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ABSTRACT

This study examines the techno-economic and life cycle analysis of bio-based isopropanol (IPA) production from
sugar beet, utilizing a Geographical Information System (GIS)-enabled framework. By focusing on the innovative
IPA production technology, the research demonstrates the economic and environmental feasibility of converting
first-generation biomass into sustainable chemicals through the optimization of the Sugar Beet-to-Isopropanol
supply chain. Findings highlight a cost-optimal production capacity of 55,800 mt/year with significant poten-
tial for reducing emissions and operational costs. The production cost of bio-IPA is potentially 70 % less than the
fossil-derived IPA price. Additionally, the potential profits from bio-based IPA are estimated to be nearly double
the market price of its primary raw material, sugar, demonstrating the economic feasibility of converting the
first-generation biomass for sustainable IPA production. The study also explores the impact of facility clustering
on transportation emissions and costs, revealing strategic approaches to expanding plant capacities in response to
increasing demand. This research provides insights for designing sustainable industrial practices using first-

generation biomass in the chemical industry.

1. Introduction

Striving to find eco-friendly alternatives to traditional petrochemical
products, bio-based chemicals have emerged as a promising solution
(Fiorentino et al., 2019). These chemicals are sourced from renewable
biological materials such as plants, algae, and specific waste, providing a
greener option to similar products made from petrochemicals
(Fiorentino et al., 2019; Mohanty et al., 2002; Yue et al., 2014). Unlike
finite fossil fuels, biomass operates on a cyclical paradigm, sequestering
CO4 during growth and making the chemicals produced from it essen-
tially carbon neutral (Chung et al., 2023; Lim et al., 2023). Recent ad-
vances in biotechnology, genetic engineering, and chemical processes
have improved the efficiency of biomass conversion to chemicals and
increased its commercial viability (Gavrilescu and Chisti, 2005; Wyman
and Goodman, 1993). While extensive literature addresses the utiliza-
tion of second to fourth-generation biomass (You et al., 2012; Sharma
et al., 2013; Ng and Maravelias, 2016; An et al., 2011; O’Neill et al.,
2022), focusing on the economic and environmental impacts of existing
and proposed technologies, the first-generation biomass, extracted from
food sources like C6 sugars, is noteworthy (Lee and Lavoie, 2013; Miret
et al, 2016). Despite its prices are higher than those of
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second-generation biomass, it is still produced on a global scale of
170-180 million tons (Lopes, 2015), making first-generation biomass a
predominant and the most available choice in the bio-based industry. In
countries like Brazil, sugar-derived bioethanol has proven to be
economically viable, highlighting the potential of first-generation
biomass (Osman et al., 2021).

The production of sugars, including glucose, fructose, and sucrose,
represents a significant segment of the U.S. agricultural industry, espe-
cially within its robust sugarcane and sugar beet sectors (Eggleston and
Lima, 2015; Duraisam et al., 2017). In recent years, there has been a
surge in efforts to utilize these sugars for the production of bio-based
chemicals (Liew et al., 2022; Charubin and Papoutsakis, 2019; Foster
et al., 2021; Zhang et al., 2011; Swidah et al., 2015). Focusing on this
realm, one prime example is the synthesis of bio-based isopropanol (IPA)
(Liew et al., 2022; Charubin and Papoutsakis, 2019; Foster et al., 2021;
Zhang et al., 2011; Swidah et al., 2015). Genetically engineered strains
of E. coli have been modified to optimize IPA yield resulting in a
carbon-negative production (Liew et al., 2022). Similarly, Clostridium
species, especially C. acetobutylicum and C. ljungdahli, have been
employed due to their unique metabolic pathways, specifically the po-
tential of CO4 utilization via the Wood-Ljungdahhl pathway, as outlined
by (Charubin and Papoutsakis, 2019; Foster et al., 2021). Beyond these,
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Nomenclature

Sets/Indices

I Set of sugar beet supply counties index by i

J Set of sugar plants indexed by j

K Set of IPA production sites indexed by k

Parameters

BS The required supply of sugar beet (biomass) for producing
every 141,360 mt of IPA, mt/yr

SS The required supply of sugar for producing every 141,360
mt of IPA, mt/yr

a The weight loss of sugar beet covert to sugar

p The weight ratio of sugar and carbon dioxide in the
stoichiometric equation

6 Parameter for investment capital cost

b The sugar beet availability in county i

ci The sugar beet unit cost ($/mt) in county i

s Auxiliary parameters used for changing the target IPA
production capacity

zéTri:au The minimum capacity of the sugar plant in the level of

small (I = small)

CzS;T,‘:;u The maximum capacity of the sugar plant in the level of
small (I = small)

l;";i:dium The minimum capacity of the sugar plant in the level of

small (I = medium)

{ls;";"efﬁum The maximum capacity of the sugar plant in the level of
small (I = medium)

415;’;:;;'36 The minimum capacity of the sugar plant in the level of
small (I = large)

415;’;:1”:;6 The maximum capacity of the sugar plant in the level of
small (I = large)

Cf:'zl"il'zu The minimum capacity of the bio-IPA plant in the level of
small (I = small)

ghmec  The maximum capacity of the bio-IPA plant in the level of
small (I = small)

{ﬁﬁ'gﬁum The minimum capacity of the bio-IPA plant in the level of
small (I = medium)

gpme  The maximum capacity of the bio-IPA plant in the level of
small (I = medium)

g{i’,’;ﬁ’;e The minimum capacity of the bio-IPA plant in the level of
small (I = large)

§f:"[$e The maximum capacity of the bio-IPA plant in the level of
small (I = large)

crsf The transportation fixed cost for sugar beet ($/mt)

CSATS The transportation fixed cost for sugar ($/mt)

CcFs. v The transportation variable cost for sugar beet($/mt -km)
($/mt -km)

csATy The transportation variable cost for sugar ($/mt -km)

d; The shortest distance for sugar beet supply county (i) to
sugar plant (j) in km

dik The shortest distance for sugar plant (j) to IPA plant (k) in
km

CISC"' The variable capital cost for producing sugar at level I ($)

CIS of The fixed capital cost for producing sugar at level [ ($/mt)

CSounit  The unit operation cost for producing sugar ($/mt)

Cf” The variable capital cost for producing bio-IPA at level 1 ($)

f
C;Xc

CAo.unit
G,

e
G.f

Cl

Jsugar beet
Atl‘uck

Jsugar

IPA
A

The fixed capital cost for producing bio-IPA at level [
($/mt)

The unit operation cost for producing sugar ($/mt)
The fixed cost of capturing CO,

The variable cost of capturing CO»

GWP100 characterization factor of sugar beet harvest
(CO5-eq /mt)

GWP100 characterization factor of truck transportation
(COy-eq /mt-km)

GWP100 characterization factor of beet sugar production
process (CO»-eq /mt)

GWP100 characterization factor of bio-IPA production
process (CO,-eq /mt)

jcarbon capture - \WP100 characterization factor of capturing CO, (CO,-

CO>
D k

eq /mt)
The available amount of CO, in site k

Binary variables

S
e

1

N R TS

0-1 variable for the selection of sugar plant j at level [
0-1 variable for the selection of IPA factory site k at level [
0-1 variable for the selection of sugar beet supply county i
0-1 variable for the selection of sugar plant j

0-1 variable for the selection of IPA factory site k

Decision variables

flow

The sugar beet flow received by sugar plant j from sugar
beet supply county i.

The sugar flow received by bio-IPA plant k from sugar
production plant j.

The production amount of sugar in sugar plant j with level
indexed by [

The production amount of bio-IPA in IPA factory k with
level indexed by [

Nonnegative continuous variables

CF
CT
CS
CG
CA
c”
CTv
CSO
CSc
CAo
CAc
GF

GT
GS
GG

GA

The cost of sugar beet purchase

The cost of transportation

The cost of sugar production process

The cost of CO, capture process

The cost of bio-IPA production process

The net cost of variable transportation

The net cost of fixed transportation

The operation cost of sugar plant

The capital cost of sugar plant

The operation cost of bio-IPA plant

The capital cost of bio-IPA plant

The net emission from sugar beet harvest with GWP100
indicator

The net emission from transportation with GWP100
indicator

The net emission from sugar production with GWP100
indicator

The net emission from CO, capture process with GWP100
indicator

The net emission from bio-IPA production with GWP100
indicator
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there has been practice using yeast strains, like Saccharomyces cer-
evisiae, engineered for IPA production (Zhang et al., 2011), further
expanding the range of bio-based approaches. These engineered mi-
croorganisms demonstrate the economic and environmental potential of
converting simple sugars to IPA. Reflecting on a national scale, Minne-
sota, the largest producer of sugar in the U.S. might be a significant
contributor to the industry, with sugar beet production alone supplying
over 33 % of the nation’s sugar (Bangsund et al., 2004), highlighting the
state’s potential in sustainable IPA production using sugar beets.

Although the concept of converting one commodity to another holds
potential (Cheng et al., 2019; Fenila and Shastri, 2020), there are still a
number of challenges to overcome. One of the major obstacles is the
complexity of the economics involved, particularly concerning feedstock
prices which play a critical role in the process. For example, in 2012, raw
sugar was priced near $0.44 per kilogram (Lee and Lavoie, 2013). The
cost of producing ethanol from sugar was estimated at $0.38 to $0.44
per kilogram, which was nearly equivalent to the market price of sugar.
After considering additional operating expenses, these production costs
would likely meet or exceed the potential revenue from selling ethanol
(with the ethanol market price at roughly $0.86 per kilogram (Lee and
Lavoie, 2013)), thereby reducing or nullifying profits. As a result, it may
have been more economically efficient to sell the sugar directly rather
than converting it into ethanol. Meanwhile, the environmental impact is
a major concern as well. The reliance on fossil fuels, particularly in
transportation, contributes to increased greenhouse gas (GHG) emis-
sions. Therefore, prioritizing restructuring of the supply chain for sus-
tainable alternatives has become crucial (Jafari-Nodoushan et al., 2024;
Perez et al., 2022). To balance economic and environmental objectives,
comprehensive optimization of the supply chain is required, which in-
cludes careful decision-making when it comes to biomass sourcing, site
selections, biorefinery capacities, and more. Our study takes a compre-
hensive analysis of the three-tier Sugar Beet-to-Isopropanol supply chain
as Fig. 1 shown. The study emphasizes a Techno-Economic Analysis
(TEA) and Life Cycle Assessment (LCA) to provide an in-depth under-
standing of the process. The main finding is that converting
first-generation biomass to isopropanol can be both economically and
environmentally beneficial.

The application of geospatial tools, notably the Geographical Infor-
mation System (GIS) (Burrough et al., 2015), plays a crucial role in
conducting precise agro-resource assessments, optimizing biomass lo-
gistics, and informing plant scale design decisions. Additionally, the
incorporation of TEA and LCA methodologies facilitates a comprehen-
sive understanding of the potential impacts of biotechnological
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processes on various economic and environmental parameters. In line
with the above discussion, the work analyzed the potential applications
of GIS, spatial TEA, and LCA in the sustainable planning of
first-generation biomass-based bioenergy programs. Through an exam-
ination of Minnesota’s geospatial data, 25 counties for the supply of
sugar beet were identified, along with 5 major sugar production facil-
ities. In a move towards efficiency, potential locations for IPA plants
have been selected in proximity to 19 existing ethanol plants, capital-
izing on current infrastructure, available resources, and established
regulatory pathways. Insights regarding biomass yields, supply dy-
namics, and cost structures were derived from this geospatial informa-
tion and further enriched by techno-economic and life cycle
assessments. This paper aims to fill this gap by testing the applicability
of the developing technology with real-world spatial differences and
identifying challenges and potentials for the design of sustainability in
biomass-based IPA supply chains. The study includes a discussion on the
role of GIS in biomass resource assessment, biomass logistics planning,
and bioenergy plant scale design. The remainder of this paper is orga-
nized as follows: The methodology section introduces the spatial infor-
mation of the sugar beet-to-IPA supply chain system, the TEA and LCA
estimation of the technologies, and the proposed formulation of cases:
(i) for determining the maximum and minimum (feasible) IPA produc-
tion capacities, Mixed Integer Linear Programming (MILP) is solved; (ii)
Multi-objective Mixed Integer Linear Programming (MILP) is applied for
assessing economic and environmental performance; (iii) the MILP is
solved multiple times with the e-constraint method (Pappas et al., 2021;
Lopes et al., 2020) in varying of IPA capacity to generate the Pareto set
of optimal solutions in the objective function space of the
multi-objective optimization problem, and its constraints. In the result
section, the systematic analysis of the optimal design and planning
models is based on the proposed model. Finally, conclusions and di-
rections for future studies are provided.

2. Methodology

The study addresses a supply chain designing problem in large-scale
bio-IPA production (accounting for >7 % of the U.S. production of iso-
propanol (American Chemistry, Statista 2020)) by formulating it as a
multi-objective Mixed Integer Linear Programming (MILP) problem (for
case (ii), optimizing the economic and environmental performance).
This approach integrates GIS applications for analyzing the biomass to
bio-IPA supply chain, focusing on optimizing mass and energy flows,
economies of scale, and site-specific emission and economic conditions.

Sugar beet

Sugar plant

Bio-IPA production plant

Transportation

CO, capture device

Fig. 1. The schematic representation of the three-tiered bio-IPA supply chain. The supply chain comprises sugar beet supply counties, sugar processing plants, and
IPA production facilities. The optimization objectives include the costs and emissions associated with various sources: biomass, transportation, sugar production, IPA

synthesis, and CO, capture processes.
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The supply chain is dissected into three interlinked components:
resource assessment, logistic planning, and plant scale design. These
components collectively address challenges posed by the uneven
geographical distribution of feedstock and the need for emission and
cost-efficient transportation. This study focuses on the development of a
GIS-based supply chain optimization, tailored for biomass resources
distribution, enhancing decision-making in plant scaling and logistic
efficiencies.

2.1. Overview of the sugar beet-to-IPA supply chain model

2.1.1. Spatial information of the sugar beet to IPA supply chain system
The Red River Valley region is the most well-known sugar beet
production area in the United States (Townsend, 1918). Minnesota is
one of the states that produce the most sugar beets, providing 11,145,
000 mt in 2020, or 33.15 % of the nation’s total production (Beef2Live.
(n.d.) 2023). There are 25 counties in Minnesota cultivating sugar beets
(United States Department of Agriculture 2023). The primary area for
sugar beet production in Minnesota is the northwest region (Fig. 2a.)
and the cost of sugar beet production is lower in this region (Fig. 2b.).
In terms of processing, five major sugar production factories process
raw sugar beets into sugar suitable for the food industry (Fig. 3.). The
idea of producing IPA via fermentation opens up new possibilities for
sugar to various applications. The 19 existing ethanol fermentation
plants (Minnesota Bio-Fuels Association, 2023) in the state have been
suggested as potential locations for IPA plants (Fig. 3.). This choice is
motivated by several strategic advantages. Firstly, the ethanol fermen-
tation plants already have a significant portion of the required infra-
structure for IPA production, including fermentation tanks, distillation
systems, and other essential process equipment (De Jong et al., 2012).
Repurposing these facilities offers a cost-saving avenue compared to
initiating new constructions. Secondly, the raw materials for both
ethanol and IPA production processes, primarily sugar beet or grains,
are similar, ensuring that existing supply chain and logistics structures

(a) sugar beet capacity by county
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remain relevant (Liebeck et al., 2008). Thirdly, the workforce employed
in ethanol fermentation plants possesses skills that align well with the
demands of IPA production, making the transition smoother and obvi-
ating the need for extensive retraining or new hiring processes (Liebeck
et al., 2008). Lastly, from a regulatory standpoint, these fermentation
plants, having already secured environmental and safety approvals, are
poised for a relatively seamless transition to IPA production (Liebeck
et al., 2008).

In this study, the sugar beet-to-IPA supply chain is structured across
three tiers (Fig. 3): from the sugar beet cultivation counties to the beet
sugar production plants, and from sugar production plants to sugar-
based IPA fermentation plants. The design is focused on identifying
and implementing the most cost-effective and environmentally efficient
configuration for the supply chain, ensuring optimal resource
utilization.

2.1.2. Distance estimations in supply chain transportation

Efficient transportation is essential in optimizing the supply chain,
and distance measurement plays a crucial role in achieving this. In the
context of the sugar beet-to-IPA supply chain, it is important to have
good estimates of the distances between different sites: from the sugar
beet supply counties to sugar production plants and then to the potential
IPA sites.

The study applies the direct linear distance, which refers to the
shortest distance between two points on the Earth’s surface. This is a
simplification compared to the more accurate information provided by
tools like the Google Maps Distance Matrix API (Allman et al., 2017;
Google, 2017), which accounts for actual road routes. Although the
direct linear distance may not reflect the actual road or transportation
distances, which can be influenced by various geographic or infra-
structural constraints, it provides an initial, unobstructed distance
approximation. This approximation is particularly useful in the pre-
liminary stages of supply chain planning, where the precise road or
navigational details might be irrelevant and can be addressed in later,

(b) Sugar beet unit cost by county ($/mt)
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Fig. 2. Distribution of sugar beet availability and price across counties in Minnesota. Fig. 2a illustrates the sugar beet capacity by county, measured in metric tons,
showcasing the geographical distribution and production potential within Minnesota. Fig. 2b displays the unit cost of sugar beet production by county, denoted in
USD per metric ton, highlighting the cost variability across different regions. The color gradients in both maps reflect the respective scales of capacity and cost.
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Fig. 3. The sugar beet-to -IPA supply chain configuration.

more detailed analyses.

To calculate the direct linear distance accurately across the Earth’s
curved surface, the study uses the haversine formula (Kahn et al., 1975).
This mathematical function determines the great-circle distance be-
tween two geospatial points based on their longitudes and latitudes,
accounting for the Earth’s spherical nature (Kahn et al., 1975). The
required geospatial data, specifically the latitudinal and longitudinal
coordinates of sugar production sites and potential IPA plant locations,
were obtained from OpenCage Geocoder (OPENCAGEGEO, 2016). This
tool enables the conversion of location names into their respective
geospatial coordinates and vice versa. To simplify the integration of
sugar beet resource data with the transportation network data, the study
assumes that all feedstock produced within a county is concentrated at
the county’s geographical center. Although this assumption provides a
practical means of managing large datasets, it abstracts many com-
plexities. For intra-county transportation distance approximations, the
radius of a circle equivalent in area to the county serves as the repre-
sentative distance.

2.2. System overview and cost estimation

Techno-economic analysis (TEA) evaluates the technical and eco-
nomic feasibility of the bio-IPA production process. TEA merges engi-
neering design insights with thorough financial assessments to
determine the commercial viability of a technology. For bio-IPA pro-
duction, the cost estimation involves conceptual process design, leading
to a detailed process flow diagram. Equipment sizing and capital

expenses are calculated using material and energy balances, applying a
power-law scaling exponent of 0.7, informed by NREL 2021 design cases
(Turchi et al., 2021). The financial analysis considers a 30-year plant
life, a 21 % income tax rate, and a 5 % annual increase in working capital
based on the fixed investment. (Supporting Information for more
assumption of the TEA)

2.2.1. Synthetic Syntrophic consortium for efficient IPA production from
sugars and the cost estimation

Building on the pioneering research by Charubin and Papoutsakis,
(2019), this study focuses on the potential of the two-strain syntrophic
consortium involving C. acetobutylicum (Cac) and C. ljungdahlii (Clj) for
the production of bio-alcohols. CaC is notable for its ABE (acetone-bu-
tanol-ethanol) fermentation process, efficiently converting a variety of
sugars, including sucrose and glucose, into acetone, butanol, and
ethanol (Moon et al., 2016). The broad sugar utilization capability en-
hances the process’s flexibility and efficiency, making CaC a versatile
and robust microorganism for industrial bioprocessing applications.
Moreover, one of the significant attributes of this consortium system was
its proficiency in CO, fixation, ensuring optimal utilization of all carbon
and electrons present in the sugar substrate. Within the co-culture, Clj
effectively transformed all the acetone produced by Cac into isopropanol
(IPA). Further, Clj enabled undergoes the Wood-Ljungdah pathway to
metabolize CO, and Hp, leading to the production of acetate and a minor
fraction of ethanol (Charubin and Papoutsakis, 2019).

Expanding on this, the technology (Minnesota Bio-Fuels Association,
2021) draws inspiration from the synthetic syntrophic consortia of
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Clostridium organisms. The ultimate objective is the comprehensive
utilization of the carbon and electrons within the substrate, along with
the consumption of an additional 3 mol CO; for every mol 6C-sugar by
harnessing electrons from H. Stable microbial consortia predominantly
based on Clostridium organisms are poised to achieve this and potentially
fix an even higher amount of CO, per mol sugar. Based on data refer-
ences (Lee et al., 2012), the monoculture demonstrates that for every
mole of glucose consumed, a mole of IPA and three moles of CO5 are
produced. To achieve the carbon neutral, the syntrophic Cac/Clj cocul-
ture, with its ability to fix 3 mol CO; per mol glucose (+Hs), manifests a
total product formation rate of 31 mM/h, governed by the stoichio-
metric equation:

1Glucose + 3CO, + 13.99H,—2.28IPA + 0.57EtOH + 0.50Acetate
+ 8.14H20

Relying on the stoichiometric equation and adopting a feed rate of
18,000 mt sugar/yr as a benchmark case (with a glucose to IPA ratio of
73 wt.%), a production yield of 16,350 mt IPA-ethanol/yr was antici-
pated. To contextualize, aiming to replace 25 % of the US’s IPA pro-
duction with biomass-based production would necessitate
approximately 186,000 mt/yr of sugar, grounded on the net stoichio-
metric equation. To simulate the production process of the synthetic
syntrophic consortia, a model was created using Aspen Plus® V12
simulation software (Fig. 4). The simulation considers raw material and
energy metrics for techno-economic analysis (TEA). The IPA production
process includes a bioreactor, a beer column (D-1) to separate 99 wt.%
of water and acids (acetate, which is typically present in the broth as
acetic acid) from fermentation flows, and distillation towers (D-2 and d-
3) for purification. As two binary azeotrope systems are formed (IPA/
H,0 and EtOH/H0), ethylene glycol was identified as an excellent
extractant in the extracted distillation design (Ma et al., 2019), breaking
the azeotropes and increasing the relative volatility of the alcohol-water
mixture.

2.2.2. The cost estimation of CO2 sourcing from ethanol plant

In Minnesota, the total CO, emission from the ethanol fermentation
process stands at 3.65 million mt/yr (McPherson, 2010). The COg stream
derived from fermenting corn and biomass to yield ethanol has a purity
of 99.9 % and requires minimal processing before it is ready for
compression and pipeline transport. Moreover, it is assumed that CO4
was obtained directly from the ethanol plant and that there are no
transportation costs associated with it. However, based on this suppo-
sition, the CO5 emissions from the ethanol facilities limit the IPA plant’s
production capacity. The cost and capital expenditure associated with
CO4 capture are proportional to the plant’s scale. The relationship is
mathematically captured through the equation: Capital Expenditure
($Million) = 0.15 x Plant Size (Million Gallons per Year) + 9. In this

Gas recycle

Compressor
Water

Glucose
co,
H,

Skimmer

|E Fermentation

Beer Column
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research framework, the operational costs, which comprise capture,
compression, and dehydration derived from ethanol plants, are esti-
mated to be $8.58 per metric ton of CO, processed (McPherson, 2010).

2.2.3. Beet sugar production process and cost estimation

Though beet sugar is primarily composed of sucrose, Cac can
metabolize sucrose through its metabolic pathways (Wang and Yin,
2021). Sucrose, being a disaccharide of glucose and fructose (both 6-C
sugars), can be broken down by these bacteria into monosaccharides,
which then enter central metabolic pathways like glycolysis (Wang and
Yin, 2021; Kadar and Fonseca, 2019). Using sucrose may reduce the
complexity of the feedstock preparation process compared to using more
complex carbohydrates. This simplification can lead to lower processing
costs and easier scalability.

Sugar production begins with extracting sugar from sliced beets
using hot water, resulting in raw juice (Cheng et al., 2019). This juice is
purified by adding calcium hydroxide and carbon dioxide, which
removes impurities. The purified juice is then concentrated through
evaporation under vacuum conditions. In the crystallization stage, sugar
crystallizes out in a vacuum, forming a mixture of crystals and syrup
(Eggleston and Lima, 2015). Centrifugation separates these components,
and the sugar crystals are washed and dried with hot air. The final
product is cooled to produce granulated sugar (Eggleston and Lima,
2015). Drawing insights from Shield, (2016), the economics of sugar
production are mapped from crop cultivation to refining stages. Shield’s
study distinguishes between fixed capital and variable costs, high-
lighting the economies of scale that favor larger processing plants with
reduced unit costs. Applying a power relationship of 0.7, as proposed by
Shield, allows for estimations of these costs across varied scales of sugar
production, essential for informed decision-making in bio-IPA produc-
tion. The impact of economies of scale is captured by the power rela-
tionship, where larger processing plants benefit from reduced unit costs.
A power relationship of 0.7 is used to represent this scalability function
(Supporting Information).

2.2.4. Transportation cost estimation

An efficient transportation system is a vital component of a well-
functioning supply chain that ensures goods are delivered promptly
and cost-effectively. With several modes of transport available, each
mode has its unique cost implications that impact the overall trans-
portation cost. In this study, we have chosen trucks as the preferred
mode of transport within the supply chain. The cost of transportation
varies based on several factors, including distance, shipment di-
mensions, and weight (Ghafoori et al., 2007). In general, it costs more to
transport larger or heavier shipments over longer distances (Ghafoori
et al., 2007). To determine the distance between sites, geospatial in-
formation comes in handy, and it is a useful tool in calculating trans-
portation costs.

ACID-WATER

Distillation 2

Distillation 3

Extractive distillation

Fig. 4. Process flowsheet and flow results of IPA/EtOH production with 3 mol CO, fixed per mol glucose. The plant’s capacity is 18,000 mt/year of glucose and
operates in a continuous mode for 8000 h per year. We assume a plant’s economic life is 30 years.
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The transportation cost structure consists of two critical components:
fixed costs and variable costs. Fixed costs remain constant, tied to truck
loading and unloading, and do not change with the distance traveled.
Variable costs, on the other hand, change in line with the distance
covered and can be expressed in dollars per tons-kilometer or dollars per
ton for each hour of operation assuming a consistent average transit
speed. These components are known as the distance fixed cost and dis-
tance variable cost. It’s worth noting that the size of the truck does not
affect the scale of distance fixed cost and distance variable cost for
trucking.

When it comes to transporting sugar beets, the variable trans-
portation cost is $0.25 per mt-km, while the fixed cost is $3.19 per mt,
inclusive of loading and unloading charges (Ghafoori et al., 2007). On
the other hand, for sugar, the variable transportation cost is $0.09 per mt
per km, with the fixed cost at $6.6 per mt (Ghafoori et al., 2007). The
disparity in transportation costs between sugar beets and sugar is a
result of several underlying factors. Processed sugar is denser than sugar
beets, leading to more complex and sturdy packaging to prevent mois-
ture absorption and contamination, which inevitably increases the costs.
Furthermore, sugar is more sensitive to environmental variables and
requires specialized handling protocols during transportation, necessi-
tating higher fixed costs.

2.3. Life cycle assessment (LCA)

This section summarizes the Life Cycle Assessment (LCA) of sugar-
based IPA technologies in the U.S. market. To measure the environ-
mental impact of these processes, we utilized the open-source frame-
work, Brightway2 (Mutel, 2017). The Ecoinvent® v3.9.1 (Wernet et al.,
2016), life cycle inventory database was used to measure the environ-
mental footprint of the process. We considered the growth of biomass,
raw material pretreatment, upstream utility generation, transportation
emissions of the raw materials, and the bio-IPA production phase, with
the system boundary extending from cradle-to-gate.

The focused environmental impact category is GHG emissions. We
assessed the impacts of climate change by ReCiPe midpoint method
(Borghesi et al., 2022) as the global warming potential is the most
concerned environmental issue and more relevant to policies and
legislation (Cherubini et al., 2012). The life cycle inventory for the U.S.
glucose market includes the CO, sequestration of sugar beet during
growth, and emissions from harvesting, refining, and transportation.
Based on the Ecoinvent database, sugar beet production results in 0.079
kg of CO2-eq per kg of sugar beet, and beet sugar production, excluding
feedstock emissions, produces 0.19 kg of CO2-eq per kg of sugar. More
information and assumptions on LCA can be found in the supporting
documentation.

2.4. Optimization model formulation

In this work, the model was developed on GAMS platform (Boisvert
et al., 1985) and solved with the CPLEX solver (Anand et al., 2017). The
optimization of the sugar beet-to-isopropanol supply chain problem is
formulated as a multi-objective MILP problem ((ii) case) that is subject
to constraints corresponding to the mass balances, the capacity range of
the facilities, techno-economic evaluation, environmental impact
assessment, and network configuration constraints. The economic
objective function is to minimize the unit production cost, which in-
volves the raw material cost, transportation cost, and IPA production
cost. The environmental objective function is to minimize unit GHG
emissions evaluated by the ReCiPe method with the global warming
potential indicator (GWP100) (Allen et al., 2016). All sets, subsets, pa-
rameters, and variables used in the sugar beet-to-isopropanol supply
chain problem are given in the Nomenclature section. The detailed
mathematical model formulation is shown in Egs. (3)-(37). The objec-
tive of the optimization model is to minimize annual biomass-based IPA
production costs (0bjeconomic) and the GHG emissions of the production of
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IPA (0bjgup)

total production cost
total production capacity

@

min Objecunomic =

net production emissions

total production capacity 2

min objg, =

s. t. Mass balance constraints

Capacity range of the facilities constraints
Techno-economic performance evaluation constraints
Life cycle assessment performance evaluation constraints
Network configuration constraints

2.4.1. Mass balance constraints

To illustrate the balance of mass within the three-level supply chain
structure, different mass flows, such as "FS" and "SI" flows, are used to
represent the relationship between sugar beet farms at the county level
(F) to sugar plants (S) and sugar plants to IPA production sites (A). Set I
denotes the sugar beet supply county options; set J represents the sugar
production sites, and set K denotes the potential IPA biorefinery plants
built neighbor the existing ethanol plants. While set L indicates the fa-
cility capacity levels, segment the capacity levels of the sugar beet
production sites and IPA biorefinery into small, medium, and large
levels. Within each level, there is an estimated fixed capital cost and a
variable capital cost that will be linearly proportional to the capacity
(Lin et al., 2013). The target capacity of IPA is variable. Therefore, a
continuous variable, s, is introduced to serve as the scaling factor for
determining how many 141,360 mt of the IPA is produced (For detailed
information on the conversion from sugar to isopropanol (IPA) product
flow, please refer to the Supporting Information.). The total possible
consumption amount of sugar beet by counties that transport to sugar
plants (ﬂowff) is limited by the availability of sugar beet in each county
(b;) (Eq. (3)). Additionally, to meet the production target, the total
quantity of sugar beet should be equal to the required biomass supply
(BS) (Eq. (4)). The required processing sugar beet (Zﬂowff) or sugar

L

(ZﬂoszjD amount should also equal the sum of the capacity of the fa-
J

cilities of sugar plants (s]?l) and IPA biorefinery (sJk“l) at all levels (Egs. (5)

and (6)). Egs. (7) and (8) demonstrate that the sum of the capacities of
the sugar plants and biorefineries at all levels is equal to the total
required amount of sugar beet (BS) and sugar (SS) for producing IPA,
respectively. In this study, it is assumed that the raw materials cannot be
shared between the same tier level of the supply chain, meaning that
transported sugar beet cannot be transported to another sugar plant.
Thus, the site-to-site mass balance can be expressed as in Eq. (9), where
(Sucrose makes up roughly 14 to 20 % of a root’s weight; an assumed
value of 20 % is used in this study (Campbell, 2002)) represents the
weight loss conversion of sugar beet to sugar. Therefore, according to
the stoichiometry outlined in Section 2.2.1, SS is 244,000 mt of sugar for
producing 141,360 mt of IPA, with SS constitutes 20 wt.% of BS.

E flow? <b;, Viel; VjeJ 3
J

ZE flow; =BS xs, Viel; VjeJ 4
ij

> flowfs = s, Viel YjeJ; Vel 5
i 1

> flowit = st e, VkeK; Vel Q]
j 1

N> s =BSxs, VjeJ; Vel @
o1
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SN st =SS xs, vkeK Vel ®
k 1

Zﬂowffxf)’:EﬂOWﬁ?»ViEI; VjeJ; vk €K ©
i k

2.4.2. Capacity range of the facility constraints

Egs. (10)-(15) describe the capacity range of facilities at different
levels: small, medium, and large (indexed by lin set L). The user-defined
values, {, vary depending on the case represents the maximum and
minimum capacity of a facility level. For example, for sugar plant fa-
cilities at a small capacity level, the capacity (sjs_l:mau) falls within the

,min S.max S.min max
range of {"C" . and (0., where 700 and {f:mll represent the

minimum and maximum capacity limits of the range, respectively (the
parameter values defined by the user are detailed in the Supporting
Information). Binary variables efl and e, are employed to activate these
capacity constraints only when a facility is selected, enhancing the
model’s decision-making flexibility.

Furthermore, the model also adapts to real-world conditions by
factoring in domestic sugar demand, ensuring the sugar allocation for
facilities is realistic (e.g., ;™" and & are adjusted by a coefficient
reflecting the portion of production capacity not allocated for domestic
sugar market use.). This adjustment accounts for the operational flexi-
bility in responding to market demand variations. It maintains a focus on
the practical application of converting sugar surplus into biotechno-
logical commodities, without assuming any growth beyond what current
supply data indicates. By calibrating sugar quantities to the actual needs
of the domestic market, the model avoids underestimating production
capacities, which could result if it only considered sugar reserved for
bioprocessing. This application is optional, details on how the factor is
determined are elaborated in the Supporting Information. Additionally,
it is crucial to acknowledge the potential market disruption resulting
from reallocating the sugar supply originally designated for export to
isopropanol production. Although a comprehensive analysis of the
impact on global food supply and market dynamics is beyond the scope
of this study, the significance of this potential disruption cannot be
overlooked.

Egs. (10) describe the capacity ranges of sugar plant facilities, while
Egs. (11) describe the capacity level constraints of the IPA biorefinery.

G ey <sH <G x el Ve RVIEL a0
C?'mi" x ey < 5?,1 <G x e, VkeK; VleL an

2.4.3. Techno-economic performance evaluation constraints

The economic objective of the sugar beet-to-isopropanol supply
chain is to minimize the unit production cost (Eq. (1)), which is
comprised of five costs: sugar beet purchase costs (CF), transportation-
related costs (CT), sugar production costs (C5), CO, capture related
costs (C%), and biorefinery-related costs (C*). Therefore, the total pro-
duction cost is described as Eq. (12).

total production cost = CF + CT + C5 + ¢ + ¢4 12)

The sugar beet purchase costs (CF) are formulated as Eq. (13) with
variables of the optimal flow configuration (ﬂowff, the amount of sugar

beet by counties i that transport to sugar plant j) from the sugar beet
farms to sugar plant sites and the sugar beet cost at sourcing county (c;).

C'=>"> flow xc;, Viel, VjeJ 13)
i

The transportation costs (C) involve fixed transportation costs (C¥),
and variable transportation costs (C'") that is a function of the amount of
goods transported, and the distance covered, as described in Eq. (14).
The fixed costs, C¥, remain constant regardless of the quantity or
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distance of goods transported, reflecting expenses that do not fluctuate
with the transportation activity, such as administrative fees or the cost of
maintaining vehicles (Gray, 1971). In contrast, the variable costs, C™,
are directly influenced by the volume of goods transported and the
distance covered, encompassing expenses like fuel and labor, which vary
with the scale of transportation operations (Gray, 1971). The distances
between the sites d; (distance between a sugar beet supply county and a
sugar plant) and dj (distance between a sugar plant and a bio-IPA plant)
are determined using their respective latitudinal and longitudinal co-
ordinates. Specifically, the haversine formula is employed to describe
the great-circle distance between two points on a sphere based on their
longitudes and latitudes. Both variable and fixed transportation costs are
user-defined. Eq. (15) describes the fixed transportation costs with unit
cost C™" and C* (in $/mt), varying with the types of transporting
goods: sugar beet and sugar; respectively. Eq. (16) describes the variable
transportation costs (C™' and C5*™ in unit of $/ mt-km), as a function
of the transportation distance, and the amount of goods being trans-
ported (ﬂowff and ﬂowﬁ;j) (Eq. (16)).

cr=c¥+c"v 14

CY =" flowls x C + 3" “flow)t x C*Y Viel; Vj e J; Vk
J ok

€K
(15)

cl = ZE ﬂowgtg x CTY x dj + Z E ﬂouﬁf x CAY x dy, Vi€ L, Vj
j j k

eJ;VkekK
(16)

The sugar production costs (C®) include the operating cost (C%°) and
the capital costs (C%%) (Eq. (17)). In this study, capital costs, particularly
in the context of manufacturing, processing, or infrastructure develop-
ment, can be segmented into fixed and variable components, where the
variable capital costs (Cls”) can be approximated as being linear over
three capacity level ranges. The linear dependence assumption sim-
plifies the modeling and forecasting processes while segregating capital
costs into fixed and variable components provides a more comprehen-
sive understanding of the investment required at different operational
scales. Thus, the capital cost is represented as the sum of fixed and
variable costs and a factor 0, estimating annual capital charges for assets
that have multi-year lifetimes (Eq. (18)). 0 serves as an annualization
factor, distributing capital costs across an investment’s useful lifetime.
In this study, 0 is set at 13.5 %, calculated using the discounted cash flow
(DCF) method. This value considers variables such as inflation, interest
rates, and opportunity costs, using a discount rate of 12 % over a 30-year
span. On the other hand, the unit operating cost (C5“**) is assumed to be
the same under different levels of capacity design. Therefore, the total
operating cost is proportional to the annual sugar beet demand (Eq.
(19)). Similarly, the IPA biorefinery production cost (C*) can be
formulated as the operating cost (C*°) and the capital costs (C*) (Eq.
(20)). The capital cost comprises with the fixed (Cf‘”) and variable costs

(Cfc'f) (Eq. (21)). The annual operating costs of the IPA biorefinery are
linear with the total required sugar amount, (SS), as Eq. (22) formulated.

CS=C% +C* a7

C5 =6 x (ZZC?” x 85+ G x e;j,>, VjeJ; Vel a1s)
j 1

¢S50 = ¢Sounit « BS x s 19

ch=ch+ (20)
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Ch =0 x (ZZC{‘ x sp+C % e;j_l> ,VkeK; Vlel 1)
k 1

Cho = Aounit S x s (22)

Except for the beet sugar as the main raw material for producing IPA
in the co-culture system, CO,, fixed by the Clj, serves as an additional
carbon source and enhances the overall efficiency and sustainability of
the production process. The COz is sourced from ethanol plants, that are
neighboring to the selected IPA plants. The cost of capturing the CO is
formulated as a summation of a fixed cost (Cf'v) and variable cost (CIG )
that is linearly dependent on the demand of the sugar (s{,). The CO2
capture cost (C°) is described as shown in Eq. (23), where f is the weight
ratio of CO; to sugar in the stoichiometric equation.

o= xsp+ G x ey (23)
k1

2.4.4. Life cycle assessment performance evaluation constraints

In the sugar beet-to-IPA supply chain, the system boundary is from
cradle-to-gate, meaning that the analysis encompasses all stages from
the cultivation and harvesting of sugar beets, their transportation and
processing, right through to the production of isopropanol (IPA),
including all intermediate processes and inputs. This approach ensures a
comprehensive assessment of the environmental impacts and resource
use associated with the entire production lifecycle, up until the point
where the IPA is ready for distribution or sale.

The environmental objective of the sugar beet-to-isopropanol supply
chain is to decrease GHG emissions per unit, as outlined in Eq. (24).
There are five sources of emissions, which are sugar beet (GF),
transportation-related (G”), sugar production (G%), CO, capture-related
(G%), and biorefinery-related (G*). Therefore, Eq. (24) defines the total
production emissions. 2*8% ¢! represents the environmental impact of
producing sugar beet, and Eq. (25). describes the total emissions from
sugar beet production. Two primary transportation routes contribute to
transportation emissions: one from the county of the sugar beet farms to
the sugar plant (d;) and the other from the sugar plant to the IPA bio-
refinery (dj). The cumulative transportation emissions are multiplied by

the factor ™%, which is expressed in units of CO,-eq/mt-km, as shown
in Eq. (26). The sugar production emissions, excluding raw material
emissions, are defined in Eq. (27). 1™ represents the unit emissions of
beet sugar production, sourced from the Ecolnvent database. This
database provides allocation results from a plethora of industrial emis-
sion data and literature. In this study, the emissions from the IPA bio-
refinery technology have not yet been implemented in real-world
scenarios. Therefore, a power law scale factor is used to represent the
emissions, which represents the effects of design size on emissions
(Caduff et al., 2014; Bahlawan et al., 2021). Additionally, a piecewise
linearization method is employed to present the emission of the IPA
production (A/*) more effectively (Eq. (28)). Conversely, the utilization
of carbon dioxide will yield a net negative emission, denoted as G°. The
term A°arbon caPture yepresents the carbon emissions originating from car-
bon capture process. Eq. (29) represents the contributions relating to
CO4 capture-related GHG emissions. Furthermore, the availability of
carbon dioxide amount is limited by the emissions of the ethanol sites,

represented as D,fOZ (Eq. (30)).

net production emissions = G* + G" + G° + G° + G* 24)

GF — § ﬂOWSS x ASusar beet (25)
J
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2.4.5. Network configuration constraints

Network configuration constraints refer to a set of rules or conditions
that dictate the formation and operation of a network, particularly in
mathematical modeling, optimization problems, and system design. In
the context of optimization, constraints can help in determining the
optimal configuration of a network under certain conditions. In network
design problems, binary variables represent decisions for path selection
and operational decisions. e! stands as a binary variable indicating the
presence of a chosen sugar beet supply county. Eq. (31) guarantees the
selection of sugar beet farms (eﬁc ) that establish connects with their
corresponding sugar plants. bigM is a large constant used to enforce non-
strict inequalities, while eps represents a small positive number to ensure
strict inequalities in the optimization model. Further, ejs and el serve as
binary variables representing the selection of the sugar plant and bio-
refinery site, respectively. The sum of the operational sites at all levels is
equal to the number of all sites at the supply chain configuration (Egs.
(32) and (33)). These representations illustrate the intricate interplay of
variables and constraints that determine the optimal structure and op-
erations of a network, ensuring efficiency and alignment with
objectives.

el x eps < § ﬂowffgefxbiquLeps, VieLLVjed 31)
Jj
Y ei=¢, Ve Vel (32)
1
D et =ef VkeK; VIEL (33)
1
3. Results

This study conducts a preliminary TEA and LCA for the proposed
innovative bio-IPA production technology. These analyses provide a
reasonable estimation of the production costs, operating costs, and
GHGs intensity of bio-IPA production at various levels. The preliminary
TEA for the bio-based IPA process indicates that raw materials, such as
glucose priced at $0.33/kg (Cheng et al., 2019), account for 41 % of the
bioprocess cost. Additionally, ethanol by-product sales at $960/mt
(Global chemical industry) significantly offset operating costs, and the
cost of CO5 is considered free due to tradeable federal tax credits. It
should be noted that the cost and emissions of hydrogen were assumed
to be free and zero-emission in this study. This assumption is based on
the hydrogen required for the process being sourced from a combination
of renewable sources and fermentation off-gas. Specifically, a portion of
the hydrogen is derived from the fermentation off-gas generated by
Clostridium acetobutylicum (Minnesota Bio-Fuels Association, 2021),
which helps meet some of the CO, fixation hydrogen demands. The
additional hydrogen needed is assumed to be obtained from renewable
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sources, such as water electrolysis powered by renewable energy,
aligning with the US Department of Energy’s hydrogen hubs projects
(Lewis, 2024)and the ARPA-E program (Minnesota Bio-Fuels Associa-
tion, 2021). These initiatives aim to accelerate the commercial-scale
deployment of low-cost, clean hydrogen and establish networks of
clean hydrogen producers, consumers, and infrastructure. In compari-
son, the preliminary TEA shows that the traditional industrial process
using propene via indirect hydration pathway (Kropf, 1966), priced at
$0.584/kg, incurs higher raw material costs for producing IPA. The
comprehensive cost breakdown (more details in Supporting Informa-
tion) reveals that the bio-based process benefits from lower raw material
and utility costs (accounting for 5 % of the total costs for bio-IPA pro-
duction compared to 32 % for fossil-based IPA production), as well as
efficient utilization of resources such as CO3 and clean hydrogen. The
preliminary TEA provides an economic comparison of bio-IPA and
fossil-based IPA, establishing the parameters used for the subsequent
analysis of the bio-IPA supply chain.

(a) Pareto Solution Sets for Varying IPA Demand Scenarios

Worst cost solution: 480.32 $/mt,
at demand 36809.4 mt/yr

e===Demand = 965898 mt/yr
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3.1. Techno-Economic and environmental optimization of bio-based IPA
production

This section explores the TEA and LCA results and the constraints
imposed by the production capacity of bio-IPA within the supply chain.
By solving case (i), the MILP optimizes the parameter s, the scaling factor
that determines the production of IPA in multiples of 141,360 mt of the
IPA is produced, the analysis reveals that design capacities below
36,809.4 mt or exceeding 965,898 mt are infeasible due to operational
scale limits at IPA and sugar processing plants. Within the feasible IPA
capacity, the Pareto solution sets for varying IPA demand scenarios was
performed with the use of e-constraint method (case (iii)) as follows Yue
et al., (2014).

0bjgp < € (kg CO,/kg IPA)

e" < e < €Y(kg CO,/kg TPA) 34

In the study, the e-constraint method was employed for MILP due to

(b) The Solution of Problem
using e-constraint method,
Demand = 465000 mt/yr

482 N e===Demand = 837000 mt/yr
Ge=e e===Demand = 465000 mt/yr 469
477 »~Demand = 186000 mt/yr 468.5
= ‘2 me ~~Demand = 148800 mt/yr
£ Demand = 55800 mt/yr 468
= 472 ® Demand =36809.4 mt/yr fé‘ 467.5
@0 =
8 ° £ 467
8 467 Worst emission solution: 3.80 kg/ CO,- 3 466.5
B eq/kg IPA, at demand 36809.4 mt/yr [(&]
3 - e S 466
a S ees S 465.5
- *® . . °
\ - - - O 465 b
457 Ideal cost solution: 459.37 $/mt, at demand 55800 mt/yr o 464.5
Ideal emission solution: 2.68 kg CO,-eq/kg IPA, at demand 55800 mt/yr 464
452 2.5 3.5 4.5 5.5
25 3 35 4

Emission (kg CO, -eq/kg IPA)

(c)

Demand = 465000 mt/yr

Upper limit of € (eY);
b= 2.719 (kg CO,/kg IPA)

Differentiate between the Two Types of Pareto-Optimal Solutions

€V =2.719 (kg CO./kg IPA), €V =2.79 (kg CO,/kg IPA),
Demand = 465000 mt/yr

1e6 Sugar beet farm

Sugar beet

t,
(mt/yr) Sugar production plant

O [ EX hén

Bio-IPA production plant

Overlapping facilities

Unique elements of the Pareto solution
favoring environmental performance.

Unique elements of the Pareto
solution favoring economic efficiency.

. ‘

\ Flow direction of unique elements

Fig. 5. Pareto Solution Sets for Varying IPA Demand Scenarios: Fig. 5a illustrates the trade-offs between cost and emissions for different annual IPA production
demands. Each point and line represent Pareto optimal sets, where cost and emission objectives are balanced according to the e-constraint method. The sets span
across a range of IPA demands, from 36,809.4 mt/yr to 965,898 mt/yr, highlighting how the optimal trade-offs shift as the production scale increases. The ideal and
worst solutions refer to the most and least favorable solutions within the set of all possible optimal solutions among the demand scenarios, respectively. (Fig. 5b): The
optimal performance in IPA production costs, constrained by variable emission performance levels (¢V); (Fig. 5¢): The comparison of supply chain configurations
between the Pareto solution sets. the green and blue color-coding is used to differentiate between the two types of Pareto-optimal solutions, with green for better
environmental performance and blue for better economic performance. The grey color indicates where the configurations share common elements, allowing for a
direct visual comparison of the differences in supply chain structure influenced by prioritizing different objectives.
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the potential for Pareto optimal points to occur within the interior of the
convex hull defined by integer feasible points (Lopes et al., 2020). The
methodology involves reformulating Eq. (2). to integrate the lower and
upper bounds of the ¢ parameter, which are derived by independently
minimizing and maximizing the secondary objective function, objg,
(case (ii)). In the optimization model, the vector of ¢ values is con-
strained to range within the defined limits, specifically between the
vector of lower bounds of emissions (in kg CO5) per kg of IPA produced,
€', and the vector of upper bounds, €Y. The e-constraint method ensures
the identification of weakly optimal solutions, moreover, it assures
Pareto optimality when each objective function is equal to the corre-
sponding e parameter (Pappas et al., 2021).

As demonstrated in Fig. 5a, the economic viability peaks at a pro-
duction scale of approximately 55,800 mt, corresponding to a cost of
$459.37 per mt. Across varying scales, optimal production costs at the
feasible IPA demand scenarios range from $459.37 to $480.32 per mt
(Fig. 5a), with the highest cost being 4 % above the lowest. In terms of
environmental impact, CO; emissions in optimized scenarios vary be-
tween 2.68 and 3.80 kg CO,-eq/kg IPA (Fig. 5a). The most efficient
emission performance occurs at 55,800 mt/year, whereas the least
efficient is at 36,809 mt/year (Fig. 5a), indicating a 41 % emission in-
crease in the least favorable scenario as captured by the Pareto optimal
sets. It should be noted that the inclusion of integer variables in the
multi-objective optimization framework may introduce discontinuities
and non-convexities in the Pareto frontier. The analysis of Pareto solu-
tion sets typically reveals that advancements in production cost do not
correspond equally with enhancements in COy emission reductions
during the balancing of economic and environmental objectives. For
instance, at an IPA demand level of 186,000 mt/yr, an increasing of 0.58
kg CO2-eq/kg IPA corresponds to a production cost reduction of $2.66/
mt. In contrast, the optimal equilibrium, as depicted in Fig. 5a for an IPA
demand of 465,000 mt/yr (referenced in Fig. 5b), suggests that an in-
cremental emission increase of 0.071 kg CO»-eq/kg IPA can result in a
cost reduction of $3.82/mt. To further clarify the underlying factors
contributing to these differentials, Fig. 5c displays the two optimized
supply chain configurations for IPA production, resulting from a multi-
objective Pareto analysis when €V is 2.719 and 2.790 respectively. The
eV = 2.719 configuration showcases where the supply chain has been
optimized for lower emissions, while the ¢V = 2. 790 configuration il-
lustrates optimization for cost-effectiveness in the Pareto solution set.
The elements marked in green show the changes made to create a supply
chain that’s better for the environment, like having fewer bio-IPA pro-
duction plants (e.g., a larger capacity level of bio-IPA production facil-
ities) to reduce overall emissions. Conversely, the blue markers signify
an economically driven optimization, where the supply chain is
restructured to capitalize on cost-effective sugar sources. This is evident
from the efficiently managing where sugar comes from. For example,
because sugar beets are less expensive in the northwest part of Minne-
sota, despite a solitary sugar processing plant in that region, it makes
sense to send sugar beets from this area to different sugar plants and then
finally distribute sugar to bio-IPA plants to save the production cost. The
Pareto solution sets allow for a comparative analysis of how each opti-
mization criterion—environmental impact and cost-efficiency—alters
the supply chain layout, providing insights into the trade-offs between
these two objectives.

Regarding the IPA production amounts, the study of varying supply
chain configuration designs under fluctuating capacity levels reveals
uncertainty in their operational cost and environmental impacts. When
compared with the U.S. IPA market prices, where the Free on Board
(FOB) Texas price for IPA ranged between $1560-1570 per metric ton in
September 2023 (ChemAnalyst 2023), the economic advantage of
bio-based IPA production becomes evident. Additionally, when consid-
ering the greenhouse gas emissions from traditional IPA synthesis
methods, which for direct and indirect hydrogenation processes amount
to 3.27 kg COz-equivalent per kilogram of IPA (Wernet et al., 2016), the

11

Computers and Chemical Engineering 191 (2024) 108836

biotechnological pathways for IPA synthesis demonstrate a clear envi-
ronmental benefit. When compared to the market price of sugar at
$0.5926 per kilogram (MacroTrends 2023), the selling price of IPA
stands at $1.56 per kilogram, while its production costs range between
$0.42 and $0.48 per kilogram. This suggests that the profit margin for
IPA is nearly twice the market price of sugar. Given this significant price
difference, converting sugar to IPA emerges as a cost-effective process.
The findings suggest that bio-based IPA production, through optimized
supply chain configurations, offers a more economical and sustainable
alternative compared to conventional chemical synthesis processes. This
is particularly significant in the context of stringent environmental
regulations and a market increasingly sensitive to the carbon footprint of
industrial activities.

3.2. Effects of scale-up on production cost and emission performance of
the biorefinery plants

Fig. 6 shows the results of case (ii): optimal emissions performance
(Fig. 6a) and production cost (Fig. 6b), respectively. The production
costs exhibit a nearly linear increase with the increase in design ca-
pacity. However, at lower capacities (<300,000 mt/year), the cost
performance demonstrates non-linear characteristics. This non-linearity
arises from the strategic adaptations the system undergoes to expand in
response to varying IPA demands (for a more detailed discussion, see
Section 3.4). COy emission performance illustrates a similar increasing
linear trend as capacity increases. Nonetheless, as shown in Fig. 6a, a
notable emission shift occurs in smaller capacity scenarios (below
37,200 mt/year). The observed shifted in emissions is primarily due to
the scale-dependent emission factors incorporated into this study. A
power law scaling factor (Caduff et al., 2014; Bahlawan et al., 2021) is
utilized to quantify the impact of plant size on emissions demonstrating
the variation of GWP100 with respect to the scale of IPA production. For
large-scale operations, the GWP100 is determined to be 2.47 kg of
COq-equivalent per kg of IPA. Conversely, small-scale operations expe-
rience a significantly increased GWP100 at 5.54 kg of COs-equivalent
per kg of IPA, which is over twice the amount emitted by larger-scale
plants. Meanwhile, the GWP100 for medium-sized IPA production pro-
cesses is measured at 3.57 kg of COq-eq per kg of IPA. This marked
disparity is highlighted in Fig. 6a (details in Fig. 10a, Section 3.4), where
it becomes evident that smaller-scale bio-IPA plants experience pro-
portionally greater emissions under the conditions analyzed.

The increasing trend as a function of capacity in both cost and
emissions is influenced by transportation costs, which increase as the
supply chain complexity increases. This complexity arises from the
growing distance between facilities and an expansion in the number of
sites, reaching a point where economies of scale for inbound trans-
portation no longer apply (Minner, 2019). Typically, optimal site se-
lection entails a balance between the number of facilities that minimize
total logistics costs. There is an initial decrease in costs but beyond the
optimal threshold costs begin to increase (Fig. 7). For instance, if the
design supply chain wants to respond to the increasing demands of IPA,
it may have to increase the number of facilities which is beyond the
point that minimizes logistics costs.

As shown in Fig. 7, the scenarios that are optimized for cost highlight
the significant impact of biomass expenses. The major expenditure,
which accounts for almost 70 % of the total cost, is attributed to the
procurement of raw materials, including biomass and for the sugar
production processes. It is worth noting that the IPA production process
is responsible for the largest share, approximately 50 %, of emissions in
the bio-IPA production lifecycle. Additionally, the contribution of
transportation to both cost and emissions increases with an increase in
the annual production capacity of the design, emphasizing the impor-
tance of logistics in the operational design of the biorefinery.
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Fig. 6. Emissions and costs versus IPA production capacity. Fig. 6a shows CO emissions per kg of IPA. The shift in emissions is driven by the variation in GWP100 of
scale of IPA production, with a power law scaling factor applied to account for the scale differences. At a medium scale, the IPA production process results in a
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production costs per metric ton as capacity scales up.
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Fig. 7. Stacked proportional distribution of CO, emissions and costs in IPA production capacity designs. Fig. 7a shows emission contributions by sector for varying
IPA production levels, while Fig. 7b shows the corresponding cost breakdown. Each color represents a different aspect of the supply chain, highlighting the emissions
and costs associated with transportation, bio-IPA production, sugar processing, and sugar beet cultivation as IPA production scales.

3.3. Structural similarity in supply chain configurations for Bio-IPA
production

The optimal supply chain configurations are different under varying
objectives and production capacity. Here, the structural similarity is
introduced to observe the configuration similarity between the eco-
nomic and environmental performance objectives at the same IPA ca-
pacity level. In this study, we employ the Structural Similarity Index
Measure (SSIM) as a metric to evaluate the structural similarity in supply
chain networks (Wang et al., 2004), where the supply chain information
is encoded as 2-dimensional matrices. For an example, the connectivity
within the supply chain is encoded in a binary matrix, X, of dimensions
25 x 5, where the rows correspond to sugarbeet supply counties and the
columns to sugar plants. An element X;; =1 indicates an active supply
link between county i and sugar plant j. The SSIM index is represented by
the Eq. (35), (Wang et al., 2004):
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where 4, and p, are the mean values of two-dimensional matrices that
encode the configuration of the supply chain for the cost (X) and emis-
sion (Y) objectives, respectively. 62 and (75 are the variances of each
matrix, oy, is the covariance for two supply chains, and k;L and kL are
constants to stabilize division with weak denominator, provides a
comprehensive measure of similarity between two entities (Wang et al.,
2003). Originally developed for image analysis, SSIM’s application in
this context offers an innovative approach to quantitatively compare the
structures of supply chain networks, providing valuable insights into
their organizational efficiency and robustness. In particular, the SSIM
metric helps interpret how closely a given supply chain configuration
aligns with an ideal or optimal structure under different considerations.
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Fig. 8 shows the SSIM for supply chains under various capacities.
Specifically, Fig. 8a illustrates the SSIM for the supply chain segment
from the biomass farm to the sugar plant, while Fig. 8b focuses on the
segment from the sugar plant to the IPA plant. The index indicates that
supply chain configurations under environmental and economic objec-
tives exhibit greater similarity as the annual IPA production increases.
Specifically, the supply connections from sugar beet supply counties to
sugar production plants align under both objectives when IPA produc-
tion exceeds approximately 700,000 mt (SSIM index = 1). The con-
nections between sugar plants and bio-IPA plants as shown in Fig. 8b
using either objective show an increasing SSIM index with larger IPA
production capacity, yet they do not converge into identical
configurations.

Moreover, the SSIM index was utilized to select supply chain con-
figurations under three distinct annual production capacities, illus-
trating structural differences between objectives. Fig. 9 displays the
optimal supply chain configurations for IPA capacities of 186,000,
409,200, and 965,898 mt/year, optimized for cost and carbon dioxide
emissions scenarios. These capacities were chosen based on their SSIM
index ranges, which are indicative of structural similarity: low (0-0.3),
medium (0.4-0.6), and high (0.8-1). At the capacity of 186,000 mt/
year, in the case of optimized for CO, emission performance, the supply
chain configurations tend to cluster in regions that facilitate a sequential
supply chain from raw material sourcing to production, without over-
lapping sources. In contrast, for cost optimization scenarios, supply
chain configurations are more spread out, making the selected bio-IPA
plant farther away from the raw material sources than the COy emis-
sion optimization scenarios. This difference highlights the significance
of transportation emissions in minimization of emission objective, while
in cost minimization objective, the raw material costs, particularly sugar
beets, are more important contributor (the selected sugar beet farms are
located at the largest sugar beet production counties with cheaper pri-
ces). As the target IPA production volume increases, the structures of the
two configurations become more similar, owing to the system’s need to
meet the IPA demand, thereby limiting the flexibility in site selection.

3.4. Flow logistics analysis

In this section, an investigation into strategic adaptations in supply
chain management in response to increasing demand is conducted, with
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a focus on the logistic flows within supply chains and the scaling of
individual sites. Fig. 10 illustrates the optimal supply chain configura-
tions under various IPA capacities. The analysis reveals three strategic
phases in supply chain design to accommodate rising demand. Initially,
an expansion in the scale of facilities, particularly sugar plants and IPA
production plants, is observed. This expansion, following the 0.7 power
law of scaling, leads to more efficient production costs and improved
environmental performance. For instance, with the increase in demand
of IPA from 232,500 mt/yr to 744,000 mt/yr, larger scale plants are
noted, resulting in a reduction in sugar production unit cost from
$107.51/mt to $102.96/mt and improved production emissions (as
shown in Fig. 6a). Subsequently, the formation of additional clusters is
identified as a key strategy, leading to improved transportation emis-
sions. In supply chain configurations at a design capacity of 111,600 mt/
yr, two clusters are evident in both scenarios. This clustering is shown to
decrease the average unit transportation emissions from 0.06 COz-eq/
kg-IPA to 0.05 CO3-eq/kg-IPA when capacity increases from 74,400 mt/
yr to 111,600 mt/yr.

The final phase is characterized by an increase in the number of fa-
cilities within these clusters, introducing more branches into the supply
chain. As design capacity expands, an increase in facility count is noted.
The increasing of branches within a cluster may result in worse trans-
portation emission efficiency and transportation costs. When comparing
supply chain configurations at 232,500 mt/yr and 325,500 mt/yr, while
the number of clusters remains constant, an increase in the cluster size in
southwest Minnesota is observed due to the addition of IPA biorefinery
sites. This change leads to an increase in transportation routes from
sugar plants to new biorefineries, raising the unit transportation emis-
sion from 0.05 COz-eq/kg-IPA to 0.06 COy-eq/kg-IPA. However, a
marginal improvement in IPA production cost is observed, decreasing
from $64.0/mt to $63.8/mt, attributable to the increased site capacity.
Conversely, the transportation cost sees a slight increase, moving from
$41.3/mt to $41.8/mt, as the new facilities are located further from the
original supply chain design sites.

As a result, based on the strategies in response to the increasing
demand discussed above, the scaling-up of plant capacities emerges as
the most important strategy in dealing with increasing demand, offering
benefits in both cost and emissions. However, as demand increases, the
capacity limits and resource constraints at the county level may reach
their upper bounds, making the original design infeasible. To
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Fig. 8. Comparative analysis of structural similarity in supply chain configurations for economic and environmental objectives. This figure illustrates the supply
chain configurations segmented into two distinct phases: from biomass farm to sugar plant (Fig. 8a), and from the sugar plant to the IPA plant (Fig. 8b). The analysis
emphasizes the structural similarities and differences between the supply chain setups when tailored to meet either economic or environmental objectives.
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Fig. 9. The optimal supply chain configurations at different scenarios. The top panel illustrates the supply chains’ GWP impact in terms of CO, equivalent emissions
across three IPA production scenarios: 186,000 mt/yr, 409,200 mt/yr, and 965,898 mt/yr. The bottom panel displays the corresponding production costs. Icons
represent sugar beet farms (green), sugar production plants (orange), and bio-IPA production plants (blue), with the scale for sugar beet throughput (mt/yr) shown on
the gradient bar. The configurations reflect the strategic placement of operations to optimize either environmental impact or cost efficiency at different produc-

tion scales.

accommodate this increased demand, the supply chain adapts by adding
new facilities, often leading to the formation of new sugar beet-to-IPA
plant clusters aiming at reducing the transportation costs. The three
phases of industrial expansion in isopropanol (IPA) production explain
the nonlinear oscillatory behavior, as depicted in Fig. 6b, within the
capacity range of up to approximately 320,000 mt per year.

In this study, a maximum of three clusters of sugar beet-to-IPA
supply chain are identified, each situated strategically across the state.
The first cluster is located in the northwest, offering access to the most
cost-effective sugar beet resources. The second cluster is in the central
west of the state, advantageous due to the presence of two sugar plants
that provide ample capacity for processing sugar beet to meet the raw
material demand. The final cluster is located in the southwest of the
state, distinguished by its potential for IPA production sites, offering
ample CO, off-gas, which translates to more efficient transportation
costs and emissions.

When the number of clusters reaches three, adding facilities in each
cluster begins as demand continues to rise. While this expansion strategy
is derived from our optimization analysis, it’s important to note that it
may not always result in enhanced performance regarding emission
reduction and production costs. This observation suggests that the
supply chain might have attained its peak efficiency in terms of inbound
transportation economies. This conclusion is not merely empirical but is
supported by the optimization models we employed, indicating a
calculated point of diminishing returns in the supply chain’s perfor-
mance. At this point, the focus may shift to optimizing within these
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established clusters, seeking efficiencies in operations and logistics to
maintain or improve the supply chain’s overall effectiveness in the face
of growing demand.

3.5. Bio-Based isopropanol production: advancing towards sustainable
chemical synthesis

In sustainable chemical production, bio-based IPA is gaining traction
due to its versatile applications and reduced environmental impact.
Used as a solvent, antiseptic, and fuel additive, IPA’s production from
sugar beets exemplifies the transition to greener methodologies,
potentially lowering the carbon footprint over traditional processes.

The competitiveness of IPA production from sugar beets can be
effectively assessed by comparing its production costs and emissions
with those from other biotechnological methods. The process of con-
verting CO; and sugar into IPA via engineered autotrophic acetogens,
such as Clostridium autoethanogenum (Liew et al., 2022; Bankar et al.,
2015), as well as the utilization of industrial off-gas (steel mill off-gas)
through gas fermentation, demonstrates potential for negative GHG
emissions. Reported emissions for these innovative pathways are as low
as —1.17 COz-eq/kg for IPA (Liew et al., 2022), highlighting a significant
environmental advantage over conventional petrochemical synthesis,
which has associated emissions of around 3.27 CO»-eq/kg-IPA. In
comparison, the bio-based approach for producing IPA from sugar beets
has documented emissions of 2.68 COz-eq/kg-IPA. While this does not
reach the negative emissions mark of gas fermentation, it is a marked
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Fig. 10. Progressive Scaling and Clustering Strategies in Supply Chain Optimization for IPA Production. This figure maps out the adjustments in supply chain design
with increasing IPA demand, showing transitions from enlarging plant scales to forming clusters and expanding facility numbers. It contrasts the supply chain
configurations under environmental impact (Fig. 10a) with those under cost efficiency (Fig. 10b) as annual demand grows from 37,200 mt/yr to 325,500 mt/yr. The
size of facilities (small, medium, large) and the extent of clustering are visualized at different demand levels, indicating the strategic shift from scaling individual
plants to creating more extensive supply chain networks with additional branches for enhanced efficiency and lower emissions.

reduction from the emissions of traditional petrochemical methods. The
primary distinction lies in the innovative use of CO2 as a feedstock,
contributing to a reduced carbon footprint. These findings suggest that
bio-based IPA from sugar beets is a viable and more sustainable alter-
native in the chemicals market, aligning with global efforts to mitigate
climate change through carbon-conscious industrial practices.

3.6. Computational details

All computations were performed using GAMS® software on an Intel
Core i7-11850H CPU @ 2.50 GHz processor with 64.0 GB RAM. Solving
the MILP required few seconds, demonstrating the computational
advantage of the piecewise linearization method for sugar and IPA
production costs. There are 312 single equations and 407 single
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variables in the model. The overall procedure lasted: (i) MILP: a few
seconds (1-2 s) to find the maximum and minimum s, respectively; (ii)
MILP: up to approximately 0.3 s to identify the optimal supply chain
configuration for economic and CO; emissions scenarios, respectively;
and (iii) MILP: about 1~2 min to solve the Pareto solution sets with
e-constraint method. The computational time linearly increases with
more Pareto solution sets solved for varying IPA demand scenarios.

4. Conclusions

The GIS-enabled supply chain optimization model introduced in this
study for the Sugar Beet-to-Isopropanol (bio-IPA) production in Min-
nesota aimed to minimize annual production costs and environmental
impacts. It achieved this by optimizing the numbers, locations, and
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capacities of farms, processing facilities, and biorefineries, as well as
identifying the most efficient biomass flow patterns. The utilization of
GIS was crucial for generating spatial data related to biomass production
and determining the shortest transportation routes using the existing
road and railway networks. The results from the baseline scenario,
considering the increasing demand for bio-IPA, showed that economies
of scale could be realized, with unit production costs reaching their
minimum at a production capacity of 55,800 mt/year. At this scale,
significant cost and emission reductions were apparent, highlighting the
strategic balance between scale expansion and logistical efficiency.

The study revealed that supply chain configurations are highly
responsive to changes in IPA demand. The strategic scaling up of facil-
ities and the clustering of operations emerged as key responses to
increasing demand, with both measures leading to reduced trans-
portation emissions and costs. However, the production costs and
emissions performance are not always directly scalable. As the study
suggests, while larger scales typically yield more cost-efficient opera-
tions due to economies of scale, there are practical limits to these ben-
efits (Malmberg and Maskell, 1997). When the demand scale is between
37,200 to 325,500 mt/yr, finite resources and the capacity constraints of
plants introduce a complexity where production costs and LCA emis-
sions performance do not linearly align with scale increases. This sug-
gests that beyond a certain point, that is demand scale exceeds 325,500
mt/yr, the benefits of scaling diminish, and further expansion could lead
to increased production emissions and costs due to less efficient trans-
portation logistics.

In conclusion, this research provides a detailed approach for opti-
mizing sustainable supply chains in the bio-based chemical industry. It
showcases the importance of strategic planning and logistical efficiency
in achieving both economic and environmental objectives. The study
affirms the economic and environmental advantages of bio-IPA pro-
duction, highlighting its potential profitability and lower emission
profile compared to conventional chemical synthesis processes. The
findings are significant for the development of sustainable industrial
practices, demonstrating that with appropriate optimization strategies,
bio-based chemical production can be economically viable and envi-
ronmentally sustainable, even as it scales up to meet increasing demand
and complies with rigorous environmental regulations. The model
introduced in the study serves as a foundational blueprint for bio-IPA
plant development planning. However, for enhanced precision, incor-
porating more accurate distance calculations that factor in road and rail
logistics across a broader supply chain could yield more reliable esti-
mates of emissions and economic outcomes. Additionally, identifying
and addressing potential risks, such as supplier failures, logistics dis-
ruptions, or market changes (e.g., reallocating the sugar that would have
been exported to other countries to isopropanol production), allows for
more informed strategic decision-making, such as selecting warehouse
locations or supplier partnerships. These areas of investigation hold
substantial potential for future scholarly and practical advancements.
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