Journal of
Cybersecurity
and Privacy

Article

Reversing File Access Control Using Disk Forensics on
Low-Level Flash Memory

Caleb Rother and Bo Chen *

check for
updates

Citation: Rother, C.; Chen, B.
Reversing File Access Control Using
Disk Forensics on Low-Level Flash
Memory.]. Cybersecur. Priv. 2024, 1,
1-18. https://doi.org/

Academic Editor: Firstname Lastname

Received: 14 August 2024
Revised: 19 September 2024
Accepted:

Published:

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA;
crother@mtu.edu
* Correspondence: bchen@mtu.edu; Tel.: +1-906-487-3149

Abstract: In the history of access control, nearly every system designed has relied on the operating
system (OS) to enforce the access control protocols. However, if the OS (and specifically root access)
is compromised, there are few if any solutions that can get users back into their system efficiently.
In this work, we have proposed a novel approach that allows secure and efficient rollback of file
access control after an adversary compromises the OS and corrupts the access control metadata.
Our key observation is that the underlying flash memory typically performs out-of-place updates.
Taking advantage of this unique feature, we can extract the “stale data” specific for OS access control,
by performing low-level disk forensics over the raw flash memory. This allows efficiently rolling
back the OS access control to a state pre-dating the compromise. To justify the feasibility of the
proposed approach, we have implemented it in a computing device using file system EXT2/EXT3
and open-sourced flash memory firmware OpenNFM. We also evaluated the potential impact of our
design on the original system. Experimental results indicate that the performance of the affected
drive is not significantly impacted.

Keywords: access control; recovery; disk forensics; flash memorys; file system

1. Introduction

Access control is a critical part of the metadata of any file. Be it Linux’s iconic 777-style
permissions [1] or Windows’s read-only checkboxes, each operating system needs some
method of determining who can perform operations on a file. To ensure that the metadata
can work correctly for controlling access of system resources, an implied assumption is that
the OS should not be compromised. This assumption however, does not always hold. Major
commodity operating systems use large monolithic kernels which are prone to attacks [2—4].
Once the OS is compromised, the adversary may arbitrarily change the file permissions
by modifying desired metadata through commands like chmod [5]. This allows for easy
creation of backdoor and leaked data, both of which are major threats to the security of
any organization. After the adversary is detected and evicted, efficiently restoring file
permissions is a crucial task in timely returning the system to its normal state. However,
the malicious changes to the metadata could be wide-scale and efficiently restoring the state
of files is a non-trivial problem. The core of the issue is a lack of ability to track and restore
metadata across a drive, specifically metadata pertaining to access control/file restrictions.
In the scenario of an attacker compromising the OS, a backdoor created by changing file
permissions could persist past the removal of the attacker themselves. In order to remove
this type of backdoor, changes to access control data need to be reverted. In this work,
we aim to design such a system, capable of identifying generalized changes to the access
control metadata and reversing them accordingly. Our design takes advantage of the
out-of-place update strategy, which is implemented internally in flash memory storage
media that has become dominant in the modern computer storage market.

There are several key aspects of filesystems and flash memory which our design relies
on: (1) Filesystems must write all metadata to the drive somehow, a command that must

J. Cybersecur. Priv. 2024, 1, 1-18. https:/ /doi.org/10.3390/jcp1010000

https://www.mdpi.com/journal /jcp

https://www.mdpi.com/article/10.3390/jcp1010000?type=check_update&version=1
https://doi.org/10.3390/jcp1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0001-9372-9607
https://doi.org/10.3390/jcp1010000
https://www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2024, 1

be handled by a lower layer. This means that if we were able to write a program that
uses that lower layer, we would be able to track metadata writes. (2) Most flash storage
drives like SSDs introduce a flash translation layer (FTL), a firmware layer staying between
the OS and the underlying NAND flash, which can transparently manage the unique
hardware nature of raw flash, exposing a block access interface externally. This firmware
layer yields a solution to the problem posed previously, giving us an area below the native
operating system which can run our customized programs. (3) Part of the standard kit of
flash memory is a set of small “out of bounds” (OOB) areas which can be used to store
miscellaneous data [6]. This may be usable in order to prevent large-scale memory use
in sections of code which must be fast in order to properly write data. (4) FTL utilizes a
strategy called out-of-place updates to perform write operations which leaves old copies of
data on the drive [7]. These copies of data can linger for extended periods of time, and this
time can also be extended by modifying the code used for the update procedure. This
allows us to keep older versions of data on the drive for an extended period of time.

These areas combine to allow for a system which tracks metadata writes and stores
the previous location in an OOB area. After this is stored, the user can press some kind
of manual override switch upon detection of an intrusion and reset any recent changes to
access control metadata that they may wish to. There are, however, technical difficulties.
Filesystem forensics must be conducted within the FTL, necessitating strategies to minimize
memory usage. In addition, performing the forensics can be difficult due to the lack of OS
support. We need to manually decode the raw binary data on the drive without relying
on any built-in OS functions designed for this purpose. There is documentation for this,
but navigation must still be done manually by interpreting the data. We accomplish this by
following relevant chains of binary data and only saving the starts and lengths of groups of
data which we want to track. This allows us to make a memory efficient system without
sacrificing significant amounts of performance.

Contributions. Major contributions of this work are listed below:

* We have developed ACRecovery, the pioneering access control recovery scheme capa-
ble of restoring access control metadata after the eviction of an adversary that has
compromised the operating system.

* ACRecovery ensures recoverability of the access control metadata in the OS by (1)
leveraging the out-of-place update implementation in the FTL, and (2) performing
low-level disk forensics over the raw NAND flash.

* We have implemented a prototype of ACRecovery when deploying EXT2/EXT3 as
the filesystem. Experimental evaluation demonstrates that ACRecovery can efficiently
roll back the access control metadata, with a small impact on the performance of the
equipped flash memory storage.

2. General Background
2.1. File Metadata

File metadata is any data which pertains to a file but is not directly part of it. This
can include authorship information, modification time, creation time, and more. One
particularly relevant section of metadata is permissions data, which can be represented in
several ways. In EXT filesystems, for instance, permissions are represented as a series of
12 bits. The first three bits cover read, write, and execution permissions for the owner of the
file, the second set of three handles the same permissions for the owner’s group, and the
third set for all other users.

2.2. Filesystem

A filesystem takes OS instructions for file creation/deletion and settings changes and
translates them to read /write instructions to deliver to the drive the OS is stored on [8].
Filesystems are responsible for almost every binary representation of data coming from
the OS. Typically, filesystems store data in the forms of either files or nodes, depending on
what they represent. Other forms of data storage exist, but there must be some method

J. Cybersecur. Priv. 2024, 1

of finding any single section of data relatively quickly due to OS demands. The objects
represented include file authors, related groups, tracking metadata such as size and access
permissions, directories and subdirectories, etc. Since the filesystem must store all of this
data, anything that can access and interpret the data on the filesytem can read the drive as
though it were the OS. We leverage this possibility to recover access control data.

EXT file systems. EXTended File System (EXT) was made for Linux in the 1990s and
is still used as its primary filesystem in the modern age. The system has gone through
several iterations, i.e., EXT2 [9], EXT3 [10], and EXT4 [11]. It is based around a series of
records for boot/basic controls, then uses a series of “inodes” to manage data. These inodes
store everything from access control schemes to file size to creation time. In general, any
non-direct data relating to a file is held in the inodes. These inodes are stored according
to a series of groups on the drive. The inodes for a single group are stored contiguously,
but the groups are not stored back-to-back. File data is stored across the drive, with inodes
containing pointers to it. All of the data relating to these groups (but not the files they
contain) is stored in a “superblock”, a set of data regarding the filesystem stored at the
beginning of the drive. Figure 1 demonstrates the structure of an EXT filesystem.

Boot Record | Superblock Block Group Inodes and Data
(1024 bytes) | (usually 1024 Descriptors
bytes)

Figure 1. A general layout of an EXT partition.

Notice that the superblock is stored at the beginning of the partition, followed by a
series of “block group descriptors”, followed by data intermixed with “inode groups”.
The superblock stores a wide variety of data related to the filesystem, including the sizes
and numbers of various data structures, version data, and which inodes are allocated.
Immediately following the superblock is a set of “block group descriptors”. These dictate
data revolving around inode groups and their locations. This stores the number of inodes,
the start location of the set of inodes for the group, and the number of directories the group
contains [9,12].

In 1999, EXT3 was introduced in order to add support for a technique called journaling.
This is a method of tracking writes to a drive which have not yet been committed. This is
the main included feature of EXT3 [10]. This version of the filesystem is still used for legacy
applications and can be found on some modern systems, giving us a more up-to-date
filesystem to test on.

2.3. Master Boot Record

The Master Boot Record (MBR) of a drive stores basic information about what is
contained over the entire drive. This includes a list of the filesystems on the drive and
which sections they have charge over, called partitions. The MBR is always at the very
beginning of the drive, and as such any attempt at filesystem forensics needs to read it first.
Importantly, the bytes corresponding to partition data are stored between bytes 0x1BE and
0x1FD of the drive [13].

2.4. Access Control List

An access control list (ACL) is a list of permissions associated with a system object. It
has been implemented in a variety of file systems to control access of files and directories,
including but not limited to NTFS (used in Windows), ext2/ext3/ext4 (used in Linux and
other Unix-like OSes), APFS (used in macOS and iOS), etc. [14,15]. These methods include:

1. Having dedicated files to store the ACL and referencing that file when accessing others.
2. Spreading the ACL out over all the files’ metadata, and reading the associated meta-
data when accessing the target file.

J. Cybersecur. Priv. 2024, 1

Regardless of how it is implemented, the ACL always contains some kind of per-
mission and access data related to the files, directories, and objects on the system. We
seek to ensure that this data stays intact, even through a complete corruption of the
operating system.

2.5. Flash Memory

NAND flash has been used broadly as the external storage in both standard computers
and mobile devices today [16], as it consumes much less power and is capable of much
faster read /write speeds. Flash memory is typically organized into blocks, each of which
consists of pages which contain a certain number of bytes of data. Each page contains
a small out-of-bounds (OOB) area [6]. This OOB area is a small number of bytes (16 in
our test drive) which is used to store extra data, such as error correcting codes. However,
this OOB space is not typically fully used, and as such can be taken advantage of. Flash
memory also has several unique hardware characteristics including erase-before-write,
suffering from wear, etc. These unique features distinguish flash memory from traditional
mechanical drives.

Erase-before-write. The way in which NAND flash performs writes is unique. Each
page has a default state which is entirely made up of “1’s. When a write is performed and a
buffer is provided, the drive simply sets any ‘1’s to ‘0’s where the buffer directs, leaving
other bits alone. As one would expect, a write operation run on the disk is performed at
the smallest size the drive can handle, one page. However, because of this unique system,
an erase operation is performed on the scale of an entire block of (usually 64) pages. As a
result, an entire block must be erased before a page can be overwritten and erasures are
treated as a very expensive operation [17].

2.6. Flash Translation Layer (FTL)

To remain compatible with traditional block file systems, a flash storage device (e.g.,
an SSD) usually exposes a block access interface. This is achieved by introducing a new
flash translation layer (FTL), a piece of special firmware which stays between the file
system and the NAND flash, transparently managing the special characteristics of NAND
flash [18-20].

[’:>{):D{]:>[FTL }:>[:HC,MI;;J;WJJ

Figure 2. The layers used in operation of a filesystem and FTL.

Out-of-place updates. The FTL implements an out-of-place update strategy [7,21,22].
Since the erasure is so expensive, it is unfeasible to overwrite a page by actually writing
the location the page is stored at again. As such, the FTL uses a system of logical and
physical page addresses, linked by a page mapping table (PMT). The logical address of
a page is where it appears to be to the OS and filesystem, and does not change as the
page is overwritten. The physical address, on the other hand, is the actual location of the
data on the drive. If this page is searched by the FTL, it will pull the data located exactly
at that location regardless of any translation. The PMT handles translation between the
two addresses, stylized as a table which maps the logical address of a page to its physical
counterpart. In out-of-place updates, a write to a logical address instead causes a new
physical page to be found which is currently empty. The new page is then written and the
PMT changes the logical address of the target page accordingly. But, the data previously
stored at the logical address is temporarily retained on the original physical page (Note that
our work mainly utilizes this phenomenon to restore the ACL entries compromised by the adversaries
at the OS level). In other words, given the logical address on the block device, by searching
the PMT table, we can identify the physical flash page where the corresponding data is
stored. An example of the PMT table is shown in Figure 3.

J. Cybersecur. Priv. 2024, 1

Logical Pages (Filesystem Sees)

12 (131415

72737475

Physical Pages (Actual Location)

Figure 3. An example of the PMT table.

Wear leveling. Flash blocks have a limited number of erasures that they can perform
before losing reliability. As the out-of-place update scheme is also implemented in flash
systems, the best way to determine where data should be placed on the drive must be
determined. This is done by a system called wear leveling, which periodically checks how
many erasures have been performed on blocks across the drive and moves pages to other
locations on the drive accordingly. This increases the lifespan of the drive as each block
will take approximately equal erasure counts.

Garbage collection. A side effect of the out-of-place update and wear leveling systems
is the fact that blocks of data will eventually fill up with out-of-date, or “dirty”, pages.
These blocks must be erased in order to use the full drive. The FTL periodically checks for
blocks which have a certain number of dirty pages (or greater) and moves any valid data to
a new block before erasing the old one. The PMT is then adjusted. This allows for filled
blocks to be emptied and reused.

3. Related Work

Leveraging the FTL's out-of-place update implementation to restore the data com-
promised by either the ransomware or the malware has been studied extensively in the
literature. However, none of them has been specifically designed for access control and
cannot be used to restore the access control metadata.

Flash-based data recovery from ransomware attacks. There were various ransomware
defending designs such as FlashGuard [23], MimosaFTL [24], and SSD-insider [25,26] which
can restore the data compromised by the ransomware. A common technique used in those
designs is to roll-back the entire invalidated raw flash memory data after the ransomware
attacks, utilizing the FTL’s out-of-place update strategy. Having observed that restoring
the entire storage is time-consuming and may not be necessary, FFRecovery [27] allows
the user to restore individual files compromised by the ransomware. This is achieved
by additionally incorporating the filesystem forensics which can restore the filesystem
metadata. By linking the restored filesystem metadata and the corresponding file data
(restored by extracting the corresponding raw flash memory data guided by the filesystem
metadata), a fine-grained recovery of user files is possible. Amoeba [28,29] is a method
for backing up full hard-drives based on scanning the content and detecting similarities
within the pages. If a page is different enough, it is backed up and rolled back in the
event that a ransomware attack plays out. However, it does not cover situations outside
of ransomware, and its history is extremely short, only storing a single backup per page.
RansomBlocker [30] is a separate system which detects malware by looking at write patterns
and sends signals to other recovery tools which can reinstate the hard drive. As it lacks its
own recovery option, it is reliant on systems like ours.

J. Cybersecur. Priv. 2024, 1

Flash-based data recovery from malware attacks. Data restoration from the general
malware could be more challenging compared to the ransomware. This is due to the
heterogeneous nature of the malware. Bolt [21] enabled the system restoration after the
bare-metal malware analysis in a strictly controlled environment. System restoration turns
easier as Bolt clearly knows when the malware starts to function. MobiDOM [31] was
developed to address malware threats in everyday scenarios where the defender lacks prior
knowledge of when the malware might appear. A key design of MobiDOM is incorporating
a secure malware detector which can function correctly even if the the OS is compromised,
by utilizing the isolated nature of trusted execution environment and the flash translation
layer. The malware detector will securely collaborate with the FTL to enable data restoration
after the malware is detected. MobiDR [32] can ensure accurate restoration of the data at
the point of time right before the malware starts to corrupt the data, by integrating both
the FTL-based recovery and the remote version control system. Huang, et al. [33] uses a
similar system to ours, leveraging out-of-place updates to roll back data, but lacks any
discussion of preserving pages. In addition, it brings no discussion of detection to the table,
and has a higher impact on storage volumes due to its lack of specificity regarding data.
This leaves a system which has much worse performance overhead and a much shorter
cache life for rolling back data. Ref. [34] Makes use of out-of-place updates in order to make
backing up an SSD more efficient, allowing for faster recovery from malware. This system
is a collaborative effort between the OS, the FTL, and a Cloud service, all of which work
towards database system recovery in an efficient manner.

Flash-based data recovery in critical systems. The existing data recovery designs
based on flash memory storage were mostly for computing devices used in non-critical
systems. System restoration in critical systems such as cyber-physical systems turned to
be even more challenging due to additional considerations such as real-time and safety
requirements. Dafoe et al. [35] designed a new framework which can restore the ECU
(electronic control unit) firmware in connected and autonomous vehicles. In their design,
the repair coordinator running in the secure world of Arm TrustZone was notified by a
detector ECU that the ECU it resided had been compromised. This notification was sent
stealthily to the TrustZone via the CAN bus. The repair coordinator then worked with the
local FTL to restore the mapping data, which are small in size and can be restored efficiently
in real time. Note that all the communications remain transparent to the compromised OS
by leveraging steganography. After recovering the mapping data, the ECU firmware is
restored to its healthy state prior to the compromise. ref. [36] describes a system which
can recover from power failures (and other associated catastrophic failures of an SSD) by
leveraging the out-of-bounds area described in Section 2.5 in order to store extra metadata.
This increases the reliability of the OS and also allows the flash to use error-correcting codes
to work around complete failures. However, it assumes that these are not malware related
and rolls back data indiscriminately.

ACRecovery is different from all the aforementioned data recovery designs as it mainly
concerns on restoring the access control related metadata, which are hidden among the
giant raw data in the flash memory and require careful disk forensic analysis in order to
be extracted. Mostly importantly, as the OS is compromised, ACRecovery needs to purely
rely on analyzing the raw flash memory data to distill the access control permission data
created by the OS, which brings extra technical challenges. In addition, ACRecovery uses
the specificity of its target to its advantage, allowing for smaller memory overhead than
other systems designed for this type of use.

4. Models and Assumptions

System model. We consider a computing device using flash memory as external
storage. This includes servers and personal computers which use solid-state drives (S55D),
and mobile/IoT devices which use SD/miniSD/microSD cards, MMC/eMMC cards,
or UFS cards.

J. Cybersecur. Priv. 2024, 1

Adversarial model. The adversary, e.g., a piece of malware, is able to compromise
the OS of the victim device, obtaining root access. Abusing this high system privilege,
the adversary is motivated to arbitrarily modify the access control for files across this device.
For example, it may create a hidden user and grant this user arbitrary permissions of files,
or it can delete or modify the existing file permissions of legitimate users. The device owner
will be aware of this misbehavior over time (e.g., utilizing a low-level malware detection
solution [31]). After having removing the malware, the user then needs to recover changes
made by the adversary to the access control metadata. This seems impossible convention-
ally, because the adversary has compromised the OS before and tried to eliminate any traces
accessible to the OS which may be relied on to get the access control metadata restored.

Assumptions. Our design is based on a few assumptions: (1) The structure of the
file system is intact. This assumption is reasonable as it would require the adversary with
very high levels of knowledge about the operating system to compromise the file system’s
structure without completely destroying the victim device. (2) The flash translation layer
(FTL) is secure. The FTL stays between the OS and the flash memory chips and it is typically
isolated by the storage hardware from the OS. This hardware-level isolation ensures the
security of the FTL. Re-flashing the flash memory firmware may disrupt this assumption,
which however is destructive in nature and would result in a wipe of the drive.

5. ACRecovery
5.1. Main Design of ACRecovery

The design of ACRecovery is formed of three major components: setup, monitoring,
and recovery. Setup aims to create a system by which we can track writes across the drive.
Monitoring checks whether a page contains access control metadata when a write occurs
and caches it if so. Lastly, recovery rolls the cached pages back, but excludes non access
control related data. Given that these three aspects all require data directly from the drive,
each filesystem also has its own challenges due to the way that it stores its metadata. This
means that we must perform forensics to determine the filesystem and various aspects
thereof. Note that this can be applied to other aspects of the filesystem and pieces of
metadata as well, but we specifically focus on the access control related metadata.

5.1.1. Setup

The setup phase aims to establish a method for us to check whether a write is going to
affect access control data. In order to do this, we must scan both the Master Boot Record
(MBR) of the drive as well as the filesystem itself. We open with a scan of byte 0x1C2
of the drive, which contains a code representing which filesystem is stored on the first
partition slot of the drive. For example, code 0x83 represents EXT, while a series of codes
represent versions of FAT and NTFS. We then check bytes 0x1C5-0x1C9 of the drive. This
contains the LBA address of the starting block of the partition [13]. These two pieces of data
combine to tell us what kind of partition to scan and where it begins on the drive, allowing
more filesystem-dependent portions of setup to run. From there, we implement a system
which catalogues the pages on which file metadata can be stored. Once this data is secured,
it can be monitored. In addition, this data does not need to be copied on-drive, as the
method for finding it is consistent and can be repeated even after a reboot. This means that
setup should have an overall storage overhead of zero, while taking up a minimal amount
of memory.

5.1.2. Monitoring

Most monitoring systems follow the pattern of Algorithm 1. When a write is triggered,
the isWritingPermission function gets called. This function is filesystem dependent due
to the variety of sizes and shapes that access control data takes. In general, the function
is only applied on a page by page level in monitoring due to the fact that writes are not
considered expensive and must be efficient. Even so, the number of pages which contain
access control data varies from filesystem to filesystem. For instance, in EXT, access control

J. Cybersecur. Priv. 2024, 1

data is stored in a series of groups across the drive, while NTFS stores all of its data in two
to three places. Ultimately, isWritingPermission is treated as a blackbox which takes in the
filesystem type, the address being written, and the data being written to it, and returns true
if and only if the write affects access control data. In the event that it does, we also must
prevent the page from being marked for deletion. This can be performed in a variety of
ways, such as adding it to a cache, marking group headers in the OOB, etc. Thus, when the
page is written, the previous address is accessible on subsequent reads. After the write is
performed, the user is able to roll back the writes which were tracked at any point desired
by sending a signal to the drive.

Algorithm 1 FTL_Write(pageaddress addr, byte data) /* Write data to logical page addr */

: int block, page //Will hold the block and page ids for addr

: PMT_Search(addr, &block, &page)

. if isWritingPermission(addr,data, filesystem_type) && !isRollingBack then
CACHE_Add(currentWrites, addr) //Add the address to our cache of permissions

writes
data.OOB.append(PHYSICAL_ADDRESS)

: end if

: drive.write(block, page, data)

: return

=W N =

® N o U

5.1.3. Rollback

At a certain point, the user may want to undo recent changes to access control data.
This generally follows Algorithm 2. The isPermissionByte function takes in the byte desired,
the whole page being questioned, and the filesystem type, and returns true if the byte in
question is related to access control data. Noting that the isPermissionByte function is
highly dependent on the filesystem type, and detailed discussion can be found in Section 5.2.
As the loops run, the permissions data in the new page is replaced with that of the old page
without editing any other data. Following this, the page is written to its original location,
effectively replacing any newly written permissions data with the oldest version present in
the cache. Once each page in the cache has been written, it is cleared to prepare for new
writes. After the rollback has run, the access control data should be rolled back to its state
at the beginning of the cache, with all other data preserved. If desired, code could easily
be written to allow the user to select individual writes to roll back, allowing for a more
powerful tool. An example of this is shown in Figure 4. Malicious ACL data is written to
page 12, causing its physical address to shift to page 73. Because monitoring detects this,
the user can then issue a rollback command. This causes the access control data data from
page 73 to be overwritten with the ACL data from page 72, and the final result is written to
anew page 77.

Logical Pages (Filesystem Sees)

12(13|14|15| |12(13|14|15

y 4N
1 I

72|73 74|75| |77 |737 74|75

Physical Pages (Actual Location)

Figure 4. Example of rolling back changes to a page.

J. Cybersecur. Priv. 2024, 1

Algorithm 2 Rollback() /* roll back all recent access control changes */

1: DATA* data, oob* OOB // Used for reading in the page data (data) and out-of-bounds
area (OOB).
isRollingBack <— TRUE
for page in cache do

FTL_Read(page, &data, &OOB)

FTL_Read(OOB|2], &data2, &OOB)

for byte in page do

if isPermissionByte(byte, data, filesystem_type) && data[byte] != data2[byte]

then
8: data[byte] < data2[byte]
9: end if
10: end for
11: FTL_Write(page, data2)
12: end for
13: CLEAR_CACHE(pages)
14: Return

5.2. Implementing ACRecovery in EXT Filesysterms

In this section, we discuss the implementation of ACRecovery when the EXT filesystems
are deployed on the device. We will discuss filesystem specific aspects and challenges, then
tie it back to the general design presented previously. The description applies to both EXT2
and EXT3, allowing for a single unified codebase for easier user access. The journaling
aspect of EXT3 allows for more write security, but does not interfere with the way that
metadata is stored. This allows for the code to stay the same.

5.2.1. EXT: Challenges

Since EXT stores file data in groups of inodes across the drive, the primary issues with
EXT are going to involve location and tracking of the pages responsible for holding inodes.
There are a series of challenges that face us when working on EXT. We use EXT2 for its
simplicity, but adjustments for more modern systems should be minor. As such, challenges
for EXT are:

1. How big is a group of inodes? Since inode groups are where access control data
is stored, we need this number. We need it specifically in pages, as we need to
accurately track inode groups without storing each and every page which contains
an inode in cache, which would use a large amount of memory. This will help us
saving said memory when searching for whether a page contains inodes during the
monitoring phase.

2. How many groups of inodes are there in this filesystem? We need to know how large
of a cache we need, and multiplying the size of a group by the number of groups
yields the result. When the cache is initialized, we want to have an exact size in mind
since internal memory usage on a drive of this nature should be kept to a minimum.
Normally, this number is relatively low (<100), which results in low memory usage
accordingly if handled well. The search given enables us to size the cache exactly
as desired.

3. Where is each group of inodes actually stored on the drive? To track the access control
data, one must know where it is located. Groups are stored at various places across
the drive, and each one needs to have its descriptor checked in order to gather its
‘inodes’ locations. These descriptors are stored immediately after the superblock
as described in Section 2.2, and can be found by looking relatively early on in the
descriptor. Notably, we need to store these locations in ascending order, as this will
enable us to binary search the cache in the monitoring phase. Thankfully, the block
groups are stored in ascending order, so we do not need to perform any kind of sorting
following the setup phase for our desired order to be maintained.

J. Cybersecur. Priv. 2024, 1

10

5.2.2. EXT: Setup

Figure 3 outlines the procedure for EXT setup. This primarily aims to establish the
location and size of each inode group in the system. We open by reading the “superblock”,
which stores a large amount of details regarding portions of the drive. We are primarily
interested in the following pieces of of data in the superblock:

1. The size of a “block” (not related to the term used in Section 2.5), stored at byte 24
with length 4 bytes. This will only be used to turn data gathered in the superblock
into data which is usable by the FTL.

2. The number of inodes in an inode group, stored at byte 40 with length 4 bytes. This is
used in calculations for the size of an inode group.

3. The total number of inodes in the filesystem, stored at byte 0 with length 4 bytes. This
is used to calculate the number of inode groups, which we need in order to properly
initialize the cache.

We then check the 4-byte word at offset 76, as it contains the major version. If this
is greater than 1, we need to check the 2-byte word at offset 88 to get the size of an
inode. Otherwise, the size is set strictly at 128 [9]. Often, inode size is set to 256 for more
modern systems.

These pieces of information are combined to calculate the following:

1. The number of inodes in a page, given as page_size/inode_size. Used in calculations
for the number of pages an inode group takes.

2. The number of inode groups, given as total_num_inodes/inodes_per_group. This
helps us initialize the cache.

Using the gathered pieces of information and the previously known constant of page
size, we can assemble a picture of how large an individual block group’s worth of inodes is
by dividing the number of inodes per group by the number of inodes per page. From there,
we read each of the individual block group descriptors. These are located immediately
after the superblock, and the start location of their inodes is precisely 8 bytes from the
start of the descriptor. Since descriptors are exactly 32 bytes long [9], we can easily find all
of the start locations with the information previously provided. All of these combine to
create a system which caches the locations of the start of each group of inodes and their
size, allowing monitoring to take over.

5.2.3. EXT: Monitoring

EXT’s monitoring system is relatively simple, as the setup phase has done most of the
heavy lifting. However, it is worth noting the particulars. Given that we have cached the
size of an inode group and the starting location of each, we can run a binary search over
the cache when a write is ordered. We return true if the target page is within the chosen
size of one of the cached values, and false otherwise. If false is returned, the operation
continues with no modifications. Following a true result, the target is added to the write
cache, the page is marked as in use, and the old location of the page is added to the OOB.
From this point, the write continues as normal. Given that checking for non-permission
changes would require a thorough scan of two pages” worth of data, this is left to the
recovery phase, and monitoring ends here.

J. Cybersecur. Priv. 2024, 1 11

Algorithm 3 Setup(initialPage) /* Read EXT data from a partition starting at initialPage */

1: data_buffer < FTL_Read(initialPage) / /Read the start of the partition and place the
data in a variable
2: unsigned int blockSize < data_buf fer.getWord(1048) //Size of a block in the EXT
system
3: unsigned int inodesPerGroup < data_buf fer.getWord(1064) / /# of inodes in an inode
group
4: unsigned int totalInodes <— data_buf fer.getWord(1024) / /Total number of inodes
5. if data_buffer.getWord(1100) >0 then
6: unsigned short inodeSize < short(data_buf fer.getWord(1112)) //Size of an inode,
in bytes
7: else
: unsigned short inodeSize < 128
9: end if
10: unsigned int inodesPerPage = int(ceiling(double(PAGE_SIZE /inodeSize))) //# of
inodes in a flash page
11: unsigned int groupCount < int(ceiling(double(total Inodes /inodesPerGroup))) / /# of
groups on the drive
12: unsigned int bgdStart < max((1024 << blockSize) * 2,2048) / /Block group descrip-
tors start
13: unsigned int currentOf fset < bdgStart%PAGE_SIZE //Used to track the starting
byte of our current block group descriptor
14: unsigned int newPage < initial Page / /Page we're checking
15: forinti < 0;i < groupCount; i+ + do
16: unsigned int currentStart < data_buf fer.getWord(currentOf fset 4+ 8) //Start of
the currently checked block group’s inodes.

17. unsigned int startPage = initialPage + int(currentStart * ((1024 <<
blockSize) /double(PAGE_SIZE))) //Convert the result to a flash page ID
18: end for

19: permissionCache.add(startPage)

20: currentOffset += 32

21: if currentOf fset >= PAGE_SIZE then

22: currentPage++

23 data_buf fer <— FTL_Read(currentPage)
24: currentOffset %= PAGE_SIZE

25: end if

26: Return

5.2.4. EXT: Rollback

Rollback follows the pattern shown in Figure 4. Permissions data is the first 3 bytes of
an inode. Since we harvested the length of an inode in the setup portion, we are able to
ignore bytes which are not in the first three bytes of the inode. However, we must perform
one further check: If the type setting of the file (the first 4 bits of the first byte) are out of the
range 0x10-0xCF, then we know that the file was either created or destroyed by the previous
operation [9]. This value being invalid indicates that the file was either created (if buf2 is
invalid and bufl is not) or deleted (if bufl is invalid and buf2 is not) by the write being
rolled back. Once a page has been fully vetted, we may write the newly created page to its
original location by using the address we cached for writing. This is a simple, yet expensive,
operation and as such is left to rollback. In addition, each page must be written, which
takes up further resources. This algorithm is presented as an example of why recovery is
presented as expensive and why detecting whether a change directly affects permissions
data is left up to an expensive function.

J. Cybersecur. Priv. 2024, 1

12

Algorithm 4 Rollback()/* Take our cache of pages and revert access control changes */

1: PAGE page, page2 //Used to hold page data
2: OOB spare //Used to hold OOB data
3: forinti < 0;i < permissionCache.size; i + + do

4 data_buffer,spare <— FTL_Read(permissionCache.contents|i])
5. page2 < spare[2]

6: buffer2,spare < FTL_Read(page2)

7. forintj < 0;j < PAGE_SIZE; j+ = INODE_SIZE do
8: if data_buffer[j+ 1]! = buf fer2[j + 1] then

9: data_buf fer[j] <— buf fer2[j]
10: data_buf fer[j+ 1] < buffer2[j +1]
11: end if
12 end for
13: FTL_Write(permissionCache.contents|i], data_buffer)
14: end for
15: Return

6. Experimental Evaluation
6.1. Experimental Setup

We chose to implement our design by modifying an existing open-source FTL software
known as OpenNFM [37]. OpenNFM contains full C code for an FTL implementation,
allowing for modification to any relevant read /write functions and further additions to the
project. Our experiments were performed using an LPC-H3131 board (512 MB storage, 180
MH2z controller with 192 kB RAM) [38] on a virtual machine running Kali Linux. The VM
was allocated 2 cores of an intel 19-10900KF (5.0 GHz overclock) [39] and 4 GB of 2.1 GHz
RAM. The drive was flashed by using the board’s reset button and downloading a compiled
binary to it [40]. We could then install the relevant filesystem on top of OpenNFM. We
elected to perform two tests:

1. Throughput test, particularly in write speed. Since monitoring directly affects the
write functionality of the drive, a test of throughput is needed in order to check
whether our system dramatically impacts usability.

2. Time to rollback. With our system, it is good to know how long a queue of a given size
takes to revert to its original state. This will give us a sense of how major a change the
rollback operation gives.

These two tests should be able to give an indication of the usability of the system and its
impact on the FTL as a whole. If the results of our experiments are positive, the design can
be quickly adapted to a publishing of the system. On the other hand, negative results may
indicate that the design needs further adjustment before being given to the general public.

6.2. Experimental Results

Throughput. The results of the throughput tests are displayed in Tables 1 and 2.
Results show a slight decrease in write speeds (and an extremely slight increase in read
speeds in some cases, but this is likely caused by system usage at the time the test was run or
any number of other factors). This indicates a small, but not problematic loss of performance
compared to an unmodified instance, or it could be an indication that the impact of
modifications on the drive is irrelevant compared to other unseen factors like system use.
In either case, a system like ours is shown to be fully feasible for current implementation.

Rollback time. Rollback time results are shown in Figures 5 and 6. The rollback times
shown follow a mostly linear pattern, with a slight drop-off from the line at a cache size
of 200. This is the expected pattern given that all algorithms provided are in linear time.
In addition, rollback proves to be a short process, with a queue of 200 taking less than 2 s
on a consistent basis. As the system is convenient to use in addition to not taking a large
toll on performance, this once again indicates that the system can be implemented with no
major changes.

J. Cybersecur. Priv. 2024, 1 13

Table 1. Throughput comparisons (EXT2).

Type Unmodified Modified
Seq-Read 1450 kB/s 1454 kB/s
Rand-Read 1022 kB/s 1029 kB/s
Seq-Write 912 kB/s 880 kB/s
Rand-Write 788 kB/s 773 kB/s

Table 2. Throughout comparisons (EXT3).

Type Unmodified Modified
Seq-Read 1464 kB/s 1456 kB/s
Rand-Read 1054 kB/s 1052 kB/s
Seq-Write 1291 kB/s 1218 kB/s
Rand-Write 845 kB/s 827 kB/s
2500
2000 ®
E
G 1500 e
=
E
o 1000
1]
E [
=
500
°
°
0
0 50 100 150 200 250

Number of pages rolled back

Figure 5. The time needed for rollback (EXT2).

2000

1800 L
1600

1400 {]

1200

back (ms)

= 1000
800 ®
600
400

Time to ro

200

0 50 100 150 200 250

Number of pages rolled back

Figure 6. The time needed for rollback (EXT3).

7. Discussion

Naturally, our implementation does not cover every possibility and permutation.
There are several future directions and improvements that can be made to the system. We

J. Cybersecur. Priv. 2024, 1

14

cover several such improvements and challenges here in detail, and anticipate that even
more can be made in the future to improve on the work.

Danger and abuse of power. Naturally, a system with the power to undo user actions
should be heavily restricted due to its potentially compromising nature. We propose use
of a manual hardware switch which can trigger rollback, as the only way to completely
guarantee that a command cannot be executed without physical access to the machine is to
hard-wire it in. Of course, this comes with its own set of issues. Bringing a physical device
relies on the user not forgetting to do so, and needing to retrieve an object increases the time
between a rollback being requested and actually carried out. However, since the actions
this program is capable of are so powerful, it is necessary to take adequate precautions.

OS write caches. One issue that came up during testing is the fact that Linux com-
mands often cache writes rather than committing them immediately upon instruction [41].
For example, if a file is copied and then permissions are immediately changed, the original
version with unchanged permissions is never written to the drive and thus never cached.
Notably, re-mounting the drive commits all pending writes, allowing us to work around
this problem in testing. This feature has both upsides and downsides for our work. Favor-
ably, this means that repeating a singular command to change the permissions data will
likely only commit one change to the drive, thus preventing one potential strategy to clear
the cache. However, as mentioned, an attack that targets a file immediately after creation
may not be reversible due to file creation.

Partitions. The algorithm given in Section 5.1 for locating the partition on the drive
is configured to find the first partition. However, future partitions can also be found by
changing the following addresses:

1. System type: 0x1c2 - > 0x1d2 (2nd partition), 1e2 (3rd partition), or 1f2 (4th parti-
tion) [13]
2. LBA start: 0x1c6 - > 0x1d6 (2nd partition), 1e6 (3rd partition), or 1f6 (4th partition) [13]

This allows users to select which partition on the drive is protected in case of situations
such as dual booting for multiple OSes.

NTES. New Technology File System [42] was designed for use in Windows NT and
is currently used as its primary filesystem after phasing out FAT in the 1990s. NTFS is
stored as a series of files on the drive, with even important data such as boot records and
metadata stored in the same format. The latest version is NTFS 3.1, released in 2001. This
system features a boot record, followed by a list of files and their data. This list is known
as the Master File Table, or $MFT, and is stored as the second file on the drive. The file
preceding the MFT, $Boot, contains diagnostic information for the drive. NTFS uses a
system of “clusters” of “sectors” of bytes, which are used to catalogue files. It is worth
noting that these clusters are usually larger than one page of flash storage. Each file is
given a certain number of clusters which it has control of and manages. Access control
data is stored in two categories: A “read-only” and “hidden” bit, stored in two places
across a file’s record, and the security entry, stored in a file called $Secure. The former
category means that a system which handles NTFS must track the data in $SMFT, while the
latter means we must track the contents of $Secure. This is doable, as this data is stored
in contiguous sections, but some aspects of NTFS are undocumented due to its nature of
being designed for Windows. As such, systems which handle NTFS would need some
expertise from Windows programmers.

FAT. File Allocation Table based filesystems (FAT) [43,44] are the third most popular
filesystem for drive use, mostly utilized by older Windows computers. They are formatted
as a boot record, followed by a table listing the clusters on the drive and which files occupy
them. Directories are stored as a special type of file on the drive, specifically a table of
entries which describe files and metadata, and are stored in the standard data section of
the drive. This data section begins with a root directory entry, which contains pointers
to both its files and any subdirectories. These are 32-byte entries which contain both the
location of the actual relevant data and any contained metadata, such as read-only nature,
creation time, etc. These subdirectories each have their own file and subdirectory entries,

J. Cybersecur. Priv. 2024, 1

15

leaving the directory structure as a tree. When a new directory is to be loaded, the tree is
traversed using a path provided. Any metadata related to a file is stored with that file’s
directory entry, which means that for a particular file to be checked, it must be checked in
the tree [45]. We now provide a summary of FAT’s challenges and how the phases for it
might be implemented:

Page saving. There are a variety of options which can be used to keep pages from
being erased, and we need to utilize one in order to prevent data we are tracking from being
removed. Dafoe, et al. [35] keeps a cache of pages which are currently in use by the system,
preventing them from being erased at all during the time where pages are stored. Our
test design used a system where the number of dirty pages in a block is only incremented
when permissions are not being written, which dramatically decreases the odds that the
old blocks are erased. Our application uses a differing method which attempts to use less
memory. We instead insert a small boolean check into the PMT_Update function which
does not increment the unused block counter for early pages, which should lower the
chance that an old page is selected. This saves time and memory, but comes with a potential
risk of increased wear leveling inequality.

Boot proofing. Given that we need to use a cache to track pages which have been
changed, there needs to be a method of boot-proofing the system so that a shutdown of the
drive does not cause us to lose progress. Dafoe, et al. [35] uses an extra page on the flash
device to write down the cache in the event that the drive is shut down, an option that we
can take as well in order to keep our data safe. We would need to store both the current
cache of pages which have been written and any data needed for overwrite prevention.
This page can be read to recover the state of the tracking at any given point. We could
also add the setup phase data, but it is not strictly necessary as all of the setup phase is
doable at any point after the partition is created. In addition, if boot-proofing can be made
more efficient, it is hypothetically possible to design a system that fully recovers the entire
filesystem from complete corruption. This is possible owing to the fact that we are already
recovering filesystem data, and could simply remove some filters during rollback and
expanding the range which the cache searches. EXT in particular is susceptible to this,
as inodes make up the majority of the filesystem’s data.

GPT Partition handling. Some modern drive setups will use a system called the GUID
partition table (GPT) rather than the MBR for drive partitions. This system has an initial
MBR entry whose partition type is OxEE, allowing for ACRecovery to adjust accordingly.
The GPT system does not have an OS Type header, but does still contain the location
of the partition. As such, a GPT-compatible ACRecovery implementation would need to
check the partitions for magic numbers to determine OS type rather than using the MBR
entries. This is doable, however our test machines did not use GPT and such a system was
not implemented.

EXT4. EXT4 is the newest version of the EXT filesystem. This added several features,
including an extended superblock, dynamic groups, and more. One feature added to EXT4
is metadata checksums for all applicable inodes. This uses a crc32c algorithm to ensure
the integrity of metadata across the filesystem. While good for integrity, this makes our
system much more difficult to implement, especially when taking write caching (Section 7)
into account [11]. Since crc32c is seeded, we are unable to generate new checksums for the
system. In the event that a write changes both the permissions of a file and some other piece
of its metadata, a system like ours must either undo all of the applicable changes or none of
them due to the checksum. As such, any implementation of our system for EXT4 must be
limited, though some semblance of the system can still be implemented. During rollback,
a page would need to be checked for significant changes outside of permissions (minor
changes like the last time modified can be safely reverted without major issue). If no
significant changes are detected, the page can then be rolled back. However, if other
changes (for instance, the size of the file) are made, the user may need to be informed and
perform the changes manually.

J. Cybersecur. Priv. 2024, 1

16

Detection in the FTL. Given that the OS is compromised, it may be impossible for
the user to deduce that their system is infected at all. Since we assume that the malware
is removed in our system, it is worth acknowledging possible detection methods in the
FTL. Chen et al. [31], as well as several other works [24,25,28], do this for mobile devices
by scanning for noticeable access patterns across the FTL which lead to malware attacks.
It is theoretically possible to transfer a system such as this into the FTL from the trusted
app layer by downscaling the application to fit the limited processor space available. More
work needs to be done in this area, but it should still be well within possibility to perform
this detection automatically in the future without trusting the OS at all. This would enable
users to be secure without even having to think about it in most scenarios.

Future work. Several current weaknesses in the system need to be adjusted for future
iterations of the work. These include:

1. Boot-proofing. As discussed in the previous section, we must boot proof the system.
Once this has been done, several attacks on our work become invalid as we can simply
recover the state of the system after a reboot. Until then, a reboot clears the cache,
possibly preventing some changes from being rolled back.

2. Byte-specific monitoring. While our current system leaves byte-specific checks for the
rollback phase, it is hypothetically possible to do so during monitoring. This would
save a large amount of cache space as false positives become impossible. However,
a method for doing so efficiently has yet to be found.

3. Automatic Setup. Right now, the setup operation is performed by a command sent
from the user. However, it may be possible for the FTL to detect a specific write
pattern which corresponds to the completion of a partition on the drive. More work
will need to be done in this area to confirm or deny this possibility.

8. Conclusions

In this work, we have designed ACRecovery, a novel scheme which can restore the
access control system compromised by a high-privilege adversary. This is accomplished
entirely within the flash translation layer, without any assistance from the operating system.
By performing forensic analysis over the raw data in the flash memory, we can extract
the original access control metadata of the OS, enabling the rollback of the most recent
changes on them (due to the out-of-place update mechanism in the FTL). Such a design
is necessary for defending against the OS-level adversary which can compromise the
operating system and arbitrarily modify the access control metadata in the OS. We have
presented the implementation of ACRecovery on EXT2 and EXT3 filesystems, and perform
experimental evaluations which show that ACRecovery can roll back the compromised
access control metadata in the OS efficiently, without incurring a significant impact on the
lifespan and throughput of the flash storage drive. This pioneering research paves the
way for future research on filesystem forensics within the FTL, thereby benefiting the data
recovery community. Potential followup works include expanding the system to support
the FAT and NTFS filesystems as well as extra optimizations of the current design.

Author Contributions: Conceptualization, C.R. and B.C.; methodology, C.R. and B.C.; validation,
C.R. and B.C,; formal analysis, C.R. and B.C.; investigation, C.R. and B.C.; writing—original draft
preparation, C.R. and B.C.; writing—review and editing, C.R. and B.C.; project administration, B.C.;
funding acquisition, B.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation under grant number 2225424-
CNS, 1928349-CNS, and 2043022-DGE.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Our developed prototype and demo video are publicly available in
https:/ /github.com/NotoriousADC/flashback (accessed on August 5th, 2024).

https://github.com/NotoriousADC/flashback

J. Cybersecur. Priv. 2024, 1 17

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACL Access Control List

CAN Controller Area Network
ECU Electronic Control Unit

EXT EXTended file system

FAT File Access Table

FTL Flash Translation Layer
GPT GUID Partition Table

NTFS New Technology Filesystem

References

1. Foundation, T.L. Understanding Linux Permissions. Available online: https://www.linuxfoundation.org/blog/blog/classic-
sysadmin-understanding-linux-file-permissions (accessed on 22nd May 2024).).

2. Critical RCE Vulnerability in Linux Kernel Let Hackers Compromise the Entire Systems Remotely. Available online: https:
/ /cybersecuritynews.com/linux-kernel-bug-3/ (accessed on 6th May 2024).

3. Microsoft. CVE-2021-34535. Available online: https://msrc.microsoft.com/update-guide/vulnerability /CVE-2021-34535
(accessed on 21st May 2024).

4. NIST. CVE-2018-4121. Available online: https://nvd.nist.gov/vuln/detail/CVE-2018-4121 (accessed on 23rd May 2024).

5. Man Chmod. Available online: https://linux.die.net/man/1/chmod (accessed on 21st May 2024).

6. Gupta, A,; Kim, Y,; Urgaonkar, B. DFTL: A flash translation layer employing demand-based selective caching of page-level
address mappings. In Proceedings of the ACM; ACM: New York, NY, USA, 2009; Volume 44.

7. Hardock, S.; Petrov, I.; Gottstein, R.; Buchmann, A. From In-Place Updates to In-Place Appends: Revisiting Out-of-Place Updates
on Flash. In Proceedings of the 2017 ACM International Conference on Management of Data, New York, NY, USA, 14-19 May
2017; SIGMOD ’17; pp. 1571-1586. https://doi.org/10.1145/3035918.3035958.

8. Wirzenius, L.; Oja,].; Stafford, S.; Weeks, A. Filesystems. Available online: https://tldp.org/LDP/sag/html/filesystems.html
(accessed on 22nd May 2024).

9. OSDev Wiki. 2022. Available online: https://wiki.osdev.org/Ext2 (accessed on 21st May 2024).

10. ext3 Filesystem. 2024. Available online: https://docs.kernel.org/filesystems/ext3.html (accessed on 21st May 2024).

11. ext4 Filesystem. 2024. Available online: https://www.kernel.org/doc/html/v4.19/filesystems/ext4/index.html (accessed on
21st May 2024).

12. Arpaci-Dusseau, R.H.; Arpaci-Dusseau, A.C. Operating Systems: Three Easy Pieces; Arpaci-Dusseau Books, Madison, W1, USA :
2023; Chapter 3.

13. OSDev Wiki. 2023. Available online: https://wiki.osdev.org/MBR (accessed on 20th May 2024).

14. Gruenbacher, A. POSIX Access Control Lists on Linux. In Proceedings of the 2003 USENIX Annual Technical Conference
(USENIX ATC 03), San Antonio, TX, USA, 9-14 June 2003.

15. Govindavajhala, S.; Appel, A.W. Windows Access Control Demystified; Princeton University: Princeton, NJ, USA, 2006.

16. Liu, Z. SSD and HDD Statistics from EaseUS. 2023. Available online: https://www.tomshardware.com/news/ssd-and-hdd-
statistics-from-easeus (accessed on 22nd May 2024).

17. Cai, Y,; Ghose, S.; Haratsch, E.F.; Luo, Y.; Mutlu, O. Error Characterization, Mitigation, and Recovery in Flash-Memory-Based
Solid-State Drives. Proc. IEEE 2017, 105, 1666-1704. https://doi.org/10.1109/JPROC.2017.2713127.

18. Luo, Y,; Lin, M. Flash translation layer: A review and bibliometric analysis. Int. J. Intell. Comput. Cybern. 2021, 14, 480-508.

19. Kim, J,; Kim, J.M.; Noh, S.H.; Min, S.L.; Cho, Y. A space-efficient flash translation layer for compactflash systems. IEEE Trans.
Consum. Electron. 2002, 48, 366-375.

20. Chung, T.S,; Park, D.J.; Park, S.; Lee, D.H.; Lee, SW.; Song, H.J. A survey of Flash Translation Layer.]. Syst. Archit. 2009,
55,332-343. https://doi.org/10.1016/j.sysarc.2009.03.005.

21. Guan, L, Jia, S.; Chen, B.; Zhang, F; Luo, B.; Lin, J.; Liu, P,; Xing, X,; Xia, L. Supporting Transparent Snapshot for Bare-metal
Malware Analysis on Mobile Devices. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando,
FL, USA, 4-8 December 2017.

22. Wei, M.Y.C,; Grupp, L.M.; Spada, EE.; Swanson, S. Reliably erasing data from flash-based solid state drives. In Proceedings of
the 9th USENIX Conference on File and Storage Technologies (FAST 11), San Jose, CA, USA, 15-17 February 2011; Volume 11.

23. Huang, J.; Xu, J.; Xing, X.; Liu, P.; Qureshi, M.K. FlashGuard: Leveraging Intrinsic Flash Properties to Defend Against Encryption

Ransomware. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX,
USA, 30 October-3 November 2017; ACM: New York, NY, USA, 2017; pp. 2231-2244.

https://www.linuxfoundation.org/blog/blog/classic-sysadmin-understanding-linux-file-permissions
https://www.linuxfoundation.org/blog/blog/classic-sysadmin-understanding-linux-file-permissions
https://cybersecuritynews.com/linux-kernel-bug-3/
https://cybersecuritynews.com/linux-kernel-bug-3/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34535
https://nvd.nist.gov/vuln/detail/CVE-2018-4121
https://linux.die.net/man/1/chmod
https://doi.org/10.1145/3035918.3035958
https://tldp.org/LDP/sag/html/filesystems.html
https://wiki.osdev.org/Ext2
https://docs.kernel.org/filesystems/ext3.html
https://www.kernel.org/doc/html/v4.19/filesystems/ext4/index.html
https://wiki.osdev.org/MBR
https://www.tomshardware.com/news/ssd-and-hdd-statistics-from-easeus
https://www.tomshardware.com/news/ssd-and-hdd-statistics-from-easeus
https://doi.org/10.1109/JPROC.2017.2713127
https://doi.org/10.1016/j.sysarc.2009.03.005

J. Cybersecur. Priv. 2024, 1 18

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.
45.

Wang, P; Jia, S.; Chen, B.; Xia, L.; Liu, P. Mimosaftl: Adding secure and practical ransomware defense strategy to flash translation
layer. In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy, Richardson, TX, USA, 25-27
March 2019.

Baek, S.; Jung, Y.; Mohaisen, A.; Lee, S.; Nyang, D. Ssd-insider: Internal defense of solid-state drive against ransomware with
perfect data recovery. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, 2-6 July 2018.

Baek, S.; Jung, Y.; Mohaisen, D.; Lee, S.; Nyang, D. SSD-assisted ransomware detection and data recovery techniques. IEEE Trans.
Comput. 2020, 70, 1762-1776.

Chen, N.; Dafoe, J.; Chen, B. Poster: Data Recovery from Ransomware Attacks via File System Forensics and Flash Translation
Layer Data Extraction. In Proceedings of the 2022 ACM Conference on Computer and Communications Security, Los Angeles,
CA, USA, 7-11 November 2022.

Min, D.; Park, D.; Ahn, J.; Walker, R;; Lee,].; Park, S.; Kim, Y. Amoeba: An autonomous backup and recovery ssd for ransomware
attack defense. IEEE Comput. Archit. Lett. 2018, 17, 245-248.

Min, D.; Ko, Y.; Walker, R;; Lee, J.; Kim, Y. A content-based ransomware detection and backup solid-state drive for ransomware
defense. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 2038-2051.

Park, J.; Jung, Y.; Won, J.; Kang, M.; Lee, S.; Kim, J. RansomBlocker: A low-overhead ransomware-proof SSD. In Proceedings of
the 56th Annual Design Automation Conference 2019, Las Vegas, NV, USA, 2-6 June 2019; pp. 1-6.

Chen, N.; Chen, B. Defending against OS-Level Malware in Mobile Devices via Real-Time Malware Detection and Storage
Restoration. J. Cybersecur. Priv. 2022, 2, 311-318.

Xie, W.; Chen, N.; Chen, B. Enabling Accurate Data Recovery for Mobile Devices against Malware Attacks. In Proceedings of the
18th EAI International Conference on Security and Privacy in Communication Networks, Virtual Event, 17-19 October 2022.
Huang, P.; Zhou, K.; Wu, C. ShiftFlash: Make flash-based storage more resilient and robust. Perform. Eval. 2011, 68, 1193-1206.
Special Issue: Performance 2011. https:/ /doi.org/10.1016/j.peva.2011.07.010.

Son, Y.; Choi, J.; Jeon, J.; Min, C.; Kim, S.; Yeom, H.Y.; Han, H. SSD-Assisted Backup and Recovery for Database Systems. In
Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19-22 April 2017;
pp. 285-296. https:/ /doi.org/10.1109/ICDE.2017.88.

Dafoe, J.; Singh, H.; Chen, N.; Chen, B. Enabling Real-Time Restoration of Compromised ECU Firmware in Connected and
Autonomous Vehicles. In Proceedings of the 2023 EAI International Conference on Security and Privacy in Cyber Physical
Systems and Smart Vehicles, Chicago, IL, USA, 12-13 October 2023.

Jung, S.; Song, Y.H. Data loss recovery for power failure in flash memory storage systems. J. Syst. Archit. 2015, 61, 12-27.
https://doi.org/10.1016/j.sysarc.2014.11.002.

Code, G. OpenNFM. 2011. Available online: https://github.com/IMCG/opennfm (accessed on 30th September 2024).

Olimex LPC-H3131. Available online: https://www.olimex.com/Products/ARM/NXP/LPC-H3131/ (accessed on 20th May
2024).

Intel Core I9-10900KFE. Available online: https:/ /ark.intel.com/content/www /us/en/ark/products/199331/intel-core-i9-10900
kf-processor-20m-cache-up-to-5-30-ghz.html (accessed on 20th May 2024).

Tankasala, D.; Chen, N.; Chen, B. Creating A Testbed for Flash Memory Research via LPC-H3131 and OpenNFM—Linux Version.
2022. Available online: https://snp.cs.mtu.edu/outreach/OpenNFM-LPC-Ubuntu.pdf (accessed on 20th May 2024).
Firmianay. Chapter 16: The Page Cache and Page Writeback. 2021. Available online: https://github.com/firmianay/Life-long-
Learner/blob/master /linux-kernel-development/chapter-16.md (accessed on 21st May 2024).

Microsoft. How NTFS Works. 2024. Available online: https:/ /learn.microsoft.com/en-us/previous-versions/windows/it-pro/
windows-server-2003/cc781134(v=ws.10) (accessed on 21st May 2024).

FAT File Systems. Available online: https://www.ntfs.com/fat_systems.htm (accessed on 21st May 2024).

ELMChan. Available online: exFAT filesystem. http://elm-chan.org/docs/exfat_e.html (accessed on 22nd May 2024).

OSDev Wiki. 2024. Available online: https://wiki.osdev.org/FAT (accessed on 5th May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.peva.2011.07.010
https://doi.org/10.1109/ICDE.2017.88
https://doi.org/10.1016/j.sysarc.2014.11.002
https://github.com/IMCG/opennfm
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://ark.intel.com/content/www/us/en/ark/products/199331/intel-core-i9-10900kf-processor-20m-cache-up-to-5-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199331/intel-core-i9-10900kf-processor-20m-cache-up-to-5-30-ghz.html
https://snp.cs.mtu.edu/outreach/OpenNFM-LPC-Ubuntu.pdf
https://github.com/firmianay/Life-long-Learner/blob/master/linux-kernel-development/chapter-16.md
https://github.com/firmianay/Life-long-Learner/blob/master/linux-kernel-development/chapter-16.md
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc781134(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc781134(v=ws.10)
https://www.ntfs.com/fat_systems.htm
http://elm-chan.org/docs/exfat_e.html
https://wiki.osdev.org/FAT

	Introduction
	General Background
	File Metadata
	Filesystem
	Master Boot Record
	Access Control List
	Flash Memory
	Flash Translation Layer (FTL)

	Related Work
	Models and Assumptions
	ACRecovery
	Main Design of ACRecovery
	Setup
	Monitoring
	Rollback

	Implementing ACRecovery in EXT Filesystems
	EXT: Challenges
	EXT: Setup
	EXT: Monitoring
	EXT: Rollback

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Conclusions
	References

