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Abstract 

This paper explores the evolution of Geodesign in addressing spatial and environmental challenges from its early 
foundations to the recent integration of artificial intelligence (AI). AI enhances existing Geodesign methods by auto-
mating spatial data analysis, improving land use classification, refining heat island effect assessment, optimizing 
energy use, facilitating green infrastructure planning, and generating design scenarios. Despite the transformative 
potential of AI in Geodesign, challenges related to data quality, model interpretability, and ethical concerns such 
as privacy and bias persist. This paper highlights case studies that demonstrate the application of AI in Geodesign, 
offering insights into its role in understanding existing systems and designing future changes. The paper concludes 
by advocating for the responsible and transparent integration of AI to ensure equitable and effective Geodesign 
outcomes.
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1  Introduction
The use of innovative digital tools to analyze, design, and 
plan geographic space is often referred to as Geospatial 
Design (or Geodesign). Geodesign’s early foundations 
were rooted in the 1960s development of Geographic 
Information Systems (GIS) (Tomlinson, 1969). Tom-
linson’s work on the Canada Geographic Information 
System introduced a system for managing large, geo-
graphically referenced datasets (Barker, 2011). Harvard 
Laboratory for Computer Graphics and Spatial Analysis 
played a crucial role in the development of Geodesign 
by pioneering the use of computer technology in col-
laborative, data-driven design processes (Steinitz, 2016). 

Steinitz’s "A Framework for Geodesign: Changing Geog-
raphy by Design" (2012) presents a systematic approach 
to integrating geographic knowledge with design pro-
cesses through six interconnected models (Representa-
tion, Process, Evaluation, Change, Impact, Decision) that 
emphasize collaboration, technology integration, iterative 
cycles, and ethical considerations to create sustainable 
and resilient environments. This framework underscores 
the iterative nature of design, where spatial data continu-
ally informs and refines design solutions (Steinitz, 2012).

McHarg’s Design with Nature (1969) transformed land-
scape architecture by promoting an ecological approach 
that integrates natural processes into design. His layered 
mapping of environmental factors like soil, vegetation, 
and hydrology laid the groundwork for modern GIS. 
Both McHarg and Steinitz applied Geodesign principles 
to urban and environmental challenges, building the 
Geodesign community through collaborative initiatives 
(McHarg, 1969; Steinitz, 2012). Geodesign combines 
geography with design methodologies, integrating sys-
tems thinking and digital technology for interdisciplinary 
planning (Goodchild, 2010; Steinitz, 2016). Its advance-
ments in 3D modeling, AI, and urban analytics enhance 
data-driven decision-making and dynamic design pro-
cesses (Campagna, 2016; Ervin, 2016; Wilson, 2015). This 
paper clarifies Geodesign’s distinction from traditional 
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spatial modeling and explores how AI enhances its 
effectiveness.

1.1 � Steinitz’s framework of Geodesign
Steinitz’s well-known work "A Framework for Geodesign: 
Changing Geography by Design" introduces six core ques-
tions that structure the Geodesign (Steinitz, 2012):

1.	 How should the study area be described?

	 This question is about defining the characteristics of 
the area under consideration, covering physical, cul-
tural, and environmental aspects. It aims to estab-
lish a clear understanding of the study area’s current 
state.

2.	 How does the study area operate?
	 This focuses on understanding the underlying sys-

tems, functions, and processes of the study area, such 
as ecological functions, social dynamics, or infra-
structure performance.

3.	 Is the current study area working well?
	 This question evaluates the current effectiveness of 

the study area in meeting its intended goals or sus-
taining its systems, identifying whether there are any 
existing issues or opportunities for improvement.

4.	 How might the study area be altered?
	 The framework looks into possible changes or inter-

ventions that could be made, envisioning different 
scenarios or solutions for modifying the area.

5.	 What difference might the changes cause?
	 This question assesses the potential outcomes and 

impacts of the proposed changes, predicting how the 
study area’s function, structure, or conditions might 
be affected.

6.	 How should the study area be changed?
	 Finally, the framework calls for a decision on the best 

course of action, integrating all previous considera-
tions to determine how to effectively implement the 
proposed changes.

The questions in Steinitz’s framework can be grouped 
into two categories: "Understanding the Existing Sys-
tem" and "Designing Future Changes." The first three 
questions focus on analyzing and evaluating the current 
conditions and performance of the study area, aiming to 
build a solid foundation of knowledge before any design 
work begins. The remaining three questions are forward-
looking, concentrating on proposing, evaluating, and 
deciding on potential interventions to improve or modify 
the study area. Table  1 shows existing methods to deal 
with these issues in geodesign.

For the first category of questions in “understanding 
the existing system”, existing methodologies such as over-
lay mapping, site analysis and suitability assessments, and 

environmental impact assessments are commonly used 
(Table  1). These approaches help to describe, analyze, 
and evaluate the current conditions of the study area in 
detail. Overlay mapping is a key element of Geodesign 
methods (McHarg, 1969), involving the layering of the-
matic maps like topography, vegetation, hydrology, and 
land use to provide a comprehensive landscape under-
standing (Goodchild, 2010; McHarg, 1969). This visual, 
systematic approach evaluates land suitability based on 
ecological principles, enabling planners to assess cumu-
lative environmental impacts and make environmentally 
sensitive decisions (McHarg, 1969). Geodesign integrates 
proposals with impact simulations, using geographic 
contexts and systems thinking to foster collaboration 
between communities, designers, and scientists. (Stein-
itz, 2016). The strength of overlay mapping lies in its 
ability to visually represent complex environmental data, 
making it easier to identify areas suitable for develop-
ment, conservation, or other land uses (Steiner, 2013). 
This method has been instrumental in promoting an 
ecological approach to planning, emphasizing the impor-
tance of respecting natural processes and patterns in 
design decisions.

Site analysis and suitability assessments are critical 
components of Geodesign (Reynolds, 2014). This pro-
cess involves a detailed examination of a site’s physical, 
biological, and cultural attributes to determine its suit-
ability for various types of development or conservation 
(Ernst et  al., 2019). This method requires a comprehen-
sive understanding of the site’s conditions such as its 
topography, soil, vegetation, climate, hydrology, as well 
as its socio-economic and cultural context. The goal of 
site analysis and suitability assessment is to identify the 
most appropriate, sustainable, and efficient use of land 
(Davis et  al., 2021). This involves balancing the natural 
characteristics of the site with the needs and aspirations 
of the community. It is a process that requires careful 
consideration of various factors, including environmen-
tal constraints, potential impacts on biodiversity, and the 
capacity of the land to support different types of uses.

As noted, environmental impact assessments are 
also a critical process in Geodesign. These assessments 
involve evaluating the potential environmental impacts 
of proposed developments and identifying measures to 
mitigate negative effects (Campagna et  al., 2019). This 
process is essential for ensuring that development pro-
jects are environmentally responsible and sustainable. 
It includes assessing the impact on ecosystems, biodi-
versity, water and air quality, and other environmental 
factors. It involves predicting and evaluating the likely 
environmental impacts, both positive and negative, 
and proposing mitigation measures to reduce adverse 
effects. The process typically includes several stages, 
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such as screening, scoping, impact analysis, mitigation, 
reporting, and monitoring (Morgan, 2012). It requires a 
thorough understanding of the environmental baseline 
conditions and the potential changes that a proposed 
development might bring.

For the second category of questions in “designing 
future changes,” methods like physical models and hand-
drawn sketches, evidence-based design and planning 
and participatory design and planning are more suitable 
(Table 1). These focus on developing, testing, and refining 
potential changes while involving stakeholders and lever-
aging empirical evidence to ensure that interventions are 
both effective and appropriate.

Physical models and hand-drawn sketches were essen-
tial in early Geodesign projects and processes (Moura, 
2015). These methods provided tangible representations 
of spatial data and design proposals, facilitating commu-
nication and collaboration among designers, planners, 
and stakeholders. Physical models were particularly valu-
able for understanding the three-dimensional aspects of 
design proposals, allowing for a more intuitive grasp of 
scale, form, and spatial relationships (D. J. Lee et al., 2014; 
Steiner, 2013). Physical models and sketches played a cru-
cial role in the design process, serving as tools for explo-
ration, communication, and collaboration. They allowed 
designers and planners to test ideas, visualize concepts, 
and engage stakeholders in a more interactive and tangi-
ble way (Risinger, 2012).

Evidence-based design and planning places significant 
importance on using empirical data to facilitate design 
decisions. Evidence-based design is a fundamental prin-
ciple in the field of Geodesign, which emphasizes the use 
of data-driven insights to inform and shape design deci-
sions (Hamilton, 2003). This phenomenon may be seen 
via empirical research that examines the therapeutic ben-
efits of green spaces on mental well-being, with the aim 
of providing insights for the design of urban parks (Lee 
& Maheswaran, 2011). Additionally, studies also explore 
the complex interplay between urban morphologies and 
community mobility (Lee & Maheswaran, 2011; Wang 
et  al., 2020). Evidence based design and planning are 
highly aligned with Geodesign in that both approaches 
integrate a scientific rationale for decision making as well 
as assess intervention strategies through impact and per-
formance modeling. Evidence-based designs and plans 
are inherently grounded in quantitative performance 
measures. Unfortunately, many of these performance 
measures, while increasing, have not yet been fully incor-
porated into Geodesign projects. Many measures have 
recently been developed through performance mod-
eling which seek to more scientifically evaluate impacts 
and more accurately measure the effectiveness with 
which developed solutions fulfil their intended purpose. 

These measures and impact models are highly supported 
through the analytics and visualization capabilities made 
possible by AI.

Participatory design and planning, also known as co-
design/planning, is based on the active involvement 
of stakeholders throughout the design process (Ernst 
et  al., 2019; Sanders & Stappers, 2008). Steinitz (2012) 
highlighted the importance of Geodesign as a multidis-
ciplinary approach to landscape and urban planning, 
emphasizing the need for collaborative, flexible, and 
adaptive methods to address complex environmental 
and urban challenges. Within the domain of Geodesign, 
it is essential to place significant attention on engaging 
stakeholders because of the broad and diverse nature 
of Geodesign projects. Stakeholders play a crucial role 
in the identification of possible difficulties and oppor-
tunities, as well as in the iterative assessment of design 
scenarios (Flaxman, 2010). Their richness of localized 
information and views makes them vital in this process. 
This paradigm aligns well with the fundamental prin-
ciples of Geodesign, which promote an iterative and 
systems-oriented design philosophy (Steinitz, 2012). In 
addition, human-centered approach is characterized by 
its sympathetic approach, which places a high priority 
on addressing the needs, desires, and experiences of the 
targeted end-users (Norman & Stappers, 2015; Wu et al., 
2023).

Geodesign, as a design philosophy, demands a thor-
ough evaluation of every stakeholder involved, so guar-
anteeing that the results are not only practical but also 
culturally meaningful. The inclusion of participatory 
design techniques is often required, including the active 
engagement of stakeholders and the incorporation of 
their comments to enhance the refinement of design sce-
narios (Flaxman, 2010). This allows Geodesign solutions 
to undergo comprehensive assessments that go beyond 
considering just physical or environmental characteris-
tics. This is especially beneficial when integrating data-
sets involving citizen science, the practice of collecting 
and analyzing data related to the natural world by mem-
bers of the general public, into the Geodesign process.

2 � Limitations of existing methods in Geodesign
Existing Geodesign methods, while valuable in planning 
and design, have limitations (Flaxman, 2010; McHarg, 
1969; Steinitz, 2012). Understanding these limitations 
is crucial for advancing the practice of Geodesign and 
addressing contemporary challenges. First, overlay map-
ping, though visually useful, is static and struggles to 
reflect dynamic ecological and social systems, especially 
temporal heterogeneities (Tulloch, 2017). Additionally, 
outcomes depend on accurate data, and outdated or 
incorrect data can lead to misguided decisions (Fusco 
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et  al., 2017). Traditional site analysis is often time-
consuming and may not account for rapidly changing 
environments (Campagna & Di Cesare, 2016). Further, 
methods may focus too narrowly on local contexts, 
neglecting broader regional implications (Steinitz, 2012). 
In addition, environmental impact assessments are com-
plex, requiring multidisciplinary input, and often over-
look cumulative impacts, risking underestimation of true 
environmental effects (Therivel, 2013).

Physical models and hand-drawn sketches, while useful 
for visualizing spatial relationships and engaging stake-
holders, are time-consuming and labor-intensive, mak-
ing frequent modifications difficult. They also lack the 
detail and precision needed for large-scale or data-driven 
designs, limiting their support for quantitative analysis 
and informed decision-making compared to digital tools.

Relatedly, while participatory design seeks to engage 
the community actively, it encounters difficulties in 
accommodating the diverse viewpoints and interests pre-
sent. The process tends to be lengthy and is frequently 
subject to disputes or delays in decision-making due to 
the challenge of reconciling various stakeholder perspec-
tives. Moreover, there exists a risk that vocal groups may 
overshadow the contributions of less vocal participants, 
potentially skewing outcomes. This issue largely stems 
from disparities in resources and organizational capa-
bilities among stakeholders, complicating the achieve-
ment of equitable and inclusive design solutions (Ortega 
Sánchez de Lerín, 2019; Sanoff, 1999). Similarly, evi-
dence-based design and planning relies on the availability 
and quality of research and data. In many cases, relevant 
data may be scarce, outdated, or not specific enough for 
particular design contexts. Moreover, the interpretation 
of data and research findings can be subjective, leading to 
different conclusions and design outcomes (Albert et al., 
2021).

2.1 � Incorporation of Artificial Intelligence (AI) 
into Geodesign

AI integration into Geodesign enhances data analysis, 
predictive modeling, decision-making, and participa-
tory processes, surpassing traditional methods (Du et al., 
2023a, 2023b; Ervin, 2016; Ye et al., 2021). It revolution-
izes spatial data interpretation, efficiently handling large 
datasets and identifying complex spatiotemporal patterns 
(Liu et al., 2023; Mortaheb & Jankowski, 2023; Tang et al., 
2020; Wang et al., 2016; Wu et al., 2022). Deep learning 
is a subset of AI that involves training neural networks 
with many layers to automatically learn patterns and rep-
resentations from large amounts of data (LeCun et  al., 
2015). Convolutional Neural Networks (CNNs), a popu-
lar deep learning model, are used for processing grid-like 
data, especially images, by identifying spatial features 

(Yamashita et al., 2018; Ye et al., 2022), and in Geodesign, 
they are applied to land cover classification and satel-
lite image analysis for spatial planning (Fan et  al., 2023; 
Zhang et  al., 2019). Long Short-Term Memory (LSTM) 
networks, another deep learning method, are designed 
for sequential data and can capture long-term dependen-
cies (Graves, 2012), making them ideal for predicting time 
series data like urban growth or environmental changes 
in Geodesign (Wurm et al., 2021). Recurrent Neural Net-
works (RNNs), while similar to LSTMs, retain short-term 
memory of previous inputs (Caterini & Chang, 2018), 
and are useful for tasks such as analyzing traffic patterns 
and environmental changes over time, though they are 
limited in capturing long sequences (Lukic Vujadinovic 
et  al., 2024). Transformers, an advanced deep learn-
ing model, use attention mechanisms to handle sequen-
tial data without relying on recurrence (Lin et al., 2022), 
making them powerful for integrating large-scale, com-
plex geospatial datasets or automating design tasks in 
Geodesign, such as interpreting geographic features from 
text descriptions (Deng et al., 2024).

Generative AI refers to a subset of deep learning that 
focuses on generating new content, such as images, text, 
or other data, by learning patterns from existing data-
sets (Deng et  al., 2024). It has gained significant atten-
tion and rapid development in recent years. some of the 
more popular generative AI models include Generative 
Adversarial Networks (GANs), consisting of a generator 
and discriminator that compete to create highly realistic 
outputs (Goodfellow et al., 2014), are applied in Geode-
sign to generate urban layouts or simulate environmental 
impacts (Huang et  al., 2022; Ye et  al., 2022). Variational 
Autoencoders (VAEs), which encode and sample from a 
latent space to generate diverse design options (Doersch, 
2021), making them useful in Geodesign for explor-
ing alternative landscape or urban scenarios (Xu et  al., 
2021). Additionally, diffusion models iteratively refine 
noise into structured images (Croitoru et al., 2023), mak-
ing them effective for visualizing complex environmental 
phenomena like flood patterns (Shao et al., 2024). These 
generative AI models are transforming Geodesign by 
automating the generation of realistic design scenarios, 
enhancing creative exploration, and supporting data-
driven decision-making in urban and environmental 
planning.

Multi-objective optimization is the process of optimiz-
ing two or more conflicting objectives simultaneously, 
often resulting in a set of solutions, where improving 
one objective means compromising another (Deb et  al., 
2016). Unlike deep learning, which focuses on learning 
patterns from large datasets for predictions or content 
generation, multi-objective optimization is about find-
ing balanced solutions for competing goals. Methods 
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such as Ridge Regression, which regularizes coefficients 
to handle multicollinearity (McDonald, 2009), are used in 
Geodesign to model spatial data, such as predicting envi-
ronmental changes based on multiple correlated factors 
(Carneiro et al., 2022). Multiple Linear Regression mod-
els the relationship between a dependent variable and 
multiple predictors (Eberly, 2007), helping Geodesigners 
quantify how factors like land use and population affect 
urban growth (Triantakonstantis & Mountrakis, 2012). 
Logistic Regression predicts binary outcomes (LaValley, 
2008), useful in Geodesign for categorizing areas as suit-
able or unsuitable for development (Siddiqui et al., 2018). 
Lastly, the Non-dominated Sorting Genetic Algorithm 
(NSGA-II) is an evolutionary algorithm that identifies 
optimal trade-offs in multi-objective problems (Yusoff 
et al., 2011), allowing Geodesigners to balance competing 
objectives like cost-efficiency and environmental sustain-
ability in urban planning (Quan, 2019; Zhu et al., 2023). 
These methods help analyze and optimize geospatial data 
for more informed design decisions.

2.2 � Application of AI in Geodesign
As the two categories of six questions in Steinitz’s frame-
work of Geodesign, We can also classify the application 
AI in Geodesign into two categories: Understanding the 
existing system and designing future changes (Table  2). 
For the first category, AI has been widely applied in land 
se and land cover classification, urban heat island effect 
(UHI), energy consumption and resource use, and hazard 
risk and resilience assessment.

AI has revolutionized land use and land cover clas-
sification, improving accuracy in detecting changes in 
urban and natural landscapes. For instance, Zhang et al. 
(2019) used a fully Atrous convolutional neural network 
(FACNN) to classify land cover in Wuhan, China, out-
performing other models. Similarly, Chen et  al. (2023) 
introduced a hierarchical convolutional recurrent neu-
ral network (HCRNN) for multispectral remote sens-
ing, achieving high classification accuracy in forest cover 
monitoring. AI is also pivotal in assessing the urban heat 
island (UHI) effect, with deep learning models improv-
ing predictions of UHI patterns (Johannsen et al., 2024; 
Oh et al., 2020). In energy optimization, AI-driven meth-
ods like those by Shan et  al. (2022) and Li et  al. (2023) 
have enhanced energy efficiency and comfort in build-
ings. These tools leverage data mining and optimization 
algorithms to identify key features influencing energy 
use. Additionally, AI’s role in hazard risk assessment 
has improved disaster preparedness, with hybrid mod-
els combining CNN and traditional methods to predict 
landslides (Aslam et  al., 2021) and floods (Satarzadeh 
et al., 2022). AI also supports sustainable urban planning 
and design, generating context-aware designs through 

frameworks like CAIN-GAN (Jiang et  al., 2024) and 
Urban-GAN (Quan, 2022). In renewable energy infra-
structure, AI techniques optimize performance, such as 
Chang et al. (2019) using reinforcement learning for sus-
tainable campus design, while Nutkiewicz et  al. (2018) 
employed machine learning to model energy consump-
tion. Lastly, AI aids in optimizing high-rise building 
designs, meeting energy efficiency standards like LEED 
(Ekici et al., 2021).

3 � Challenges in Integrating AI in Geodesign
The integration of AI into Geodesign heralds a new era 
of spatial planning and design, offering transformative 
potential in how we approach urban and environmental 
challenges. However, this integration is not without com-
plexities and limitations. Understanding these challenges 
is crucial for leveraging AI effectively in Geodesign while 
mitigating potential drawbacks.

One of the primary challenges in incorporating AI into 
Geodesign is the heavy reliance on data. AI algorithms, 
particularly ML models, require large volumes of high-
quality, accurate data to function effectively. However, 
acquiring such comprehensive data can be challenging, 
especially in less developed regions where data may be 
scarce or non-existent (Dehghan Hosseinabadi, 2018). 
Further, data quality issues such as inaccuracies, incon-
sistencies, and biases can lead to flawed AI analyses and 
predictions, potentially resulting in suboptimal design 
decisions (Du et al., 2023a, 2023b). This reliance on data 
is somewhat of a double-edged sword; while it enables AI 
to process complex information, it also makes AI as good 
as the data it is fed.

Another significant challenge is the complexity and 
interpretability of AI models. Many AI algorithms, espe-
cially those based on DL, are complex and difficult in 
understanding how these algorithms arrive at specific 
conclusions or predictions. This lack of transparency can 
be problematic in Geodesign, where stakeholders often 
require clear explanations for design decisions (Bishop, 
2013; Ervin, 2016). This opacity complicates determining 
responsibility for outcomes, especially if negative impacts 
arise. Additionally, transparency and interpretability 
is essential for the iterative improvement of AI models. 
Understanding how decisions are made allows develop-
ers and users to identify shortcomings, errors, or areas 
for enhancement in AI systems. Without this insight, 
improving the accuracy, efficiency, and relevance of AI 
applications in geodesign becomes a much more difficult 
task. (J. Du et al., 2023a, 2023b).

The risk of over-reliance on AI in Geodesign is also 
a concern that cannot be overlooked as an excessive 
dependence on AI might diminish the role of human 
expertise and judgment in Geodesign and stifle human 
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Table 2  AI applications in Geodesign and related cases

Category Application Area Case Reference

Understanding the Existing System Land Use and Land Cover Classification FACNN applied to remote sensing 
images in Wuhan to classify and detect 
urban land cover changes, improving 
classification accuracy

(Zhang et al., 2019)

HCRNN applied to multispectral 
Sentinel-2 data to classify land cover 
in Guangxi, achieving 97.62% accuracy

(Fan et al., 2023)

Two-level machine learning model 
classifies urban forms in Taipei using 
multi-class classification and clustering 
models

(Chen et al., 2023)

Urban Heat Island (UHI) Effect CNN-based model used for build-
ing stock and heat demand analysis 
in urban areas, reducing heat demand 
by 47%

(Wurm et al., 2021)

CNN downscaling of land surface 
temperature (LST) in Paris improves 
the representation of UHI and tempera-
ture extremes

(Johannsen et al., 2024)

DNN models for UHI pattern prediction 
in Seoul, introducing UHI-hours metric 
to assess the long-term impact of UHI

(Oh et al., 2020)

Energy Consumption and Resource Use Data mining (clustering, PCA, RF) used 
to identify key features in building 
energy consumption, offering insights 
for energy-efficient design

(Shan et al., 2022)

NSGA-II combined with parametric 
simulation to optimize energy use 
and comfort in old communities, signifi-
cantly reducing emissions

(Z. Li et al., 2023)

Energy estimation techniques reviewed 
to raise awareness in ML, encouraging 
energy-efficient practices in algorithm 
development

(García-Martín et al., 2019)

Hazard Risk and Resilience Assessment Hybrid CNN + SVM models applied 
for landslide susceptibility in Pakistan, 
improving prediction accuracy

(Aslam et al., 2021)

DBN + PSO used for flood hazard 
mapping in Western Iran, achieving 
the highest predictive performance

(Satarzadeh et al., 2022)

DNN models for predicting earthquake-
triggered disaster chains in Sichuan, 
demonstrating high accuracy in cascad-
ing disaster risks

(Su et al., 2022)
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creativity and innovation in the design practices. AI 
should augment, not replace, the unique insights and 
experience of professionals. There have also been cases 
in which AI algorithms inadvertently perpetuated 
biases and led to unfair outcomes. Such a risk raises 

ethical concerns in their application into Geodesign 
processes (Safdar et al., 2020).

There are growing concerns over ethical use of data 
and privacy issues in the use of AI in Geodesign (Safdar 
et  al., 2020). Firstly, the extensive data needed for AI 

Table 2  (continued)

Category Application Area Case Reference

Designing Future Changes Scenario-Based Urban Design Genera-
tion

CAIN-GAN applied to generate 
context-sensitive urban designs in NYC, 
enhancing automated site planning 
with sustainability evaluation

(Jiang et al., 2024)

Urban-GAN enables participatory urban 
design using GAN and case-based 
reasoning, generating designs for cities 
like Manhattan and Portland

(Quan, 2022)

DNN models combined with urban 
planning knowledge to generate 
realistic, context-aware street networks 
in urban areas

(Fang et al., 2022)

Optimization of Green Infrastructure CA-Markov + MSPA applied to optimize UGI 
in Beijing, enhancing connectivity and sus-
tainable urban development by 2030

(Ma et al., 2022)

SVM + SHAP + NSGA-II used to plan GI 
for flood-prone areas in Beijing, optimiz-
ing flood prevention and investment 
efficiency

(Chen et al., 2024)

MLP + SWMM meta-model used 
for urban stormwater management 
in Tehran, reducing runoff volume 
and pollution levels

(Raei et al., 2019)

Sustainable Urban Planning MDP + AI applied to optimize urban 
water resource management, improv-
ing water distribution and economic 
efficiency

(Xiang et al., 2021)

Genetic algorithms combined 
with AIAD to co-evolve urban plan-
ning solutions in high-density areas 
like Gangnam, Seoul

(Quan et al., 2019)

Deep learning applied to optimize 
public transport headways in Belgrade, 
improving regularity and passenger 
comfort

(Lukic Vujadinovic et al., 2024)

Renewable Energy Infrastructure Design AI and multi-criteria analysis applied 
to optimize energy use and solar 
radiation management in Georgia Tech 
campus

(Chang et al., 2019)

ResNet + engineering simulations used 
to predict energy consumption in urban 
buildings in California, improving multi-
scale energy predictions

(Nutkiewicz et al., 2018)

MUZO optimization applied to high-rise 
buildings for energy efficiency in dense 
urban areas, meeting LEED standards

(Ekici et al., 2021)
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training, especially for generative AI large models, poses 
a heightened risk to data security, as it encompasses 
a wider range of personal information. Secondly, AI’s 
output, derived from complex processing, subtly alters 
input data, making privacy breaches less detectable and 
more covert compared to previous more straightforward 
digital tool operations (Peltz & Street, 2020). Geodesign 
often involves sensitive data, including information about 
individuals and communities, especially when integrating 
citizen science. Thus, ensuring the privacy and security of 
data in AI applications is paramount (Kamila & Jasrotia, 
2023; Peltz & Street, 2020).

Finally, we are also facing technological and resource 
constraints. The cost of developing, implementing, and 
maintaining AI systems can be prohibitive, especially for 
smaller organizations or projects. Managing AI systems 
in Geodesign projects requires specialized skills, which 
may not be readily available in many organizations. 
Hence, the use of AI in Geodesign emphasizes the need 
for substantial technological infrastructure and expertise 
for effective AI integration. In general, AI algorithms per-
form better in specific tasks and fall short in adaptability 
and flexibility often required by some Geodesign pro-
jects. This means human intuition and experience must 
step in to solve some ambiguous or complex problems in 
reality.

3.1 � Future prospects and ethical considerations
The integration of AI into Geodesign represents a new 
phase of this evolving practice.  In the face of signifi-
cant technological advancements, adopting a mindset 
that combines enthusiasm for innovation with a critical 
understanding of its implications is imperative.

First, the potential of AI in transforming Geodesign is 
immense. AI’s ability to process and analyze large data-
sets can lead to better informed decision-making in 
urban planning and environmental management. AI can 
enhance the efficiency and accuracy of spatial planning, 
offering innovative solutions to complex problems (Batty, 
2018; Yigitcanlar et  al., 2020). However, this advantage 
comes with some tradeoffs. AI systems, particularly those 
based on DL, can be complex and often operate as “black 
boxes.” This lack of transparency can be problematic in 
Geodesign, where understanding the rationale behind 
design decisions is crucial (Kitchin, 2016). The integra-
tion of AI should not be seen as a replacement for human 
expertise but as a tool to amplify it. While AI can auto-
mate and optimize various aspects of Geodesign, it can-
not replace the nuanced understanding and creativity of 
human professionals. This balance is crucial for ensuring 
that Geodesign remains a human-centered discipline, 
grounded on ethical and sustainable practices (Ye et al., 
2023a). These ethical considerations are paramount when 

using AI in Geodesign. Concerns regarding data privacy, 
algorithmic transparency, and fair outcomes should take 
precedence in discussions surrounding AI integration 
(Sanchez et al., 2024). Ensuring that AI is used responsi-
bly and ethically is essential for maintaining public trust 
and achieving equitable and sustainable results (Ye et al., 
2023b). Finally, the field of Geodesign will continue to 
evolve, thanks to the advancement of AI and other digital 
technologies (Ye et al., 2023a). This means professionals 
in this field should commit to learning and adaptation, 
staying abreast of these new tools and techniques in order 
to produce best practices. This commitment is essential 
for harnessing the full potential of AI in Geodesign.

4 � Conclusion
The integration of AI into Geodesign marks a transform-
ative step in how we approach urban planning, environ-
mental management, and spatial design. This paper has 
explored how AI enhances traditional Geodesign pro-
cesses by offering advanced tools for data analysis, pre-
dictive modeling, and design generation. Applications of 
AI, such as land use classification, energy consumption 
optimization, and green infrastructure planning and sce-
nario-based urban design generation have demonstrated 
the potential of AI to improve the accuracy and efficiency 
of planning processes. However, the challenges associ-
ated with AI in Geodesign—such as data quality, model 
transparency, and ethical considerations around privacy 
and bias—require ongoing attention.

AI’s role in Geodesign is not to replace human exper-
tise but to augment it, providing a more nuanced and 
data-driven approach to tackling complex urban and 
environmental challenges. As AI technologies continue 
to evolve, they will play an increasingly important role in 
shaping sustainable and resilient cities. Future research 
should focus on addressing the limitations of AI models, 
particularly in terms of transparency, ethics, and inclusiv-
ity, ensuring that the benefits of AI-driven Geodesign are 
distributed equitably. In conclusion, while AI has opened 
new possibilities for Geodesign, a balanced approach that 
integrates technological innovation with human over-
sight and ethical practices is essential for creating sus-
tainable, resilient, and inclusive urban environments.
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