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Abstract

We present a symmetric formulation of polymer field theory for incompressible
systems containing any number M of monomer types, in which all monomers are
treated on an equal footing. This is proposed as an alternative to the multi-species
exchange formulation, which imposes incompressibility by eliminating one monomer
type. The symmetric formulation is shown to correspond to the incompressible limit
of a corresponding compressible model, and to reduce in the case M = 2 to the usual
formulation of field theory for incompressible AB systems. An analysis of ABC systems
(M = 3) identifies ranges of interaction parameter values in which a fully fluctuating
field theory requires one, two or three imaginary-valued fields. ABC systems with
parameters that satisfy the Hildebrand solubility parameter approximation are shown
to require only one imaginary pressure-like field, much like AB systems. Generalization

of the partial saddle-point approximation to M > 2 is discussed.



Introduction

Stochastic field theoretic simulation (FTS) methods have matured over the past 20 years
into powerful tools for studying heterogeneous polymer materials.'!? Such methods are
based on a transformation of an underlying particle-based model into a functional integral
over a set of monomer chemical potential fields. The simplest field theoretic approach, self-
consistent field theory (SCFT), identifies a single field configuration that is a saddle-point of
a corresponding field theoretic Hamiltonian functional. Stochastic FT'S methods go beyond
SCFT by randomly sampling a statistical ensemble in which each possible field configuration
is assigned a weight that is determined by the value of this Hamiltonian. Existing FTS
methods can be primarily divided into fully fluctuating (FF) methods, which are equivalent
to a corresponding particle-based model, and methods that rely a partial saddle-point (PS)
approximation, which improve computational efficiency at some cost in accuracy.

Most prior FTS studies of block copolymers and polymer mixtures have focused on sys-
tems with only two types of monomer, which we refer to as AB systems. In the standard
formulation of field theory for such systems, chemical potentials associated with species A
and B are expressed in terms of a pressure-like field W, and and an exchange field WW_.31!
The resulting fully fluctuating formulation of the partition function as a functional integral
for an AB system with a positive Flory Huggins parameter x > 0 requires that contributions
to these monomer chemical potentials arising from W, be imaginary, while those arising
from W_ be real. In a partial saddle-point approximation for an AB system, W, is approxi-
mated by its value at a partial saddle-point. This is equivalent to the use of a self-consistent
field approximation to treat the incompressibility constraint. The partial saddle-point ap-
proximation yields a theory in which the monomer chemical fields and the Hamiltonian are
real, thereby allowing the use of conventional Monte-Carlo and Brownian dynamics sampling
methods. In what follows, we will sometimes refer to fully fluctuating simulation methods
as FF-FTS methods, and those that rely on a partial saddle-point approximation as PS-

FTS methods. Studies of AB systems with PS-F'TS methods by Matsen and coworkers have
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shown an encouraging balance between accuracy and computational expense,
PS-FTS an attractive intermediate alternative to SCFT and FF-FTS.

Many properties of complex polymer materials are adequately described by coarse-grained
models that treat these materials as incompressible. When this approximation is appropriate,
its validity is the result of a disparity in real materials between the large free energy penalties
for changes in total monomer density (characterized by a bulk modulus) and much smaller
penalties for changes in composition at fixed density (often characterized by Flory-Huggins
interaction pararatmers). Most SCFT studies have relied on an incompressible model. Dif-
ferent FTS methods differ in their treatment of compression. Most FF-FTS studies have
used complex Langevin (CL) sampling to study compressible models with a “smeared” (i.e.,
nonlocal) interaction between monomers.%? This choice is motivated primarily by compu-
tational considerations, because compressibility and nonlocal interactions are both found to
alleviate numerical instabilities that would otherwise plague CL simulations. The use of an
incompressible model thus appears, as a practical matter, to be incompatible with complex
Langevin sampling. Studies that use PS-FTS methods have, however, generally been based
on an incompressible model of AB systems with local interactions that is closely analogous
to the standard incompressible model of SCFT.®12 The formulation of a fully fluctuating
field theory for incompressible models given here is thus intended primarily as a starting
point for PS-FTS studies of systems with M > 2, where M denotes the number of monomer
types.

The only existing formulation of polymer field theory that was designed explicitly for in-
compressible systems with M > 2 is the multi-species exchange (MSE) formulation of Diichs,
Delaney and Fredrickson.® In this formulation, incompressibility is imposed by expressing
the concentration of one type of monomer as a function of the other M —1 monomer concen-
trations, thus explicitly eliminating one monomer type. The MSE formulation requires an
arbitrary choice of which monomer type to eliminate, and yields working equations whose

forms reflect this choice, though all final results for observable quantities are independent of



this choice.® (Throughout this work, we refer to monomer “types”, rather than “species”,
but retain the name of the MSE formulation chosen by its authors, in which the word species
refer to what we call a monomer type).

Section 2 of this article presents a “symmetric” formulation of incompressible field theory
for M > 2 that treats all monomer types on an equal basis, which we propose as an alternative
to the MSE formulation. This symmetric formulation is based on the introduction of a so-
called projected x matrix. This quantity, denoted here by x, is defined by an orthogonal
projection of the full M x M matrix of Flory-Huggins y parameters into the M —1 dimensional
subspace associated with composition fluctuations at fixed total monomer concentration.
The result of this projection is a singular M x M symmetric matrix of rank M — 1 that has
M — 1 eigenvectors with generally nonzero eigenvalues, and a null space spanned by vector
that is associated with changes in total monomer concentration (i.e., compression). In the
symmetric formulation of fully fluctuating polymer field theory, negative eigenvalues of x
are associated with real-valued chemical potential field components (i.e., components that
yield real contributions to the fields associated with specific monomer types), while positive
and vanishing eigenvalues are associated with imaginary components. We show in section 3
that the usual treatment of incompressible AB systems is recovered as a special case of the
symmetric formulation. We also show in section 6 how the symmetric formulation can be
obtained by taking the incompressible (infinite compression modulus) limit of an analogous
compressible model.

Section 4 of this paper discusses ABC systems, with M = 3. A general analysis of such
systems gives criterion for ranges of values of the interaction parameters for which x has
different possible number of negative eigenvalues, corresponding to different number of real-
or imaginary-valued field components. We also consider a restricted model in which the x
parameters are assumed to obey the Hildebrand solubility parameter approximation, which
is a useful but approximate guide to the behavior of simple non-polar mixtures. We show

that this approximation leads to a set of interaction parameters for which one of the two



nontrivial eigenvalue exactly vanishes, causing fluctuations of the auxiliary field associated
with this eigenvalue to be completely suppressed as a result. The result is a formulation
for this class of ABC systems that is closely analogous to the standard formulation for AB
systems, with one real-valued field and on imaginary pressure-like field.

Section 5 proposes a generalization of the partial saddle-point approximation to systems
with M > 2, and discusses the expected accuracy of the resulting approximation.

The present work was motivated by the fact that all of its authors are involved in the
development of open-source software packages that provide both SCFT and PS-FTS methods
for polymer liquids. Two authors (D.C.M and K.C) contribute to the PSCF package!®!* in
which PS-FTS methods are currently being implemented. The third (D.Y.) is the primary
developer of a newer package that enables use of machine-learning methods to accelerate
identification of the partial-saddle point in PS-FTS methods. ' This work was thus motivated
for all of us by an interest in extending PS-FTS methods to systems with M > 2, and the
desire for a more convenient and elegant mathematical formalism around which to design
algorithms and software. Among other purposes, this work is thus intended to explain and
document the theory underlying the PS-FTS algorithms that are used or planned for use in

both of these software packages.

Incompressible Field Theory

Consider a mixture of polymers and solvents containing M types of monomer. Let ¢;(r)
denote the concentration of monomers of type ¢ at point r within the mixture in a specific
mechanical microstate (i.e., a specific list of monomer positions). We focus here on incom-
pressible models in which the sum of the monomer concentration must satisfy a constraint

requiring that

Zci(r) = ¢ (1)

=1



for all r, in which ¢q is the prescribed constant total monomer concentration. Let v = 1/¢q
denote the corresponding monomer volume.
Consider a model with a potential energy (excluding any penalty added to enforce the

above constraint) of the form
U= Uid + Uint + Uext y (2)

in which Uyq is the intramolecular potential energy of a gas of non-interacting molecules, and

v

Un = §/dr XijCi(r)c;(r)

Ut = —/dr yi(r)c(r) . (3)

Here, x;; is an element of a symmetric matrix of dimensionless Flory-Huggins interaction
parameters, while y; (r), ...,y (r) are external “source” fields. Here and hereafter, we use an
Einstein convention for summations over repeated indices i or j that represent monomer type
indices, which are sums from 1,..., M. The external source fields can be used either to rep-
resent real physical effects, such as the effect of a confinement potential, or as formal devices
to allow derivation of expressions for correlation functions via functional differentiation.
The partition function Z for such a fluid may be expressed to within an irrelevant mul-

tiplicative constant as a configurational integral

M
7 = /Dr e Via—Uini=Uext § (Z ¢i(r) — CO> (4)

=1

in which a J-functional imposes the incompressibility constraint.



Orthogonal Projection

Let ¢(r) denote M component column vector with elements given by the monomer concen-

trations ¢i(r), ..., cp(r) at position r. Let e denote a M component column vector
1
1
e= (5)
1
with equal components e; = 1 for all © = 1,--- , M. In this notation, the incompressibility

constraint requires that

eTc(r) =cy , (6)

for all r.
The symmetric formulation of polymer field theory considered here is based on a decom-
position of ¢(r) and other vectors into components parallel and orthogonal to e. To describe

this, we define the M x M orthogonal projection matrices

Q:_eeT ) P:I_Q ) (7)

where I is the M x M identity matrix. Note that Qe = e and Pe = 0, and that Q and
P are both symmetric. Multiplying a column vector by Q yields the orthogonal projection
onto e, while multiplying by P yields the projection into the M — 1 dimensional subspace
orthogonal to e.
Let ¢(r) denote the orthogonal projection of ¢(r) into the subspace orthogonal to e, given
by
¢(r) =Pc(r) . (8)

By construction, e’¢(r) = 0 for all r, because e’ P = 0. Multipling ¢ by I = P + Q yields



the decomposition

c(r) =c¢(r) + q70e (9)

for states that satisfy the constraint requiring that e’c(r) = ;.

Let x denote an M x M symmetric matrix defined by the matrix product

x=PxP , | (10)

which we refer to as the projected x matrix. Let y;; denote element ij of matrix x. By
construction, the vector e is always an eigenvector of x with a zero eigenvalue, since Pe = 0,
implying that x is a singular matrix.

By substituting Eq. (9) for ¢;(r) into Eq. (3) for Uy, while setting Cy(r) = ¢o, we

obtain an expression for Uj,; as a sum of the form

Uint = Ui(th) + Ui(nlt) + Ui(not) )
in which
2 v ViiCi(1)¢
Ui(nt) = 3 /dr XiiCi(r)¢;(r)

Ui(nlt) = /drsiéi(r) (12)
U = SyceV/2

using Einstein notation for summations, where we have defined a vector

s = xe/M (13)
with components s; = y;;e;/M for all i =1,..., M, and a scalar
Sy =e's/M =el'xe/M* . (14)



The use of the symbol Sy, for the quantity defined in Eq. (14) is chosen for consistency with

a convention for vector components that is introduced below.

Eigenvector Decomposition

A diagonal representation of U, @) may be created by expanding c(r) in the a basis of eigen-

int

vectors of the projected x matrix, x. Let vq,..., vy denote M independent eigenvectors of

X, and let A1, ..., Ay be corresponding eigenvalues, such that
XVa = AaVa (15)

for all = 1,..., M. As already noted, e is always an eigenvector with a zero eigenvalue.

By convention, we e to be the last eigenvector, defining

Vy—=¢€e | (16>
so that Ay = 0. Because x is symmetric, it eigenvalues Ay, ..., A\y; are real, and we may take
Vi, ..., vy to be real and orthogonal. The eigenvectors vy,..., vy, thus span the M — 1

dimensional subspace orthogonal to e = v;;. We choose a normalization in which

V§V5 = 5a5M (17)

foralla, 8 =1,..., M. Note that this choice is compatible with the normalization of e = v,
for which e’e = M.

Let C,(r) denote a component of concentration in a basis of these eigenvectors, given by

Cu(r) = vie(r) (18)

for any a = 1,..., M. Note that, because vy, = e, the incompressibility of Eq. (6) requires



that Cp(r) = ¢p. We may expand ¢(r) in a basis of the first M — 1 eigenvectors as a sum

1 M-1

M

a=1

6Z(I') = C’a(r)vai s (19)

or express ¢;(r) as a corresponding sum that includes an additional term with o = M. Using

these expansions of ¢ and ¢, we obtain

M—1
2 _ 2
Umt - m ; /dr )‘OéCa<r)
M-1
U = > / dr SyCo(r) (20)
a=1
M
Uext - Z Ya (P)Ca<r> ’
a=1
where we have defined components
So=vTs V() = —vTy(r) (21)
o — M « (&4 - M ay
for all = 1,..., M, where y(r) = [y1(r),...,yn(r)]T. Here and hereafter, we use lower
case Greek letters o or 3 for eigenvector indices and small Latin letters ¢, j, . .. for monomer

type indices, while using the Einstein summation convention and/or matrix multiplication
only to represent sums over repeated monomer type indices. Note that, because vy, = e,
Eq. (21) yields a definition of the last element, Sy, that is identical to that given in Eq.
(14).

Field components associated with positive or negative eigenvalues of x must be treated
differently when constructing a functional integral representation of Z. Let L denote the
number of negative eigenvalues of x. By convention, for systems with 0 < L < M — 1, we

take the first L eigenvalues A1, ..., A; to be negative and take eigenvalues L +1,..., M — 1

10



to be non-negative, while A\y; = 0. For each aa =1,..., M, let
Ao = =02 | (22)

witho, =1fora=1,...,L (or A\, <0)and o, =i fora = L+1,..., M —1. By convention,

we also define oy = 3.

Functional Integrals

A field-theoretic representation of Z may be obtained by using a Hubbard-Stratonovich

transformation® to express the Boltzmann factor exp(—U, (2)) as a functional integral over

int

M — 1 auxiliary fields wy(r),...,wp—1(r), of the form

M—1
Muw?
X exp {— Z /dr |:2U|>\a| + aawaC’a} } ,
a=1

where f Duw'’ denotes a functional integral over the fields wy, ..., wy;_1, and where
M-1
Mw?
N = | D' — d B 24
/ wexp{ ; r20|)\a|} (24)

1s a constant.
The §-functional that constrains the total monomer concentration C)y(r) may also be

expressed as a functional integral

S(Car(r) — co) = / Duny exp {—i / dr wr| Car — ¢ ]} (25)

in which wy(r) is a fluctuating Lagrange multplier field that imposes the constraint requiring
that Cy(r) = ¢, for all v, and [ Dw)y is a functional integral over this field.

Combining Eq. (23) with Eq. (25) for the d-function constraint, while using the defini-

11



tions of 4, ..., , we obtain a partition function

7 = N_I/Dw e Mt /Dr e Va—He (26)

in which [ Dw denotes an integral over all M real fields wy, ..., wu,
M-1
M2 .
H = /dr {— ; o QMCO} + U0 (27)

H, — i / dr W, (r)Ca(r) . (28)
a=1
Here, we have defined Wick rotated fields
Qa(r) = 0awa(r) (29)
forall a =1,..., M, with o); = 7, and fields Wy, ..., W), that are given by
Wo(r) = Qu(r) + S, — Yao(r) (30)

fora=1,...,M — 1 and

Wy(r) = Qu(r) — Yy(r) (31)

for « = M. Hamiltonian component H; depends only on the auxiliary fields (so that the
subscript f denotes “field”), while component H,. introduces a coupling between auxiliary
fields and the monomer concentrations (so that ¢ denotes “concentration” or “coupling”).

Let wy(r),...wy(r) denote monomer chemical potential fields given by

W) = S Wal Wal) = 373 gy v) (32)

foralli=1,...,M and a« = 1,..., M. Using this definition, H. can also be expressed as a

12



suim

H.= Zl: /dr w;(r)e(r) . (33)

The fields wy, ..., wy; are the monomer chemical potential fields used within the solution of
modified diffusion equation to compute single-polymer partition functions.

The functional integral for the canonical partition function Z may be expressed as an

integral
Z =N / Dw e (34)
in which
H = Hf —1In Zid (35)
is an effective Hamiltonian, and
Zialw] = / Dr ¢ Via—He (36)

is the partition function of a hypothetical gas of non-interacting molecules in which monomers
of type i are subjected to a field w;(r).

In what follows, we use the notation (- - - };q to denote averages over particle positions eval-
uated for a hypothetical ideal gas subjected to an external potential H., as in the definition

of Ziq. We define average volume fraction fields as

¢i(r) = v(c(r))a (37)
Do(r) = v(Calr))ia = vaiti(r) (38)
for all i, = 1,..., M. Because these are evaluated for a gas with an external potential H.,

these volume fraction fields are functionals of the w fields.

13



Functional Derivatives

Expressions for functional derivatives of H with respect to the auxiliary fields are needed
to identify saddle-point field configurations and to design Langevin simulations. Let D, (r)

denote the functional derivative

1 O0H oH
D,(r) = — = , 39
(x) Oa 0w (r)  0Q4(r) (39)
for any o = 1,..., M, with o), = i. A straightforward calculation that is presented in
supporting information (SI) yields
1| M
Dy(r) = = | ——Q4u(r) + $,(r) (40)
v Ao
forala=1,...,M — 1, and
1
Da(e) = © [Bag(r) 1] (41)

for a = M, where ®y,(r) = v(Ch(r))iq.

Saddle-points of h are field configurations for which D,(r) = 0 for all r and all a =
1,..., M. We confirm in the SI that the resulting set of saddle-point equations is equivalent
to the conventional formulation of the SCF equations for monomer species in terms of volume

fractions ¢q, ..., -

Structure Factor

Let S;j(k) denote the structure factor matrix

1

Sij(k) = 37 (0¢(k)oc;(=k)) (42)

14



where k is a wavevector and

5é;(k) = / dr e 5c;(r) . (43)

denotes the Fourier transform of the concentration fluctuation dc¢;(r) = ¢;(r) — (¢;(r)). It is
shown in SI that the structure function of an an incompressible system can be expressed for

any M > 2 as a sum

M-1
1 1
Sij(k) = aﬁzl VaiVp; {mGaﬁ(k) YW 5a,8} (44)
in which
1 . .
Gap(k) = v<5Wa(k)5W5(—k)> 7 (45)

and 0T, (k) is the Fourier transform of 6W,(r) = W,(r) — (W,(r)).

Two Monomer (AB) Systems

Consider a system with two types of monomer, M = 2, which we refer to as an AB system.
Previous PS-FTS numerical studies have only considered this case. For M = 2, the subspace

orthogonal to e is one dimensional, and is spanned by a vector

[ (46)

v=v;=[l,-1

giving a projection matrix

(47)

15



Suppose we have a generic symmetric unprojected x matrix with elements denoted by x;;,

with y12 = x21. The corresponding projected y matrix can be expressed as a product

x = —xP (48)

in which we have defined a scalar y parameter

1
X=—ViXV1/2= 5[2X12 — X1 — X22] - (49)

The resulting matrix x has a single nonzero eigenvalue \; = —y associated with eigenvector
vi, and constant values S; = (x11 — X22)/4 and Sy = (2x12 + X11 + X22)/4.

We focus in the remainder of this section on systems that satisfy the convention for
interaction parameters used in previous simulation studies, in which y;; = x22 = 0 and
X12 = X21 = X. We refer this here as a standard AB system. For such systems, the
symmetric formalism yields S; = 0 and Sy = x/2. If we adopt notation analogous to that
of Matsen and Beardsley (MB),!! in which the subscripts 1 and 2 are replaced by — and +,

so that w_ = w; and w, = wy, we obtain monomer fields

wi(r) = +w-(r) + iws ()

wr(r) = —w (r) +iwi(r) (50)
in analogy to Eq. (17) of MB,™ and a Hamiltonian

1 2
H:—anid—i——/dr {&—m“ﬂ} , (51)
v X 4

in analogy to their Eq. (12). The symmetric formulation given here thus reduces for standard

AB systems to the formulation used by previous authors.

16



Three Monomer (ABC) Systems

We now consider the behavior of the eigenvalues of the projected matrix x for a system
with three monomer types, M = 3, which we refer to as an ABC system. We focus here
on how the number of positive or negative eigenvalues of x depends on the values of the
binary interaction parameters. For simplicity, we assume throughout this section that, by

convention, diagonal elements of the full y matrix vanish, so that x11 = x22 = x33 = 0.

General Analysis

The projected y matrix for a system with M = 3 is a singular 3 x 3 matrix that, by construc-
tion, has one vanishing eigenvalue associated with eigenvector e. We focus hereafter on the
two remaining nontrivial eigenvalues, whose values depend on the values of the interaction
parameters.

In a calculation that is presented in the SI, we show how an orthogonal transformation
of x to any basis in which one of the basis vectors is colinear with e transforms this matrix
to a form that in which all nonzero elements lie in a 2 x 2 block. The eigenvalues of this
remaining 2 X 2 block are then the desired nontrivial eigenvalues of x. These two eigenvalues
are given by the roots of a quadratic equation, which are denoted here by A_ and A, with
A_ < Ay. Because the labelling of monomers is arbitrary, and the symmetric formulation
considered here preserves the symmetry under permutations of monomer types labels, the

eigenvalues are conveniently expressed in terms of three quantities

L = xi2+ Xxi3+ X23
K = xi,+xis+ x5

J = Xi2x13 + X12X23 + X13X23 (52)

that are invariant under such permutations of labels, with L? = K 4 2J. A calculation

17



presented in SI yields two nontrivial eigenvalues

Ay = (—LiNﬁ) . (53)

Wl =

It is straighforward to show that the product of these two eigenvalues is given by

AN = (2] - K)/3 . (54)

This product is positive, indicating that these two eigenvalues have the same sign, if and
only if 2J > K. In the usual case in which the sum of the three x parameters is positive
(i.e., when L > 0), the smaller eigenvalue \_ is always negative, and so the larger eigenvalue
A4 is also negative if 2J > K.

Jiang, Xu and Zhang (JXZ)!6 have previously considered how the analytic character of
the SCFT saddle point for incompressible ABC systems depends on the values of the Flory-
Huggins y parameters. Their analysis was performed using an MSE formalism similiar to
that of Diichs, Delaney and Fredrickson.® JXZ obtained an expression for the surface along
which the index of this saddle point changes that is equivalent to the expression obtained
here for the surface along which A, = 0, as given by Eq. (53) or (54).

To visualize regions in the space of y parameter values, it is convenient to adopt a
convention for monomer labels for which y3 is the interaction parameter of greatest absolute
magnitude (|x13| > |x12], | x23|) and consider the dependence on the two ratios Y12 = x12/X13
and Y23 = X23/Xx13- With this convention, both of these ratios must lie in the range [—1, 1].

By rewriting Eq. (54) in terms of these ratios, we find that A_A, > 0 if and only if

2 (V12 + X23) > 1+ (V12 — Xos)” (55)

The regions separated by this separatrix in the xi2-X23 plane are shown in Fig. 1. The

separatrix terminates at end end-points (0,1) and (1,0) and intersects the symmetry line

18



X12 = X23 at the point (1/4,1/4).

1

X23

AL <0

-1 0 1
X12
Figure 1: Regions for an three monomer system in which the projected y matrix x has
two nontrivial eigenvalues A_ and A, of the same sign (gray region in which Ay A_ > 0)
or of opposite sign (white region in which A, A\_ < 0) in a plane with coordinates Y12 =
X12/x13 € [—1,1] and Y23 = x12/x13 € [—1,1]. Here, x13 is the interaction parameter of
greatest absolute magnitude, |x13] > |x12], |x23]. These two regions are separated by a curve
along which 2.J = K, one which one of the eigenvalues passes through zero. The gray region
in which A; A_ > 0 is contained within the quadrant with x5 > 0 and x23 > 0 in which all

three interaction parameters are of the same sign. This region yields two negative eigenvalues
in the common case of three positive y parameters.

The upper right quadrant of Fig. (1) is the only region in which all three y parameters
have the same sign (i.e., all positive or all negative). The remaining three quadrants represent
regions in which there exist y parameters of both signs. Note that systems with y parameters
of both signs always yield A_A, < 0, indicating the existence of nontrivial eigenvalues of
opposite signs. The two nontrivial eigenvalues are of the same sign only within the region in
the upper right quadrant that is shown in gray, within which all three y parameters are of
the same sign and not too disparate in magnitude. When all three y parameters are positive,
interaction parameter values in this region yield two negative eigenvalues. When all three y

parameters are negative, values in this region instead yields two positive eigenvalues.
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Hildebrand Approximation

Values for binary y parameters in polymeric systems with simple non-polar chemical repeat

units can often be approximated by the Hildebrand solubility parameter approximation. '’

This approximation predicts an interaction parameter for monomer types ¢ and j given by

(Y

Xij = k;_T((Si -6 . (56)

where 0; and 9, are solubility parameters that are properties of corresponding homopolymer
melts.

The Hildebrand approximation introduces a constraint on the possible values of the binary
x parameters, and thus on the eigenvalues of the matrix x. To analyze the implications of
this constraint in an ABC system, it is convenient to label the monomer types such that

01 < 09 < 03, define A = 63 — 01, and define parameters o and 3 such that

52—51:CYA 53—52:5A s (57)

such that «, 5 € [0,1] and a 4+ 5 = 1. This gives y parameters

X13 = UA2/]€T X12 = 042X13 X23 = 52)(13 . (58>

Using these definitions, we show in SI that the permutational invariants K and J satisfy

K =2J =2x3,(1+ a*B% — 2a83) . (59)

Because this gives 2J = K, it yields

Ay =(2J—K)/3=0 (60)

for any value of a.
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This analysis thus shows that the Hildebrand approximation always predicts a vanishing
value for one or both of the two nontrivial eigenvalues A\_ and A\,. For any system with
unequal solubility parameters, and thus A > 0, the Hildebrand approximation yields L > 0,
and thus always yields one negative eigenvalue, A\_ < 0 and one vanishing eigenvalue, Ay = 0.
Only the special case A = 0, for which all interaction parameters vanish, yields A\_ = A, = 0.

The Hildebrand approximation for ABC systems thus yields an unusual situation that
deserves closer consideration. To generalize slightly, consider a system with M monomers in
which one nontrivial eigenvalue A\, with o < M happens to equal zero. This occurs for M = 2
when x = 0 and for M = 3 when the interaction parameters satisfy the equality K = 2J.
When A\, = 0 for a particular eigenvalue, fluctuations of the associated auxiliary field w,
are completely suppressed by the appearance of a divergent factor of 1/), that appears as a
prefactor of the term quadratic in w,, in Eq. (27) for H;. This yields a statistical ensemble in
which the only field configurations with nonzero weight are those for which w,(r) = 0 for all
r. The functional integral for Z in a fully fluctuating theory can thus be formulated in this
special case by simply setting w,(r) = 0 in the Hamiltonian, and expressing the functional
integral as an integral only over the remaining M — 1 auxiliary fields, which always include
the pressure-like field wy,.

For an ABC system that obeys the Hildebrand approximation with A > 0, for which
A+ = 0, we thus obtain a functional integral over a real field €2, = w; associated with the
negative eigenvalue \_ and over an imaginary pressure-like field component 3 = w3 that
imposes incompressibility. The theory thus reduces in this special case to a form very similar

to that found for an AB system with y > 0.

Partial Saddle-Point Approximation

We now define and discuss a generalization of the partial saddle-point approximation (PSA)

so as to apply to systems with M > 2. The PSA has previously been applied only to
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incompressible AB systems, with M = 2.

Definition of PSA

AB Systems: We first review the PSA for AB systems with y > 0. In the PSA for such a sys-
tem, one ignores fluctuations in the imaginary field w, (or wy) and evaluates the Hamiltonian
using a partial saddle-point configuration of w, (r), while allowing w_ (or wy) to fluctuate. A
partial saddle-point field configuration is defined by the requirement that functional deriva-

tive of H with respect to w, at fixed w_ must vanish, i.e., that

_ O0H[w_,wy]

0= =5t (61)

for all r. Let w?} denote the partial-saddle point configuration of the field w, that satisfies
this condition, which is itself a functional of w_. The PSA for the partition function Z for

such a system is given by an functional integral over the exchange field w_, as
Z=N"1 / Duye” Hlw- il (62)

in which w?* is the partial saddle-point configuration of w, (r) at the specified configuration
of w_(r). For incompressible AB systems with y > 0, it appears that there always exists a
solution to the partial saddle-point equation for which iw, (r) is a real field. Use of this partial
saddle-point value for w, then yields real values for the monomer chemical potential fields
wi(r) and wy(r) and for the Hamiltonian Hw_,w*]. The existence of a real Hamiltonian
allows the use of conventional Monte Carlo and Brownian dynamics sampling methods, and
avoids the “sign problem” found in the fully fluctuating theory.

Generalized PSA: 1t is straightforward to formulate a generalized PSA for systems with
M > 2 by analogy to the case M = 2. To do so, we divide the list of M fields wy,...,wy
into one list of fields for which the corresponding eigenvalues of x are negative, which we

denote collectively by w_, and a second list of fields for the corresponding eigenvalues of x
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are positive or zero, which we will denote by w,. The list w, always contains the constraint
field wys, and may also include one more fields wy, . .., w1 that are associated with positive
eigenvalues of x.

Suppose that the symmetric matrix x has L negative eigenvalues for which o, = 1 and
and M — L non-negative (positive or zero) eigenvalues for which o, = i, with L < M.
By convention, we order the eigenvalues so that ag,...,«a are negative, so that w_ =
(wiy.. . wr) and wy = (Wra1y .-+, War)-

The generalized PSA for an incompressible system with M > 2 is given by a straightfor-
ward generalization of Eq. (62), in which the treatments of the fields w_ and w;. is generalized
so as to apply to the corresponding lists of fields with the same names. In general, Z is de-
fined as a functional integral over over the L fields in list w_, which are thus allowed to
fluctuate, while the field theoretic Hamiltonian is evaluated using partial saddle-point values
for all of the fields in list w,. A partial saddle-point field configuration is defined as one
in which the functional derivative of H[wy, ...,wy| with respect to field w, vanishes for all
fields in list w, corresponding to a = L+1,..., M. This formulation assumes that, for each
configuration of the fields in list w_, there exists a unique partial saddle-point configura-
tion of the fields in list w, for which iw, is real for all « = L + 1,..., M, giving a partial

saddle-point configuration with real monomer fields.

Discussion of PSA

The additional approximation involved in applying this generalized PSA to systems with
M > 2, compared to the case M = 2, is the application of a partial saddle-point (or self-
consistant field) approximation to field components associated with positive eigenvalues of
X, if any. Each negative eigenvalue )\, of x, with o < L, corresponds to a negative contri-
bution to the potential energy U of the particle based model that arises from fluctuations of
a corresponding monomer concentration component C,(r). Terms associated with negative

eigenvalues thus acts to enhance fluctuations of associated concentration field components.
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Auxiliary field components associated with negative eigenvalues of x are thus “dangerous”
modes that can lead to strong correlations and microphase separation, indicating that we
should prioritize the explicit treatment of these field components in field theoretic simula-
tions. Each positive eigenvalue of x is, however, associated with a negative contributions to
U that instead acts to suppress the magnitude of fluctuations of an associated concentration
field component. The generalized PSA described above thus applies a self-consistent field
approximation to all auxiliary chemical potential field components that arise from potential
energy contributions that act to suppress (rather than enhance) fluctuations of an associated
concentration component. If applied to a standard AB system with M = 2, this generalized
PSA would require explicit sampling of fluctuations of w_ and a PSA for w, for systems
x > 0, but would reduce to SCFT (i.e., use of PSA for both field components) for AB
systems with x < 0.

To clarify some consequences of the PSA, consider its application to a particular field
component w, associated with an eigenvalue A, > 0, and then consider the limits A\, — 0%
and \, — +o0o. In the limit A, — 0%, fluctuations of w,(r) are entirely suppressed by the
prefactor of 1/), in the term in H; that involves fluctuations of component w,. In this
limit, application of the PSA to component w, thus actually becomes exact. In the opposite
limit A\, — 400, fluctuations of w,(r) are generally not small, but their physical effect is
to completely suppress fluctuations of the associated concentration field component C,(r),
effectively imposing a constraint on this concentration component. In this limit A, — 400,
application of the PSA to a component with L < o < M thus becomes completely analogous
to the use of a field component wj; to impose a rigorous constrain on the total monomer
concentration C)y;. Application of the PSA might naturally be expected to be least accurate
in this latter limit of a large positive eigenvalue as that obtained when applied to the field
component wy, (corresponding to the worst-case scenario of an infinite positive eigenvalue)
and to be more accurate for small positive eigenvalues that for large positive eigenvalues.

Experience with AB systems suggests, however, that use of the PSA to approximate the
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incompressibility constraint appears to yield rather accurate results when applied to poly-
meric systems with a large invariant degree of polymerization, N — oo, and when interpreted
properly.

A thorough discussion of the reasons for the apparent effectiveness of the PSA to treat the
incompressibility constraint in AB systems is beyond the scope of this paper. We comment
here only that the this effectiveness is presumably only valid for systems with large values of
N, and is probably related in part to the fact that the associated concentration fluctuations
at relevant wavelengths of order the polymer coil size become small in the limit N — oo
even for the non-interacting reference system used in the PSA, thereby allowing treatment
of a constraint at a self-consistent-field level to yield accurate results for many quantities in
the limit of sufficiently large values of N. The above discussion of the physics of the PSA
in the limits of small and large positive eigenvalues of x, together with experience over the
last decade with the behavior of the PSA in AB systems, suggests that the PSA could well
yield useful predictions for systems with N > 1 when applied to any field component w, for
which A, > 0, as proposed above. This is, of course, not a proof, but merely an argument
for guarded optimism and further study.

A particularly strong case for the potential usefulness of a generalized PSA can be made
for ABC systems (M = 3) for which the binary interaction parameters nearly obey the
Hildebrand approximation. For concreteness, imagine an ABC system for which all of the
interaction parameters are positive in which we order the eigenvalues of x assigning an index
a = 1 to the eigenvalue A\_, which must be negative, assigning o = 2 to the eigenvalue A,
which is small but could be either positive or negative, and o« = 3 to the zero eigenvalue
associated with eigenvector e = v3. In an ABC system that exactly obeys the Hildebrand
approximation, A; < 0 but Ay = 0, and so fluctuations of field component ws(r) are com-
pletely suppressed. Application of the PSA to ws is thus exact in this case. In cases in which
Ao is small but negative, the PSA is applied only to the pressure-like field w3, as for an AB

system, and so we expect the PSA to yield an accuracy similar to that typically obtained
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in PS-FTS studies of AB systems. In cases in which A\, is small but positive, the PSA is
applied to an additional field wy for which fluctuations in fully fluctuating theory are also
small, so that the use of the PSA for this component should be accurate, and so we again
expect to obtain an accuracy similar to that typical of an AB system. Application of the
generalized PSA to any ABC system for which the y parameters nearly obey the Hildebrand
approximation (with deviations of either sign) should thus be expected to yield an accuracy

comparable to that obtained for AB systems.

Weakly Compressible Model

We now show how a symmetric formulation of the theory for an incompressible model similar
to that presented here be obtained by starting from a compressible model and considering the
limit of vanishing compressibility (or infinite compression modulus). Consider a compressible
model with a a potential energy of the form U = Uiq + Uiy + Uext, in which

v

5 /dr { xijcici + C(eic; — co)* } (63)

Uext = —/dr vic; (64)

Uint -

where ( is a dimensionless compression modulus, e;c; is the total monomer concentration that
we denoted by C); in the incompressible theory, and ¢y = 1/v is the energetically preferred
value for this total monomer concentration. Here, y;(r) is an external source field associated

with monomer type i. This interaction energy may also be expressed as a sum
v
Uint = /dr{ éUijCicj — Qeici } + U1(125) s (65)
in which we have defined a matrix U with elements

Uij = xij + Ceiej (66)
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while U = (Vo /2.

int

Compressible Field Theory

When analyzing this model, we expand all fields in a basis of eigenvectors of the matrix U

with elements U;;. For any o = 1,..., M, let
Ux, = KoXo (67)

where x,, and £, denote an eigenvector and associated eigenvalue, for which x. x5 = MJ,s.

We define a concentration component C,(r) = x.c(r) for each a = 1,..., M, where c(r) =
[c1(r), ..., ca(r)]T is a vector of monomer concentrations. By expanding c(r) in this basis,
we obtain

M
Ui = azl / dr {;;;03 _ CEQCQ} + Ul

M
Uext = - Z/dr YaCa ; (68)
a=1

in which

Ey = zaiei /M Yo (r) = zoyi(r)/M (69)

Applying a Hubbard-Stratonovich transformation to the quadratic terms in this model, by
introducing auxiliary fields 1, ...,%), yields an expression for Z as a functional integral

with a field-theoretic Hamiltonian

H[w] = _anid+Hf

M
MYz |
He = dr——% 4+ U,
; ;/ Toomw ]+ Ui (70)
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in which Zj4[W] is the partition function of an ideal gas that is subjected to an external

potential
He =Y Wa(r)Cu(r) | (71)
where
Wo(r) = V,(r)—(E, Y, (72)
Uuo(r) = oathalr) (73)

with o, = 1 for k, < 0 and o, =i for K, > 0.

Incompressible Limit ({ — o)

To describe an incompressible fluid, we consider a limiting process in which all elements of x
are held constant while ( — +00. As ( increases, we find that one eigenvalue of U diverges
while the others approach finite limits. By convention, we assign indices 1,..., M — 1 to the
eigenvalues that remain finite in this limit, and an index M to the diverging eigenvalue. We

show in SI that, in the limit ( — co:

e Eigenvector x); approaches e, while the associated eigenvalue k), diverges, such that

e For o =1,..., M — 1, each eigenvector x, and eigenvalue k, of U approach a corre-

sponding eigenvector v, and eigenvalue A\, of the projected chi matrix x.

The fact that x3; — e in this limit implies that F,; — 1. The orthogonality of eigenvalues
of U thus also implies that £, — 0 for « < M. It is shown in SI that values of E, for

a < M decrease as 1/¢ with increasing (, such that

lim CE, = —S, (74)

(—o0
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for all & < M. Observe that Eq. (74) implies that, for all & < M, the quantity —(E,, that
appears on the RHS of Eq. (72) for W, (r) in compressible theory will approach the quantity
S, that appears in the analogous position within Eq. (30) for W, (r) in the incompressible
theory.

It is also possible to establish correspondences between values of fluctuating variables in
corresponding field configurations of the compressible and incompressible theories. For this
purpose, we define “corresponding states” of the compressible and incompressible theories
to be states with equal values for all monomer chemical potential fields wy(r), ..., wy(r),
as well as equal values for the y parameters and all monomer source fields y;(r), ...,y (r).
To characterize the incompressible limit of the weakly-compressible theory, we consider a
hypothetical limiting process in which the y matrix, the y fields and w fields are all held
constant while  approaches +o0o. In what follows, a fluctuating variable A that is defined in
the compressible theory is said to be “asymptotically equivalent” to a corresponding variable
B that is defined in the incompressible theory if A approaches a limit as ( — oo that is equal
to the value of B in a corresponding state of the incompressible theory.

An analysis of the behavior of a variety of variables in the limit ( — oo is presented in

SI. That analysis establishes the following asymptotic relationships:

e For all a < M, the value of ¥,(r) in the compressible theory is asymptotically equiv-

alent to the value of 2,(r) in the incompressible theory.

e The value of the Hamiltonian H[] of the compressible theory is asymptotically equiv-

alent to the value of the Hamiltonian H|w] of the incompressible theory.

e The quantity ¥, (r) — ¢ in the compressible theory is asymptotically equivalent to the

value of Qy/(r) in the incompressible theory.

As one result of the asymptotic equivalence of Hamiltonian values of the two theories, and
equivalence of corresponding fields to within a constant in the pressure-like field, the func-

tional derivative 0 H/0W¥,, of the compressible theory can also be shown to be asymptoti-
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cally equivalent to the corresponding derivative 6 H/0€2, of the compressible theory, for all
a=1,..., M.

The asymptotic equivalence of values of H in corresponding states of fully fluctuating
compressible and incompressible theories implies that corresponding states will be assigned
asymptotically equivalent equal statistical weights in a fully fluctuating complex Langevin
field theoretic simulation (CL-FTS) of either theory. The asymptotic equivalence of func-
tional derivatives of H also implies that the two theories exhibit asymptotically equivalent
partial-saddle point field configurations, and thus that asymptotically equivalent weights will
be assigned to corresponding partial saddle-point configurations of PS-F'T'S simulations of
compressible and incompressible models. The compressible theory presented here is thus
asymptotically equivalent to the incompressible theory of section 2 in the sense that the two
theories yield asymptotically equivalent statistical weights for corresponding states in either
CL-FTS or in PS-FTS methods.

The only notable formal difference between the incompressible limit of the compressible
model and the incompressible model of section 2 is the existence of a spatially homogeneous
difference between the value of the pressure-like field Wy, (r) = ity (r) in the compressible
theory and the value of );(r) = iwy(r) in a corresponding state of the incompressible theory.
The existence of such a homogeneous difference becomes clear upon comparing of Eq. (72),
which yields Wy (r) = Wi (r) + Yar(r) + (E)yy in the compressible theory, to Eq. (31), which
yields Qps(r) = Wi(r) + Yas(r) in the incompressible theory, while noting that Ey, — 1 as
¢ — 00. This homogeneous shift could be removed without changing the physical content
of either theory by (among other possible methods) deforming the integration contour for

U y/(r) in the compressible theory so as to make Wy, (r) — ¢ a pure imaginary field.
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Conclusions

We have presented a “symmetric” formulation of field theory for incompressible polymer
systems with any number of monomer types, in which incompressibility is applied in a
manner that manifestly preserves the symmetry among different monomer types. Both
the fully fluctuating theory and a generalized partial saddle-point approximation have been
discussed. The symmetric formulation is based on the introduction of a projected xy matrix
that describes how the binary interaction energy changes in response to changes in monomer
concentrations that respect the incompressibility constraint. The symmetric formulation has
been shown to emerge naturally from an analysis of the incompressible limit of a compressible
model, and to also reduce to the existing formulation for standard AB systems when applied
to such systems. This formulation is proposed as a convenient theoretical basis for the
development of software for PS-FTS of incompressible models for systems with an arbitrary
number of monomer types, and is now being incorporated into two different software packages
maintained by the authors.

We have discussed a straightforward generalization of the PSA to incompressible systems
with M > 2, in which the PSA is applied to all field components associated with positive
or vanishing eigenvalues of the projected xy matrix. Physical arguments are given for why
we expect the resulting generalization to often yield accuracy similar to that obtained in
PS-FTS studies of AB systems. We do not report any numerical results obtained with this
method, deferring that to future work.

An analysis of ABC systems with M = 3 has identified the regions in the space of values
of the binary y parameters in which the projected y matrix has two, one, or zero negative
eigenvalues, corresponding to cases that require introduction of one, two or three imaginary-
valued fields in a fully fluctuating theory. Incompressible systems with positive values for all
x parameters are found to always require the introduction of either one or two imaginary-
valued fields in the fully fluctuating theory, one of which is always required to maintain

incompressibility. Systems that obey the Hildebrand solubility-parameter approximation for

31



the y parameters are shown to correspond to a special case in which one nontrivial eigenvalue
happens to vanish, and in which the fully fluctuating theory requires use of only a single
imaginary-valued pressure-like field and a single real-valued exchange field, much like an
AB system. Systems with y parameters that nearly obey the Hildbebrand approximation
thus appear to be promising candidates for application of a generalized partial saddle-point
approximation, which is expected to lead in these cases to errors very similar to those found

in PS-FTS studies of AB systems.
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Incompressible Field Theory

To make this document more self-contained, we begin by restating the main working equa-

tions for the incompressible model presented in the second section of the associated article.



Working Equations (Overview)

The projected xy matrix of a system with M monomer types is the symmetric M x M matrix

X =PxP , (1)

where

P=1-Q Q=ee'/M (2)

and e = [1---1]7. This is a singular matrix for which xe = 0, so e is an eigenvector with
vanishing eigenvalue. For each o = 1,..., M, let v, and A\, denote an eigenvector and

associated eigenvalue of x, such that
XVa = AaVa - (3)

Let v); = e and Ay, = 0 by convention. These eigenvectors are normalized such that

vIvs = Mdb,p. Fora=1,...,M — 1, we define
Ao = _Uil)‘al (4)

with 0, =1 for \, < 0 and o, =i for A, > 0. Let o3, = ¢ by convention.
The concentration of monomers of type i is denoted by ¢;(r). Components of concentra-

tion in an eigenvector basis are denoted by C(r), ..., Cy(r), and are defined by relationships

Calr) = vaci(r) () = % > Calr)va (5)

M M
i=1 a=1

where v,; is the component of eigenvector v, associated with monomer type i. We also

define a vector S with components



for all « = 1,..., M. Note that Sy = eTxe/M?2.
The canonical partition function Z of an incompressible field theory is given by a func-

tional integral

H = Hf —In Zid (8)
in which
M—-1
MQ? VSu
Hy = 3 — -0
£ /d T { 2 20N, MCO} + 2 (9)
Qu(r) = oawa(r) (10)

and Zig[W] is the partition function of a hypothetical gas of non-interacting molecules sub-

jected to an external potential H., such that
ZaW] = / Dr ¢ Va1 (11)
M
}L::EZ/fH%&KMﬂ, (12)
a=1

where

Wa(r) = Qu(r)+ 8. —Ya(r) a=1,....M—1 (13)

Wy(r) = Qu(r) —Yuy(r) | (14)

while Y, (r) is an external source field conjugate to C,(r).
Let (---)iq denote an average over particle positions for an ideal gas subjected to an

external potential H., and let ¢;(r) and ®,(r) denote average volume fractions fields for



such an ideal gas, defined as

¢i(r) = v{ci(r))ia

Do(r) = v(Calr))ia = vaidi(r) (15)

fore=1,.... Manda=1,..., M.

Functional Derivatives of H

Consider the computation of functional derivatives

Dalr) = 5;2551') B Uia&ff(rr) ’ (16)

where H = Hy — In Ziq. The functional derivative of —In Ziq with respect to €2,(r) is given

forany a =1,..., M by

5anid . _—1 5Zid
5Qa(r) o Zid (5Wa(r)
16 J
_ 7T 3
- / Dr exp{ Ui ; / era(r)Ca(r)}
1

= /Dr Co(r)exp{—Uq + H.}
Ziq

= (Ca(r))ia = Pulr)/v . (17)

A straightforward evaluation of d Hy/d€2, yields

0H; M
=——0 1
5 (r) Vg a(r) (18)
fora=1,...,M — 1, and
OH;
= — 1
() (19)



for a« = M. The resulting functional derivatives of H = Hy — In Zjq are
1
Da(r) = — | ===+ Pa(r) (20)

for all @« < M, with Q,(r) = W,(r) — S, + Y, (r), and

Dyr(r) = 5 @ys(r) — 1] 21)

for o« = M.

Saddle-Points and SCF Equations

A saddle-point point of the functional integral is a field configuration for which
Dy(r) =0 (22)

forall « =1,..., M and all r. The saddle-point condition for « = M is a mean-field version
of the incompressibility constraint, which requires that (Ca/(r))ia = ¢o or ®ps(r) = 1.
We now show that the saddle point conditions given above are equivalent to the usual

self-consistent field (SCF) equations for an incompressible system. The standard formulation

of these SCF equations, expressed in terms of volume fraction fields ¢q, ..., ¢, require that
0 =wi(r) — xi;¢;(r) — e&(r) + ui(r) (23)
foralli =1,..., M. Here, &(r) is a Lagrange multiplier field whose value must be chosen to

as to satisfy the incompressibility constraint,

Here and throughout this document, we use Einstein convention for summation over repeated



monomer type indices.

By multiplying Eq. (23) by v, for any @ < M and summing with respect to ¢, we obtain

0 = v {wi(r) +yi(r) — xi;d;(r) — e§(r)}

= M[W,(r) + Ya(r)] — vai Pijxntn(r) (25)

where we have used the facts that v,;e; = 0 and vor = v, Py, for a < M. We then note that,

for states that also satisfy the constraint e;¢; = 1,

1
VaiPiiXjk®r(r) = vaiPijXik [Pkl¢z(1') + Mek:|

VaiXij @i (T) + VaiXij€j /M
= Nty (¥) + MS, (26)

where we have used the fact that va;Xi; = Aava; because v, is an eigenvector of the symmetric

matrix x. Substituting back into Eq. (25), while noting that ®,(r) = v,;¢,(r), yields
0= M[Wy(r)+ Y,(r) — Sa] — M\a®u(r) . (27)
Dividing by —vA, and noting that Q,(r) = W,(r) + Y, (r) — S, then yields
0= % ———2 4+ ®,(r)| = D,(r) (28)

in which the second equality follows from Eq. (20). The conventional SCF equations of Eq.
(23) thus imply that D,(r) = 0 for all @« < M, while the SCF incompressibility constraint is

equivalent to a requirement that Dy, (r) = 0.



SCFT Free Energy

The SCFT approximation for the free energy, denoted here by A, is given by
A — Aid "‘ Aint + Aext (29)
in which

Aid = —anid—%/dr wz(r)gbz(r)
1
A = 5o [ dr oo,

Aot = —%/dr yi(r)di(r) . (30)

Expanding ¢;(r) in a basis of eigenvectors yields

1 M
Aqg = —InZyg—- [ d E W.®,
‘ ! ‘ /U/ ra:l
1 M—1 1 1
A = - > o Aa®2 4 Sa®a| + 5
int v /dI‘ {a:1 [QM)‘Q a+Sa 01:| + 2SM} )

At = —% / dr ) Ya(r)®a(r) . (31)

Using the saddle-point equation W, = A\ ®,/M + S, — Y, for a« < M and assuming the

validity of the SCF incompressibility constraint ®,,(r) = 1 when computing A;q yields
1 ~— /1
A =—InZy— /dr {Z (M)\a@i + S0 @y — ya<1>a) + WM} . (32)

a=1

Combining expressions yields a total free energy

M-1
1 1 ) 1
A——anid—{—;/dI‘ {—m aél )\aq)a_WM_YM+§SM} . (33)



Again applying the saddle point condition to write &, = M(W,, + Y, — S,)/As then yields

a saddle-point free energy

1

1 MW, +Y,—5,)? 1
AZ—IHZid-f-;/dI‘ {—Z ( o ) —WM—YM+§SM} . (34)

a=1
This is equivalent to the expression for the field theoretic Hamiltonian H given in Egs. (8)

and (9). The value of H at a saddle-point is thus exactly equal to the SCFT free energy
given in Egs. (29) and (30).

Correlation Functions

We now consider the calculation of correlation functions from the results of a field theoretic
simulation of an incompressible model. The derivation given here uses differentiation of Z[Y]

with respect to the source fields Y7, ..., Yy

Changing Integration Variables

To simplify evaluation of derivatives with respect to the source fields, it is convenient to

introduce fields 1 (r), ..., ¥ (r) that are defined by the relations

Wa(r) = 0atha(r) (35)

for a = 1,..., M. This yields Q,(r) = 0,0a(r) + Yo(r) — S, for a« = 1,..., M — 1, and
Yar(r) = wy(r). We then deform the integral used to compute Z by taking ¥y (r), ..., ¥y (r)

to be real fields and expressing Z as an integral

Z =N / Dy e H (36)



over these fields. This rewriting of the integral is equivalent to a shift in the integration
contour for Q,(r) for fields for which a < M and o, = i by a real amount Y, (r) — S, so
as to obtain an integration contour for W, (r) that follows the imaginary axis, rather than
the contour along which €,(r) is imaginary used in the original formulation. Because H is
an analytic functional, this contour deformation does not change the value of the integral.

Expressing H; as an explicit function of the real 1 fields yields a contribution

MﬁlMaa Ya_Sa2.

In this re-formulation, at fixed values of the fields 1, ..., 1y;, Hy thus depends explicitly on
the source fields Y7, ..., Yy 1, but the W fields that appear in the definition of Zi4 instead
become independent of the source fields. This change of variables simplifies evaluation of

functional derivatives of H with respect to Y (r)

Moments and Functional Derivatives

By starting from the original representation of Z[Y] as a configurational integral, it is

straightforward to show that the first and second moments of the concentration components

Cy(r),...,Cy(r) can be expressed as functional derivatives
1 67
(Colt) = i (39)
w1 6Z[Y]
<Ca<r)oﬂ(r )> - Z 5Yo¢ (I‘)(SYg(I'/) (39)

Using the functional integral representation of Z obtained above, the required derivatives of

Z[Y] can then be expressed as average values

€t = {(50) (40)

W/ 6H GH 0°H
(Ca(r)Cp(r) = <5ya(r) 3Y5(r') Yo (r) 5Yﬁ(r’)>

(41)



in which the averages on the right-hand-side of each equation represent averages over fields
U1, ...,%y, and in which the functional derivatives of H are evaluated at fixed values of the

1 fields. The required derivatives of H are

0H M
Vo l, = Toaa el
52 H M| M
5Ya(r) 5Y5(I‘,) » - Vg 5Yﬁ(r’) p v/\aaaﬂé( ) ) (42)
thus giving
(Calr)) = ——5¥i(fhxr)> )
(ColEICHE) = S5 (a(E)2(00) = sl =) "

By combining these expressions for the first and second moments, one may easily show that

(BCCHE) = 7335 (B2 = Sduodle—x) L ()

Here and hereafter, we use the notation ¢ f(r) to indicate a deviation 0 f(r) = f(r) — (f(r))
of field f from its average, so that 0C,(r) = Cy(r) — (Cy(r)) and 6Q,(r) = Qu(r) — (Q24(r)).

Note that, because 2, = W, + S, — Y,, while S, is a constant,

Q4 (r) = dW,4(r) — 6V, (r) . (46)

For the special case of a homogeneous liquid in which §Y,(r) = 0 for all @ and all r, we thus

obtain
(0C,(r)0Cs(r")) = ﬂ(éW (r)oWs(r')) — ﬂé o(r—r') (47)
T VS Vs 7 oA P
for all o, = 1,..., M. In an incompressible model, however, §Cy;(r) = 0, and nonzero

values of (§C,(r)6Cs(r’)) are obtained only for o, 5 =1,..., M — 1.

10



Structure Factor

Consider the calculation of the structure function in a homogeneous state with Y, (r) = 0

for all @ and r. Let S;;(k) denote the structure function

S99 = 7 [ ar [ a0 ey )

L. s
= ylalke=k) (48)

where k is a wavevevector and 6¢;(k) denotes the Fourier transform of d¢;(r) at wavevector
k. Here and hereafter, we use carets to denote Fourier transforms of fields, defined using the

convention

ﬂmaﬁmmvw, (49)

The quantity S;;(k) can be expressed in terms of the components of concentration in an

eigenvector basis as an expansion

M—

,_.

1
VM2

« 5:1

k)3Cs(—k))vaivs; (50)

in which 6C, (k) is the Fourier transform of 6C,(r). By evaluating the Fourier transform of

Eq. (47), we thus find that

1
9= 3 vt { sy Gust) — s 51

af=1

where

Gy (1) = LW )SW5(—K)) (52)

and where 6T, (k) is the Fourier transform of §W,(r).

11



Three Monomer (ABC) Systems

This section provides details of the analysis of three-monomer systems that is summarized

in section 4 of the associated article.

Eigenvalues of x

Consider the calculation of the eigenvalues of a projected x matrix
x=PxP . (53)

Here P =1 — ee’ /M is a projection matrix, and x is a symmetric matrix of Flory-Huggins
x parameters. From simplicity, we consider the conventional choice of a y matrix with

vanishing diagonal elements, of the form

0 Xxi2 X3
X= 1| xi2 0 xo3 ) (54)

X13 X2z O

with x11 = X220 = x33 = 0.

The projected matrix x = PxP is a singular matrix for which xe = 0, because Pe = 0.
By construction, x thus must have one zero eigenvalue with an associated eigenvector e. To
isolate the two remaining nontrivial eigenvalues, we first apply an orthogonal transformation
of this matrix that reduces it to a block diagonal form in which the remaining nonzero

elements form a 2 x 2 matrix. Let A denote a transformed matrix
A =U"xU (55)

in which U is a a real orthogonal matrix with orthonormal columns u;, uy, and uz. Each

12



element of A can be expressed as a matrix product
Ai; = ul xu; = u/ PxPu; (56)

fore,7=1,...,3.
Because e is always an eigenvector of x, A can be transformed to a block diagonal form

by taking the last basis vector uz to be a normalized vector proportional to e. We thus take
us =e/V3 (57)

for which uluz = 1. Because xe = 0, and X7 = x, use of this choice in Eq. (56) yields
A;; = 0 for all elements with ¢« = 3 or j = 3. This choice is thus guaranteed to yield a matrix
A in which all elements of the last row and last column are zero.

A transformation of this form thus leaves a matrix in which the remaining nonzero el-
ements form an upper-left 2 x 2 submatrix. Let B denote this submatrix. Because the
unspecified basis vectors u; and uy must both be orthogonal to e, they must both satisfy
Pu; = u;. Using this to further simplify Eq. (56) for the remaining elements of A, we find
that

By = Aij = uf xu; = u/ xu; (58)

for 4,5 € {1,2}.
The two eigenvalues of the remaining 2 X 2 matrix B are independent of our choice of
valid pair of orthonormal basis vectors u; and u,. The calculation presented here uses the

specific choice

1 1
1

% 0

1 —1

Uy =

(59)

Using these basis vectors in Eq. (58) for a xy matrix with vanishing diagonal elements yields

13



a 2 X 2 matrix

B_ (X13 — 2X12 — 2X23)/3 (X238 — X12)/V3 | (60)

(X238 — X12)/\/§ —X13

A straightforward calculation of the determinant of this matrix yields
IB| =[2J — K]/3 (61)
where J and K are the permutation invariants

J = Xi2X13 + X12X23 + X13X23

K = X%2 + X%3 + X%3 . (62)

Eigenvalues of B may be computed by requiring that |IA — B| = 0, which yields a quadratic

equation for \. The two roots of the resulting quadratic yield eigenvalues

Ae = [—L +oVK —J| (63)

Wl =

in which

L = x12+ X253+ X13 - (64)

Using the identity L? = K + 2J, it is straightforward to confirm that the product A \_

yields the expected determinant,

AN = [B|= (2] -K)/3 . (65)
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Hildebrand Approximation

The Hildebrand approximation for interaction parameters in mixtures of simple non-polar

monomer types with dispersion interactions requires that

Xij = v(0; — (5j)2/kT (66)

where §; is a ”solubility parameter” characteristic of a homopolymer containing monomomers
of type 7. The ordering monomer type indices is arbitrary, and so we may choose indices such
that d; < dy < 93 without loss of generality. With this convention, we may then parameters

A, a and ( such that

65 —06, = A
5 — 8 = al (67)
53_52 = BA )

with o, 8 € [0,1] and a+ 8 = 1. This parameterization yields y12 = a®x13 and a3 = %13

A straightforward substitution yields permutation invariants

J = xi(e® +a?F% + 5?)
K =xh(l+a'+ 6 (68)

L =xi3(1+a*+ 5%

To show the relationship among these expressions more clearly, we need the identities

1 = (a+p)"=0a"+5 +208
L= (et =a'+ 5" +4(a8 + af’) + 60”5

= o'+ g+ 4aB(1 — 2a83) + 6a*5°

15



= o+ +4ap — 2228 . (69)

Using these identities to replace the quantities o + 32 and a* + 3* with polynomials of a3,
we find that

K =2J =%2(1 — 208 + a28%) . (70)

Because this yields K = 2J, while A_\; = (2J — K)/3 by Eq. (65), Eq. (70) implies
)\7)\4, == 0 (71)

in the Hildebrand approximation for arbitrary value of the parameters A and «. For any

A >0, L >0by Eq. (68), and so A\_ < 0 by Eq. (63), implying that A, = 0.

Weakly Compressible Model

This section presents some details of the analysis of the weakly compressible model that is
discussed in section 5 of the associated article. The first Subsection summarizes the definition
of the model and corresponding field theoretic Hamiltonian. The remaining two subsections
analyze the behavior of the eigenvalues and eigenvectors of the matrix U in the limit of a
very large dimensionless compression modulus parameter . The last subsection establishes
the sense in which the incompressible limit of the compressible model is asymptotically

equivalent to the incompressible model.

Working Equations

We first recap some of the working equations for the compressible model, as given in Section

6 in the associated article. We consider a model with M monomer types with concentrations
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c1,...,Cy, With a potential energy
U = Uint + Uext

Uy = / dr{ gUijcicj — Cee; } + U9 | (72)

Uext = _/dr YiC; (73>
in which U;; is an element of an M x M matrix
U= x + CeeT (74)

while Ui(ft) = (V¢p/2. The fields yi(r), ..., ynm(r) are externally imposed source fields.

For alla =1,..., M, x, and k, denote an eigenvector and associated eigenvalue of U,

respectively, such that

Ux, = KXo (75)
for all « = 1,..., M, with a normalization x. x5 = d,3M. Because U is real and symmetric,
these eigenvalues and eigenvectors are real. For each a =1,..., M, let o, = 1 if kK, < 0 and

let o, =1 if kK, > 0. We consider the limit of large positive values of (, and take A, to be
the largest eigenvalue, which will be shown to increase linearly with increasing (.

Applying a Hubbard-Stratonovich transformation, by introducing auxiliary fields 1, ..., ¥y,
yields an expression for the partition function Z as a functional integral with a field-theoretic

Hamiltonian

H[w] = _anid+Hf
M
Mys | o
H, = d > 4 U 76
f ; r2U|/€a’ + int ( )

in which Ziq[W] is the partition function of an ideal gas that is subjected to an applied
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potential

M
H. = Z Wa(r)Cal(r) (77)
a=1
where
Wu(r) = VYu(r)—CE,—Y, |, (78)
Uql(r) Tata(r) (79)
while
B, =x,e/M  Yo(r) =x,yi(r)/M (80)
denote components of the vectors e and y = [y1,...,yn]? in a basis of eigenvectors.

Limits of Eigenvectors and Eigenvalues

We consider the behavior of the eigenvectors and eigenvalues of U in a limit in which we
take ( — oo while holding the elements of the xy matrix constant. To describe this limit, it

is useful to consider the corresponding eigenvectors and eigenvalues of a scaled matrix

A=U/¢C=ee +x/C . (81)

Every eigenvector x, of U is also an eigenvector of A with an eigenvalue that we denote by
a4, such that

Ax, = ay,X, (o = Ko /C (82)

for each « = 1,..., M. Let xV and al denote the limiting values of eigenvector x, and

eigenvalue a,, respectively, such that

x0 = limx, , (83)
(—o0

a® = lima, . (84)
(—o0
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for a =1,..., M, where the limits are evaluated at fixed Y.

Observe that the matrix A approaches a limit

lim A = ee” (85)
(—o0
as ( — oo. This implies that
ee’xV = x0q(®) (86)
for all « = 1,..., M. The limiting matrix ee’ has one eigenvector equal to e with an associ-

ated eigenvalue M, and a M — 1 dimensional eigenspace of all vectors that are orthogonal to
e with an associated eigenvalue of zero. In the limit ¢ — oo, A must thus have one eigenvec-

tor that approaches e for which a(o)

M, and M — 1 eigenvectors that are orthogonal to e
for which al) = 0. By convention, we assign an index M to the eigenvector that approaches
e, for which a,; — M, and assign indices a« = 1,..., M — 1 to the M — 1 eigenvectors for

which a, — 0. With this convention, we obtain
XS&) =e ag\(}) =M (87)

while e”x) = 0 and oY) = 0 for all a < M.

To identify the limits of the remaining M — 1 eigenvectors and eigenvalues of U, we
start from the original eigenvalue equation Ux, = A\ x, for any a < M. Multiplying this
eigenvalue equation from the left by the projection operator P and taking the limit { — oo

yields
lim PUx, = hm ko PXo . (88)

(—00 —00

We then observe that PU = P for any value of (, and that x¥ must be orthogonal to e

for « < M, and thus that x0 = Px!Y. With these simplifications, we find that

PxPx"¥ = xx© = xOx© (89)

« «
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for a < M, where x = PxP, and where

£ = lim ke = lim Caq . (90)
(— (—

The solutions the eigenvalue problem given in Eq. (89) are precisely the M — 1 nonzero eigen-
vectors and corresponding eigenvalues of the projected y matrix, x. denoted by vy,...,va_1
and A1, ..., A\y_1, respectively. The limiting values of the remaining M — 1 eigenvectors and
eigenvalues of U are thus all equal to corresponding nontrivial eigenvectors and eigenvalues

of x, such that

foralla =1,...,M — 1.

Because XE&) = e, and we also take v); = e by convention, we thereby actually obtain
x&o) =v, forall a =1,..., M, including « = M. To simplify notation, we thus hereafter

drop the notation x in favor of V4. To summarize, in the limit ( — oo:

e Every eigenvector x, of U approaches a corresponding eigenvector v, of x. We index

the eigenvectors such that x,;;, — e.
e For o < M, each eigenvalue k, of U approaches a corresponding eigenvalue \, of x.

e For a = M, kj; — o0, such that

lim ky/C=a\) =M . (92)
(—o0
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First Order Perturbation Theory

Some aspects of our analysis of the relationship between the compressible and incompressible
theories require information about small deviations of the eigenvectors U from their limiting
values in the case of large but finite (. To construct an appropriate perturbation theory, we

express A as a sum

A=A+ AD (93)

in which

A© = eeT AW =x/¢ . (94)

Using this decomposition, we apply a standard Rayleigh-Schrodinger perturbation theory in
which A© is treated as the unperturbed matrix and A() is treated as a small perturbation.

Because A1) is proportional to 1/¢, this naturally yields an expansion in powers of 1/¢. We

use a basis of vectors vy, ..., vy, which are all eigenvectors of A(®) with eigenvalues of 0 or
1. For each a = 1,..., M, we define an eigenvector w, of A that can be expressed as an
expansion

W, =V, + Aw, (95)

in which vZAw,, = 0. The vector w, thus satisfies the so-called “intermediate” normaliza-

tion condition
viw,=M . (96)

«

The normalized eigenvector x,, for which x1x, = M is colinear with w,, and is given by

Vo + Aw,,

Xoq = T M Aw, (97)
We also expand each associated eigenvalue of A as
aq = al¥ + Aay (98)
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where Aaq,, is a perturbation that vanishes as { — oo.

We seek solutions of the eigenvalue problem Aw, = a,w, or, equivalently,

(AQ + AW (v, + Aw,) = (0L + Ado) (Vo + AW,) (99)

Equating contributions that are of first order in 1/¢ yields

AQ — dOT AW, + ADv, ~ (Aay)ve . (100)

A standard analysis, closely analogous to the standard first order time-independent quantum
mechanical perturbation theory, using a perturbation AM) = x/(, yields eigenvalue and

eigenvector perturbations

1

Aay, =~ C—Mvnga (101)
1 V5 XVa

Aw, =~ C_MZVB 0 _ 0 (102)

to first order in 1/(.
Applying this formalism to any o < M, for which v, = Pv,, yields first order perturba-

tions

A
Aa, ~ — 103
c (103)
Aw, =~ —e% , (104)

where S, = vIxe/M? by Eq. (6). Note that, because al) =0 for all o« < M, Aa, = Ka/C
or, equivalently, k., = (Aa,. Eq. (103) thus implies that x, ~ A\, for & < M, in agreement
with Eq. (91). It is straightforward to show that w, ~ x, to O(1/¢), though the colinear

vectors w,, and x, differ at order O(1/¢?) and higher because of differences in normalization
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convention. Eq. (104) for Aw, can thus be used to show that
lim (B, = lim (e'x,/M = -8, (105)
(— (—o0

for all « < M.

Applying this formalism to a = M, for which v,; = e, yields

ACLM

12

oM (106)

—_

12

SN =

S
¢
M
2

a

AWM

MSy
VoSa (107)

—_

where S, = vIxe/M? and Sy, = e’xe/M?. Eq. (106) and the relationship Aay =

kar/C — M together imply that

. CAay .
lim 2= M) = . 1
A el ar S (108)

Using Eq. (107) for Awyy, it is straightforward to show that

lim Ey =1 . (109)

(—o0

Starting from Eq. (107), we may also show that the deviation 1 — Fj; decreases as 1/¢? with
increasing (, and thus that

lim ¢((1—Ey) = 0

¢{—00

lim ((1-E%) = 0 . (110)

(—00

The limits given in Eq. (105) and Egs. (108 - 110) are used below to establish asymp-
totic relationship between values of the Hamiltonian in the compressible and incompressible

theories.
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The fact that the first M — 1 eigenvalues of U approach corresponding eigenvalues of
and that o,; = ¢ for both theories, together imply that the value of ¢, for the incompressible
theory in the limit ( — oo is the same as its value in the incompressible theory, for all

a=1,....M,

Asymptotically Equivalent Variables

To establish a closer correspondence between variables in the compressible and incompress-
ible theories, we consider a limiting process in which we take ( — oo while holding constant
all the elements of the y matrix, the monomer source fields y; (r), . .., yp(r) and the monomer
chemical potential fields wy(r),...,wy(r). States of the incompressible and compressible
theories for which these quantities (the x matrix, the y fields and the w fields) have equal
values are referred to here as “corresponding states”. A quantity A that depends upon the
field configuration in the compressible theory will be said to “asymptotically equivalent” to
a corresponding quantity B that depends on the field configuration in the incompressible
theory A approaches a limit as ( — oo that is equal to the value of B in a corresponding
state of the incompressible theory.

The fact that each of the eigenvectors of U approaches a corresponding eigenvector of x
as ¢ — 0 immediately implies that the values of W, (r) and Y,(r) in the compressible theory
are asymptotically equivalent to values of variables of the same names in the incompressible

theory, for all « =1,..., M.

Fluctuating Fields

Egs. (78) and (105) together imply that

lim U, (r) = W,(r) — So + Yau(r) = Qu(r) (111)

(—o0
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for all @ < M, where Q,(r) denotes a value defined in a corresponding state of the in-
compressible theory, as given by Eq. (13). This demonstrates that ¥, is asymptotically
equivalent to €2, for all « < M. Because ¥, = 0,1, and €0, = o,w,, this also implies that
1o(r) is asymptotically equivalent to w,(r) for a < M.

We next consider the relationship between pressure-like fields, ¥, in the compressible

theory and €, in the incompressible theory. Eq. (78) implies that

for corresponding states of the compressible and incompressible theory, for any value of (.
Taking the limit ( — oo, and using Eq. (109) for the limit £y, — 1, we find that

lim [ Uy (r) — ¢ ] = Qu(r) (113)

(—0

We thus find that ¥,; — ¢ is asymptotically equivalent to 2.

Values of H

To compare values of the Hamiltonian for the compressible and incompressible theories, we
first note that the Hamiltonian for each model can be expressed as sum H = —In Ziq + Hy,
and that values of In Z;q are equal in corresponding states of the two models. The equivalence
of values of Zq in corresponding states follows from the fact that in both theories Ziq is a
functional of the monomer chemical potential fields wy,..., wy;, and that corresponding
states are defined to be states with equal values for these fields. Values of H in the two
theories are thus asymptotically equivalent if and only if values of H; are asymptotically
equivalent.

To compare values of Hy in the two theories, it is convenient to divide Hy in each theory

into two components, and establish the relationship between corresponding components. For
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the compressible model, we express values of Hy as a sum

Hi[V] = A+B
M\IJ2
A = —
Z 2v/<:a
M2
B = g— dr—2 (114)
2v 20K

in which U, (r) = 0,94(r). For the incompressible model, we express H; as a sum

Hi[Q] = C+D

LM
C = _
Z 21})\
D - Sg—v—co/de(r) | (115)
v

in which Q,(r) = o0,ws(r). In what follows, we demonstrate the asymptotic equivalence of
values of H; in the two theories by showing that A is asymptotically equivalent to C', and
that B is asymptotically equivalent to D.

The asymptotic equivalence of A and C follows immediately from the fact that k, — Ao
and U, (r) — Q,(r) for all &« < M as ( — oo in corresponding states of the two theories.

We now consider the relationship between B and D. The incompressible limit of B yields

M Y, Ey)?
lim B = tim {7 — [ qpM0Var & Yor + CEv) (116)
{—o0 ¢—oo | 20 27)/{1]\/[
or
2
lim B = — lim drM(WM + Vi)
(—o0 {—o0 QUFGM
M
C—>OO UK]M
1% MCE?,
— 1 1— : 11
+2v (ggoq KM ) (117)
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The expression on the first line of the RHS of Eq. (117) vanishes because 1/k) — 0 as
( — oo. The limit of the expression given in the last line of the RHS can be evaluated by

using the limits M{/ky — 1 and Egs. (108 - 110) to show that

lim ¢ (1 - MCE%) — gim (M (H—M —Eﬁ)

(—o0 KM (=00 Knp MC
. MC, (ku . M¢ 9
= (o1 im0 )
= Su . (118)
Combining terms, we find that
lim B = SMV —Co/dl‘ [WM(I'> +YM(I‘>]
(—o0 2v
= Sg/[—v—co/dr Qpr(r)
v
= D . (119)

This demonstates asymptotic equivalence of quantities B and D, which completes the demon-
stration of the asymptotic equivalence of values of both Hy and H in the compressible and

incompressible theories.

Functional Derivatives

The asymptotic equivalence of values of H in the compressible and incompressible theories
also implies the asymptotic equivalence of expressions for corresponding functional deriva-
tives, as a corollary. We can, however, also more directly confirm the equivalence of explicit
expressions for these derivatives.

A straightforward calculation of the derivative §H/0W¥,, in the compressible theory yields

SH  MU,(r)

W, (r) Vg

+(Ca(r))ia (120)
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foralla=1,..., M,

For all o < M, we may use the asymptotic equivalence of ¥, and 2, and the definition
P, (r)/v = (Cy(r))iq to show that the RHS of Eq. (120) is asymptotically equivalent to the
RHS of Eq. (20) for D, = 6H /S, in the incompressible theory.

For the remaining case « = M, we may use Eq. (78) to show that that W, = Wy, +

(E, +Y,, and use the definition Cy;(r) = x%,¢(r), to consider the limit

oH [ M i
tim ot = tim {0 + By + Yo+ el (121)

Using the limits x; — e, k) — 00, Eyy — 1, and M({/k, — 1, along with the definition

co = 1/v, we obtain a limit

o OH
(o 50 (1)

= —Co + eT<C(I‘>>id . (122>

The RHS of Eq. (122) is equivalent to the RHS of Eq. (21) for Dj(r) in the incompressible
theory, thus demonstrating the asymtptotic equivalence of functional derivatives for « = M,

and thus for all a =1,..., M.
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