) and consider the dependence on the two ratios χ̂12 ≡ χ12/χ13

and χ̂23 ≡ χ23/χ13. With this convention, both of these ratios must lie in the range [−1, 1].

By rewriting Eq. (54) in terms of these ratios, we find that λ−λ+ > 0 if and only if

2 (χ̂12 + χ̂23) > 1 + (χ̂12 − χ̂23)
2 (55)

The regions separated by this separatrix in the χ̂12-χ̂23 plane are shown in Fig. 1. The

separatrix terminates at end end-points (0, 1) and (1, 0) and intersects the symmetry line
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χ̂12 = χ̂23 at the point (1/4, 1/4).

−1 0 1

0

1

χ̂12

χ̂
23

λ−λ+ > 0

λ−λ+ < 0

2J = K
(1/4, 1/4)

Figure 1: Regions for an three monomer system in which the projected χ matrix χ̃ has
two nontrivial eigenvalues λ− and λ+ of the same sign (gray region in which λ+λ− > 0)
or of opposite sign (white region in which λ+λ− < 0) in a plane with coordinates χ̂12 =
χ12/χ13 ∈ [−1, 1] and χ̂23 = χ12/χ13 ∈ [−1, 1]. Here, χ13 is the interaction parameter of
greatest absolute magnitude, |χ13| > |χ12|, |χ23|. These two regions are separated by a curve
along which 2J = K, one which one of the eigenvalues passes through zero. The gray region
in which λ+λ− > 0 is contained within the quadrant with χ̂12 > 0 and χ̂23 > 0 in which all
three interaction parameters are of the same sign. This region yields two negative eigenvalues
in the common case of three positive χ parameters.

The upper right quadrant of Fig. (1) is the only region in which all three χ parameters

have the same sign (i.e., all positive or all negative). The remaining three quadrants represent

regions in which there exist χ parameters of both signs. Note that systems with χ parameters

of both signs always yield λ−λ+ < 0, indicating the existence of nontrivial eigenvalues of

opposite signs. The two nontrivial eigenvalues are of the same sign only within the region in

the upper right quadrant that is shown in gray, within which all three χ parameters are of

the same sign and not too disparate in magnitude. When all three χ parameters are positive,

interaction parameter values in this region yield two negative eigenvalues. When all three χ

parameters are negative, values in this region instead yields two positive eigenvalues.
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Hildebrand Approximation

Values for binary χ parameters in polymeric systems with simple non-polar chemical repeat

units can often be approximated by the Hildebrand solubility parameter approximation. 17

This approximation predicts an interaction parameter for monomer types i and j given by

χij =
v

kT
(δi − δj)

2 . (56)

where δi and δj are solubility parameters that are properties of corresponding homopolymer

melts.

The Hildebrand approximation introduces a constraint on the possible values of the binary

χ parameters, and thus on the eigenvalues of the matrix χ̃. To analyze the implications of

this constraint in an ABC system, it is convenient to label the monomer types such that

δ1 < δ2 < δ3, define ∆ = δ3 − δ1, and define parameters α and β such that

δ2 − δ1 = α∆ δ3 − δ2 = β∆ , (57)

such that α, β ∈ [0, 1] and α + β = 1. This gives χ parameters

χ13 = v∆2/kT χ12 = α2χ13 χ23 = β2χ13 . (58)

Using these definitions, we show in SI that the permutational invariants K and J satisfy

K = 2J = 2χ2
13(1 + α2β2 − 2αβ) . (59)

Because this gives 2J = K, it yields

λ−λ+ = (2J −K)/3 = 0 (60)

for any value of α.
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This analysis thus shows that the Hildebrand approximation always predicts a vanishing

value for one or both of the two nontrivial eigenvalues λ− and λ+. For any system with

unequal solubility parameters, and thus ∆ > 0, the Hildebrand approximation yields L > 0,

and thus always yields one negative eigenvalue, λ− < 0 and one vanishing eigenvalue, λ+ = 0.

Only the special case ∆ = 0, for which all interaction parameters vanish, yields λ− = λ+ = 0.

The Hildebrand approximation for ABC systems thus yields an unusual situation that

deserves closer consideration. To generalize slightly, consider a system with M monomers in

which one nontrivial eigenvalue λα with α < M happens to equal zero. This occurs forM = 2

when χ = 0 and for M = 3 when the interaction parameters satisfy the equality K = 2J .

When λα = 0 for a particular eigenvalue, fluctuations of the associated auxiliary field ωα

are completely suppressed by the appearance of a divergent factor of 1/λα that appears as a

prefactor of the term quadratic in ωω in Eq. (27) for Hf . This yields a statistical ensemble in

which the only field configurations with nonzero weight are those for which ωα(r) = 0 for all

r. The functional integral for Z in a fully fluctuating theory can thus be formulated in this

special case by simply setting ωα(r) = 0 in the Hamiltonian, and expressing the functional

integral as an integral only over the remaining M − 1 auxiliary fields, which always include

the pressure-like field ωM .

For an ABC system that obeys the Hildebrand approximation with ∆ > 0, for which

λ+ = 0, we thus obtain a functional integral over a real field Ω1 = ω1 associated with the

negative eigenvalue λ− and over an imaginary pressure-like field component Ω3 = iω3 that

imposes incompressibility. The theory thus reduces in this special case to a form very similar

to that found for an AB system with χ > 0.

Partial Saddle-Point Approximation

We now define and discuss a generalization of the partial saddle-point approximation (PSA)

so as to apply to systems with M > 2. The PSA has previously been applied only to
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incompressible AB systems, with M = 2.

Definition of PSA

AB Systems: We first review the PSA for AB systems with χ > 0. In the PSA for such a sys-

tem, one ignores fluctuations in the imaginary field ω+ (or ω2) and evaluates the Hamiltonian

using a partial saddle-point configuration of ω+(r), while allowing ω− (or ω1) to fluctuate. A

partial saddle-point field configuration is defined by the requirement that functional deriva-

tive of H with respect to ω+ at fixed ω− must vanish, i.e., that

0 =
δH[ω−, ω+]

δω+(r)
(61)

for all r. Let ω∗
+ denote the partial-saddle point configuration of the field ω+ that satisfies

this condition, which is itself a functional of ω−. The PSA for the partition function Z for

such a system is given by an functional integral over the exchange field ω−, as

Z = N−1

∫
Dω1e

−H[ω−,ω∗
+] (62)

in which ω∗
+ is the partial saddle-point configuration of ω+(r) at the specified configuration

of ω−(r). For incompressible AB systems with χ > 0, it appears that there always exists a

solution to the partial saddle-point equation for which iω+(r) is a real field. Use of this partial

saddle-point value for ω+ then yields real values for the monomer chemical potential fields

w1(r) and w2(r) and for the Hamiltonian H[ω−, ω∗
+]. The existence of a real Hamiltonian

allows the use of conventional Monte Carlo and Brownian dynamics sampling methods, and

avoids the “sign problem” found in the fully fluctuating theory.

Generalized PSA: It is straightforward to formulate a generalized PSA for systems with

M ≥ 2 by analogy to the case M = 2. To do so, we divide the list of M fields ω1, . . . , ωM

into one list of fields for which the corresponding eigenvalues of χ̃ are negative, which we

denote collectively by ω−, and a second list of fields for the corresponding eigenvalues of χ̃
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are positive or zero, which we will denote by ω+. The list ω+ always contains the constraint

field ωM , and may also include one more fields ω1, . . . , ωM−1 that are associated with positive

eigenvalues of χ̃.

Suppose that the symmetric matrix χ̃ has L negative eigenvalues for which σα = 1 and

and M − L non-negative (positive or zero) eigenvalues for which σα = i, with L < M .

By convention, we order the eigenvalues so that α1, . . . , αL are negative, so that ω− =

(ω1, . . . , ωL) and ω+ = (ωL+1, . . . , ωM).

The generalized PSA for an incompressible system with M ≥ 2 is given by a straightfor-

ward generalization of Eq. (62), in which the treatments of the fields ω− and ω+ is generalized

so as to apply to the corresponding lists of fields with the same names. In general, Z is de-

fined as a functional integral over over the L fields in list ω−, which are thus allowed to

fluctuate, while the field theoretic Hamiltonian is evaluated using partial saddle-point values

for all of the fields in list ω+. A partial saddle-point field configuration is defined as one

in which the functional derivative of H[ω1, . . . , ωM ] with respect to field ωα vanishes for all

fields in list ω+ corresponding to α = L+1, . . . ,M . This formulation assumes that, for each

configuration of the fields in list ω−, there exists a unique partial saddle-point configura-

tion of the fields in list ω+ for which iωα is real for all α = L + 1, . . . ,M , giving a partial

saddle-point configuration with real monomer fields.

Discussion of PSA

The additional approximation involved in applying this generalized PSA to systems with

M ≥ 2, compared to the case M = 2, is the application of a partial saddle-point (or self-

consistant field) approximation to field components associated with positive eigenvalues of

χ̃, if any. Each negative eigenvalue λα of χ̃, with α ≤ L, corresponds to a negative contri-

bution to the potential energy U of the particle based model that arises from fluctuations of

a corresponding monomer concentration component Cα(r). Terms associated with negative

eigenvalues thus acts to enhance fluctuations of associated concentration field components.
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Auxiliary field components associated with negative eigenvalues of χ̃ are thus “dangerous”

modes that can lead to strong correlations and microphase separation, indicating that we

should prioritize the explicit treatment of these field components in field theoretic simula-

tions. Each positive eigenvalue of χ̃ is, however, associated with a negative contributions to

U that instead acts to suppress the magnitude of fluctuations of an associated concentration

field component. The generalized PSA described above thus applies a self-consistent field

approximation to all auxiliary chemical potential field components that arise from potential

energy contributions that act to suppress (rather than enhance) fluctuations of an associated

concentration component. If applied to a standard AB system with M = 2, this generalized

PSA would require explicit sampling of fluctuations of ω− and a PSA for ω+ for systems

χ > 0, but would reduce to SCFT (i.e., use of PSA for both field components) for AB

systems with χ < 0.

To clarify some consequences of the PSA, consider its application to a particular field

component ωα associated with an eigenvalue λα > 0, and then consider the limits λα → 0+

and λα → +∞. In the limit λα → 0+, fluctuations of ωα(r) are entirely suppressed by the

prefactor of 1/λα in the term in Hf that involves fluctuations of component ωα. In this

limit, application of the PSA to component ωα thus actually becomes exact. In the opposite

limit λα → +∞, fluctuations of ωα(r) are generally not small, but their physical effect is

to completely suppress fluctuations of the associated concentration field component Cα(r),

effectively imposing a constraint on this concentration component. In this limit λα → +∞,

application of the PSA to a component with L < α < M thus becomes completely analogous

to the use of a field component ωM to impose a rigorous constrain on the total monomer

concentration CM . Application of the PSA might naturally be expected to be least accurate

in this latter limit of a large positive eigenvalue as that obtained when applied to the field

component ωM (corresponding to the worst-case scenario of an infinite positive eigenvalue)

and to be more accurate for small positive eigenvalues that for large positive eigenvalues.

Experience with AB systems suggests, however, that use of the PSA to approximate the
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incompressibility constraint appears to yield rather accurate results when applied to poly-

meric systems with a large invariant degree of polymerization, N → ∞, and when interpreted

properly.

A thorough discussion of the reasons for the apparent effectiveness of the PSA to treat the

incompressibility constraint in AB systems is beyond the scope of this paper. We comment

here only that the this effectiveness is presumably only valid for systems with large values of

N , and is probably related in part to the fact that the associated concentration fluctuations

at relevant wavelengths of order the polymer coil size become small in the limit N → ∞

even for the non-interacting reference system used in the PSA, thereby allowing treatment

of a constraint at a self-consistent-field level to yield accurate results for many quantities in

the limit of sufficiently large values of N . The above discussion of the physics of the PSA

in the limits of small and large positive eigenvalues of χ̃, together with experience over the

last decade with the behavior of the PSA in AB systems, suggests that the PSA could well

yield useful predictions for systems with N ≫ 1 when applied to any field component ωα for

which λα > 0, as proposed above. This is, of course, not a proof, but merely an argument

for guarded optimism and further study.

A particularly strong case for the potential usefulness of a generalized PSA can be made

for ABC systems (M = 3) for which the binary interaction parameters nearly obey the

Hildebrand approximation. For concreteness, imagine an ABC system for which all of the

interaction parameters are positive in which we order the eigenvalues of χ̃ assigning an index

α = 1 to the eigenvalue λ−, which must be negative, assigning α = 2 to the eigenvalue λ+,

which is small but could be either positive or negative, and α = 3 to the zero eigenvalue

associated with eigenvector e = v3. In an ABC system that exactly obeys the Hildebrand

approximation, λ1 < 0 but λ2 = 0, and so fluctuations of field component ω2(r) are com-

pletely suppressed. Application of the PSA to ω2 is thus exact in this case. In cases in which

λ2 is small but negative, the PSA is applied only to the pressure-like field ω3, as for an AB

system, and so we expect the PSA to yield an accuracy similar to that typically obtained
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in PS-FTS studies of AB systems. In cases in which λ2 is small but positive, the PSA is

applied to an additional field ω2 for which fluctuations in fully fluctuating theory are also

small, so that the use of the PSA for this component should be accurate, and so we again

expect to obtain an accuracy similar to that typical of an AB system. Application of the

generalized PSA to any ABC system for which the χ parameters nearly obey the Hildebrand

approximation (with deviations of either sign) should thus be expected to yield an accuracy

comparable to that obtained for AB systems.

Weakly Compressible Model

We now show how a symmetric formulation of the theory for an incompressible model similar

to that presented here be obtained by starting from a compressible model and considering the

limit of vanishing compressibility (or infinite compression modulus). Consider a compressible

model with a a potential energy of the form U = Uid + Uint + Uext, in which

Uint =
v

2

∫
dr { χijcicj + ζ(eici − c0)

2 } (63)

Uext = −
∫
dr yici , (64)

where ζ is a dimensionless compression modulus, eici is the total monomer concentration that

we denoted by CM in the incompressible theory, and c0 = 1/v is the energetically preferred

value for this total monomer concentration. Here, yi(r) is an external source field associated

with monomer type i. This interaction energy may also be expressed as a sum

Uint =

∫
dr
{ v

2
Uijcicj − ζeici

}
+ U

(0)
int , (65)

in which we have defined a matrix U with elements

Uij = χij + ζeiej , (66)
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while U
(0)
int = ζV c0/2.

Compressible Field Theory

When analyzing this model, we expand all fields in a basis of eigenvectors of the matrix U

with elements Uij. For any α = 1, . . . ,M , let

Uxα = καxα (67)

where xα and κα denote an eigenvector and associated eigenvalue, for which xT
αxβ =Mδαβ.

We define a concentration component Cα(r) = xT
αc(r) for each α = 1, . . . ,M , where c(r) =

[c1(r), . . . , cM(r)]T is a vector of monomer concentrations. By expanding c(r) in this basis,

we obtain

Uint =
M∑
α=1

∫
dr
{vκα
2M

C2
α − ζEαCα

}
+ U

(0)
int

Uext = −
M∑
α=1

∫
dr YαCα , (68)

in which

Eα ≡ xαiei/M Yα(r) ≡ xαiyi(r)/M (69)

Applying a Hubbard-Stratonovich transformation to the quadratic terms in this model, by

introducing auxiliary fields ψ1, . . . , ψM , yields an expression for Z as a functional integral

with a field-theoretic Hamiltonian

H[ψ] = − lnZid +Hf

Hf =
M∑
α=1

∫
dr

Mψ2
α

2v|κα|
+ U

(0)
int (70)
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in which Zid[W ] is the partition function of an ideal gas that is subjected to an external

potential

Hc =
M∑
α=1

Wα(r)Cα(r) , (71)

where

Wα(r) = Ψα(r)− ζEα − Yα (72)

Ψα(r) = σαψα(r) , (73)

with σα = 1 for κα < 0 and σα = i for κα > 0.

Incompressible Limit (ζ → ∞)

To describe an incompressible fluid, we consider a limiting process in which all elements of χ

are held constant while ζ → +∞. As ζ increases, we find that one eigenvalue of U diverges

while the others approach finite limits. By convention, we assign indices 1, . . . ,M − 1 to the

eigenvalues that remain finite in this limit, and an index M to the diverging eigenvalue. We

show in SI that, in the limit ζ → ∞:

• Eigenvector xM approaches e, while the associated eigenvalue κM diverges, such that

κM/(Mζ) → 1.

• For α = 1, . . . ,M − 1, each eigenvector xα and eigenvalue κα of U approach a corre-

sponding eigenvector vα and eigenvalue λα of the projected chi matrix χ̃.

The fact that xM → e in this limit implies that EM → 1. The orthogonality of eigenvalues

of U thus also implies that Eα → 0 for α < M . It is shown in SI that values of Eα for

α < M decrease as 1/ζ with increasing ζ, such that

lim
ζ→∞

ζEα = −Sα (74)
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for all α < M . Observe that Eq. (74) implies that, for all α < M , the quantity −ζEα that

appears on the RHS of Eq. (72) for Wα(r) in compressible theory will approach the quantity

Sα that appears in the analogous position within Eq. (30) for Wα(r) in the incompressible

theory.

It is also possible to establish correspondences between values of fluctuating variables in

corresponding field configurations of the compressible and incompressible theories. For this

purpose, we define “corresponding states” of the compressible and incompressible theories

to be states with equal values for all monomer chemical potential fields w1(r), . . . , wM(r),

as well as equal values for the χ parameters and all monomer source fields y1(r), . . . , yM(r).

To characterize the incompressible limit of the weakly-compressible theory, we consider a

hypothetical limiting process in which the χ matrix, the y fields and w fields are all held

constant while ζ approaches +∞. In what follows, a fluctuating variable A that is defined in

the compressible theory is said to be “asymptotically equivalent” to a corresponding variable

B that is defined in the incompressible theory if A approaches a limit as ζ → ∞ that is equal

to the value of B in a corresponding state of the incompressible theory.

An analysis of the behavior of a variety of variables in the limit ζ → ∞ is presented in

SI. That analysis establishes the following asymptotic relationships:

• For all α < M , the value of Ψα(r) in the compressible theory is asymptotically equiv-

alent to the value of Ωα(r) in the incompressible theory.

• The value of the Hamiltonian H[ψ] of the compressible theory is asymptotically equiv-

alent to the value of the Hamiltonian H[ω] of the incompressible theory.

• The quantity ΨM(r)− ζ in the compressible theory is asymptotically equivalent to the

value of ΩM(r) in the incompressible theory.

As one result of the asymptotic equivalence of Hamiltonian values of the two theories, and

equivalence of corresponding fields to within a constant in the pressure-like field, the func-

tional derivative δH/δΨα of the compressible theory can also be shown to be asymptoti-

29



cally equivalent to the corresponding derivative δH/δΩα of the compressible theory, for all

α = 1, . . . ,M .

The asymptotic equivalence of values of H in corresponding states of fully fluctuating

compressible and incompressible theories implies that corresponding states will be assigned

asymptotically equivalent equal statistical weights in a fully fluctuating complex Langevin

field theoretic simulation (CL-FTS) of either theory. The asymptotic equivalence of func-

tional derivatives of H also implies that the two theories exhibit asymptotically equivalent

partial-saddle point field configurations, and thus that asymptotically equivalent weights will

be assigned to corresponding partial saddle-point configurations of PS-FTS simulations of

compressible and incompressible models. The compressible theory presented here is thus

asymptotically equivalent to the incompressible theory of section 2 in the sense that the two

theories yield asymptotically equivalent statistical weights for corresponding states in either

CL-FTS or in PS-FTS methods.

The only notable formal difference between the incompressible limit of the compressible

model and the incompressible model of section 2 is the existence of a spatially homogeneous

difference between the value of the pressure-like field ΨM(r) = iψM(r) in the compressible

theory and the value of ΩM(r) = iωM(r) in a corresponding state of the incompressible theory.

The existence of such a homogeneous difference becomes clear upon comparing of Eq. (72),

which yields ΨM(r) = WM(r)+YM(r)+ ζEM in the compressible theory, to Eq. (31), which

yields ΩM(r) = WM(r) + YM(r) in the incompressible theory, while noting that EM → 1 as

ζ → ∞. This homogeneous shift could be removed without changing the physical content

of either theory by (among other possible methods) deforming the integration contour for

ΨM(r) in the compressible theory so as to make ΨM(r)− ζ a pure imaginary field.
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Conclusions

We have presented a “symmetric” formulation of field theory for incompressible polymer

systems with any number of monomer types, in which incompressibility is applied in a

manner that manifestly preserves the symmetry among different monomer types. Both

the fully fluctuating theory and a generalized partial saddle-point approximation have been

discussed. The symmetric formulation is based on the introduction of a projected χ matrix

that describes how the binary interaction energy changes in response to changes in monomer

concentrations that respect the incompressibility constraint. The symmetric formulation has

been shown to emerge naturally from an analysis of the incompressible limit of a compressible

model, and to also reduce to the existing formulation for standard AB systems when applied

to such systems. This formulation is proposed as a convenient theoretical basis for the

development of software for PS-FTS of incompressible models for systems with an arbitrary

number of monomer types, and is now being incorporated into two different software packages

maintained by the authors.

We have discussed a straightforward generalization of the PSA to incompressible systems

with M > 2, in which the PSA is applied to all field components associated with positive

or vanishing eigenvalues of the projected χ matrix. Physical arguments are given for why

we expect the resulting generalization to often yield accuracy similar to that obtained in

PS-FTS studies of AB systems. We do not report any numerical results obtained with this

method, deferring that to future work.

An analysis of ABC systems with M = 3 has identified the regions in the space of values

of the binary χ parameters in which the projected χ matrix has two, one, or zero negative

eigenvalues, corresponding to cases that require introduction of one, two or three imaginary-

valued fields in a fully fluctuating theory. Incompressible systems with positive values for all

χ parameters are found to always require the introduction of either one or two imaginary-

valued fields in the fully fluctuating theory, one of which is always required to maintain

incompressibility. Systems that obey the Hildebrand solubility-parameter approximation for
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the χ parameters are shown to correspond to a special case in which one nontrivial eigenvalue

happens to vanish, and in which the fully fluctuating theory requires use of only a single

imaginary-valued pressure-like field and a single real-valued exchange field, much like an

AB system. Systems with χ parameters that nearly obey the Hildbebrand approximation

thus appear to be promising candidates for application of a generalized partial saddle-point

approximation, which is expected to lead in these cases to errors very similar to those found

in PS-FTS studies of AB systems.
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(5) Düchs, D.; Delaney, K. T.; Fredrickson, G. H. A multi-species exchange model for fully

fluctuating polymer field theory simulations. J. Chem. Phys. 2014, 141, 174103, DOI:

10.1063/1.4900574.

(6) Delaney, K. T.; Fredrickson, G. H. Recent Developments in Fully Fluctuating Field-

Theoretic Simulations of Polymer Melts and Solutions. J. Phys. Chem. B 2016, 129,

7615–7634, DOI: 10.1021/acs.jpcb.6b05704.

(7) Fredrickson, G. H.; Delaney, K. T. Direct free energy evaluation of classical and quan-

tum many-body systems via field theoretic simulations. Proceedings of the National

Academy of Sciences 2022, 119, e2201804119, DOI: 10.1073/pnas.2201804119.

(8) Stasiak, P.; Matsen, M. Monte Carlo Field-Theoretic Simulations for Melts of

Symmetric Diblock Copolymers. Macromolecules 2013, 46, 8037 – 8045, DOI:

10.1021/ma401687j.

(9) Beardsley, T.; Spencer, R.; Matsen, M. Computationally Efficient Field-Theoretic Sim-

ulations for Block Copolymer Melts. Macromolecules 2019, 52, 8840 – 8848, DOI:

10.1021/acs.macromol.9b01904.

(10) Vorselaars, B.; Spencer, R.; Matsen, M. Instability of the Microemulsion Channel in

Block Copolymer-Homopolymer Blends. Phys. Rev. Lett. 2020, 125, 117801, DOI:

10.1103/PhysRevLett.125.117801.

33



(11) Matsen, M.; Beardsley, T. Field-theoretic simulations of copolymers using the partial

saddle-point approximation. Polymers 2021, 13, 2437, DOI: 10.3390/polym13152437.

(12) Matsen, M.; Beardsley, T.; Willis, J. D. Fluctuation Corrected Phase Dia-

grams for Diblock Copolymer Melts. Phys. Rev. Lett. 2023, 130, 248101, DOI:

10.1103/PhysRevLett.130.248101.

(13) Arora, A.; Qin, J.; Morse, D. C.; Delaney, K.; Fredrickson, G. H.;

Bates, F. S.; Dorfman, K. D. Broadly accessible self-consistent field theory for

block copolymer materials discovery. Macromolecules 2016, 49, 4675–4690, DOI:

10.1021/acs.macromol.6b00107.

(14) Cheong, G. K.; Chawla, A.; Morse, D. C.; Dorfman, K. D. Open-source code

for self-consistent field theory calculations of block copolymer phase behavior

on graphics processing units. European Physical Journal E 2020, 43, 15, DOI:

10.1140/epje/i2020-11938-y.

(15) Yong, D.; Kim, J. Accelerating Langevin field-theoretic simulation of poly-

mers with deep learning. Macromolecules 2020, 55, 6505–6515, DOI:

10.1021/acs.macromol.2c00705.

(16) Jiang, K.; Xu, W.; Zhang, P. Analytic Structure of the SCFT Energy Functional of

Multicomponent Block Copolymers. Comm. Comput. Phys. 2015, 17, 1360–1487, DOI:

10.4208/cicp.281113.271114a.

(17) Hildebrand, J. H.; Scott, R. L. The Solubility of Nonelectrolytes ; Dover, 1964.

34



−1 0 1

0

1

χAB/χAC
χ
B
C
/χ

A
C 1 or 3

2

# of imaginary fields
in ABC system

|χAB |, |χBC | < |χAC |

Table-of-Contents Graphical Entry

35



Supporting Information for “Polymer Field

Theory for Multimonomer Incompressible

Models: Symmetric Formulation and ABC

Systems”

David C. Morse,∗,† Daeseong Yong,‡ and Kexin Chen†

† Department of Chemical Engineering & Materials Science, University of Minnesota, 421

Washington Ave. S.E., Minneapolis, MN 55455

‡ Center for AI and Natural Science, Korea Institute for Advanced Study, Seoul 02455,

Republic of Korea

E-mail: morse012@umn.edu

This document contains a variety of mathematical details of the analyses presented in

the associated article.

Incompressible Field Theory

To make this document more self-contained, we begin by restating the main working equa-

tions for the incompressible model presented in the second section of the associated article.
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Working Equations (Overview)

The projected χ matrix of a system with M monomer types is the symmetric M×M matrix

χ̃ = PχP , (1)

where

P = I−Q Q = eeT/M (2)

and e = [1 · · · 1]T . This is a singular matrix for which χ̃e = 0, so e is an eigenvector with

vanishing eigenvalue. For each α = 1, . . . ,M , let vα and λα denote an eigenvector and

associated eigenvalue of χ̃, such that

χ̃vα = λαvα . (3)

Let vM = e and λM = 0 by convention. These eigenvectors are normalized such that

vTαvβ =Mδαβ. For α = 1, . . . ,M − 1, we define

λα = −σ2
α|λα| (4)

with σα = 1 for λα < 0 and σα = i for λα > 0. Let σM = i by convention.

The concentration of monomers of type i is denoted by ci(r). Components of concentra-

tion in an eigenvector basis are denoted by C1(r), . . . , CM(r), and are defined by relationships

Cα(r) =
M∑
i=1

vαici(r) ci(r) =
1

M

M∑
α=1

Cα(r)vαi , (5)

where vαi is the component of eigenvector vα associated with monomer type i. We also

define a vector S with components

Sα =
1

M2
vTαχe (6)
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for all α = 1, . . . ,M . Note that SM = eTχe/M2.

The canonical partition function Z of an incompressible field theory is given by a func-

tional integral

Z = N−1

∫
Dω e−H (7)

H = Hf − lnZid (8)

in which

Hf =

∫
d3r

{
−

M−1∑
α=1

MΩ2
α

2vλα
− ΩMc0

}
+
V SM
2v

(9)

Ωα(r) = σαωα(r) , (10)

and Zid[W ] is the partition function of a hypothetical gas of non-interacting molecules sub-

jected to an external potential Hc, such that

Zid[W ] =

∫
Dr e−Uid−Hc (11)

Hc =
M∑
α=1

∫
d3r Wα(r)Cα(r) , (12)

where

Wα(r) = Ωα(r) + Sα − Yα(r) α = 1, . . . ,M − 1 (13)

WM(r) = ΩM(r)− YM(r) , (14)

while Yα(r) is an external source field conjugate to Cα(r).

Let ⟨· · ·⟩id denote an average over particle positions for an ideal gas subjected to an

external potential Hc, and let ϕi(r) and Φα(r) denote average volume fractions fields for
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such an ideal gas, defined as

ϕi(r) = v⟨ci(r)⟩id

Φα(r) = v⟨Cα(r)⟩id = vαiϕi(r) (15)

for i = 1, . . . ,M and α = 1, . . . ,M .

Functional Derivatives of H

Consider the computation of functional derivatives

Dα(r) =
δH

δΩα(r)
=

1

σα

δH

δωα(r)
, (16)

where H = Hf − lnZid. The functional derivative of − lnZid with respect to Ωα(r) is given

for any α = 1, . . . ,M by

−δ lnZid

δΩα(r)
= =

−1

Zid

δZid

δWα(r)

=
−1

Zid

δ

δWα(r)

∫
Dr exp

{
−Uid −

M∑
i=1

∫
d3r Wα(r)Cα(r)

}
=

1

Zid

∫
Dr Cα(r) exp {−Uid +Hc}

= ⟨Cα(r)⟩id = Φα(r)/v . (17)

A straightforward evaluation of δHf/δΩα yields

δHf

δΩα(r)
= − M

vλα
Ωα(r) (18)

for α = 1, . . . ,M − 1, and

δHf

δΩM(r)
= −c0 (19)
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for α =M . The resulting functional derivatives of H = Hf − lnZid are

Dα(r) =
1

v

[
−MΩα(r)

λα
+ Φα(r)

]
(20)

for all α < M , with Ωα(r) = Wα(r)− Sα + Yα(r), and

DM(r) =
1

v
[ΦM(r)− 1] (21)

for α =M .

Saddle-Points and SCF Equations

A saddle-point point of the functional integral is a field configuration for which

Dα(r) = 0 (22)

for all α = 1, . . . ,M and all r. The saddle-point condition for α =M is a mean-field version

of the incompressibility constraint, which requires that ⟨CM(r)⟩id = c0 or ΦM(r) = 1.

We now show that the saddle point conditions given above are equivalent to the usual

self-consistent field (SCF) equations for an incompressible system. The standard formulation

of these SCF equations, expressed in terms of volume fraction fields ϕ1, . . . , ϕM , require that

0 = wi(r)− χijϕj(r)− eiξ(r) + yi(r) , (23)

for all i = 1, . . . ,M . Here, ξ(r) is a Lagrange multiplier field whose value must be chosen to

as to satisfy the incompressibility constraint,

1 = eiϕi(r) . (24)

Here and throughout this document, we use Einstein convention for summation over repeated
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monomer type indices.

By multiplying Eq. (23) by vαi for any α < M and summing with respect to i, we obtain

0 = vαi {wi(r) + yi(r)− χijϕj(r)− eiξ(r)}

= M [Wα(r) + Yα(r)]− vαiPijχjkϕk(r) , (25)

where we have used the facts that vαiei = 0 and vαk = vαiPik for α < M . We then note that,

for states that also satisfy the constraint eiϕi = 1,

vαiPijχjkϕk(r) = vαiPijχjk

[
Pklϕl(r) +

1

M
ek

]
= vαiχ̃ijϕj(r) + vαiχijej/M

= λαvαjϕj(r) +MSα (26)

where we have used the fact that vαiχ̃ij = λαvαj because vα is an eigenvector of the symmetric

matrix χ̃. Substituting back into Eq. (25), while noting that Φα(r) = vαjϕj(r), yields

0 =M [Wα(r) + Yα(r)− Sα]− λαΦα(r) . (27)

Dividing by −vλα and noting that Ωα(r) = Wα(r) + Yα(r)− Sα then yields

0 =
1

v

[
−MΩα(r)

λα
+ Φα(r)

]
= Dα(r) (28)

in which the second equality follows from Eq. (20). The conventional SCF equations of Eq.

(23) thus imply that Dα(r) = 0 for all α < M , while the SCF incompressibility constraint is

equivalent to a requirement that DM(r) = 0.
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SCFT Free Energy

The SCFT approximation for the free energy, denoted here by A, is given by

A = Aid + Aint + Aext (29)

in which

Aid = − lnZid −
1

v

∫
dr wi(r)ϕi(r)

Aint =
1

2v

∫
dr ϕi(r)χijϕj(r)

Aext = −1

v

∫
dr yi(r)ϕi(r) . (30)

Expanding ϕi(r) in a basis of eigenvectors yields

Aid = − lnZid −
1

v

∫
dr

M∑
α=1

WαΦα

Aint =
1

v

∫
dr

{
M−1∑
α=1

[
1

2M
λαΦ

2
α + SαΦα

]
+

1

2
SM

}
,

Aext = −1

v

∫
dr

M∑
α=1

Yα(r)Φα(r) . (31)

Using the saddle-point equation Wα = λαΦα/M + Sα − Yα for α < M and assuming the

validity of the SCF incompressibility constraint ΦM(r) = 1 when computing Aid yields

Aid = − lnZid −
1

v

∫
dr

{
M−1∑
α=1

(
1

M
λαΦ

2
α + SαΦα − YαΦα

)
+WM

}
. (32)

Combining expressions yields a total free energy

A = − lnZid +
1

v

∫
dr

{
− 1

2M

M−1∑
α=1

λαΦ
2
α −WM − YM +

1

2
SM

}
. (33)
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Again applying the saddle point condition to write Φα = M(Wα + Yα − Sα)/λα then yields

a saddle-point free energy

A = − lnZid +
1

v

∫
dr

{
−

M−1∑
α=1

M(Wα + Yα − Sα)
2

2λα
−WM − YM +

1

2
SM

}
. (34)

This is equivalent to the expression for the field theoretic Hamiltonian H given in Eqs. (8)

and (9). The value of H at a saddle-point is thus exactly equal to the SCFT free energy

given in Eqs. (29) and (30).

Correlation Functions

We now consider the calculation of correlation functions from the results of a field theoretic

simulation of an incompressible model. The derivation given here uses differentiation of Z[Y ]

with respect to the source fields Y1, . . . , YM

Changing Integration Variables

To simplify evaluation of derivatives with respect to the source fields, it is convenient to

introduce fields ψ1(r), . . . , ψM(r) that are defined by the relations

Wα(r) = σαψα(r) (35)

for α = 1, . . . ,M . This yields Ωα(r) = σαψα(r) + Yα(r) − Sα for α = 1, . . . ,M − 1, and

ψM(r) = ωM(r). We then deform the integral used to compute Z by taking ψ1(r), . . . , ψM(r)

to be real fields and expressing Z as an integral

Z = N−1

∫
Dψ e−H (36)
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over these fields. This rewriting of the integral is equivalent to a shift in the integration

contour for Ωα(r) for fields for which α < M and σα = i by a real amount Yα(r) − Sα so

as to obtain an integration contour for Wα(r) that follows the imaginary axis, rather than

the contour along which Ωα(r) is imaginary used in the original formulation. Because H is

an analytic functional, this contour deformation does not change the value of the integral.

Expressing Hf as an explicit function of the real ψ fields yields a contribution

Hf =

∫
d3r

{
−

M−1∑
α=1

M [σαψα + Yα − Sα]
2

2vλα
− iψMc0

}
. (37)

In this re-formulation, at fixed values of the fields ψ1, . . . , ψM , Hf thus depends explicitly on

the source fields Y1, . . . , YM−1, but the W fields that appear in the definition of Zid instead

become independent of the source fields. This change of variables simplifies evaluation of

functional derivatives of H with respect to Y (r)

Moments and Functional Derivatives

By starting from the original representation of Z[Y ] as a configurational integral, it is

straightforward to show that the first and second moments of the concentration components

C1(r), . . . , CM(r) can be expressed as functional derivatives

⟨Cα(r)⟩ =
1

Z

δZ

δYα(r)
(38)

⟨Cα(r)Cβ(r′)⟩ =
1

Z

δZ[Y ]

δYα(r)δYβ(r′)
. (39)

Using the functional integral representation of Z obtained above, the required derivatives of

Z[Y ] can then be expressed as average values

⟨Cα(r)⟩ =

〈
δH

δYα(r)

〉
(40)

⟨Cα(r)Cβ(r′)⟩ =

〈
δH

δYα(r)

δH

δYβ(r′)
− δ2H

δYα(r) δYβ(r′)

〉
, (41)
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in which the averages on the right-hand-side of each equation represent averages over fields

ψ1, . . . , ψM , and in which the functional derivatives of H are evaluated at fixed values of the

ψ fields. The required derivatives of H are

δH

δYα(r)

∣∣∣∣
ψ

= − M

vλα
Ωα(r)

δ2H

δYα(r) δYβ(r′)

∣∣∣∣
ψ

= − M

vλα

δΩα(r)

δYβ(r′)

∣∣∣∣
ψ

= − M

vλα
δαβδ(r− r′) , (42)

thus giving

⟨Cα(r)⟩ = − M

vλα
⟨Ωα(r)⟩ (43)

⟨Cα(r)Cβ(r′)⟩ =
M2

v2λαλβ
⟨Ωα(r)Ωβ(r

′)⟩ − M

vλα
δαβδ(r− r′) . (44)

By combining these expressions for the first and second moments, one may easily show that

⟨δCα(r)δCβ(r′)⟩ =
M2

v2λαλβ
⟨δΩα(r)δΩβ(r

′)⟩ − M

vλα
δαβδ(r− r′) , (45)

Here and hereafter, we use the notation δf(r) to indicate a deviation δf(r) = f(r)− ⟨f(r)⟩

of field f from its average, so that δCα(r) = Cα(r)− ⟨Cα(r)⟩ and δΩα(r) = Ωα(r)− ⟨Ωα(r)⟩.

Note that, because Ωα = Wα + Sα − Yα, while Sα is a constant,

δΩα(r) = δWα(r)− δYα(r) . (46)

For the special case of a homogeneous liquid in which δYα(r) = 0 for all α and all r, we thus

obtain

⟨δCα(r)δCβ(r′)⟩ =
M2

v2λαλβ
⟨δWα(r)δWβ(r

′)⟩ − M

vλα
δαβδ(r− r′) (47)

for all α, β = 1, . . . ,M . In an incompressible model, however, δCM(r) = 0, and nonzero

values of ⟨δCα(r)δCβ(r′)⟩ are obtained only for α, β = 1, . . . ,M − 1.
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Structure Factor

Consider the calculation of the structure function in a homogeneous state with Yα(r) = 0

for all α and r. Let Sij(k) denote the structure function

Sij(k) ≡ 1

V

∫
dr

∫
dr′e−ik·(r−r′)⟨δci(r)δcj(r′)⟩

=
1

V
⟨ĉi(k)ĉj(−k)⟩ , (48)

where k is a wavevevector and δĉi(k) denotes the Fourier transform of δci(r) at wavevector

k. Here and hereafter, we use carets to denote Fourier transforms of fields, defined using the

convention

f̂(k) =

∫
dr e−ik·rf(r) , (49)

The quantity Sij(k) can be expressed in terms of the components of concentration in an

eigenvector basis as an expansion

Sij(k) =
1

VM2

M−1∑
α,β=1

⟨δĈα(k)δĈβ(−k)⟩vαivβj (50)

in which δĈα(k) is the Fourier transform of δCα(r). By evaluating the Fourier transform of

Eq. (47), we thus find that

Sij(k) =
M−1∑
αβ=1

vαivβj

{
1

v2λαλβ
Gαβ(k)−

1

vMλα
δαβ

}
, (51)

where

Gij(k) =
1

V
⟨δŴα(k)δŴβ(−k)⟩ , (52)

and where δŴα(k) is the Fourier transform of δWα(r).
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Three Monomer (ABC) Systems

This section provides details of the analysis of three-monomer systems that is summarized

in section 4 of the associated article.

Eigenvalues of χ̃

Consider the calculation of the eigenvalues of a projected χ matrix

χ̃ = PχP . (53)

Here P = I− eeT/M is a projection matrix, and χ is a symmetric matrix of Flory-Huggins

χ parameters. From simplicity, we consider the conventional choice of a χ matrix with

vanishing diagonal elements, of the form

χ =


0 χ12 χ13

χ12 0 χ23

χ13 χ23 0

 , (54)

with χ11 = χ22 = χ33 = 0.

The projected matrix χ̃ = PχP is a singular matrix for which χ̃e = 0, because Pe = 0.

By construction, χ̃ thus must have one zero eigenvalue with an associated eigenvector e. To

isolate the two remaining nontrivial eigenvalues, we first apply an orthogonal transformation

of this matrix that reduces it to a block diagonal form in which the remaining nonzero

elements form a 2× 2 matrix. Let A denote a transformed matrix

A = UT χ̃U (55)

in which U is a a real orthogonal matrix with orthonormal columns u1, u2, and u3. Each
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element of A can be expressed as a matrix product

Aij = uTi χ̃uj = uTi Pχ̃Puj (56)

for i, j = 1, . . . , 3.

Because e is always an eigenvector of χ̃, A can be transformed to a block diagonal form

by taking the last basis vector u3 to be a normalized vector proportional to e. We thus take

u3 = e/
√
3 , (57)

for which uT3 u3 = 1. Because χ̃e = 0, and χ̃T = χ̃, use of this choice in Eq. (56) yields

Aij = 0 for all elements with i = 3 or j = 3. This choice is thus guaranteed to yield a matrix

A in which all elements of the last row and last column are zero.

A transformation of this form thus leaves a matrix in which the remaining nonzero el-

ements form an upper-left 2 × 2 submatrix. Let B denote this submatrix. Because the

unspecified basis vectors u1 and u2 must both be orthogonal to e, they must both satisfy

Pui = ui. Using this to further simplify Eq. (56) for the remaining elements of A, we find

that

Bij = Aij = uTi χ̃uj = uTi χuj (58)

for i, j ∈ {1, 2}.

The two eigenvalues of the remaining 2 × 2 matrix B are independent of our choice of

valid pair of orthonormal basis vectors u1 and u2. The calculation presented here uses the

specific choice

u1 =
1√
6


1

−2

1

 u2 =
1√
2


1

0

−1

 . (59)

Using these basis vectors in Eq. (58) for a χ matrix with vanishing diagonal elements yields
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a 2× 2 matrix

B =

 (χ13 − 2χ12 − 2χ23)/3 (χ23 − χ12)/
√
3

(χ23 − χ12)/
√
3 −χ13

 . (60)

A straightforward calculation of the determinant of this matrix yields

|B| = [2J −K]/3 (61)

where J and K are the permutation invariants

J = χ12χ13 + χ12χ23 + χ13χ23

K = χ2
12 + χ2

23 + χ2
13 . (62)

Eigenvalues of B may be computed by requiring that |Iλ−B| = 0, which yields a quadratic

equation for λ. The two roots of the resulting quadratic yield eigenvalues

λ± =
1

3

[
−L± 2

√
K − J

]
, (63)

in which

L = χ12 + χ23 + χ13 . (64)

Using the identity L2 = K + 2J , it is straightforward to confirm that the product λ+λ−

yields the expected determinant,

λ+λ− = |B| = (2J −K)/3 . (65)
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Hildebrand Approximation

The Hildebrand approximation for interaction parameters in mixtures of simple non-polar

monomer types with dispersion interactions requires that

χij = v(δi − δj)
2/kT (66)

where δi is a ”solubility parameter” characteristic of a homopolymer containing monomomers

of type i. The ordering monomer type indices is arbitrary, and so we may choose indices such

that δ1 < δ2 < δ3 without loss of generality. With this convention, we may then parameters

∆, α and β such that

δ3 − δ1 = ∆

δ2 − δ1 = α∆ (67)

δ3 − δ2 = β∆ ,

with α, β ∈ [0, 1] and α+ β = 1. This parameterization yields χ12 = α2χ13 and χ23 = β2χ13.

A straightforward substitution yields permutation invariants

J = χ2
13(α

2 + α2β2 + β2)

K = χ2
13(1 + α4 + β4) (68)

L = χ13(1 + α2 + β2) .

To show the relationship among these expressions more clearly, we need the identities

1 = (α + β)2 = α2 + β2 + 2αβ

1 = (α + β)4 = α4 + β4 + 4(α3β + αβ3) + 6α2β2

= α4 + β4 + 4αβ(1− 2αβ) + 6α2β2
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= α4 + β4 + 4αβ − 2α2β2 . (69)

Using these identities to replace the quantities α2 + β2 and α4 + β4 with polynomials of αβ,

we find that

K = 2J = χ2
132(1− 2αβ + α2β2) . (70)

Because this yields K = 2J , while λ−λ+ = (2J −K)/3 by Eq. (65), Eq. (70) implies

λ−λ+ = 0 (71)

in the Hildebrand approximation for arbitrary value of the parameters ∆ and α. For any

∆ > 0, L > 0 by Eq. (68), and so λ− < 0 by Eq. (63), implying that λ+ = 0.

Weakly Compressible Model

This section presents some details of the analysis of the weakly compressible model that is

discussed in section 5 of the associated article. The first Subsection summarizes the definition

of the model and corresponding field theoretic Hamiltonian. The remaining two subsections

analyze the behavior of the eigenvalues and eigenvectors of the matrix U in the limit of a

very large dimensionless compression modulus parameter ζ. The last subsection establishes

the sense in which the incompressible limit of the compressible model is asymptotically

equivalent to the incompressible model.

Working Equations

We first recap some of the working equations for the compressible model, as given in Section

6 in the associated article. We consider a model with M monomer types with concentrations
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c1, . . . , cM , with a potential energy

U = Uint + Uext

Uint =

∫
dr

{ v

2
Uijcicj − ζeici

}
+ U

(0)
int , (72)

Uext = −
∫
dr yici (73)

in which Uij is an element of an M ×M matrix

U = χ + ζeeT , (74)

while U
(0)
int = ζV c0/2. The fields y1(r), . . . , yM(r) are externally imposed source fields.

For all α = 1, . . . ,M , xα and κα denote an eigenvector and associated eigenvalue of U,

respectively, such that

Uxα = καxα (75)

for all α = 1, . . . ,M , with a normalization xTαxβ = δαβM . Because U is real and symmetric,

these eigenvalues and eigenvectors are real. For each α = 1, . . . ,M , let σα = 1 if κα < 0 and

let σα = i if κα > 0. We consider the limit of large positive values of ζ, and take λM to be

the largest eigenvalue, which will be shown to increase linearly with increasing ζ.

Applying a Hubbard-Stratonovich transformation, by introducing auxiliary fields ψ1, . . . , ψM ,

yields an expression for the partition function Z as a functional integral with a field-theoretic

Hamiltonian

H[ψ] = − lnZid +Hf

Hf =
M∑
α=1

∫
dr

Mψ2
α

2v|κα|
+ U

(0)
int (76)

in which Zid[W ] is the partition function of an ideal gas that is subjected to an applied
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potential

Hc =
M∑
α=1

Wα(r)Cα(r) , (77)

where

Wα(r) = Ψα(r)− ζEα − Yα , (78)

Ψα(r) = σαψα(r) , (79)

while

Eα ≡ xTαe/M Yα(r) ≡ xTαyi(r)/M (80)

denote components of the vectors e and y = [y1, . . . , yM ]T in a basis of eigenvectors.

Limits of Eigenvectors and Eigenvalues

We consider the behavior of the eigenvectors and eigenvalues of U in a limit in which we

take ζ → ∞ while holding the elements of the χ matrix constant. To describe this limit, it

is useful to consider the corresponding eigenvectors and eigenvalues of a scaled matrix

A ≡ U/ζ = eeT + χ/ζ . (81)

Every eigenvector xα of U is also an eigenvector of A with an eigenvalue that we denote by

aα, such that

Axα = aαxα aα = κα/ζ (82)

for each α = 1, . . . ,M . Let x
(0)
α and a

(0)
α denote the limiting values of eigenvector xα and

eigenvalue aα, respectively, such that

x(0)
α = lim

ζ→∞
xα , (83)

a(0)α = lim
ζ→∞

aα . (84)
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for α = 1, . . . ,M , where the limits are evaluated at fixed χ.

Observe that the matrix A approaches a limit

lim
ζ→∞

A = eeT (85)

as ζ → ∞. This implies that

eeTx(0)
α = x(0)

α a(0)α (86)

for all α = 1, . . . ,M . The limiting matrix eeT has one eigenvector equal to e with an associ-

ated eigenvalue M , and a M −1 dimensional eigenspace of all vectors that are orthogonal to

e with an associated eigenvalue of zero. In the limit ζ → ∞, A must thus have one eigenvec-

tor that approaches e for which a
(0)
α =M , and M − 1 eigenvectors that are orthogonal to e

for which a
(0)
α = 0. By convention, we assign an index M to the eigenvector that approaches

e, for which aM → M , and assign indices α = 1, . . . ,M − 1 to the M − 1 eigenvectors for

which aα → 0. With this convention, we obtain

x
(0)
M = e a

(0)
M =M (87)

while eTx
(0)
α = 0 and a

(0)
α = 0 for all α < M .

To identify the limits of the remaining M − 1 eigenvectors and eigenvalues of U, we

start from the original eigenvalue equation Uxα = λαxα for any α < M . Multiplying this

eigenvalue equation from the left by the projection operator P and taking the limit ζ → ∞

yields

lim
ζ→∞

PUxα = lim
ζ→∞

καPxα . (88)

We then observe that PU = Pχ for any value of ζ, and that x
(0)
α must be orthogonal to e

for α < M , and thus that x
(0)
α = Px

(0)
α . With these simplifications, we find that

PχPx(0)
α = χ̃x(0)

α = κ(0)α x(0)
α (89)
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for α < M , where χ̃ = PχP, and where

κ(0)α = lim
ζ→∞

κα = lim
ζ→∞

ζaα . (90)

The solutions the eigenvalue problem given in Eq. (89) are precisely theM−1 nonzero eigen-

vectors and corresponding eigenvalues of the projected χ matrix, χ̃. denoted by v1, . . . ,vM−1

and λ1, . . . , λM−1, respectively. The limiting values of the remaining M − 1 eigenvectors and

eigenvalues of U are thus all equal to corresponding nontrivial eigenvectors and eigenvalues

of χ̃, such that

x(0)
α = vα

κ(0)α = λα (91)

for all α = 1, . . . ,M − 1.

Because x
(0)
M = e, and we also take vM = e by convention, we thereby actually obtain

x
(0)
α = vα for all α = 1, . . . ,M , including α = M . To simplify notation, we thus hereafter

drop the notation x
(0)
α in favor of vα. To summarize, in the limit ζ → ∞:

• Every eigenvector xα of U approaches a corresponding eigenvector vα of χ̃. We index

the eigenvectors such that xM → e.

• For α < M , each eigenvalue κα of U approaches a corresponding eigenvalue λα of χ̃.

• For α =M , κM → ∞, such that

lim
ζ→∞

κM/ζ = a
(0)
M =M . (92)
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First Order Perturbation Theory

Some aspects of our analysis of the relationship between the compressible and incompressible

theories require information about small deviations of the eigenvectors U from their limiting

values in the case of large but finite ζ. To construct an appropriate perturbation theory, we

express A as a sum

A = A(0) +A(1) (93)

in which

A(0) = eeT A(1) = χ/ζ . (94)

Using this decomposition, we apply a standard Rayleigh-Schrödinger perturbation theory in

which A(0) is treated as the unperturbed matrix and A(1) is treated as a small perturbation.

Because A(1) is proportional to 1/ζ, this naturally yields an expansion in powers of 1/ζ. We

use a basis of vectors v1, . . . ,vM , which are all eigenvectors of A(0) with eigenvalues of 0 or

1. For each α = 1, . . . ,M , we define an eigenvector wα of A that can be expressed as an

expansion

wα = vα +∆wα (95)

in which vTα∆wα = 0. The vector wα thus satisfies the so-called “intermediate” normaliza-

tion condition

vTαwα =M . (96)

The normalized eigenvector xα for which xTαxα =M is colinear with wα, and is given by

xα =
vα +∆wα

[1 +M−1|∆wα|2]1/2
. (97)

We also expand each associated eigenvalue of A as

aα = a(0)α +∆aα , (98)
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where ∆aα is a perturbation that vanishes as ζ → ∞.

We seek solutions of the eigenvalue problem Awα = aαwα or, equivalently,

(A(0) +A(1))(vα +∆wα) = (a(0)α +∆aα)(vα +∆wα) . (99)

Equating contributions that are of first order in 1/ζ yields

[A(0) − a(0)α I]∆wα +A(1)vα ≃ (∆aα)vα . (100)

A standard analysis, closely analogous to the standard first order time-independent quantum

mechanical perturbation theory, using a perturbation A(1) = χ/ζ, yields eigenvalue and

eigenvector perturbations

∆aα ≃ 1

ζM
vTαχvα (101)

∆wα ≃ 1

ζM

∑
β ̸=α

vβ
vTβχvα

a
(0)
α − a

(0)
β

(102)

to first order in 1/ζ.

Applying this formalism to any α < M , for which vα = Pvα, yields first order perturba-

tions

∆aα ≃ λα
ζ

(103)

∆wα ≃ −e
Sα
ζ

, (104)

where Sα = vTαχe/M
2 by Eq. (6). Note that, because a

(0)
α = 0 for all α < M , ∆aα = κα/ζ

or, equivalently, κα = ζ∆aα. Eq. (103) thus implies that κα ≃ λα for α < M , in agreement

with Eq. (91). It is straightforward to show that wα ≃ xα to O(1/ζ), though the colinear

vectors wα and xα differ at order O(1/ζ2) and higher because of differences in normalization
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convention. Eq. (104) for ∆wα can thus be used to show that

lim
ζ→∞

ζEα = lim
ζ→∞

ζeTxα/M = −Sα (105)

for all α < M .

Applying this formalism to α =M , for which vM = e, yields

∆aM ≃ MSM
ζ

(106)

∆wM ≃ 1

ζ

M−1∑
α=1

vαSα , (107)

where Sα = vTαχe/M
2 and SM = eTχe/M2. Eq. (106) and the relationship ∆aM =

κM/ζ −M together imply that

lim
ζ→∞

ζ∆aM
M

= lim
ζ→∞

ζ

(
κM
ζM

− 1

)
= SM . (108)

Using Eq. (107) for ∆wM , it is straightforward to show that

lim
ζ→∞

EM = 1 . (109)

Starting from Eq. (107), we may also show that the deviation 1−EM decreases as 1/ζ2 with

increasing ζ, and thus that

lim
ζ→∞

ζ(1− EM) = 0 .

lim
ζ→∞

ζ(1− E2
M) = 0 . (110)

The limits given in Eq. (105) and Eqs. (108 - 110) are used below to establish asymp-

totic relationship between values of the Hamiltonian in the compressible and incompressible

theories.
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The fact that the first M − 1 eigenvalues of U approach corresponding eigenvalues of χ̃,

and that σM = i for both theories, together imply that the value of σα for the incompressible

theory in the limit ζ → ∞ is the same as its value in the incompressible theory, for all

α = 1, . . . ,M ,

Asymptotically Equivalent Variables

To establish a closer correspondence between variables in the compressible and incompress-

ible theories, we consider a limiting process in which we take ζ → ∞ while holding constant

all the elements of the χmatrix, the monomer source fields y1(r), . . . , yM(r) and the monomer

chemical potential fields w1(r), . . . , wM(r). States of the incompressible and compressible

theories for which these quantities (the χ matrix, the y fields and the w fields) have equal

values are referred to here as “corresponding states”. A quantity A that depends upon the

field configuration in the compressible theory will be said to “asymptotically equivalent” to

a corresponding quantity B that depends on the field configuration in the incompressible

theory A approaches a limit as ζ → ∞ that is equal to the value of B in a corresponding

state of the incompressible theory.

The fact that each of the eigenvectors of U approaches a corresponding eigenvector of χ̃

as ζ → 0 immediately implies that the values of Wα(r) and Yα(r) in the compressible theory

are asymptotically equivalent to values of variables of the same names in the incompressible

theory, for all α = 1, . . . ,M .

Fluctuating Fields

Eqs. (78) and (105) together imply that

lim
ζ→∞

Ψα(r) = Wα(r)− Sα + Yα(r) = Ωα(r) (111)
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for all α < M , where Ωα(r) denotes a value defined in a corresponding state of the in-

compressible theory, as given by Eq. (13). This demonstrates that Ψα is asymptotically

equivalent to Ωα for all α < M . Because Ψα = σαψα and Ωα = σαωα, this also implies that

ψα(r) is asymptotically equivalent to ωα(r) for α < M .

We next consider the relationship between pressure-like fields, ΨM in the compressible

theory and ΩM in the incompressible theory. Eq. (78) implies that

ΨM(r)− ζEM = ΩM(r) = WM(r) + YM(r) (112)

for corresponding states of the compressible and incompressible theory, for any value of ζ.

Taking the limit ζ → ∞, and using Eq. (109) for the limit EM → 1, we find that

lim
ζ→∞

[ ΨM(r)− ζ ] = ΩM(r) . (113)

We thus find that ΨM − ζ is asymptotically equivalent to ΩM .

Values of H

To compare values of the Hamiltonian for the compressible and incompressible theories, we

first note that the Hamiltonian for each model can be expressed as sum H = − lnZid +Hf ,

and that values of lnZid are equal in corresponding states of the two models. The equivalence

of values of Zid in corresponding states follows from the fact that in both theories Zid is a

functional of the monomer chemical potential fields w1, . . . , wM , and that corresponding

states are defined to be states with equal values for these fields. Values of H in the two

theories are thus asymptotically equivalent if and only if values of Hf are asymptotically

equivalent.

To compare values of Hf in the two theories, it is convenient to divide Hf in each theory

into two components, and establish the relationship between corresponding components. For
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the compressible model, we express values of Hf as a sum

Hf [Ψ] = A+B

A = −
M−1∑
α=1

∫
dr
MΨ2

α

2vκα

B =
ζV

2v
−
∫
dr
MΨ2

M

2vκM
, (114)

in which Ψα(r) = σαψα(r). For the incompressible model, we express Hf as a sum

Hf [Ω] = C +D

C = −
M−1∑
α=1

∫
dr
MΩ2

α

2vλα

D =
SMV

2v
− c0

∫
dr ΩM(r) , (115)

in which Ωα(r) = σαωα(r). In what follows, we demonstrate the asymptotic equivalence of

values of Hf in the two theories by showing that A is asymptotically equivalent to C, and

that B is asymptotically equivalent to D.

The asymptotic equivalence of A and C follows immediately from the fact that κα → λα

and Ψα(r) → Ωα(r) for all α < M as ζ → ∞ in corresponding states of the two theories.

We now consider the relationship between B and D. The incompressible limit of B yields

lim
ζ→∞

B = lim
ζ→∞

{
ζV

2v
−
∫
dr
M(WM + YM + ζEM)2

2vκM

}
(116)

or

lim
ζ→∞

B = − lim
ζ→∞

∫
dr
M(WM + YM)2

2vκM

− lim
ζ→∞

Mζ

vκM
EM

∫
dr(WM + YM)

+
V

2v
lim
ζ→∞

ζ(1− MζE2
M

κM
) . (117)
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The expression on the first line of the RHS of Eq. (117) vanishes because 1/κM → 0 as

ζ → ∞. The limit of the expression given in the last line of the RHS can be evaluated by

using the limits Mζ/κM → 1 and Eqs. (108 - 110) to show that

lim
ζ→∞

ζ

(
1− MζE2

M

κM

)
= lim

ζ→∞
ζ
Mζ

κM

(
κM
Mζ

− E2
M

)
= lim

ζ→∞

Mζ

κM
ζ

(
κM
Mζ

− 1

)
+ lim

ζ→∞

Mζ

κM
ζ
(
1− E2

M

)
= SM . (118)

Combining terms, we find that

lim
ζ→∞

B =
SMV

2v
− c0

∫
dr [WM(r) + YM(r) ]

=
SMV

2v
− c0

∫
dr ΩM(r)

= D . (119)

This demonstates asymptotic equivalence of quantities B andD, which completes the demon-

stration of the asymptotic equivalence of values of both Hf and H in the compressible and

incompressible theories.

Functional Derivatives

The asymptotic equivalence of values of H in the compressible and incompressible theories

also implies the asymptotic equivalence of expressions for corresponding functional deriva-

tives, as a corollary. We can, however, also more directly confirm the equivalence of explicit

expressions for these derivatives.

A straightforward calculation of the derivative δH/δΨα in the compressible theory yields

δH

δΨα(r)
= −MΨα(r)

vκα
+ ⟨Cα(r)⟩id (120)
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for all α = 1, . . . ,M ,

For all α < M , we may use the asymptotic equivalence of Ψα and Ωα and the definition

Φα(r)/v = ⟨Cα(r)⟩id to show that the RHS of Eq. (120) is asymptotically equivalent to the

RHS of Eq. (20) for Dα = δH/δΩα in the incompressible theory.

For the remaining case α = M , we may use Eq. (78) to show that that ΨM = WM +

ζEα + Yα, and use the definition CM(r) = xTMc(r), to consider the limit

lim
ζ→∞

δH

δΨα(r)
= lim

ζ→∞

{
− M

vκα
[Wα(r) + ζEM + YM(r)] + xTM⟨c(r)⟩id

}
(121)

Using the limits xM → e, κM → ∞, EM → 1, and Mζ/κα → 1, along with the definition

c0 = 1/v, we obtain a limit

lim
ζ→∞

δH

δΨα(r)
= −c0 + eT ⟨c(r)⟩id . (122)

The RHS of Eq. (122) is equivalent to the RHS of Eq. (21) for DM(r) in the incompressible

theory, thus demonstrating the asymtptotic equivalence of functional derivatives for α =M ,

and thus for all α = 1, . . . ,M .
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