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A B S T R A C T

This study examines the techno-economic and life cycle analysis of bio-based isopropanol (IPA) production from 
sugar beet, utilizing a Geographical Information System (GIS)-enabled framework. By focusing on the innovative 
IPA production technology, the research demonstrates the economic and environmental feasibility of converting 
first-generation biomass into sustainable chemicals through the optimization of the Sugar Beet-to-Isopropanol 
supply chain. Findings highlight a cost-optimal production capacity of 55,800 mt/year with significant poten
tial for reducing emissions and operational costs. The production cost of bio-IPA is potentially 70 % less than the 
fossil-derived IPA price. Additionally, the potential profits from bio-based IPA are estimated to be nearly double 
the market price of its primary raw material, sugar, demonstrating the economic feasibility of converting the 
first-generation biomass for sustainable IPA production. The study also explores the impact of facility clustering 
on transportation emissions and costs, revealing strategic approaches to expanding plant capacities in response to 
increasing demand. This research provides insights for designing sustainable industrial practices using first- 
generation biomass in the chemical industry.

1. Introduction

Striving to find eco-friendly alternatives to traditional petrochemical 
products, bio-based chemicals have emerged as a promising solution 
(Fiorentino et al., 2019). These chemicals are sourced from renewable 
biological materials such as plants, algae, and specific waste, providing a 
greener option to similar products made from petrochemicals 
(Fiorentino et al., 2019; Mohanty et al., 2002; Yue et al., 2014). Unlike 
finite fossil fuels, biomass operates on a cyclical paradigm, sequestering 
CO2 during growth and making the chemicals produced from it essen
tially carbon neutral (Chung et al., 2023; Lim et al., 2023). Recent ad
vances in biotechnology, genetic engineering, and chemical processes 
have improved the efficiency of biomass conversion to chemicals and 
increased its commercial viability (Gavrilescu and Chisti, 2005; Wyman 
and Goodman, 1993). While extensive literature addresses the utiliza
tion of second to fourth-generation biomass (You et al., 2012; Sharma 
et al., 2013; Ng and Maravelias, 2016; An et al., 2011; O’Neill et al., 
2022), focusing on the economic and environmental impacts of existing 
and proposed technologies, the first-generation biomass, extracted from 
food sources like C6 sugars, is noteworthy (Lee and Lavoie, 2013; Miret 
et al., 2016). Despite its prices are higher than those of 

second-generation biomass, it is still produced on a global scale of 
170–180 million tons (Lopes, 2015), making first-generation biomass a 
predominant and the most available choice in the bio-based industry. In 
countries like Brazil, sugar-derived bioethanol has proven to be 
economically viable, highlighting the potential of first-generation 
biomass (Osman et al., 2021).

The production of sugars, including glucose, fructose, and sucrose, 
represents a significant segment of the U.S. agricultural industry, espe
cially within its robust sugarcane and sugar beet sectors (Eggleston and 
Lima, 2015; Duraisam et al., 2017). In recent years, there has been a 
surge in efforts to utilize these sugars for the production of bio-based 
chemicals (Liew et al., 2022; Charubin and Papoutsakis, 2019; Foster 
et al., 2021; Zhang et al., 2011; Swidah et al., 2015). Focusing on this 
realm, one prime example is the synthesis of bio-based isopropanol (IPA) 
(Liew et al., 2022; Charubin and Papoutsakis, 2019; Foster et al., 2021; 
Zhang et al., 2011; Swidah et al., 2015). Genetically engineered strains 
of E. coli have been modified to optimize IPA yield resulting in a 
carbon-negative production (Liew et al., 2022). Similarly, Clostridium 
species, especially C. acetobutylicum and C. ljungdahli, have been 
employed due to their unique metabolic pathways, specifically the po
tential of CO2 utilization via the Wood-Ljungdahhl pathway, as outlined 
by (Charubin and Papoutsakis, 2019; Foster et al., 2021). Beyond these, 
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Nomenclature

Sets/Indices
I Set of sugar beet supply counties index by i
J Set of sugar plants indexed by j
K Set of IPA production sites indexed by k

Parameters
BS The required supply of sugar beet (biomass) for producing 

every 141,360 mt of IPA, mt/yr
SS The required supply of sugar for producing every 141,360 

mt of IPA, mt/yr
α The weight loss of sugar beet covert to sugar
β The weight ratio of sugar and carbon dioxide in the 

stoichiometric equation
θ Parameter for investment capital cost
bi The sugar beet availability in county i
ci The sugar beet unit cost ($/mt) in county i
s Auxiliary parameters used for changing the target IPA 

production capacity
ζS,min

l=small The minimum capacity of the sugar plant in the level of 
small (l = small)

ζS,max
l=small The maximum capacity of the sugar plant in the level of 

small (l = small)
ζS,min

l=medium The minimum capacity of the sugar plant in the level of 
small (l = medium)

ζS,max
l=medium The maximum capacity of the sugar plant in the level of 

small (l = medium)
ζS,min

l=large The minimum capacity of the sugar plant in the level of 
small (l = large)

ζS,max
l=large The maximum capacity of the sugar plant in the level of 

small (l = large)
ζA,min

l=small The minimum capacity of the bio-IPA plant in the level of 
small (l = small)

ζA,max
l=small The maximum capacity of the bio-IPA plant in the level of 

small (l = small)
ζA,min

l=medium The minimum capacity of the bio-IPA plant in the level of 
small (l = medium)

ζA,max
l=medium The maximum capacity of the bio-IPA plant in the level of 

small (l = medium)
ζA,min

l=large The minimum capacity of the bio-IPA plant in the level of 
small (l = large)

ζA,max
l=large The maximum capacity of the bio-IPA plant in the level of 

small (l = large)
CFS,Tf The transportation fixed cost for sugar beet ($/mt)
CSA,Tf The transportation fixed cost for sugar ($/mt)
CFS,Tv The transportation variable cost for sugar beet($/mt -km) 

($/mt -km)
CSA,Tv The transportation variable cost for sugar ($/mt -km)
dij The shortest distance for sugar beet supply county (i) to 

sugar plant (j) in km
djk The shortest distance for sugar plant (j) to IPA plant (k) in 

km
CSc,v

l The variable capital cost for producing sugar at level l ($)
CSc,f

l The fixed capital cost for producing sugar at level l ($/mt)
CSo,unit The unit operation cost for producing sugar ($/mt)
CAc,v

l The variable capital cost for producing bio-IPA at level l ($)

CAc,f
l The fixed capital cost for producing bio-IPA at level l 

($/mt)
CAo,unit The unit operation cost for producing sugar ($/mt)
CG,v

l The fixed cost of capturing CO2

CG,f
l The variable cost of capturing CO2

λsugar beet GWP100 characterization factor of sugar beet harvest 
(CO2-eq /mt)

λtruck GWP100 characterization factor of truck transportation 
(CO2-eq /mt-km)

λsugar GWP100 characterization factor of beet sugar production 
process (CO2-eq /mt)

λIPA
l GWP100 characterization factor of bio-IPA production 

process (CO2-eq /mt)
λcarbon capture GWP100 characterization factor of capturing CO2 (CO2- 

eq /mt)
DCO2

k The available amount of CO2 in site k

Binary variables
eS

j,l 0–1 variable for the selection of sugar plant j at level l
eA

k,l 0–1 variable for the selection of IPA factory site k at level l
eF

i 0–1 variable for the selection of sugar beet supply county i
eS

j 0–1 variable for the selection of sugar plant j
eA

k 0–1 variable for the selection of IPA factory site k

Decision variables
flowFS

i,j The sugar beet flow received by sugar plant j from sugar 
beet supply county i.

flowSA
j,k The sugar flow received by bio-IPA plant k from sugar 

production plant j.
sS
j,l The production amount of sugar in sugar plant j with level 

indexed by l
sA
k,l The production amount of bio-IPA in IPA factory k with 

level indexed by l

Nonnegative continuous variables
CF The cost of sugar beet purchase
CT The cost of transportation
CS The cost of sugar production process
CG The cost of CO2 capture process
CA The cost of bio-IPA production process
CTf The net cost of variable transportation
CTv The net cost of fixed transportation
CSo The operation cost of sugar plant
CSc The capital cost of sugar plant
CAo The operation cost of bio-IPA plant
CAc The capital cost of bio-IPA plant
GF The net emission from sugar beet harvest with GWP100 

indicator
GT The net emission from transportation with GWP100 

indicator
GS The net emission from sugar production with GWP100 

indicator
GG The net emission from CO2 capture process with GWP100 

indicator
GA The net emission from bio-IPA production with GWP100 

indicator
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there has been practice using yeast strains, like Saccharomyces cer
evisiae, engineered for IPA production (Zhang et al., 2011), further 
expanding the range of bio-based approaches. These engineered mi
croorganisms demonstrate the economic and environmental potential of 
converting simple sugars to IPA. Reflecting on a national scale, Minne
sota, the largest producer of sugar in the U.S. might be a significant 
contributor to the industry, with sugar beet production alone supplying 
over 33 % of the nation’s sugar (Bangsund et al., 2004), highlighting the 
state’s potential in sustainable IPA production using sugar beets.

Although the concept of converting one commodity to another holds 
potential (Cheng et al., 2019; Fenila and Shastri, 2020), there are still a 
number of challenges to overcome. One of the major obstacles is the 
complexity of the economics involved, particularly concerning feedstock 
prices which play a critical role in the process. For example, in 2012, raw 
sugar was priced near $0.44 per kilogram (Lee and Lavoie, 2013). The 
cost of producing ethanol from sugar was estimated at $0.38 to $0.44 
per kilogram, which was nearly equivalent to the market price of sugar. 
After considering additional operating expenses, these production costs 
would likely meet or exceed the potential revenue from selling ethanol 
(with the ethanol market price at roughly $0.86 per kilogram (Lee and 
Lavoie, 2013)), thereby reducing or nullifying profits. As a result, it may 
have been more economically efficient to sell the sugar directly rather 
than converting it into ethanol. Meanwhile, the environmental impact is 
a major concern as well. The reliance on fossil fuels, particularly in 
transportation, contributes to increased greenhouse gas (GHG) emis
sions. Therefore, prioritizing restructuring of the supply chain for sus
tainable alternatives has become crucial (Jafari-Nodoushan et al., 2024; 
Perez et al., 2022). To balance economic and environmental objectives, 
comprehensive optimization of the supply chain is required, which in
cludes careful decision-making when it comes to biomass sourcing, site 
selections, biorefinery capacities, and more. Our study takes a compre
hensive analysis of the three-tier Sugar Beet-to-Isopropanol supply chain 
as Fig. 1 shown. The study emphasizes a Techno-Economic Analysis 
(TEA) and Life Cycle Assessment (LCA) to provide an in-depth under
standing of the process. The main finding is that converting 
first-generation biomass to isopropanol can be both economically and 
environmentally beneficial.

The application of geospatial tools, notably the Geographical Infor
mation System (GIS) (Burrough et al., 2015), plays a crucial role in 
conducting precise agro-resource assessments, optimizing biomass lo
gistics, and informing plant scale design decisions. Additionally, the 
incorporation of TEA and LCA methodologies facilitates a comprehen
sive understanding of the potential impacts of biotechnological 

processes on various economic and environmental parameters. In line 
with the above discussion, the work analyzed the potential applications 
of GIS, spatial TEA, and LCA in the sustainable planning of 
first-generation biomass-based bioenergy programs. Through an exam
ination of Minnesota’s geospatial data, 25 counties for the supply of 
sugar beet were identified, along with 5 major sugar production facil
ities. In a move towards efficiency, potential locations for IPA plants 
have been selected in proximity to 19 existing ethanol plants, capital
izing on current infrastructure, available resources, and established 
regulatory pathways. Insights regarding biomass yields, supply dy
namics, and cost structures were derived from this geospatial informa
tion and further enriched by techno-economic and life cycle 
assessments. This paper aims to fill this gap by testing the applicability 
of the developing technology with real-world spatial differences and 
identifying challenges and potentials for the design of sustainability in 
biomass-based IPA supply chains. The study includes a discussion on the 
role of GIS in biomass resource assessment, biomass logistics planning, 
and bioenergy plant scale design. The remainder of this paper is orga
nized as follows: The methodology section introduces the spatial infor
mation of the sugar beet-to-IPA supply chain system, the TEA and LCA 
estimation of the technologies, and the proposed formulation of cases: 
(i) for determining the maximum and minimum (feasible) IPA produc
tion capacities, Mixed Integer Linear Programming (MILP) is solved; (ii) 
Multi-objective Mixed Integer Linear Programming (MILP) is applied for 
assessing economic and environmental performance; (iii) the MILP is 
solved multiple times with the ϵ-constraint method (Pappas et al., 2021; 
Lopes et al., 2020) in varying of IPA capacity to generate the Pareto set 
of optimal solutions in the objective function space of the 
multi-objective optimization problem, and its constraints. In the result 
section, the systematic analysis of the optimal design and planning 
models is based on the proposed model. Finally, conclusions and di
rections for future studies are provided.

2. Methodology

The study addresses a supply chain designing problem in large-scale 
bio-IPA production (accounting for >7 % of the U.S. production of iso
propanol (American Chemistry, Statista 2020)) by formulating it as a 
multi-objective Mixed Integer Linear Programming (MILP) problem (for 
case (ii), optimizing the economic and environmental performance). 
This approach integrates GIS applications for analyzing the biomass to 
bio-IPA supply chain, focusing on optimizing mass and energy flows, 
economies of scale, and site-specific emission and economic conditions. 

Fig. 1. The schematic representation of the three-tiered bio-IPA supply chain. The supply chain comprises sugar beet supply counties, sugar processing plants, and 
IPA production facilities. The optimization objectives include the costs and emissions associated with various sources: biomass, transportation, sugar production, IPA 
synthesis, and CO2 capture processes.
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The supply chain is dissected into three interlinked components: 
resource assessment, logistic planning, and plant scale design. These 
components collectively address challenges posed by the uneven 
geographical distribution of feedstock and the need for emission and 
cost-efficient transportation. This study focuses on the development of a 
GIS-based supply chain optimization, tailored for biomass resources 
distribution, enhancing decision-making in plant scaling and logistic 
efficiencies.

2.1. Overview of the sugar beet-to-IPA supply chain model

2.1.1. Spatial information of the sugar beet to IPA supply chain system
The Red River Valley region is the most well-known sugar beet 

production area in the United States (Townsend, 1918). Minnesota is 
one of the states that produce the most sugar beets, providing 11,145, 
000 mt in 2020, or 33.15 % of the nation’s total production (Beef2Live. 
(n.d.) 2023). There are 25 counties in Minnesota cultivating sugar beets 
(United States Department of Agriculture 2023). The primary area for 
sugar beet production in Minnesota is the northwest region (Fig. 2a.) 
and the cost of sugar beet production is lower in this region (Fig. 2b.).

In terms of processing, five major sugar production factories process 
raw sugar beets into sugar suitable for the food industry (Fig. 3.). The 
idea of producing IPA via fermentation opens up new possibilities for 
sugar to various applications. The 19 existing ethanol fermentation 
plants (Minnesota Bio-Fuels Association, 2023) in the state have been 
suggested as potential locations for IPA plants (Fig. 3.). This choice is 
motivated by several strategic advantages. Firstly, the ethanol fermen
tation plants already have a significant portion of the required infra
structure for IPA production, including fermentation tanks, distillation 
systems, and other essential process equipment (De Jong et al., 2012). 
Repurposing these facilities offers a cost-saving avenue compared to 
initiating new constructions. Secondly, the raw materials for both 
ethanol and IPA production processes, primarily sugar beet or grains, 
are similar, ensuring that existing supply chain and logistics structures 

remain relevant (Liebeck et al., 2008). Thirdly, the workforce employed 
in ethanol fermentation plants possesses skills that align well with the 
demands of IPA production, making the transition smoother and obvi
ating the need for extensive retraining or new hiring processes (Liebeck 
et al., 2008). Lastly, from a regulatory standpoint, these fermentation 
plants, having already secured environmental and safety approvals, are 
poised for a relatively seamless transition to IPA production (Liebeck 
et al., 2008).

In this study, the sugar beet-to-IPA supply chain is structured across 
three tiers (Fig. 3): from the sugar beet cultivation counties to the beet 
sugar production plants, and from sugar production plants to sugar- 
based IPA fermentation plants. The design is focused on identifying 
and implementing the most cost-effective and environmentally efficient 
configuration for the supply chain, ensuring optimal resource 
utilization.

2.1.2. Distance estimations in supply chain transportation
Efficient transportation is essential in optimizing the supply chain, 

and distance measurement plays a crucial role in achieving this. In the 
context of the sugar beet-to-IPA supply chain, it is important to have 
good estimates of the distances between different sites: from the sugar 
beet supply counties to sugar production plants and then to the potential 
IPA sites.

The study applies the direct linear distance, which refers to the 
shortest distance between two points on the Earth’s surface. This is a 
simplification compared to the more accurate information provided by 
tools like the Google Maps Distance Matrix API (Allman et al., 2017; 
Google, 2017), which accounts for actual road routes. Although the 
direct linear distance may not reflect the actual road or transportation 
distances, which can be influenced by various geographic or infra
structural constraints, it provides an initial, unobstructed distance 
approximation. This approximation is particularly useful in the pre
liminary stages of supply chain planning, where the precise road or 
navigational details might be irrelevant and can be addressed in later, 

Fig. 2. Distribution of sugar beet availability and price across counties in Minnesota. Fig. 2a illustrates the sugar beet capacity by county, measured in metric tons, 
showcasing the geographical distribution and production potential within Minnesota. Fig. 2b displays the unit cost of sugar beet production by county, denoted in 
USD per metric ton, highlighting the cost variability across different regions. The color gradients in both maps reflect the respective scales of capacity and cost.
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more detailed analyses.
To calculate the direct linear distance accurately across the Earth’s 

curved surface, the study uses the haversine formula (Kahn et al., 1975). 
This mathematical function determines the great-circle distance be
tween two geospatial points based on their longitudes and latitudes, 
accounting for the Earth’s spherical nature (Kahn et al., 1975). The 
required geospatial data, specifically the latitudinal and longitudinal 
coordinates of sugar production sites and potential IPA plant locations, 
were obtained from OpenCage Geocoder (OPENCAGEGEO, 2016). This 
tool enables the conversion of location names into their respective 
geospatial coordinates and vice versa. To simplify the integration of 
sugar beet resource data with the transportation network data, the study 
assumes that all feedstock produced within a county is concentrated at 
the county’s geographical center. Although this assumption provides a 
practical means of managing large datasets, it abstracts many com
plexities. For intra-county transportation distance approximations, the 
radius of a circle equivalent in area to the county serves as the repre
sentative distance.

2.2. System overview and cost estimation

Techno-economic analysis (TEA) evaluates the technical and eco
nomic feasibility of the bio-IPA production process. TEA merges engi
neering design insights with thorough financial assessments to 
determine the commercial viability of a technology. For bio-IPA pro
duction, the cost estimation involves conceptual process design, leading 
to a detailed process flow diagram. Equipment sizing and capital 

expenses are calculated using material and energy balances, applying a 
power-law scaling exponent of 0.7, informed by NREL 2021 design cases 
(Turchi et al., 2021). The financial analysis considers a 30-year plant 
life, a 21 % income tax rate, and a 5 % annual increase in working capital 
based on the fixed investment. (Supporting Information for more 
assumption of the TEA)

2.2.1. Synthetic Syntrophic consortium for efficient IPA production from 
sugars and the cost estimation

Building on the pioneering research by Charubin and Papoutsakis, 
(2019), this study focuses on the potential of the two-strain syntrophic 
consortium involving C. acetobutylicum (Cac) and C. ljungdahlii (Clj) for 
the production of bio-alcohols. CaC is notable for its ABE (acetone-bu
tanol-ethanol) fermentation process, efficiently converting a variety of 
sugars, including sucrose and glucose, into acetone, butanol, and 
ethanol (Moon et al., 2016). The broad sugar utilization capability en
hances the process’s flexibility and efficiency, making CaC a versatile 
and robust microorganism for industrial bioprocessing applications. 
Moreover, one of the significant attributes of this consortium system was 
its proficiency in CO2 fixation, ensuring optimal utilization of all carbon 
and electrons present in the sugar substrate. Within the co-culture, Clj 
effectively transformed all the acetone produced by Cac into isopropanol 
(IPA). Further, Clj enabled undergoes the Wood-Ljungdah pathway to 
metabolize CO2 and H2, leading to the production of acetate and a minor 
fraction of ethanol (Charubin and Papoutsakis, 2019).

Expanding on this, the technology (Minnesota Bio-Fuels Association, 
2021) draws inspiration from the synthetic syntrophic consortia of 

Fig. 3. The sugar beet-to -IPA supply chain configuration.
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Clostridium organisms. The ultimate objective is the comprehensive 
utilization of the carbon and electrons within the substrate, along with 
the consumption of an additional 3 mol CO2 for every mol 6C-sugar by 
harnessing electrons from H2. Stable microbial consortia predominantly 
based on Clostridium organisms are poised to achieve this and potentially 
fix an even higher amount of CO2 per mol sugar. Based on data refer
ences (Lee et al., 2012), the monoculture demonstrates that for every 
mole of glucose consumed, a mole of IPA and three moles of CO2 are 
produced. To achieve the carbon neutral, the syntrophic Cac/Clj cocul
ture, with its ability to fix 3 mol CO2 per mol glucose (+H2), manifests a 
total product formation rate of 31 mM/h, governed by the stoichio
metric equation: 

1Glucose + 3CO2 + 13.99H2→2.28IPA + 0.57EtOH + 0.50Acetate

+ 8.14H2O 

Relying on the stoichiometric equation and adopting a feed rate of 
18,000 mt sugar/yr as a benchmark case (with a glucose to IPA ratio of 
73 wt.%), a production yield of 16,350 mt IPA-ethanol/yr was antici
pated. To contextualize, aiming to replace 25 % of the US’s IPA pro
duction with biomass-based production would necessitate 
approximately 186,000 mt/yr of sugar, grounded on the net stoichio
metric equation. To simulate the production process of the synthetic 
syntrophic consortia, a model was created using Aspen Plus® V12 
simulation software (Fig. 4). The simulation considers raw material and 
energy metrics for techno-economic analysis (TEA). The IPA production 
process includes a bioreactor, a beer column (D-1) to separate 99 wt.% 
of water and acids (acetate, which is typically present in the broth as 
acetic acid) from fermentation flows, and distillation towers (D-2 and d- 
3) for purification. As two binary azeotrope systems are formed (IPA/ 
H2O and EtOH/H2O), ethylene glycol was identified as an excellent 
extractant in the extracted distillation design (Ma et al., 2019), breaking 
the azeotropes and increasing the relative volatility of the alcohol-water 
mixture.

2.2.2. The cost estimation of CO2 sourcing from ethanol plant
In Minnesota, the total CO2 emission from the ethanol fermentation 

process stands at 3.65 million mt/yr (McPherson, 2010). The CO2 stream 
derived from fermenting corn and biomass to yield ethanol has a purity 
of 99.9 % and requires minimal processing before it is ready for 
compression and pipeline transport. Moreover, it is assumed that CO2 
was obtained directly from the ethanol plant and that there are no 
transportation costs associated with it. However, based on this suppo
sition, the CO2 emissions from the ethanol facilities limit the IPA plant’s 
production capacity. The cost and capital expenditure associated with 
CO2 capture are proportional to the plant’s scale. The relationship is 
mathematically captured through the equation: Capital Expenditure 
($Million) = 0.15 × Plant Size (Million Gallons per Year) + 9. In this 

research framework, the operational costs, which comprise capture, 
compression, and dehydration derived from ethanol plants, are esti
mated to be $8.58 per metric ton of CO2 processed (McPherson, 2010).

2.2.3. Beet sugar production process and cost estimation
Though beet sugar is primarily composed of sucrose, Cac can 

metabolize sucrose through its metabolic pathways (Wang and Yin, 
2021). Sucrose, being a disaccharide of glucose and fructose (both 6-C 
sugars), can be broken down by these bacteria into monosaccharides, 
which then enter central metabolic pathways like glycolysis (Wang and 
Yin, 2021; Kádár and Fonseca, 2019). Using sucrose may reduce the 
complexity of the feedstock preparation process compared to using more 
complex carbohydrates. This simplification can lead to lower processing 
costs and easier scalability.

Sugar production begins with extracting sugar from sliced beets 
using hot water, resulting in raw juice (Cheng et al., 2019). This juice is 
purified by adding calcium hydroxide and carbon dioxide, which 
removes impurities. The purified juice is then concentrated through 
evaporation under vacuum conditions. In the crystallization stage, sugar 
crystallizes out in a vacuum, forming a mixture of crystals and syrup 
(Eggleston and Lima, 2015). Centrifugation separates these components, 
and the sugar crystals are washed and dried with hot air. The final 
product is cooled to produce granulated sugar (Eggleston and Lima, 
2015). Drawing insights from Shield, (2016), the economics of sugar 
production are mapped from crop cultivation to refining stages. Shield’s 
study distinguishes between fixed capital and variable costs, high
lighting the economies of scale that favor larger processing plants with 
reduced unit costs. Applying a power relationship of 0.7, as proposed by 
Shield, allows for estimations of these costs across varied scales of sugar 
production, essential for informed decision-making in bio-IPA produc
tion. The impact of economies of scale is captured by the power rela
tionship, where larger processing plants benefit from reduced unit costs. 
A power relationship of 0.7 is used to represent this scalability function 
(Supporting Information).

2.2.4. Transportation cost estimation
An efficient transportation system is a vital component of a well- 

functioning supply chain that ensures goods are delivered promptly 
and cost-effectively. With several modes of transport available, each 
mode has its unique cost implications that impact the overall trans
portation cost. In this study, we have chosen trucks as the preferred 
mode of transport within the supply chain. The cost of transportation 
varies based on several factors, including distance, shipment di
mensions, and weight (Ghafoori et al., 2007). In general, it costs more to 
transport larger or heavier shipments over longer distances (Ghafoori 
et al., 2007). To determine the distance between sites, geospatial in
formation comes in handy, and it is a useful tool in calculating trans
portation costs.

Fig. 4. Process flowsheet and flow results of IPA/EtOH production with 3 mol CO2 fixed per mol glucose. The plant’s capacity is 18,000 mt/year of glucose and 
operates in a continuous mode for 8000 h per year. We assume a plant’s economic life is 30 years.
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The transportation cost structure consists of two critical components: 
fixed costs and variable costs. Fixed costs remain constant, tied to truck 
loading and unloading, and do not change with the distance traveled. 
Variable costs, on the other hand, change in line with the distance 
covered and can be expressed in dollars per tons-kilometer or dollars per 
ton for each hour of operation assuming a consistent average transit 
speed. These components are known as the distance fixed cost and dis
tance variable cost. It’s worth noting that the size of the truck does not 
affect the scale of distance fixed cost and distance variable cost for 
trucking.

When it comes to transporting sugar beets, the variable trans
portation cost is $0.25 per mt-km, while the fixed cost is $3.19 per mt, 
inclusive of loading and unloading charges (Ghafoori et al., 2007). On 
the other hand, for sugar, the variable transportation cost is $0.09 per mt 
per km, with the fixed cost at $6.6 per mt (Ghafoori et al., 2007). The 
disparity in transportation costs between sugar beets and sugar is a 
result of several underlying factors. Processed sugar is denser than sugar 
beets, leading to more complex and sturdy packaging to prevent mois
ture absorption and contamination, which inevitably increases the costs. 
Furthermore, sugar is more sensitive to environmental variables and 
requires specialized handling protocols during transportation, necessi
tating higher fixed costs.

2.3. Life cycle assessment (LCA)

This section summarizes the Life Cycle Assessment (LCA) of sugar- 
based IPA technologies in the U.S. market. To measure the environ
mental impact of these processes, we utilized the open-source frame
work, Brightway2 (Mutel, 2017). The Ecoinvent® v3.9.1 (Wernet et al., 
2016), life cycle inventory database was used to measure the environ
mental footprint of the process. We considered the growth of biomass, 
raw material pretreatment, upstream utility generation, transportation 
emissions of the raw materials, and the bio-IPA production phase, with 
the system boundary extending from cradle-to-gate.

The focused environmental impact category is GHG emissions. We 
assessed the impacts of climate change by ReCiPe midpoint method 
(Borghesi et al., 2022) as the global warming potential is the most 
concerned environmental issue and more relevant to policies and 
legislation (Cherubini et al., 2012). The life cycle inventory for the U.S. 
glucose market includes the CO2 sequestration of sugar beet during 
growth, and emissions from harvesting, refining, and transportation. 
Based on the Ecoinvent database, sugar beet production results in 0.079 
kg of CO2-eq per kg of sugar beet, and beet sugar production, excluding 
feedstock emissions, produces 0.19 kg of CO2-eq per kg of sugar. More 
information and assumptions on LCA can be found in the supporting 
documentation.

2.4. Optimization model formulation

In this work, the model was developed on GAMS platform (Boisvert 
et al., 1985) and solved with the CPLEX solver (Anand et al., 2017). The 
optimization of the sugar beet-to-isopropanol supply chain problem is 
formulated as a multi-objective MILP problem ((ii) case) that is subject 
to constraints corresponding to the mass balances, the capacity range of 
the facilities, techno-economic evaluation, environmental impact 
assessment, and network configuration constraints. The economic 
objective function is to minimize the unit production cost, which in
volves the raw material cost, transportation cost, and IPA production 
cost. The environmental objective function is to minimize unit GHG 
emissions evaluated by the ReCiPe method with the global warming 
potential indicator (GWP100) (Allen et al., 2016). All sets, subsets, pa
rameters, and variables used in the sugar beet-to-isopropanol supply 
chain problem are given in the Nomenclature section. The detailed 
mathematical model formulation is shown in Eqs. (3)-(37). The objec
tive of the optimization model is to minimize annual biomass-based IPA 
production costs (objeconomic) and the GHG emissions of the production of 

IPA (objgwp) 

min objeconomic =
total production cost

total production capacity
(1) 

min objgwp =
net production emissions
total production capacity

(2) 

s. t. Mass balance constraints
Capacity range of the facilities constraints
Techno-economic performance evaluation constraints
Life cycle assessment performance evaluation constraints
Network configuration constraints

2.4.1. Mass balance constraints
To illustrate the balance of mass within the three-level supply chain 

structure, different mass flows, such as "FS" and "SI" flows, are used to 
represent the relationship between sugar beet farms at the county level 
(F) to sugar plants (S) and sugar plants to IPA production sites (A). Set I 
denotes the sugar beet supply county options; set J represents the sugar 
production sites, and set K denotes the potential IPA biorefinery plants 
built neighbor the existing ethanol plants. While set L indicates the fa
cility capacity levels, segment the capacity levels of the sugar beet 
production sites and IPA biorefinery into small, medium, and large 
levels. Within each level, there is an estimated fixed capital cost and a 
variable capital cost that will be linearly proportional to the capacity 
(Lin et al., 2013). The target capacity of IPA is variable. Therefore, a 
continuous variable, s, is introduced to serve as the scaling factor for 
determining how many 141,360 mt of the IPA is produced (For detailed 
information on the conversion from sugar to isopropanol (IPA) product 
flow, please refer to the Supporting Information.). The total possible 
consumption amount of sugar beet by counties that transport to sugar 
plants (flowFS

i,j ) is limited by the availability of sugar beet in each county 
(bi) (Eq. (3)). Additionally, to meet the production target, the total 
quantity of sugar beet should be equal to the required biomass supply 
(BS) (Eq. (4)). The required processing sugar beet (

∑

i
flowFS

i,j ) or sugar 

(
∑

j
flowSA

j,k ) amount should also equal the sum of the capacity of the fa

cilities of sugar plants (sS
j,l) and IPA biorefinery (sA

k,l) at all levels (Eqs. (5)
and (6)). Eqs. (7) and (8) demonstrate that the sum of the capacities of 
the sugar plants and biorefineries at all levels is equal to the total 
required amount of sugar beet (BS) and sugar (SS) for producing IPA, 
respectively. In this study, it is assumed that the raw materials cannot be 
shared between the same tier level of the supply chain, meaning that 
transported sugar beet cannot be transported to another sugar plant. 
Thus, the site-to-site mass balance can be expressed as in Eq. (9), where α 
(Sucrose makes up roughly 14 to 20 % of a root’s weight; an assumed 
value of 20 % is used in this study (Campbell, 2002)) represents the 
weight loss conversion of sugar beet to sugar. Therefore, according to 
the stoichiometry outlined in Section 2.2.1, SS is 244,000 mt of sugar for 
producing 141,360 mt of IPA, with SS constitutes 20 wt.% of BS. 
∑

j
flowFS

i,j ≤ bi, ∀i ∈ I; ∀j ∈ J (3) 

∑

i

∑

j
flowFS

i,j = BS × s, ∀i ∈ I; ∀j ∈ J (4) 

∑

i
flowFS

i,j =
∑

l

sS
j,l, ∀i ∈ I; ∀j ∈ J; ∀l ∈ L (5) 

∑

j
flowSA

j,k =
∑

l
sA
k,l, ∀j ∈ J; ∀k ∈ K; ∀l ∈ L (6) 

∑

j

∑

l
sS
j,l = BS × s, ∀j ∈ J; ∀l ∈ L (7) 
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∑

k

∑

l
sA
k,l = SS × s, ∀k ∈ K; ∀l ∈ L (8) 

∑

i
flowFS

i,j × α =
∑

k
flowSA

j,k , ∀i ∈ I; ∀j ∈ J; ∀k ∈ K (9) 

2.4.2. Capacity range of the facility constraints
Eqs. (10)-(15) describe the capacity range of facilities at different 

levels: small, medium, and large (indexed by l in set L). The user-defined 
values, ζ, vary depending on the case represents the maximum and 
minimum capacity of a facility level. For example, for sugar plant fa
cilities at a small capacity level, the capacity (sS

j,l=small) falls within the 

range of ζS,min
l=small and ζS,max

l=small, where ζS,min
l=small and ζS,max

l=small represent the 
minimum and maximum capacity limits of the range, respectively (the 
parameter values defined by the user are detailed in the Supporting 
Information). Binary variables eS

j,l and eA
k,l are employed to activate these 

capacity constraints only when a facility is selected, enhancing the 
model’s decision-making flexibility.

Furthermore, the model also adapts to real-world conditions by 
factoring in domestic sugar demand, ensuring the sugar allocation for 
facilities is realistic (e.g., ζS,min

l and ζS,max
l are adjusted by a coefficient 

reflecting the portion of production capacity not allocated for domestic 
sugar market use.). This adjustment accounts for the operational flexi
bility in responding to market demand variations. It maintains a focus on 
the practical application of converting sugar surplus into biotechno
logical commodities, without assuming any growth beyond what current 
supply data indicates. By calibrating sugar quantities to the actual needs 
of the domestic market, the model avoids underestimating production 
capacities, which could result if it only considered sugar reserved for 
bioprocessing. This application is optional, details on how the factor is 
determined are elaborated in the Supporting Information. Additionally, 
it is crucial to acknowledge the potential market disruption resulting 
from reallocating the sugar supply originally designated for export to 
isopropanol production. Although a comprehensive analysis of the 
impact on global food supply and market dynamics is beyond the scope 
of this study, the significance of this potential disruption cannot be 
overlooked.

Eqs. (10) describe the capacity ranges of sugar plant facilities, while 
Eqs. (11) describe the capacity level constraints of the IPA biorefinery. 

ζS,min
l × eS

j,l ≤ sS
j,l ≤ ζS,max

l × eS
j,l, ∀j ∈ J; ∀l ∈ L (10) 

ζA,min
l × eA

k,l ≤ sA
k,l ≤ ζA,max

l × eA
k,l, ∀k ∈ K; ∀l ∈ L (11) 

2.4.3. Techno-economic performance evaluation constraints
The economic objective of the sugar beet-to-isopropanol supply 

chain is to minimize the unit production cost (Eq. (1)), which is 
comprised of five costs: sugar beet purchase costs (CF), transportation- 
related costs (CT), sugar production costs (CS), CO2 capture related 
costs (CG), and biorefinery-related costs (CA). Therefore, the total pro
duction cost is described as Eq. (12). 

total production cost = CF + CT + CS + CG + CA (12) 

The sugar beet purchase costs (CF) are formulated as Eq. (13) with 
variables of the optimal flow configuration (flowFS

i,j , the amount of sugar 
beet by counties i that transport to sugar plant j) from the sugar beet 
farms to sugar plant sites and the sugar beet cost at sourcing county (ci). 

CF =
∑

i

∑

j
flowFS

i,j × ci, ∀i ∈ I; ∀j ∈ J (13) 

The transportation costs (CT) involve fixed transportation costs (CTf ), 
and variable transportation costs (CTv) that is a function of the amount of 
goods transported, and the distance covered, as described in Eq. (14). 
The fixed costs, CTf , remain constant regardless of the quantity or 

distance of goods transported, reflecting expenses that do not fluctuate 
with the transportation activity, such as administrative fees or the cost of 
maintaining vehicles (Gray, 1971). In contrast, the variable costs, CTv, 
are directly influenced by the volume of goods transported and the 
distance covered, encompassing expenses like fuel and labor, which vary 
with the scale of transportation operations (Gray, 1971). The distances 
between the sites dij (distance between a sugar beet supply county and a 
sugar plant) and djk (distance between a sugar plant and a bio-IPA plant) 
are determined using their respective latitudinal and longitudinal co
ordinates. Specifically, the haversine formula is employed to describe 
the great-circle distance between two points on a sphere based on their 
longitudes and latitudes. Both variable and fixed transportation costs are 
user-defined. Eq. (15) describes the fixed transportation costs with unit 
cost CFS,Tf and CSA,Tf (in $/mt), varying with the types of transporting 
goods: sugar beet and sugar; respectively. Eq. (16) describes the variable 
transportation costs (CFS,Tv and CSA,Tv in unit of $/ mt-km), as a function 
of the transportation distance, and the amount of goods being trans
ported (flowFS

i,j and flowSA
j,k ) (Eq. (16)). 

CT = CTf + CTv (14) 

CTf =
∑

i

∑

j
flowFS

i,j × CFS,Tf +
∑

j

∑

k
flowSA

j,k × CSA,Tf , ∀i ∈ I; ∀j ∈ J; ∀k

∈ K
(15) 

CTv =
∑

i

∑

j
flowFS

i,j × CFS,Tv × dij +
∑

j

∑

k

flowSA
j,k × CSA,Tv × djk, ∀i ∈ I; ∀j

∈ J; ∀k ∈ K
(16) 

The sugar production costs (CS) include the operating cost (CSo) and 
the capital costs (CSc) (Eq. (17)). In this study, capital costs, particularly 
in the context of manufacturing, processing, or infrastructure develop
ment, can be segmented into fixed and variable components, where the 
variable capital costs (CSc,v

l ) can be approximated as being linear over 
three capacity level ranges. The linear dependence assumption sim
plifies the modeling and forecasting processes while segregating capital 
costs into fixed and variable components provides a more comprehen
sive understanding of the investment required at different operational 
scales. Thus, the capital cost is represented as the sum of fixed and 
variable costs and a factor θ, estimating annual capital charges for assets 
that have multi-year lifetimes (Eq. (18)). θ serves as an annualization 
factor, distributing capital costs across an investment’s useful lifetime. 
In this study, θ is set at 13.5 %, calculated using the discounted cash flow 
(DCF) method. This value considers variables such as inflation, interest 
rates, and opportunity costs, using a discount rate of 12 % over a 30-year 
span. On the other hand, the unit operating cost (CSo,unit) is assumed to be 
the same under different levels of capacity design. Therefore, the total 
operating cost is proportional to the annual sugar beet demand (Eq. 
(19)). Similarly, the IPA biorefinery production cost (CA) can be 
formulated as the operating cost (CAo) and the capital costs (CIc) (Eq. 
(20)). The capital cost comprises with the fixed (CAc,v

l ) and variable costs 
(CAc,f

l ) (Eq. (21)). The annual operating costs of the IPA biorefinery are 
linear with the total required sugar amount, (SS), as Eq. (22) formulated. 

CS = CSo + CSc (17) 

CSc = θ ×

(
∑

j

∑

l

CSc,v
l × sS

j,l + CSc,f
l × eS

j,l

)

, ∀j ∈ J; ∀l ∈ L (18) 

CSo = CSo,unit × BS × s (19) 

CA = CAo + CAc (20) 
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CAc = θ ×

(
∑

k

∑

l
CAc,v

l × sA
k,l + CAc,f

l × eA
k,l

)

, ∀k ∈ K; ∀l ∈ L (21) 

CAo = CAo,unit × SS × s (22) 

Except for the beet sugar as the main raw material for producing IPA 
in the co-culture system, CO2, fixed by the Clj, serves as an additional 
carbon source and enhances the overall efficiency and sustainability of 
the production process. The CO2 is sourced from ethanol plants, that are 
neighboring to the selected IPA plants. The cost of capturing the CO2 is 
formulated as a summation of a fixed cost (CG,v

l ) and variable cost (CG,f
l ) 

that is linearly dependent on the demand of the sugar (sA
k,l). The CO2 

capture cost (CG) is described as shown in Eq. (23), where β is the weight 
ratio of CO2 to sugar in the stoichiometric equation. 

CG =
∑

k

∑

l

β × CG,v
l × sA

k,l + CG,f
l × eA

k,l (23) 

2.4.4. Life cycle assessment performance evaluation constraints
In the sugar beet-to-IPA supply chain, the system boundary is from 

cradle-to-gate, meaning that the analysis encompasses all stages from 
the cultivation and harvesting of sugar beets, their transportation and 
processing, right through to the production of isopropanol (IPA), 
including all intermediate processes and inputs. This approach ensures a 
comprehensive assessment of the environmental impacts and resource 
use associated with the entire production lifecycle, up until the point 
where the IPA is ready for distribution or sale.

The environmental objective of the sugar beet-to-isopropanol supply 
chain is to decrease GHG emissions per unit, as outlined in Eq. (24). 
There are five sources of emissions, which are sugar beet (GF), 
transportation-related (GT), sugar production (GS), CO2 capture-related 
(GG), and biorefinery-related (GA). Therefore, Eq. (24) defines the total 
production emissions. λsugar beet represents the environmental impact of 
producing sugar beet, and Eq. (25). describes the total emissions from 
sugar beet production. Two primary transportation routes contribute to 
transportation emissions: one from the county of the sugar beet farms to 
the sugar plant (dij) and the other from the sugar plant to the IPA bio
refinery (djk). The cumulative transportation emissions are multiplied by 
the factor λtruck, which is expressed in units of CO2-eq/mt-km, as shown 
in Eq. (26). The sugar production emissions, excluding raw material 
emissions, are defined in Eq. (27). λsugar represents the unit emissions of 
beet sugar production, sourced from the EcoІnvent database. This 
database provides allocation results from a plethora of industrial emis
sion data and literature. In this study, the emissions from the IPA bio
refinery technology have not yet been implemented in real-world 
scenarios. Therefore, a power law scale factor is used to represent the 
emissions, which represents the effects of design size on emissions 
(Caduff et al., 2014; Bahlawan et al., 2021). Additionally, a piecewise 
linearization method is employed to present the emission of the IPA 
production (λIPA

l ) more effectively (Eq. (28)). Conversely, the utilization 
of carbon dioxide will yield a net negative emission, denoted as GG. The 
term λcarbon capture represents the carbon emissions originating from car
bon capture process. Eq. (29) represents the contributions relating to 
CO2 capture-related GHG emissions. Furthermore, the availability of 
carbon dioxide amount is limited by the emissions of the ethanol sites, 
represented as DCO2

k (Eq. (30)). 

net production emissions = GF + GT + GS + GG + GA (24) 

GF =
∑

j
flowFS

i,j × λsugar beet (25) 

GT =
∑

i

∑

j
flowFS

i,j × λtruck × dij +
∑

j

∑

k

flowSA
j,k × λtruck × djk, ∀i ∈ I; ∀j

∈ J; ∀k ∈ K
(26) 

GS =
∑

j

∑

l

sS
j,l × λsugar, ∀j ∈ J; ∀l ∈ L (27) 

GA =
∑

k

∑

l
sA
k,l × λIPA

l , ∀k ∈ K; ∀l ∈ L (28) 

GG =
∑

j

∑

k
β × flowSA

j,k × λcarbon capture, ∀j ∈ J; ∀k ∈ K (29) 

∑

j
β × flowSA

j,k ≤ DCO2
k , ∀j ∈ J; ∀k ∈ K (30) 

2.4.5. Network configuration constraints
Network configuration constraints refer to a set of rules or conditions 

that dictate the formation and operation of a network, particularly in 
mathematical modeling, optimization problems, and system design. In 
the context of optimization, constraints can help in determining the 
optimal configuration of a network under certain conditions. In network 
design problems, binary variables represent decisions for path selection 
and operational decisions. eF

i stands as a binary variable indicating the 
presence of a chosen sugar beet supply county. Eq. (31) guarantees the 
selection of sugar beet farms (eF

i ) that establish connects with their 
corresponding sugar plants. bigM is a large constant used to enforce non- 
strict inequalities, while eps represents a small positive number to ensure 
strict inequalities in the optimization model. Further, eS

j and eI
k serve as 

binary variables representing the selection of the sugar plant and bio
refinery site, respectively. The sum of the operational sites at all levels is 
equal to the number of all sites at the supply chain configuration (Eqs. 
(32) and (33)). These representations illustrate the intricate interplay of 
variables and constraints that determine the optimal structure and op
erations of a network, ensuring efficiency and alignment with 
objectives. 

eF
i × eps ≤

∑

j
flowFS

i,j ≤ eF
i × bigM + eps, ∀i ∈ I; ∀j ∈ J (31) 

∑

l
eS

j,l = eS
j , ∀j ∈ J; ∀l ∈ L (32) 

∑

l
eA

k,l = eA
k , ∀k ∈ K; ∀l ∈ L (33) 

3. Results

This study conducts a preliminary TEA and LCA for the proposed 
innovative bio-IPA production technology. These analyses provide a 
reasonable estimation of the production costs, operating costs, and 
GHGs intensity of bio-IPA production at various levels. The preliminary 
TEA for the bio-based IPA process indicates that raw materials, such as 
glucose priced at $0.33/kg (Cheng et al., 2019), account for 41 % of the 
bioprocess cost. Additionally, ethanol by-product sales at $960/mt 
(Global chemical industry) significantly offset operating costs, and the 
cost of CO2 is considered free due to tradeable federal tax credits. It 
should be noted that the cost and emissions of hydrogen were assumed 
to be free and zero-emission in this study. This assumption is based on 
the hydrogen required for the process being sourced from a combination 
of renewable sources and fermentation off-gas. Specifically, a portion of 
the hydrogen is derived from the fermentation off-gas generated by 
Clostridium acetobutylicum (Minnesota Bio-Fuels Association, 2021), 
which helps meet some of the CO2 fixation hydrogen demands. The 
additional hydrogen needed is assumed to be obtained from renewable 
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sources, such as water electrolysis powered by renewable energy, 
aligning with the US Department of Energy’s hydrogen hubs projects 
(Lewis, 2024)and the ARPA-E program (Minnesota Bio-Fuels Associa
tion, 2021). These initiatives aim to accelerate the commercial-scale 
deployment of low-cost, clean hydrogen and establish networks of 
clean hydrogen producers, consumers, and infrastructure. In compari
son, the preliminary TEA shows that the traditional industrial process 
using propene via indirect hydration pathway (Kropf, 1966), priced at 
$0.584/kg, incurs higher raw material costs for producing IPA. The 
comprehensive cost breakdown (more details in Supporting Informa
tion) reveals that the bio-based process benefits from lower raw material 
and utility costs (accounting for 5 % of the total costs for bio-IPA pro
duction compared to 32 % for fossil-based IPA production), as well as 
efficient utilization of resources such as CO2 and clean hydrogen. The 
preliminary TEA provides an economic comparison of bio-IPA and 
fossil-based IPA, establishing the parameters used for the subsequent 
analysis of the bio-IPA supply chain.

3.1. Techno-Economic and environmental optimization of bio-based IPA 
production

This section explores the TEA and LCA results and the constraints 
imposed by the production capacity of bio-IPA within the supply chain. 
By solving case (i), the MILP optimizes the parameter s, the scaling factor 
that determines the production of IPA in multiples of 141,360 mt of the 
IPA is produced, the analysis reveals that design capacities below 
36,809.4 mt or exceeding 965,898 mt are infeasible due to operational 
scale limits at IPA and sugar processing plants. Within the feasible IPA 
capacity, the Pareto solution sets for varying IPA demand scenarios was 
performed with the use of ϵ-constraint method (case (iii)) as follows Yue 
et al., (2014). 

objgwp ≤ ϵ (kg CO2/kg IPA)

ϵL ≤ ϵ ≤ ϵU(kg CO2/kg IPA)
(34) 

In the study, the ϵ-constraint method was employed for MILP due to 

Fig. 5. Pareto Solution Sets for Varying IPA Demand Scenarios: Fig. 5a illustrates the trade-offs between cost and emissions for different annual IPA production 
demands. Each point and line represent Pareto optimal sets, where cost and emission objectives are balanced according to the ϵ-constraint method. The sets span 
across a range of IPA demands, from 36,809.4 mt/yr to 965,898 mt/yr, highlighting how the optimal trade-offs shift as the production scale increases. The ideal and 
worst solutions refer to the most and least favorable solutions within the set of all possible optimal solutions among the demand scenarios, respectively. (Fig. 5b): The 
optimal performance in IPA production costs, constrained by variable emission performance levels (ϵU); (Fig. 5c): The comparison of supply chain configurations 
between the Pareto solution sets. the green and blue color-coding is used to differentiate between the two types of Pareto-optimal solutions, with green for better 
environmental performance and blue for better economic performance. The grey color indicates where the configurations share common elements, allowing for a 
direct visual comparison of the differences in supply chain structure influenced by prioritizing different objectives.
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the potential for Pareto optimal points to occur within the interior of the 
convex hull defined by integer feasible points (Lopes et al., 2020). The 
methodology involves reformulating Eq. (2). to integrate the lower and 
upper bounds of the ε parameter, which are derived by independently 
minimizing and maximizing the secondary objective function, objgwp 

(case (ii)). In the optimization model, the vector of ϵ values is con
strained to range within the defined limits, specifically between the 
vector of lower bounds of emissions (in kg CO2) per kg of IPA produced, 
ϵL, and the vector of upper bounds, ϵU. The ϵ-constraint method ensures 
the identification of weakly optimal solutions, moreover, it assures 
Pareto optimality when each objective function is equal to the corre
sponding ϵ parameter (Pappas et al., 2021).

As demonstrated in Fig. 5a, the economic viability peaks at a pro
duction scale of approximately 55,800 mt, corresponding to a cost of 
$459.37 per mt. Across varying scales, optimal production costs at the 
feasible IPA demand scenarios range from $459.37 to $480.32 per mt 
(Fig. 5a), with the highest cost being 4 % above the lowest. In terms of 
environmental impact, CO2 emissions in optimized scenarios vary be
tween 2.68 and 3.80 kg CO2-eq/kg IPA (Fig. 5a). The most efficient 
emission performance occurs at 55,800 mt/year, whereas the least 
efficient is at 36,809 mt/year (Fig. 5a), indicating a 41 % emission in
crease in the least favorable scenario as captured by the Pareto optimal 
sets. It should be noted that the inclusion of integer variables in the 
multi-objective optimization framework may introduce discontinuities 
and non-convexities in the Pareto frontier. The analysis of Pareto solu
tion sets typically reveals that advancements in production cost do not 
correspond equally with enhancements in CO2 emission reductions 
during the balancing of economic and environmental objectives. For 
instance, at an IPA demand level of 186,000 mt/yr, an increasing of 0.58 
kg CO2-eq/kg IPA corresponds to a production cost reduction of $2.66/ 
mt. In contrast, the optimal equilibrium, as depicted in Fig. 5a for an IPA 
demand of 465,000 mt/yr (referenced in Fig. 5b), suggests that an in
cremental emission increase of 0.071 kg CO2-eq/kg IPA can result in a 
cost reduction of $3.82/mt. To further clarify the underlying factors 
contributing to these differentials, Fig. 5c displays the two optimized 
supply chain configurations for IPA production, resulting from a multi- 
objective Pareto analysis when ϵU is 2.719 and 2.790 respectively. The 
ϵU = 2.719 configuration showcases where the supply chain has been 
optimized for lower emissions, while the ϵU = 2. 790 configuration il
lustrates optimization for cost-effectiveness in the Pareto solution set. 
The elements marked in green show the changes made to create a supply 
chain that’s better for the environment, like having fewer bio-IPA pro
duction plants (e.g., a larger capacity level of bio-IPA production facil
ities) to reduce overall emissions. Conversely, the blue markers signify 
an economically driven optimization, where the supply chain is 
restructured to capitalize on cost-effective sugar sources. This is evident 
from the efficiently managing where sugar comes from. For example, 
because sugar beets are less expensive in the northwest part of Minne
sota, despite a solitary sugar processing plant in that region, it makes 
sense to send sugar beets from this area to different sugar plants and then 
finally distribute sugar to bio-IPA plants to save the production cost. The 
Pareto solution sets allow for a comparative analysis of how each opti
mization criterion—environmental impact and cost-efficiency—alters 
the supply chain layout, providing insights into the trade-offs between 
these two objectives.

Regarding the IPA production amounts, the study of varying supply 
chain configuration designs under fluctuating capacity levels reveals 
uncertainty in their operational cost and environmental impacts. When 
compared with the U.S. IPA market prices, where the Free on Board 
(FOB) Texas price for IPA ranged between $1560–1570 per metric ton in 
September 2023 (ChemAnalyst 2023), the economic advantage of 
bio-based IPA production becomes evident. Additionally, when consid
ering the greenhouse gas emissions from traditional IPA synthesis 
methods, which for direct and indirect hydrogenation processes amount 
to 3.27 kg CO2-equivalent per kilogram of IPA (Wernet et al., 2016), the 

biotechnological pathways for IPA synthesis demonstrate a clear envi
ronmental benefit. When compared to the market price of sugar at 
$0.5926 per kilogram (MacroTrends 2023), the selling price of IPA 
stands at $1.56 per kilogram, while its production costs range between 
$0.42 and $0.48 per kilogram. This suggests that the profit margin for 
IPA is nearly twice the market price of sugar. Given this significant price 
difference, converting sugar to IPA emerges as a cost-effective process. 
The findings suggest that bio-based IPA production, through optimized 
supply chain configurations, offers a more economical and sustainable 
alternative compared to conventional chemical synthesis processes. This 
is particularly significant in the context of stringent environmental 
regulations and a market increasingly sensitive to the carbon footprint of 
industrial activities.

3.2. Effects of scale-up on production cost and emission performance of 
the biorefinery plants

Fig. 6 shows the results of case (ii): optimal emissions performance 
(Fig. 6a) and production cost (Fig. 6b), respectively. The production 
costs exhibit a nearly linear increase with the increase in design ca
pacity. However, at lower capacities (<300,000 mt/year), the cost 
performance demonstrates non-linear characteristics. This non-linearity 
arises from the strategic adaptations the system undergoes to expand in 
response to varying IPA demands (for a more detailed discussion, see 
Section 3.4). CO2 emission performance illustrates a similar increasing 
linear trend as capacity increases. Nonetheless, as shown in Fig. 6a, a 
notable emission shift occurs in smaller capacity scenarios (below 
37,200 mt/year). The observed shifted in emissions is primarily due to 
the scale-dependent emission factors incorporated into this study. A 
power law scaling factor (Caduff et al., 2014; Bahlawan et al., 2021) is 
utilized to quantify the impact of plant size on emissions demonstrating 
the variation of GWP100 with respect to the scale of IPA production. For 
large-scale operations, the GWP100 is determined to be 2.47 kg of 
CO2-equivalent per kg of IPA. Conversely, small-scale operations expe
rience a significantly increased GWP100 at 5.54 kg of CO2-equivalent 
per kg of IPA, which is over twice the amount emitted by larger-scale 
plants. Meanwhile, the GWP100 for medium-sized IPA production pro
cesses is measured at 3.57 kg of CO2-eq per kg of IPA. This marked 
disparity is highlighted in Fig. 6a (details in Fig. 10a, Section 3.4), where 
it becomes evident that smaller-scale bio-IPA plants experience pro
portionally greater emissions under the conditions analyzed.

The increasing trend as a function of capacity in both cost and 
emissions is influenced by transportation costs, which increase as the 
supply chain complexity increases. This complexity arises from the 
growing distance between facilities and an expansion in the number of 
sites, reaching a point where economies of scale for inbound trans
portation no longer apply (Minner, 2019). Typically, optimal site se
lection entails a balance between the number of facilities that minimize 
total logistics costs. There is an initial decrease in costs but beyond the 
optimal threshold costs begin to increase (Fig. 7). For instance, if the 
design supply chain wants to respond to the increasing demands of IPA, 
it may have to increase the number of facilities which is beyond the 
point that minimizes logistics costs.

As shown in Fig. 7, the scenarios that are optimized for cost highlight 
the significant impact of biomass expenses. The major expenditure, 
which accounts for almost 70 % of the total cost, is attributed to the 
procurement of raw materials, including biomass and for the sugar 
production processes. It is worth noting that the IPA production process 
is responsible for the largest share, approximately 50 %, of emissions in 
the bio-IPA production lifecycle. Additionally, the contribution of 
transportation to both cost and emissions increases with an increase in 
the annual production capacity of the design, emphasizing the impor
tance of logistics in the operational design of the biorefinery.
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3.3. Structural similarity in supply chain configurations for Bio-IPA 
production

The optimal supply chain configurations are different under varying 
objectives and production capacity. Here, the structural similarity is 
introduced to observe the configuration similarity between the eco
nomic and environmental performance objectives at the same IPA ca
pacity level. In this study, we employ the Structural Similarity Index 
Measure (SSIM) as a metric to evaluate the structural similarity in supply 
chain networks (Wang et al., 2004), where the supply chain information 
is encoded as 2-dimensional matrices. For an example, the connectivity 
within the supply chain is encoded in a binary matrix, X, of dimensions 
25 × 5, where the rows correspond to sugarbeet supply counties and the 
columns to sugar plants. An element Xi,j =1 indicates an active supply 
link between county i and sugar plant j. The SSIM index is represented by 
the Eq. (35), (Wang et al., 2004): 

SSIM =

(
2μxμy + (k1L)

2
)(

2σxy + (k2L)
2
)

(
μ2

x + μ2
y + (k1L)

2
)(

σ2
x + σ2

y + (k2L)
2
) (35) 

where μx and μy are the mean values of two-dimensional matrices that 
encode the configuration of the supply chain for the cost (X) and emis
sion (Y) objectives, respectively. σ2

x and σ2
y are the variances of each 

matrix, σxy is the covariance for two supply chains, and k1L and k2L are 
constants to stabilize division with weak denominator, provides a 
comprehensive measure of similarity between two entities (Wang et al., 
2003). Originally developed for image analysis, SSIM’s application in 
this context offers an innovative approach to quantitatively compare the 
structures of supply chain networks, providing valuable insights into 
their organizational efficiency and robustness. In particular, the SSIM 
metric helps interpret how closely a given supply chain configuration 
aligns with an ideal or optimal structure under different considerations.

Fig. 6. Emissions and costs versus IPA production capacity. Fig. 6a shows CO2 emissions per kg of IPA. The shift in emissions is driven by the variation in GWP100 of 
scale of IPA production, with a power law scaling factor applied to account for the scale differences. At a medium scale, the IPA production process results in a 
GWP100 of 3.57 kg of CO2-equivalent per kg of IPA, while at a large scale, the GWP100 is reduced to 2.47 kg of CO2-equivalent per kg of IPA. Fig. 6b illustrates rising 
production costs per metric ton as capacity scales up.

Fig. 7. Stacked proportional distribution of CO2 emissions and costs in IPA production capacity designs. Fig. 7a shows emission contributions by sector for varying 
IPA production levels, while Fig. 7b shows the corresponding cost breakdown. Each color represents a different aspect of the supply chain, highlighting the emissions 
and costs associated with transportation, bio-IPA production, sugar processing, and sugar beet cultivation as IPA production scales.
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Fig. 8 shows the SSIM for supply chains under various capacities. 
Specifically, Fig. 8a illustrates the SSIM for the supply chain segment 
from the biomass farm to the sugar plant, while Fig. 8b focuses on the 
segment from the sugar plant to the IPA plant. The index indicates that 
supply chain configurations under environmental and economic objec
tives exhibit greater similarity as the annual IPA production increases. 
Specifically, the supply connections from sugar beet supply counties to 
sugar production plants align under both objectives when IPA produc
tion exceeds approximately 700,000 mt (SSIM index = 1). The con
nections between sugar plants and bio-IPA plants as shown in Fig. 8b 
using either objective show an increasing SSIM index with larger IPA 
production capacity, yet they do not converge into identical 
configurations.

Moreover, the SSIM index was utilized to select supply chain con
figurations under three distinct annual production capacities, illus
trating structural differences between objectives. Fig. 9 displays the 
optimal supply chain configurations for IPA capacities of 186,000, 
409,200, and 965,898 mt/year, optimized for cost and carbon dioxide 
emissions scenarios. These capacities were chosen based on their SSIM 
index ranges, which are indicative of structural similarity: low (0–0.3), 
medium (0.4–0.6), and high (0.8–1). At the capacity of 186,000 mt/ 
year, in the case of optimized for CO2 emission performance, the supply 
chain configurations tend to cluster in regions that facilitate a sequential 
supply chain from raw material sourcing to production, without over
lapping sources. In contrast, for cost optimization scenarios, supply 
chain configurations are more spread out, making the selected bio-IPA 
plant farther away from the raw material sources than the CO2 emis
sion optimization scenarios. This difference highlights the significance 
of transportation emissions in minimization of emission objective, while 
in cost minimization objective, the raw material costs, particularly sugar 
beets, are more important contributor (the selected sugar beet farms are 
located at the largest sugar beet production counties with cheaper pri
ces). As the target IPA production volume increases, the structures of the 
two configurations become more similar, owing to the system’s need to 
meet the IPA demand, thereby limiting the flexibility in site selection.

3.4. Flow logistics analysis

In this section, an investigation into strategic adaptations in supply 
chain management in response to increasing demand is conducted, with 

a focus on the logistic flows within supply chains and the scaling of 
individual sites. Fig. 10 illustrates the optimal supply chain configura
tions under various IPA capacities. The analysis reveals three strategic 
phases in supply chain design to accommodate rising demand. Initially, 
an expansion in the scale of facilities, particularly sugar plants and IPA 
production plants, is observed. This expansion, following the 0.7 power 
law of scaling, leads to more efficient production costs and improved 
environmental performance. For instance, with the increase in demand 
of IPA from 232,500 mt/yr to 744,000 mt/yr, larger scale plants are 
noted, resulting in a reduction in sugar production unit cost from 
$107.51/mt to $102.96/mt and improved production emissions (as 
shown in Fig. 6a). Subsequently, the formation of additional clusters is 
identified as a key strategy, leading to improved transportation emis
sions. In supply chain configurations at a design capacity of 111,600 mt/ 
yr, two clusters are evident in both scenarios. This clustering is shown to 
decrease the average unit transportation emissions from 0.06 CO2-eq/ 
kg-IPA to 0.05 CO2-eq/kg-IPA when capacity increases from 74,400 mt/ 
yr to 111,600 mt/yr.

The final phase is characterized by an increase in the number of fa
cilities within these clusters, introducing more branches into the supply 
chain. As design capacity expands, an increase in facility count is noted. 
The increasing of branches within a cluster may result in worse trans
portation emission efficiency and transportation costs. When comparing 
supply chain configurations at 232,500 mt/yr and 325,500 mt/yr, while 
the number of clusters remains constant, an increase in the cluster size in 
southwest Minnesota is observed due to the addition of IPA biorefinery 
sites. This change leads to an increase in transportation routes from 
sugar plants to new biorefineries, raising the unit transportation emis
sion from 0.05 CO2-eq/kg-IPA to 0.06 CO2-eq/kg-IPA. However, a 
marginal improvement in IPA production cost is observed, decreasing 
from $64.0/mt to $63.8/mt, attributable to the increased site capacity. 
Conversely, the transportation cost sees a slight increase, moving from 
$41.3/mt to $41.8/mt, as the new facilities are located further from the 
original supply chain design sites.

As a result, based on the strategies in response to the increasing 
demand discussed above, the scaling-up of plant capacities emerges as 
the most important strategy in dealing with increasing demand, offering 
benefits in both cost and emissions. However, as demand increases, the 
capacity limits and resource constraints at the county level may reach 
their upper bounds, making the original design infeasible. To 

Fig. 8. Comparative analysis of structural similarity in supply chain configurations for economic and environmental objectives. This figure illustrates the supply 
chain configurations segmented into two distinct phases: from biomass farm to sugar plant (Fig. 8a), and from the sugar plant to the IPA plant (Fig. 8b). The analysis 
emphasizes the structural similarities and differences between the supply chain setups when tailored to meet either economic or environmental objectives.
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accommodate this increased demand, the supply chain adapts by adding 
new facilities, often leading to the formation of new sugar beet-to-IPA 
plant clusters aiming at reducing the transportation costs. The three 
phases of industrial expansion in isopropanol (IPA) production explain 
the nonlinear oscillatory behavior, as depicted in Fig. 6b, within the 
capacity range of up to approximately 320,000 mt per year.

In this study, a maximum of three clusters of sugar beet-to-IPA 
supply chain are identified, each situated strategically across the state. 
The first cluster is located in the northwest, offering access to the most 
cost-effective sugar beet resources. The second cluster is in the central 
west of the state, advantageous due to the presence of two sugar plants 
that provide ample capacity for processing sugar beet to meet the raw 
material demand. The final cluster is located in the southwest of the 
state, distinguished by its potential for IPA production sites, offering 
ample CO2 off-gas, which translates to more efficient transportation 
costs and emissions.

When the number of clusters reaches three, adding facilities in each 
cluster begins as demand continues to rise. While this expansion strategy 
is derived from our optimization analysis, it’s important to note that it 
may not always result in enhanced performance regarding emission 
reduction and production costs. This observation suggests that the 
supply chain might have attained its peak efficiency in terms of inbound 
transportation economies. This conclusion is not merely empirical but is 
supported by the optimization models we employed, indicating a 
calculated point of diminishing returns in the supply chain’s perfor
mance. At this point, the focus may shift to optimizing within these 

established clusters, seeking efficiencies in operations and logistics to 
maintain or improve the supply chain’s overall effectiveness in the face 
of growing demand.

3.5. Bio-Based isopropanol production: advancing towards sustainable 
chemical synthesis

In sustainable chemical production, bio-based IPA is gaining traction 
due to its versatile applications and reduced environmental impact. 
Used as a solvent, antiseptic, and fuel additive, IPA’s production from 
sugar beets exemplifies the transition to greener methodologies, 
potentially lowering the carbon footprint over traditional processes.

The competitiveness of IPA production from sugar beets can be 
effectively assessed by comparing its production costs and emissions 
with those from other biotechnological methods. The process of con
verting CO2 and sugar into IPA via engineered autotrophic acetogens, 
such as Clostridium autoethanogenum (Liew et al., 2022; Bankar et al., 
2015), as well as the utilization of industrial off-gas (steel mill off-gas) 
through gas fermentation, demonstrates potential for negative GHG 
emissions. Reported emissions for these innovative pathways are as low 
as −1.17 CO2-eq/kg for IPA (Liew et al., 2022), highlighting a significant 
environmental advantage over conventional petrochemical synthesis, 
which has associated emissions of around 3.27 CO2-eq/kg-IPA. In 
comparison, the bio-based approach for producing IPA from sugar beets 
has documented emissions of 2.68 CO2-eq/kg-IPA. While this does not 
reach the negative emissions mark of gas fermentation, it is a marked 

Fig. 9. The optimal supply chain configurations at different scenarios. The top panel illustrates the supply chains’ GWP impact in terms of CO2 equivalent emissions 
across three IPA production scenarios: 186,000 mt/yr, 409,200 mt/yr, and 965,898 mt/yr. The bottom panel displays the corresponding production costs. Icons 
represent sugar beet farms (green), sugar production plants (orange), and bio-IPA production plants (blue), with the scale for sugar beet throughput (mt/yr) shown on 
the gradient bar. The configurations reflect the strategic placement of operations to optimize either environmental impact or cost efficiency at different produc
tion scales.
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reduction from the emissions of traditional petrochemical methods. The 
primary distinction lies in the innovative use of CO2 as a feedstock, 
contributing to a reduced carbon footprint. These findings suggest that 
bio-based IPA from sugar beets is a viable and more sustainable alter
native in the chemicals market, aligning with global efforts to mitigate 
climate change through carbon-conscious industrial practices.

3.6. Computational details

All computations were performed using GAMS® software on an Intel 
Core i7–11850H CPU @ 2.50 GHz processor with 64.0 GB RAM. Solving 
the MILP required few seconds, demonstrating the computational 
advantage of the piecewise linearization method for sugar and IPA 
production costs. There are 312 single equations and 407 single 

variables in the model. The overall procedure lasted: (i) MILP: a few 
seconds (1–2 s) to find the maximum and minimum s, respectively; (ii) 
MILP: up to approximately 0.3 s to identify the optimal supply chain 
configuration for economic and CO2 emissions scenarios, respectively; 
and (iii) MILP: about 1~2 min to solve the Pareto solution sets with 
ϵ-constraint method. The computational time linearly increases with 
more Pareto solution sets solved for varying IPA demand scenarios.

4. Conclusions

The GIS-enabled supply chain optimization model introduced in this 
study for the Sugar Beet-to-Isopropanol (bio-IPA) production in Min
nesota aimed to minimize annual production costs and environmental 
impacts. It achieved this by optimizing the numbers, locations, and 

Fig. 10. Progressive Scaling and Clustering Strategies in Supply Chain Optimization for IPA Production. This figure maps out the adjustments in supply chain design 
with increasing IPA demand, showing transitions from enlarging plant scales to forming clusters and expanding facility numbers. It contrasts the supply chain 
configurations under environmental impact (Fig. 10a) with those under cost efficiency (Fig. 10b) as annual demand grows from 37,200 mt/yr to 325,500 mt/yr. The 
size of facilities (small, medium, large) and the extent of clustering are visualized at different demand levels, indicating the strategic shift from scaling individual 
plants to creating more extensive supply chain networks with additional branches for enhanced efficiency and lower emissions.
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capacities of farms, processing facilities, and biorefineries, as well as 
identifying the most efficient biomass flow patterns. The utilization of 
GIS was crucial for generating spatial data related to biomass production 
and determining the shortest transportation routes using the existing 
road and railway networks. The results from the baseline scenario, 
considering the increasing demand for bio-IPA, showed that economies 
of scale could be realized, with unit production costs reaching their 
minimum at a production capacity of 55,800 mt/year. At this scale, 
significant cost and emission reductions were apparent, highlighting the 
strategic balance between scale expansion and logistical efficiency.

The study revealed that supply chain configurations are highly 
responsive to changes in IPA demand. The strategic scaling up of facil
ities and the clustering of operations emerged as key responses to 
increasing demand, with both measures leading to reduced trans
portation emissions and costs. However, the production costs and 
emissions performance are not always directly scalable. As the study 
suggests, while larger scales typically yield more cost-efficient opera
tions due to economies of scale, there are practical limits to these ben
efits (Malmberg and Maskell, 1997). When the demand scale is between 
37,200 to 325,500 mt/yr, finite resources and the capacity constraints of 
plants introduce a complexity where production costs and LCA emis
sions performance do not linearly align with scale increases. This sug
gests that beyond a certain point, that is demand scale exceeds 325,500 
mt/yr, the benefits of scaling diminish, and further expansion could lead 
to increased production emissions and costs due to less efficient trans
portation logistics.

In conclusion, this research provides a detailed approach for opti
mizing sustainable supply chains in the bio-based chemical industry. It 
showcases the importance of strategic planning and logistical efficiency 
in achieving both economic and environmental objectives. The study 
affirms the economic and environmental advantages of bio-IPA pro
duction, highlighting its potential profitability and lower emission 
profile compared to conventional chemical synthesis processes. The 
findings are significant for the development of sustainable industrial 
practices, demonstrating that with appropriate optimization strategies, 
bio-based chemical production can be economically viable and envi
ronmentally sustainable, even as it scales up to meet increasing demand 
and complies with rigorous environmental regulations. The model 
introduced in the study serves as a foundational blueprint for bio-IPA 
plant development planning. However, for enhanced precision, incor
porating more accurate distance calculations that factor in road and rail 
logistics across a broader supply chain could yield more reliable esti
mates of emissions and economic outcomes. Additionally, identifying 
and addressing potential risks, such as supplier failures, logistics dis
ruptions, or market changes (e.g., reallocating the sugar that would have 
been exported to other countries to isopropanol production), allows for 
more informed strategic decision-making, such as selecting warehouse 
locations or supplier partnerships. These areas of investigation hold 
substantial potential for future scholarly and practical advancements.
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Eds.; Springer Berlin Heidelberg, 2008; pp 192–235.

Liew, F.E., Nogle, R., Abdalla, T., Rasor, B.J., Canter, C., Jensen, R.O., Wang, L., 
Strutz, J., Chirania, P., De Tissera, S., et al., 2022b. Carbon-negative production of 
acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. 
Biotechnol. 40 (3), 335–344. https://doi.org/10.1038/s41587-021-01195-w 
(acccessed 2022-04-08 03:58:59)DOI.org (Crossref). 

Liew, F.E., Nogle, R., Abdalla, T., Rasor, B.J., Canter, C., Jensen, R.O., Wang, L., 
Strutz, J., Chirania, P., De Tissera, S., et al., 2022a. Carbon-negative production of 
acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. 
Biotechnol. 40 (3), 335–344. https://doi.org/10.1038/s41587-021-01195-w. From 
NLM Medline. 

Lim, J.S., Benjamin, M.F.D., Van Fan, Y., You, F., 2023. Approaches towards a 
sustainable and low carbon emissions production. J. Clean. Prod.

Lin, T., Rodríguez, L.F., Shastri, Y.N., Hansen, A.C., Ting, K., 2013. <span style="font- 
variant:small-caps;">GIS</span>-enabled biomass-ethanol supply chain 
optimization: model development and Miscanthus application. Biofuels, Bioproduct. 
Biorefin. 7 (3), 314–333. https://doi.org/10.1002/bbb.1394 (acccessed 2023/12/ 
12/04:31:56)From DOI.org (Crossref). 

Lopes, M.S.G., 2015. Engineering biological systems toward a sustainable bioeconomy. 
J. Ind. Microbiol. Biotechnol. 42 (6), 813–838. https://doi.org/10.1007/s10295- 
015-1606-9 (acccessed 2023/12/11/21:50:09)From DOI.org (Crossref. 

Lopes, T.C.; Brauner, N.; Magatão, L. Optimally solving multi-objective MILP problems 
with part-wise continuous Pareto fronts. In ROADEF 2020-21ème Congrès de la 
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