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Abstract

outcomes.

This paper explores the evolution of Geodesign in addressing spatial and environmental challenges from its early
foundations to the recent integration of artificial intelligence (Al). Al enhances existing Geodesign methods by auto-
mating spatial data analysis, improving land use classification, refining heat island effect assessment, optimizing
energy use, facilitating green infrastructure planning, and generating design scenarios. Despite the transformative
potential of Al in Geodesign, challenges related to data quality, model interpretability, and ethical concerns such

as privacy and bias persist. This paper highlights case studies that demonstrate the application of Al in Geodesign,
offering insights into its role in understanding existing systems and designing future changes. The paper concludes
by advocating for the responsible and transparent integration of Al to ensure equitable and effective Geodesign
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1 Introduction

The use of innovative digital tools to analyze, design, and
plan geographic space is often referred to as Geospatial
Design (or Geodesign). Geodesign’s early foundations
were rooted in the 1960s development of Geographic
Information Systems (GIS) (Tomlinson, 1969). Tom-
linson’s work on the Canada Geographic Information
System introduced a system for managing large, geo-
graphically referenced datasets (Barker, 2011). Harvard
Laboratory for Computer Graphics and Spatial Analysis
played a crucial role in the development of Geodesign
by pioneering the use of computer technology in col-
laborative, data-driven design processes (Steinitz, 2016).
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Steinitz’s "A Framework for Geodesign: Changing Geog-
raphy by Design" (2012) presents a systematic approach
to integrating geographic knowledge with design pro-
cesses through six interconnected models (Representa-
tion, Process, Evaluation, Change, Impact, Decision) that
emphasize collaboration, technology integration, iterative
cycles, and ethical considerations to create sustainable
and resilient environments. This framework underscores
the iterative nature of design, where spatial data continu-
ally informs and refines design solutions (Steinitz, 2012).
McHarg’s Design with Nature (1969) transformed land-
scape architecture by promoting an ecological approach
that integrates natural processes into design. His layered
mapping of environmental factors like soil, vegetation,
and hydrology laid the groundwork for modern GIS.
Both McHarg and Steinitz applied Geodesign principles
to urban and environmental challenges, building the
Geodesign community through collaborative initiatives
(McHarg, 1969; Steinitz, 2012). Geodesign combines
geography with design methodologies, integrating sys-
tems thinking and digital technology for interdisciplinary
planning (Goodchild, 2010; Steinitz, 2016). Its advance-
ments in 3D modeling, Al, and urban analytics enhance
data-driven decision-making and dynamic design pro-
cesses (Campagna, 2016; Ervin, 2016; Wilson, 2015). This
paper clarifies Geodesign’s distinction from traditional

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44243-025-00054-5&domain=pdf
http://orcid.org/0000-0001-8838-9476

Page 2 of 12

(2025) 3:4

Ye et al. Frontiers of Urban and Rural Planning

S9WODINO Bueuwop sdnoib [eD0A JO XS ‘SaAN
-2>adsiad 9519AIp Bul|1DUOIRI AYNIYJIP ‘BUILINSUODI-3WI |

92825 1O PR1ePINO 3G AeW BIEP ‘DAI1I3(GNS 3¢

ued uoinelaidiaiul ‘erep Jo Aljenb pue Aljige|ieAe UO sal|oYy
SUbISSP USALIP-e1ep JO 3|eds-ab.e| 10}

uolisaid S32e| ‘AIPOou 01 NJYIP ‘SAISUSIUI-IOCET]

s1oedull 9A1B|NWIND S1eWI)

-S9J1apun Aew ‘Seiq JO 3SU ‘9AISUSIUI-90IN0sal pue Xa|dwo)

S1X21U0D [eUOIB3I JoPrOIQ IO SUOH
-Ipuod BulbueYd J0J JUNODIE 10U ABW ‘BUIUNSUOD-IWI |

sabueyd djweuAp 21n1ded Jouued ‘suojsidap papinb
-SIW 01 PeS| UBd B1ep S1RINDIRUI/P3IBPINO ‘2IN1RU DIIRIS

S9AIIDadsIad pue abpajmouy [Bd0|
sabesana| ‘ssedoid UBISIP 3Y3 Ul SISP|OY¥PIS SSAJOAU| Buiuueld pue ubisag Aioredidnled
9|eUOI1RI DYIIUBIDS SUbISIPOID) yum subie
‘s3ybisul usAup-elep ‘[esuidws ybnoayy ubisap swioju| Buiuueld pue ubissg paseq-adusapIAg
subisap Jo s1oadse ¢ azijensia
sd|ay ‘UONrIOCE|[0D PUE UOIIEDIUNWUIOD SS1R[IDB4  S3UDISNS UMBIP-PURH PUE S|9POA [BIISAU sabuey) aining buiubissqg
1uswdojensp s|gisuodsal BulNsus ‘sainsesw uon
-ebiiuw sesodoud pue s1oedull [EIUSUIUOIIAUS $95595SY JUSWISSISSY 10edW| [EIUSWIUOIIAUT
9IS B JO S3INGLIII. [BINYND pUE ‘|edI60)
-01q ‘[e21sAyd ay3 Jo BuipuelsIspUN P3|ILISP B SSPIAQL SIUSWISSISSY AN|IGRUNS PUE SisAleuy 2115
UOIBAISSUOD 4O 1USUIdO[RASP J0) Seale AJusp!
sdjoy ‘e1ep [PIUSWUOIIAUD X3|dW 0D syuasaidal Ajjensip Burddepy AeponQ  wiaisAs bunsixg ayi buipueisiapun

suoneywr]

syibuans [JIEIN] K1o6a3e)H

suolIeYIWI| pue SYIBUaIS JI9Y1 pue ‘UbIsapoan) Ul spoyiaw bunsixj | ajqer



Ye et al. Frontiers of Urban and Rural Planning (2025) 3:4

spatial modeling and explores how AI enhances its
effectiveness.

1.1 Steinitz's framework of Geodesign

Steinitz’s well-known work "A Framework for Geodesign:
Changing Geography by Design” introduces six core ques-
tions that structure the Geodesign (Steinitz, 2012):

1. How should the study area be described?

This question is about defining the characteristics of
the area under consideration, covering physical, cul-
tural, and environmental aspects. It aims to estab-
lish a clear understanding of the study area’s current
state.

2. How does the study area operate?

This focuses on understanding the underlying sys-
tems, functions, and processes of the study area, such
as ecological functions, social dynamics, or infra-
structure performance.

3. Is the current study area working well?

This question evaluates the current effectiveness of
the study area in meeting its intended goals or sus-
taining its systems, identifying whether there are any
existing issues or opportunities for improvement.

4. How might the study area be altered?

The framework looks into possible changes or inter-
ventions that could be made, envisioning different
scenarios or solutions for modifying the area.

5. What difference might the changes cause?

This question assesses the potential outcomes and
impacts of the proposed changes, predicting how the
study area’s function, structure, or conditions might
be affected.

6. How should the study area be changed?

Finally, the framework calls for a decision on the best
course of action, integrating all previous considera-
tions to determine how to effectively implement the
proposed changes.

The questions in Steinitz’s framework can be grouped
into two categories: "Understanding the Existing Sys-
tem" and "Designing Future Changes." The first three
questions focus on analyzing and evaluating the current
conditions and performance of the study area, aiming to
build a solid foundation of knowledge before any design
work begins. The remaining three questions are forward-
looking, concentrating on proposing, evaluating, and
deciding on potential interventions to improve or modify
the study area. Table 1 shows existing methods to deal
with these issues in geodesign.

For the first category of questions in “understanding
the existing system’, existing methodologies such as over-
lay mapping, site analysis and suitability assessments, and
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environmental impact assessments are commonly used
(Table 1). These approaches help to describe, analyze,
and evaluate the current conditions of the study area in
detail. Overlay mapping is a key element of Geodesign
methods (McHarg, 1969), involving the layering of the-
matic maps like topography, vegetation, hydrology, and
land use to provide a comprehensive landscape under-
standing (Goodchild, 2010; McHarg, 1969). This visual,
systematic approach evaluates land suitability based on
ecological principles, enabling planners to assess cumu-
lative environmental impacts and make environmentally
sensitive decisions (McHarg, 1969). Geodesign integrates
proposals with impact simulations, using geographic
contexts and systems thinking to foster collaboration
between communities, designers, and scientists. (Stein-
itz, 2016). The strength of overlay mapping lies in its
ability to visually represent complex environmental data,
making it easier to identify areas suitable for develop-
ment, conservation, or other land uses (Steiner, 2013).
This method has been instrumental in promoting an
ecological approach to planning, emphasizing the impor-
tance of respecting natural processes and patterns in
design decisions.

Site analysis and suitability assessments are critical
components of Geodesign (Reynolds, 2014). This pro-
cess involves a detailed examination of a site’s physical,
biological, and cultural attributes to determine its suit-
ability for various types of development or conservation
(Ernst et al., 2019). This method requires a comprehen-
sive understanding of the site’s conditions such as its
topography, soil, vegetation, climate, hydrology, as well
as its socio-economic and cultural context. The goal of
site analysis and suitability assessment is to identify the
most appropriate, sustainable, and efficient use of land
(Davis et al, 2021). This involves balancing the natural
characteristics of the site with the needs and aspirations
of the community. It is a process that requires careful
consideration of various factors, including environmen-
tal constraints, potential impacts on biodiversity, and the
capacity of the land to support different types of uses.

As noted, environmental impact assessments are
also a critical process in Geodesign. These assessments
involve evaluating the potential environmental impacts
of proposed developments and identifying measures to
mitigate negative effects (Campagna et al., 2019). This
process is essential for ensuring that development pro-
jects are environmentally responsible and sustainable.
It includes assessing the impact on ecosystems, biodi-
versity, water and air quality, and other environmental
factors. It involves predicting and evaluating the likely
environmental impacts, both positive and negative,
and proposing mitigation measures to reduce adverse
effects. The process typically includes several stages,
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such as screening, scoping, impact analysis, mitigation,
reporting, and monitoring (Morgan, 2012). It requires a
thorough understanding of the environmental baseline
conditions and the potential changes that a proposed
development might bring.

For the second category of questions in “designing
future changes,” methods like physical models and hand-
drawn sketches, evidence-based design and planning
and participatory design and planning are more suitable
(Table 1). These focus on developing, testing, and refining
potential changes while involving stakeholders and lever-
aging empirical evidence to ensure that interventions are
both effective and appropriate.

Physical models and hand-drawn sketches were essen-
tial in early Geodesign projects and processes (Moura,
2015). These methods provided tangible representations
of spatial data and design proposals, facilitating commu-
nication and collaboration among designers, planners,
and stakeholders. Physical models were particularly valu-
able for understanding the three-dimensional aspects of
design proposals, allowing for a more intuitive grasp of
scale, form, and spatial relationships (D. J. Lee et al., 2014;
Steiner, 2013). Physical models and sketches played a cru-
cial role in the design process, serving as tools for explo-
ration, communication, and collaboration. They allowed
designers and planners to test ideas, visualize concepts,
and engage stakeholders in a more interactive and tangi-
ble way (Risinger, 2012).

Evidence-based design and planning places significant
importance on using empirical data to facilitate design
decisions. Evidence-based design is a fundamental prin-
ciple in the field of Geodesign, which emphasizes the use
of data-driven insights to inform and shape design deci-
sions (Hamilton, 2003). This phenomenon may be seen
via empirical research that examines the therapeutic ben-
efits of green spaces on mental well-being, with the aim
of providing insights for the design of urban parks (Lee
& Maheswaran, 2011). Additionally, studies also explore
the complex interplay between urban morphologies and
community mobility (Lee & Maheswaran, 2011; Wang
et al., 2020). Evidence based design and planning are
highly aligned with Geodesign in that both approaches
integrate a scientific rationale for decision making as well
as assess intervention strategies through impact and per-
formance modeling. Evidence-based designs and plans
are inherently grounded in quantitative performance
measures. Unfortunately, many of these performance
measures, while increasing, have not yet been fully incor-
porated into Geodesign projects. Many measures have
recently been developed through performance mod-
eling which seek to more scientifically evaluate impacts
and more accurately measure the effectiveness with
which developed solutions fulfil their intended purpose.
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These measures and impact models are highly supported
through the analytics and visualization capabilities made
possible by AL

Participatory design and planning, also known as co-
design/planning, is based on the active involvement
of stakeholders throughout the design process (Ernst
et al.,, 2019; Sanders & Stappers, 2008). Steinitz (2012)
highlighted the importance of Geodesign as a multidis-
ciplinary approach to landscape and urban planning,
emphasizing the need for collaborative, flexible, and
adaptive methods to address complex environmental
and urban challenges. Within the domain of Geodesign,
it is essential to place significant attention on engaging
stakeholders because of the broad and diverse nature
of Geodesign projects. Stakeholders play a crucial role
in the identification of possible difficulties and oppor-
tunities, as well as in the iterative assessment of design
scenarios (Flaxman, 2010). Their richness of localized
information and views makes them vital in this process.
This paradigm aligns well with the fundamental prin-
ciples of Geodesign, which promote an iterative and
systems-oriented design philosophy (Steinitz, 2012). In
addition, human-centered approach is characterized by
its sympathetic approach, which places a high priority
on addressing the needs, desires, and experiences of the
targeted end-users (Norman & Stappers, 2015; Wu et al.,
2023).

Geodesign, as a design philosophy, demands a thor-
ough evaluation of every stakeholder involved, so guar-
anteeing that the results are not only practical but also
culturally meaningful. The inclusion of participatory
design techniques is often required, including the active
engagement of stakeholders and the incorporation of
their comments to enhance the refinement of design sce-
narios (Flaxman, 2010). This allows Geodesign solutions
to undergo comprehensive assessments that go beyond
considering just physical or environmental characteris-
tics. This is especially beneficial when integrating data-
sets involving citizen science, the practice of collecting
and analyzing data related to the natural world by mem-
bers of the general public, into the Geodesign process.

2 Limitations of existing methods in Geodesign

Existing Geodesign methods, while valuable in planning
and design, have limitations (Flaxman, 2010; McHarg,
1969; Steinitz, 2012). Understanding these limitations
is crucial for advancing the practice of Geodesign and
addressing contemporary challenges. First, overlay map-
ping, though visually useful, is static and struggles to
reflect dynamic ecological and social systems, especially
temporal heterogeneities (Tulloch, 2017). Additionally,
outcomes depend on accurate data, and outdated or
incorrect data can lead to misguided decisions (Fusco
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et al, 2017). Traditional site analysis is often time-
consuming and may not account for rapidly changing
environments (Campagna & Di Cesare, 2016). Further,
methods may focus too narrowly on local contexts,
neglecting broader regional implications (Steinitz, 2012).
In addition, environmental impact assessments are com-
plex, requiring multidisciplinary input, and often over-
look cumulative impacts, risking underestimation of true
environmental effects (Therivel, 2013).

Physical models and hand-drawn sketches, while useful
for visualizing spatial relationships and engaging stake-
holders, are time-consuming and labor-intensive, mak-
ing frequent modifications difficult. They also lack the
detail and precision needed for large-scale or data-driven
designs, limiting their support for quantitative analysis
and informed decision-making compared to digital tools.

Relatedly, while participatory design seeks to engage
the community actively, it encounters difficulties in
accommodating the diverse viewpoints and interests pre-
sent. The process tends to be lengthy and is frequently
subject to disputes or delays in decision-making due to
the challenge of reconciling various stakeholder perspec-
tives. Moreover, there exists a risk that vocal groups may
overshadow the contributions of less vocal participants,
potentially skewing outcomes. This issue largely stems
from disparities in resources and organizational capa-
bilities among stakeholders, complicating the achieve-
ment of equitable and inclusive design solutions (Ortega
Sanchez de Lerin, 2019; Sanoff, 1999). Similarly, evi-
dence-based design and planning relies on the availability
and quality of research and data. In many cases, relevant
data may be scarce, outdated, or not specific enough for
particular design contexts. Moreover, the interpretation
of data and research findings can be subjective, leading to
different conclusions and design outcomes (Albert et al.,
2021).

2.1 Incorporation of Artificial Intelligence (Al)
into Geodesign

Al integration into Geodesign enhances data analysis,
predictive modeling, decision-making, and participa-
tory processes, surpassing traditional methods (Du et al,,
2023a, 2023b; Ervin, 2016; Ye et al., 2021). It revolution-
izes spatial data interpretation, efficiently handling large
datasets and identifying complex spatiotemporal patterns
(Liu et al., 2023; Mortaheb & Jankowski, 2023; Tang et al.,
2020; Wang et al., 2016; Wu et al.,, 2022). Deep learning
is a subset of AI that involves training neural networks
with many layers to automatically learn patterns and rep-
resentations from large amounts of data (LeCun et al.,
2015). Convolutional Neural Networks (CNNs), a popu-
lar deep learning model, are used for processing grid-like
data, especially images, by identifying spatial features
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(Yamashita et al., 2018; Ye et al., 2022), and in Geodesign,
they are applied to land cover classification and satel-
lite image analysis for spatial planning (Fan et al., 2023;
Zhang et al., 2019). Long Short-Term Memory (LSTM)
networks, another deep learning method, are designed
for sequential data and can capture long-term dependen-
cies (Graves, 2012), making them ideal for predicting time
series data like urban growth or environmental changes
in Geodesign (Wurm et al.,, 2021). Recurrent Neural Net-
works (RNNs), while similar to LSTMs, retain short-term
memory of previous inputs (Caterini & Chang, 2018),
and are useful for tasks such as analyzing traffic patterns
and environmental changes over time, though they are
limited in capturing long sequences (Lukic Vujadinovic
et al, 2024). Transformers, an advanced deep learn-
ing model, use attention mechanisms to handle sequen-
tial data without relying on recurrence (Lin et al., 2022),
making them powerful for integrating large-scale, com-
plex geospatial datasets or automating design tasks in
Geodesign, such as interpreting geographic features from
text descriptions (Deng et al., 2024).

Generative Al refers to a subset of deep learning that
focuses on generating new content, such as images, text,
or other data, by learning patterns from existing data-
sets (Deng et al,, 2024). It has gained significant atten-
tion and rapid development in recent years. some of the
more popular generative Al models include Generative
Adversarial Networks (GANs), consisting of a generator
and discriminator that compete to create highly realistic
outputs (Goodfellow et al., 2014), are applied in Geode-
sign to generate urban layouts or simulate environmental
impacts (Huang et al., 2022; Ye et al.,, 2022). Variational
Autoencoders (VAEs), which encode and sample from a
latent space to generate diverse design options (Doersch,
2021), making them useful in Geodesign for explor-
ing alternative landscape or urban scenarios (Xu et al.,
2021). Additionally, diffusion models iteratively refine
noise into structured images (Croitoru et al., 2023), mak-
ing them effective for visualizing complex environmental
phenomena like flood patterns (Shao et al., 2024). These
generative Al models are transforming Geodesign by
automating the generation of realistic design scenarios,
enhancing creative exploration, and supporting data-
driven decision-making in urban and environmental
planning.

Multi-objective optimization is the process of optimiz-
ing two or more conflicting objectives simultaneously,
often resulting in a set of solutions, where improving
one objective means compromising another (Deb et al.,
2016). Unlike deep learning, which focuses on learning
patterns from large datasets for predictions or content
generation, multi-objective optimization is about find-
ing balanced solutions for competing goals. Methods
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such as Ridge Regression, which regularizes coefficients
to handle multicollinearity (McDonald, 2009), are used in
Geodesign to model spatial data, such as predicting envi-
ronmental changes based on multiple correlated factors
(Carneiro et al.,, 2022). Multiple Linear Regression mod-
els the relationship between a dependent variable and
multiple predictors (Eberly, 2007), helping Geodesigners
quantify how factors like land use and population affect
urban growth (Triantakonstantis & Mountrakis, 2012).
Logistic Regression predicts binary outcomes (LaValley,
2008), useful in Geodesign for categorizing areas as suit-
able or unsuitable for development (Siddiqui et al., 2018).
Lastly, the Non-dominated Sorting Genetic Algorithm
(NSGA-II) is an evolutionary algorithm that identifies
optimal trade-offs in multi-objective problems (Yusoff
et al., 2011), allowing Geodesigners to balance competing
objectives like cost-efficiency and environmental sustain-
ability in urban planning (Quan, 2019; Zhu et al., 2023).
These methods help analyze and optimize geospatial data
for more informed design decisions.

2.2 Application of Al in Geodesign

As the two categories of six questions in Steinitz’s frame-
work of Geodesign, We can also classify the application
Al in Geodesign into two categories: Understanding the
existing system and designing future changes (Table 2).
For the first category, Al has been widely applied in land
se and land cover classification, urban heat island effect
(UHI), energy consumption and resource use, and hazard
risk and resilience assessment.

Al has revolutionized land use and land cover clas-
sification, improving accuracy in detecting changes in
urban and natural landscapes. For instance, Zhang et al.
(2019) used a fully Atrous convolutional neural network
(FACNN) to classify land cover in Wuhan, China, out-
performing other models. Similarly, Chen et al. (2023)
introduced a hierarchical convolutional recurrent neu-
ral network (HCRNN) for multispectral remote sens-
ing, achieving high classification accuracy in forest cover
monitoring. Al is also pivotal in assessing the urban heat
island (UHI) effect, with deep learning models improv-
ing predictions of UHI patterns (Johannsen et al., 2024;
Oh et al,, 2020). In energy optimization, Al-driven meth-
ods like those by Shan et al. (2022) and Li et al. (2023)
have enhanced energy efficiency and comfort in build-
ings. These tools leverage data mining and optimization
algorithms to identify key features influencing energy
use. Additionally, AI's role in hazard risk assessment
has improved disaster preparedness, with hybrid mod-
els combining CNN and traditional methods to predict
landslides (Aslam et al., 2021) and floods (Satarzadeh
et al., 2022). Al also supports sustainable urban planning
and design, generating context-aware designs through

Page 6 of 12

frameworks like CAIN-GAN (Jiang et al., 2024) and
Urban-GAN (Quan, 2022). In renewable energy infra-
structure, Al techniques optimize performance, such as
Chang et al. (2019) using reinforcement learning for sus-
tainable campus design, while Nutkiewicz et al. (2018)
employed machine learning to model energy consump-
tion. Lastly, Al aids in optimizing high-rise building
designs, meeting energy efficiency standards like LEED
(Ekici et al., 2021).

3 Challenges in Integrating Al in Geodesign

The integration of Al into Geodesign heralds a new era
of spatial planning and design, offering transformative
potential in how we approach urban and environmental
challenges. However, this integration is not without com-
plexities and limitations. Understanding these challenges
is crucial for leveraging Al effectively in Geodesign while
mitigating potential drawbacks.

One of the primary challenges in incorporating Al into
Geodesign is the heavy reliance on data. Al algorithms,
particularly ML models, require large volumes of high-
quality, accurate data to function effectively. However,
acquiring such comprehensive data can be challenging,
especially in less developed regions where data may be
scarce or non-existent (Dehghan Hosseinabadi, 2018).
Further, data quality issues such as inaccuracies, incon-
sistencies, and biases can lead to flawed Al analyses and
predictions, potentially resulting in suboptimal design
decisions (Du et al., 2023a, 2023b). This reliance on data
is somewhat of a double-edged sword; while it enables AI
to process complex information, it also makes Al as good
as the data it is fed.

Another significant challenge is the complexity and
interpretability of AI models. Many Al algorithms, espe-
cially those based on DL, are complex and difficult in
understanding how these algorithms arrive at specific
conclusions or predictions. This lack of transparency can
be problematic in Geodesign, where stakeholders often
require clear explanations for design decisions (Bishop,
2013; Ervin, 2016). This opacity complicates determining
responsibility for outcomes, especially if negative impacts
arise. Additionally, transparency and interpretability
is essential for the iterative improvement of AI models.
Understanding how decisions are made allows develop-
ers and users to identify shortcomings, errors, or areas
for enhancement in Al systems. Without this insight,
improving the accuracy, efficiency, and relevance of Al
applications in geodesign becomes a much more difficult
task. (J. Du et al., 2023a, 2023b).

The risk of over-reliance on Al in Geodesign is also
a concern that cannot be overlooked as an excessive
dependence on AI might diminish the role of human
expertise and judgment in Geodesign and stifle human
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Table 2 Al applications in Geodesign and related cases
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Category

Application Area

Case

Reference

Understanding the Existing System Land Use and Land Cover Classification

Urban Heat Island (UHI) Effect

Energy Consumption and Resource Use

Hazard Risk and Resilience Assessment

FACNN applied to remote sensing
images in Wuhan to classify and detect
urban land cover changes, improving
classification accuracy

HCRNN applied to multispectral
Sentinel-2 data to classify land cover
in Guangxi, achieving 97.62% accuracy

Two-level machine learning model
classifies urban forms in Taipei using
multi-class classification and clustering
models

CNN-based model used for build-

ing stock and heat demand analysis

in urban areas, reducing heat demand
by 47%

CNN downscaling of land surface
temperature (LST) in Paris improves
the representation of UHI and tempera-
ture extremes

DNN models for UHI pattern prediction
in Seoul, introducing UHI-hours metric
to assess the long-term impact of UHI

Data mining (clustering, PCA, RF) used
to identify key features in building
energy consumption, offering insights
for energy-efficient design

NSGA-Il combined with parametric
simulation to optimize energy use

and comfort in old communities, signifi-
cantly reducing emissions

Energy estimation techniques reviewed
to raise awareness in ML, encouraging
energy-efficient practices in algorithm
development

Hybrid CNN+SVM models applied
for landslide susceptibility in Pakistan,
improving prediction accuracy

DBN+PSO used for flood hazard
mapping in Western Iran, achieving
the highest predictive performance

DNN models for predicting earthquake-
triggered disaster chains in Sichuan,
demonstrating high accuracy in cascad-
ing disaster risks

(Zhang et al., 2019)

(Fan et al,, 2023)

(Chen et al, 2023)

(Wurm et al,, 2021)

(Johannsen et al.,, 2024)

(Oh et al, 2020)

(Shan et al., 2022)

(Z. Lietal, 2023)

(Garcia-Martin et al., 2019)

(Aslam et al, 2021)

(Satarzadeh et al,, 2022)

(Suetal, 2022)
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Table 2 (continued)
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Category Application Area

Case Reference

Designing Future Changes Scenario-Based Urban Design Genera-

tion

Optimization of Green Infrastructure

Sustainable Urban Planning

Renewable Energy Infrastructure Design

CAIN-GAN applied to generate
context-sensitive urban designs in NYC,
enhancing automated site planning
with sustainability evaluation

(Jiang et al,, 2024)

Urban-GAN enables participatory urban
design using GAN and case-based
reasoning, generating designs for cities
like Manhattan and Portland

(Quan, 2022)

DNN models combined with urban
planning knowledge to generate
realistic, context-aware street networks
in urban areas

(Fang et al, 2022)

CA-Markov+MSPA applied to optimize UGl (Ma et al., 2022)
in Beijing, enhancing connectivity and sus-

tainable urban development by 2030

SVM + SHAP + NSGA-Il used to plan Gl
for flood-prone areas in Beijing, optimiz-
ing flood prevention and investment
efficiency

(Chen et al, 2024)

MLP +SWMM meta-model used
for urban stormwater management
in Tehran, reducing runoff volume
and pollution levels

(Raei et al,, 2019)

MDP + Al applied to optimize urban
water resource management, improv-
ing water distribution and economic
efficiency

(Xiang et al,, 2021)

Genetic algorithms combined (Quan et al, 2019)
with AIAD to co-evolve urban plan-
ning solutions in high-density areas

like Gangnam, Seoul

Deep learning applied to optimize
public transport headways in Belgrade,
improving regularity and passenger
comfort

(Lukic Vujadinovic et al., 2024)

Al and multi-criteria analysis applied

to optimize energy use and solar
radiation management in Georgia Tech
campus

(Chang et al,, 2019)

ResNet+engineering simulations used  (Nutkiewicz et al., 2018)
to predict energy consumption in urban
buildings in California, improving multi-

scale energy predictions

MUZO optimization applied to high-rise
buildings for energy efficiency in dense
urban areas, meeting LEED standards

(Ekicietal, 2021)

creativity and innovation in the design practices. Al
should augment, not replace, the unique insights and
experience of professionals. There have also been cases
in which AI algorithms inadvertently perpetuated
biases and led to unfair outcomes. Such a risk raises

ethical concerns in their application into Geodesign
processes (Safdar et al., 2020).

There are growing concerns over ethical use of data
and privacy issues in the use of Al in Geodesign (Safdar
et al, 2020). Firstly, the extensive data needed for Al
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training, especially for generative Al large models, poses
a heightened risk to data security, as it encompasses
a wider range of personal information. Secondly, AIs
output, derived from complex processing, subtly alters
input data, making privacy breaches less detectable and
more covert compared to previous more straightforward
digital tool operations (Peltz & Street, 2020). Geodesign
often involves sensitive data, including information about
individuals and communities, especially when integrating
citizen science. Thus, ensuring the privacy and security of
data in Al applications is paramount (Kamila & Jasrotia,
2023; Peltz & Street, 2020).

Finally, we are also facing technological and resource
constraints. The cost of developing, implementing, and
maintaining Al systems can be prohibitive, especially for
smaller organizations or projects. Managing Al systems
in Geodesign projects requires specialized skills, which
may not be readily available in many organizations.
Hence, the use of Al in Geodesign emphasizes the need
for substantial technological infrastructure and expertise
for effective Al integration. In general, Al algorithms per-
form better in specific tasks and fall short in adaptability
and flexibility often required by some Geodesign pro-
jects. This means human intuition and experience must
step in to solve some ambiguous or complex problems in
reality.

3.1 Future prospects and ethical considerations
The integration of AI into Geodesign represents a new
phase of this evolving practice. In the face of signifi-
cant technological advancements, adopting a mindset
that combines enthusiasm for innovation with a critical
understanding of its implications is imperative.

First, the potential of Al in transforming Geodesign is
immense. Als ability to process and analyze large data-
sets can lead to better informed decision-making in
urban planning and environmental management. Al can
enhance the efficiency and accuracy of spatial planning,
offering innovative solutions to complex problems (Batty,
2018; Yigitcanlar et al., 2020). However, this advantage
comes with some tradeoffs. Al systems, particularly those
based on DL, can be complex and often operate as “black
boxes” This lack of transparency can be problematic in
Geodesign, where understanding the rationale behind
design decisions is crucial (Kitchin, 2016). The integra-
tion of Al should not be seen as a replacement for human
expertise but as a tool to amplify it. While Al can auto-
mate and optimize various aspects of Geodesign, it can-
not replace the nuanced understanding and creativity of
human professionals. This balance is crucial for ensuring
that Geodesign remains a human-centered discipline,
grounded on ethical and sustainable practices (Ye et al.,
2023a). These ethical considerations are paramount when
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using Al in Geodesign. Concerns regarding data privacy,
algorithmic transparency, and fair outcomes should take
precedence in discussions surrounding Al integration
(Sanchez et al., 2024). Ensuring that Al is used responsi-
bly and ethically is essential for maintaining public trust
and achieving equitable and sustainable results (Ye et al.,
2023b). Finally, the field of Geodesign will continue to
evolve, thanks to the advancement of Al and other digital
technologies (Ye et al., 2023a). This means professionals
in this field should commit to learning and adaptation,
staying abreast of these new tools and techniques in order
to produce best practices. This commitment is essential
for harnessing the full potential of Al in Geodesign.

4 Conclusion

The integration of Al into Geodesign marks a transform-
ative step in how we approach urban planning, environ-
mental management, and spatial design. This paper has
explored how Al enhances traditional Geodesign pro-
cesses by offering advanced tools for data analysis, pre-
dictive modeling, and design generation. Applications of
Al such as land use classification, energy consumption
optimization, and green infrastructure planning and sce-
nario-based urban design generation have demonstrated
the potential of AI to improve the accuracy and efficiency
of planning processes. However, the challenges associ-
ated with Al in Geodesign—such as data quality, model
transparency, and ethical considerations around privacy
and bias—require ongoing attention.

AT’s role in Geodesign is not to replace human exper-
tise but to augment it, providing a more nuanced and
data-driven approach to tackling complex urban and
environmental challenges. As Al technologies continue
to evolve, they will play an increasingly important role in
shaping sustainable and resilient cities. Future research
should focus on addressing the limitations of AI models,
particularly in terms of transparency, ethics, and inclusiv-
ity, ensuring that the benefits of Al-driven Geodesign are
distributed equitably. In conclusion, while Al has opened
new possibilities for Geodesign, a balanced approach that
integrates technological innovation with human over-
sight and ethical practices is essential for creating sus-
tainable, resilient, and inclusive urban environments.

Acknowledgements
We greatly appreciate the helpful comments and suggestions from the editor
and anonymous reviewers.

Authors’ contributions
All authors read and approved the final manuscript.

Funding

This material is partially based upon work supported by the National Science
Foundation under 2401860 and 2430700, NASA under 8ONSSC22KM0052,

as well as Texas A&M University Harold Adams Interdisciplinary Professorship
Research Fund. Any opinions, findings, and conclusions or recommendations



Ye et al. Frontiers of Urban and Rural Planning (2025) 3:4

expressed in this material are those of the author and the funders have no role
in the study design, data collection, analysis, or preparation of this article.

Data availability
Data from this project is available upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests

The authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in the
subject matter or materials discussed in this manuscript.

Received: 28 May 2024 Revised: 14 January 2025 Accepted: 8 February
2025
Published online: 07 March 2025

References

Albert, C, Brillinger, M., Guerrero, P, Gottwald, S., Henze, J,, Schmidt, S., Ott,
E., & Schréter, B. (2021). Planning nature-based solutions: Principles,
steps, and insights. Ambio, 50(8), 1446-1461. https://doi.org/10.1007/
513280-020-01365-1

Aslam, B,, Zafar, A, & Khalil, U. (2021). Development of integrated deep learn-
ing and machine learning algorithm for the assessment of landslide
hazard potential. Soft Computing, 25(21), 13493-13512. https://doi.org/
10.1007/500500-021-06105-5

Barker, A. (2011). Thinking about GIS: Geographic information system planning
for managers. Fourth Edition. Geomatica, 65(3), 325-327.

Batty, M. (2018). Artificial intelligence and smart cities. In Environment and
Planning B: Urban Analytics and City Science (Vol. 45, Issue 1, pp. 3-6).
SAGE Publications Sage UK: London, England.

Bishop, I. (2013). Optimization in Geodesign. Landscape Architecture. Frontiers,
1(6), 64-75.

Caglioni, M., & Campagna, M. (2021). Chapter 12 - Geodesign for collaborative
spatial planning: Three case studies at different scales. In E. Garbolino
& C. Voiron-Canicio (Eds.), Ecosystem and Territorial Resilience (pp.
323-345). Elsevier. https://doi.org/10.1016/B978-0-12-818215-4.00012-2

Campagna, M. (2016). Metaplanning: About designing the Geodesign process.
Landscape and Urban Planning, 156, 118-128. https://doi.org/10.1016/j.
landurbplan.2015.08.019

Campagna, M., & Di Cesare, E. A. (2016). Geodesign: Lost in Regulations (and
in Practice). In R. Papa & R. Fistola (Eds.), Smart Energy in the Smart City:
Urban Planning for a Sustainable Future (pp. 307-327). Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-319-31157-9_16

Campagna, M., Cesare, E. A. D, Matta, A, & Serra, M. (2019). Bridging the Gap
Between Strategic Environmental Assessment and Planning: A Geode-
sign Perspective. In Environmental Information Systems: Concepts,
Methodologies, Tools, and Applications (pp. 569-589). IGI Global.
https://doi.org/10.4018/978-1-5225-7033-2.ch024

Carneiro, T. C,, Rocha, P. A. C,, Carvalho, P.C. M., & Ferndndez-Ramirez, L. M.
(2022). Ridge regression ensemble of machine learning models applied
to solar and wind forecasting in Brazil and Spain. Applied Energy, 314,
118936. https://doi.org/10.1016/j.apenergy.2022.118936

Caterini, A. L, & Chang, D. E. (2018). Recurrent Neural Networks. In A. L. Caterini
& D. E. Chang (Eds.), Deep Neural Networks in a Mathematical Frame-
work (pp. 59-79). Springer International Publishing. https://doi.org/10.
1007/978-3-319-75304-1_5

Chang, S, Saha, N., Castro-Lacouture, D, & Pei-Ju Yang, P. (2019). Generative
design and performance modeling for relationships between urban
built forms, sky opening, solar radiation and energy. Energy Procedia,
158,3994-4002. https://doi.org/10.1016/j.egypro.2019.01.841

Chen, H., Dong, Y., Li, H, Tian, S, Wu, L, Li, J,, & Lin, C. (2024). Optimized green
infrastructure planning at the city scale based on an interpretable
machine learning model and multi-objective optimization algorithm: A

Page 10 of 12

case study of central Beijing. China. Landscape and Urban Planning, 252,
105191. https://doi.org/10.1016/j.landurbplan.2024.105191

Chen, C-Y, Koch, F, &Reicher, C. (2023). Developing a two-level machine-
learning approach for classifying urban form for an East Asian mega-
city. Environment and Planning B: Urban Analytics and City Science,
23998083231204606. https://doi.org/10.1177/23998083231204606

Cocco, C,, Rezende Freitas, C., Mourdo Moura, A. C, & Campagna, M. (2020).
Geodesign Process Analytics: Focus on Design as a Process and Its
Outcomes. Sustainability, 12(1), Article 1. https://doi.org/10.3390/
su12010119

Croitoru, F-A, Hondru, V., lonescu, R. T, & Shah, M. (2023). Diffusion Models
in Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(9), 10850-10869. IEEE Transactions on Pattern Analysis
and Machine Intelligence. https://doi.org/10.1109/TPAMI.2023.3261988

Davis, J,, Pijawka, K. D, Wentz, E,, Hale, M., & King, D. A. (2021). Evaluating
Geodesign for Community-Based Tribal Planning. Journal of the Ameri-
can Planning Association, 87(4), 527-541. https://doi.org/10.1080/01944
363.2021.1873168

Deb, K, Sindhya, K, &Hakanen, J. (2016). Multi-Objective Optimization. CRC Press.

Dehghan Hosseinabadi, S. (2018). Utilization of computational planning and
geo-design as a tool for having interactive conversations in scenario
planning. http://hdl.handle.net/2152/65799

Deng, J,, Chai, W.,, Huang, J., Zhao, Z,, Huang, Q, Gao, M., Guo, J, Hao, S., Hu, W,
Hwang, J-N,, Li, X, & Wang, G. (2024). CityCraft: A Real Crafter for 3D City
Generation (arXiv:2406.04983). arXiv. https://doi.org/10.48550/arXiv.
2406.04983

Doersch, C. (2021). Tutorial on Variational Autoencoders (arXiv:1606.05908).
arXiv. https://doi.org/10.48550/arXiv.1606.05908

Du, H, Li, Z, Niyato, D,, Kang, J, Xiong, Z, Huang, H., & Mao, S. (2023). Genera-
tive Al-aided Optimization for Al-Generated Content (AIGC) Services in
Edge Networks (arXiv:2303.13052). arXiv. https://doi.org/10.48550/arXiv.
2303.13052

Du, J, Ye, X., Jankowski, P, Sanchez, T.W.,, & Mai, G. (2023). Artificial intelligence
enabled participatory planning: A review. International Journal of
Urban Sciences, 0(0), 1-28. https://doi.org/10.1080/12265934.2023.
2262427

Eberly, L. E. (2007). Multiple Linear Regression. In W. T. Ambrosius (Ed.), Topics
in Biostatistics (pp. 165-187). Humana Press. https://doi.org/10.1007/
978-1-59745-530-5_9

Ekici, B, Kazanasmaz, Z. T, Turrin, M., Tasgetiren, M. F, & Sariyildiz, I. S. (2021).
Multi-zone optimisation of high-rise buildings using artificial intel-
ligence for sustainable metropolises. Part 2: Optimisation problems,
algorithms, results, and method validation. Solar Energy, 224, 309-326.
https://doi.org/10.1016/j.s0lener.2021.05.082

Ernst, F, Erdogan, S., Yilmaz, M., Ulukavak, M., Senol, H. 1, Memduhoglu, A, &
Cullu, M. A.(2019). GEODESIGN FOR URBAN PLANNING - THE EXAM-
PALE OF HARRAN UNIVERSITY'S CAMPUS MASTERPLAN. International
Journal of Environmental Trends (IJENT), 3(1), Article 1.

Ervin, S. M. (2016). Technology in geodesign. Landscape and Urban Planning,
156, 12-16. https://doi.org/10.1016/j.landurbplan.2016.09.010

Fan, X, Chen, L, Xu, X, Yan, C, Fan, J, & Lii, X. (2023). Land Cover Classification of
Remote Sensing Images Based on Hierarchical Convolutional Recurrent
Neural Network. Forests, 14(9), Article 9. https://doi.org/10.3390/f14091881

Fang, Z, Jin, Y, &Yang, T. (2022). Incorporating Planning Intelligence into Deep
Learning: A Planning Support Tool for Street Network Design. Journal
of Urban Technology, 29(2), 99-114. https://doi.org/10.1080/10630732.
2021.2001713

Flaxman, M. (2010). Geodesign: Fundamentals and routes forward. Presenta-
tion to the Geodesign Summit.

Fusco, G,, Caglioni, M., Emsellem, K., Merad, M., Moreno, D., & Voiron-Canicio, C.
(2017). Questions of uncertainty in geography. Environment and Plan-
ning a: Economy and Space, 49(10), 2261-2280. https://doi.org/10.1177/
0308518X17718838

Garcia-Martin, E,, Rodrigues, C. F, Riley, G, & Grahn, H. (2019). Estimation of
energy consumption in machine learning. Journal of Parallel and Distrib-
uted Computing, 134, 75-88. https://doi.org/10.1016/,jpdc.2019.07.007

Goodchild, M. F. (2010). Towards Geodesign: Repurposing Cartography and
GIS? Cartographic Perspectives, 66, Article 66. https://doi.org/10.14714/
CP66.93

Goodfellow, I, Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A, & Bengio, Y. (2014). Generative Adversarial Nets.


https://doi.org/10.1007/s13280-020-01365-1
https://doi.org/10.1007/s13280-020-01365-1
https://doi.org/10.1007/s00500-021-06105-5
https://doi.org/10.1007/s00500-021-06105-5
https://doi.org/10.1016/B978-0-12-818215-4.00012-2
https://doi.org/10.1016/j.landurbplan.2015.08.019
https://doi.org/10.1016/j.landurbplan.2015.08.019
https://doi.org/10.1007/978-3-319-31157-9_16
https://doi.org/10.4018/978-1-5225-7033-2.ch024
https://doi.org/10.1016/j.apenergy.2022.118936
https://doi.org/10.1007/978-3-319-75304-1_5
https://doi.org/10.1007/978-3-319-75304-1_5
https://doi.org/10.1016/j.egypro.2019.01.841
https://doi.org/10.1016/j.landurbplan.2024.105191
https://doi.org/10.1177/23998083231204606
https://doi.org/10.3390/su12010119
https://doi.org/10.3390/su12010119
https://doi.org/10.1109/TPAMI.2023.3261988
https://doi.org/10.1080/01944363.2021.1873168
https://doi.org/10.1080/01944363.2021.1873168
http://hdl.handle.net/2152/65799
http://arxiv.org/abs/2406.04983
https://doi.org/10.48550/arXiv.2406.04983
https://doi.org/10.48550/arXiv.2406.04983
http://arxiv.org/abs/1606.05908
https://doi.org/10.48550/arXiv.1606.05908
http://arxiv.org/abs/2303.13052
https://doi.org/10.48550/arXiv.2303.13052
https://doi.org/10.48550/arXiv.2303.13052
https://doi.org/10.1080/12265934.2023.2262427
https://doi.org/10.1080/12265934.2023.2262427
https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/10.1016/j.solener.2021.05.082
https://doi.org/10.1016/j.landurbplan.2016.09.010
https://doi.org/10.3390/f14091881
https://doi.org/10.1080/10630732.2021.2001713
https://doi.org/10.1080/10630732.2021.2001713
https://doi.org/10.1177/0308518X17718838
https://doi.org/10.1177/0308518X17718838
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.14714/CP66.93
https://doi.org/10.14714/CP66.93

Ye et al. Frontiers of Urban and Rural Planning (2025) 3:4

Advances in Neural Information Processing Systems, 27. https://
proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122
f61f8f06494c97b1afccf3-Abstract.html

Graves, A. (2012). Long Short-Term Memory. In A. Graves (Ed.), Supervised
Sequence Labelling with Recurrent Neural Networks (pp. 37-45).
Springer. https://doi.org/10.1007/978-3-642-24797-2_4

Gu, Y, Deal, B, & Larsen, L. (2018). Geodesign Processes and Ecological
Systems Thinking in a Coupled Human-Environment Context: An
Integrated Framework for Landscape Architecture. Sustainability,
10(9), Article 9. https://doi.org/10.3390/su10093306

Hamilton, D. (2003). The four levels of evidencebased practice. Healthcare
Design Magazine, 3.

Huang, C,, Zhang, G,, Yao, J, Wang, X,, Calautit, J. K, Zhao, C,, An, N, & Peng,
X.(2022). Accelerated environmental performance-driven urban
design with generative adversarial network. Building and Environ-
ment, 224, 109575. https://doi.org/10.1016/}.buildenv.2022.109575

Jiang, F, Ma, J,, Webster, C. J,, Wang, W., & Cheng, J. C. P. (2024). Automated
site planning using CAIN-GAN model. Automation in Construction,
159,105286. https://doi.org/10.1016/j.autcon.2024.105286

Johannsen, F, Soares, P. M. M., & Langendijk, G. S. (2024). On the deep learn-
ing approach for improving the representation of urban climate: The
Paris urban heat island and temperature extremes. Urban Climate, 56,
102039. https://doi.org/10.1016/j.uclim.2024.102039

Kamila, M. K., & Jasrotia, S. S. (2023). Ethical issues in the development of
artificial intelligence: Recognizing the risks. International Journal of
Ethics and Systems, ahead-of-print(ahead-of-print). https://doi.org/
10.1108/1JOES-05-2023-0107

Kitchin, R. (2016). The ethics of smart cities and urban science. Philosophi-
cal Transactions of the Royal Society a: Mathematical, Physical and
Engineering Sciences, 374(2083), 20160115. https://doi.org/10.1098/
rsta.2016.0115

LaValley, M. P. (2008). Logistic Regression. Circulation, 117(18), 2395-2399.
https://doi.org/10.1161/CIRCULATIONAHA.106.682658

LeCun, Y. Bengio, Y, & Hinton, G. (2015). Deep learning. Nature, 521(7553),
Article 7553. https://doi.org/10.1038/nature14539

Lee, D. J, Dias, E,, & Scholten, H. J. (2014). Introduction to Geodesign
Developments in Europe. In D. J. Lee, E. Dias, & H. J. Scholten (Eds.),
Geodesign by Integrating Design and Geospatial Sciences (pp.
3-9). Springer International Publishing. https://doi.org/10.1007/
978-3-319-08299-8_1

Lee, A. C.K, & Maheswaran, R. (2011). The health benefits of urban green
spaces: A review of the evidence. Journal of Public Health, 33(2),
212-222. https://doi.org/10.1093/pubmed/fdq068

Li, W., & Milburn, L.-A. (2016). The evolution of geodesign as a design and
planning tool. Landscape and Urban Planning, 156, 5-8. https://doi.
0rg/10.1016/j.landurbplan.2016.09.009

Li, Z, Zou, Y., Xia, H., & Jin, C. (2023). Multi-objective optimization design
of residential area based on microenvironment simulation. Journal
of Cleaner Production, 425, 138922. https://doi.org/10.1016/j.jclepro.
2023.138922

Lin, T, Wang, Y., Liu, X, & Qiu, X. (2022). A Survey of Transformers. Al Open, 3,
111-132. https://doi.org/10.1016/j.aiopen.2022.10.001

Liu, C, Ye, X, Yuan, X, Long, Y, Zhang, W,, Guan, C, & Zhang, F. (2023). Round-
table discussion: Progress of urban informatics in urban planning.
Frontiers of Urban and Rural Planning, 1(1), 23.

Lukic Vujadinovic, V., Damnjanovic, A, Cakic, A, Petkovic, D. R, Prelevic, M.,
Pantovic, V., Stojanovic, M., Vidojevic, D, Vranjes, D.,, & Bodolo, I. (2024).
Al-Driven Approach for Enhancing Sustainability in Urban Public
Transportation. Sustainability, 16(17), Article 17. https://doi.org/10.
3390/5u16177763

Ma, Y., Zheng, X, Liu, M, Liu, D,, Ai, G, & Chen, X. (2022). Spatio-temporal evolu-
tion characteristics analysis and optimization prediction of urban green
infrastructure: A case study of Beijing. China. Scientific Reports, 12(1),
10702. https://doi.org/10.1038/541598-022-14613-z

McDonald, G. C. (2009). Ridge regression. WIREs. Computational Statistics, 1(1),
93-100. https://doi.org/10.1002/wics.14

McHarg, I. L. (1969). Design with nature ([1st ed.]). Published for the American
Museum of Natural History [by] the Natural History Press.

Morgan, R. K. (2012). Environmental impact assessment: The state of the art.
Impact Assessment and Project Appraisal, 30(1), 5-14. https://doi.org/10.
1080/14615517.2012.661557

Page 11 of 12

Mortaheb, R., & Jankowski, P. (2023). Smart city re-imagined: City planning and
GeoAl in the age of big data. Journal of Urban Management, 12(1), 4-15.
https://doi.org/10.1016/jjum.2022.08.001

Moura, A. C. M. (2015). Geodesign in Parametric Modeling of urban landscape.
Cartography and Geographic Information Science, 42(4), 323-332. https://
doi.org/10.1080/15230406.2015.1053527

Norman, D. A, & Stappers, P. J. (2015). DesignX: Complex Sociotechnical
Systems. She Ji: The Journal of Design, Economics, and Innovation, 1(2),
83-106. https://doi.org/10.1016/j.sheji.2016.01.002

Nutkiewicz, A, Yang, Z, & Jain, R. K. (2018). Data-driven Urban Energy Simula-
tion (DUE-S): A framework for integrating engineering simulation and
machine learning methods in a multi-scale urban energy modeling
workflow. Applied Energy, 225, 1176-1189. https://doi.org/10.1016/j.
apenergy.2018.05.023

Oh, J. W, Ngarambe, J,, Duhirwe, P.N,, Yun, G. Y., & Santamouris, M. (2020).
Using deep-learning to forecast the magnitude and characteristics of
urban heat island in Seoul Korea. Scientific Reports, 10(1), 3559. https://
doi.org/10.1038/541598-020-60632-7

Peltz, J, & Street, A. C. (2020). Artificial Intelligence and Ethical Dilemmas
Involving Privacy. In Y. R. Masakowski (Ed.), Artificial Intelligence and
Global Security (pp. 95-120). Emerald Publishing Limited. https://doi.
org/10.1108/978-1-78973-811-720201006

Quan, S. J. (2019). Smart Design for Sustainable Neighborhood Development.
Energy Procedia, 158,6515-6520. https://doi.org/10.1016/j.egypro.2019.
01.108

Quan, S. J, Park, J,, Economou, A, & Lee, S. (2019). Artificial intelligence-aided
design: Smart Design for sustainable city development. Environment
and Planning b: Urban Analytics and City Science, 46(8), 1581-1599.
https://doi.org/10.1177/2399808319867946

Quan, S. J. (2022). Urban-GAN: An artificial intelligence-aided computation
system for plural urban design. Environment and Planning B: Urban
Analytics and City Science, 239980832211005. https://doi.org/10.1177/
23998083221100550

Raei, E, Reza Alizadeh, M., Reza Nikoo, M., & Adamowski, J. (2019). Multi-objec-
tive decision-making for green infrastructure planning (LID-BMPs) in
urban storm water management under uncertainty. Journal of Hydrol-
ogy, 579, 124091. https://doi.org/10.1016/j.jhydrol.2019.124091

Reynolds, J. A. (2014). A Geodesign Inspired Multiple Criteria Decision Tool for
Prioritizing Levee Setback Project Sites [Thesis]. https://digital.lib.washi
ngton.edu:443/researchworks/handle/1773/26840

Risinger, E. D. (2012). Defining GeoDesign and the emergent role of the
sustainable sites initiative (SITES) for integrative project management.
http://hdl.handle.net/2152/29161

Safdar, N. M., Banja, J. D., & Meltzer, C. C. (2020). Ethical considerations in artifi-
cial intelligence. European Journal of Radiology, 122, 108768. https://doi.
0rg/10.1016/j.€jrad.2019.108768

Ortega Sénchez de Lerin, G. (2019). Beyond models digital tools for urban
design as mechanisms for better planning practices [Thesis, Massachu-
setts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/
123936

Sanchez, T.W., Brenman, M., & Ye, X. (2024). The Ethical Concerns of Artificial
Intelligence in Urban Planning. Journal of the American Planning
Association, 1-14.

Sanders, EB.-N., & Stappers, P. J. (2008). Co-creation and the new landscapes
of design. CoDesign, 4(1), 5-18. https://doi.org/10.1080/1571088070
1875068

Sanoff, H. (1999). Community Participation Methods in Design and Planning.
John Wiley & Sons.

Satarzadeh, E, Sarraf, A, Hajikandi, H., & Sadeghian, M. S. (2022). Flood hazard
mapping in western Iran: Assessment of deep learning vis-a-vis
machine learning models. Natural Hazards, 111(2), 1355-1373. https//
doi.org/10.1007/511069-021-05098-6

Shan, X, Deng, Q, Tang, Z, Wu, Z,, & Wang, W. (2022). An integrated data
mining-based approach to identify key building and urban features of
different energy usage levels. Sustainable Cities and Society, 77, 103576.
https://doi.org/10.1016/j.5¢5.2021.103576

Shao, P, Feng, J, Ly, J, Zhang, P, & Zou, C. (2024). Data-driven and knowledge-
guided denoising diffusion model for flood forecasting. Expert Systems
with Applications, 244, 122908. https://doi.org/10.1016/j.eswa.2023.
122908


https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.3390/su10093306
https://doi.org/10.1016/j.buildenv.2022.109575
https://doi.org/10.1016/j.autcon.2024.105286
https://doi.org/10.1016/j.uclim.2024.102039
https://doi.org/10.1108/IJOES-05-2023-0107
https://doi.org/10.1108/IJOES-05-2023-0107
https://doi.org/10.1098/rsta.2016.0115
https://doi.org/10.1098/rsta.2016.0115
https://doi.org/10.1161/CIRCULATIONAHA.106.682658
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-08299-8_1
https://doi.org/10.1007/978-3-319-08299-8_1
https://doi.org/10.1093/pubmed/fdq068
https://doi.org/10.1016/j.landurbplan.2016.09.009
https://doi.org/10.1016/j.landurbplan.2016.09.009
https://doi.org/10.1016/j.jclepro.2023.138922
https://doi.org/10.1016/j.jclepro.2023.138922
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.3390/su16177763
https://doi.org/10.3390/su16177763
https://doi.org/10.1038/s41598-022-14613-z
https://doi.org/10.1002/wics.14
https://doi.org/10.1080/14615517.2012.661557
https://doi.org/10.1080/14615517.2012.661557
https://doi.org/10.1016/j.jum.2022.08.001
https://doi.org/10.1080/15230406.2015.1053527
https://doi.org/10.1080/15230406.2015.1053527
https://doi.org/10.1016/j.sheji.2016.01.002
https://doi.org/10.1016/j.apenergy.2018.05.023
https://doi.org/10.1016/j.apenergy.2018.05.023
https://doi.org/10.1038/s41598-020-60632-z
https://doi.org/10.1038/s41598-020-60632-z
https://doi.org/10.1108/978-1-78973-811-720201006
https://doi.org/10.1108/978-1-78973-811-720201006
https://doi.org/10.1016/j.egypro.2019.01.108
https://doi.org/10.1016/j.egypro.2019.01.108
https://doi.org/10.1177/2399808319867946
https://doi.org/10.1177/23998083221100550
https://doi.org/10.1177/23998083221100550
https://doi.org/10.1016/j.jhydrol.2019.124091
https://digital.lib.washington.edu:443/researchworks/handle/1773/26840
https://digital.lib.washington.edu:443/researchworks/handle/1773/26840
http://hdl.handle.net/2152/29161
https://doi.org/10.1016/j.ejrad.2019.108768
https://doi.org/10.1016/j.ejrad.2019.108768
https://dspace.mit.edu/handle/1721.1/123936
https://dspace.mit.edu/handle/1721.1/123936
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1007/s11069-021-05098-6
https://doi.org/10.1007/s11069-021-05098-6
https://doi.org/10.1016/j.scs.2021.103576
https://doi.org/10.1016/j.eswa.2023.122908
https://doi.org/10.1016/j.eswa.2023.122908

Ye et al. Frontiers of Urban and Rural Planning (2025) 3:4

Siddiqui, A, Siddiqui, A, Maithani, S., Jha, A. K, Kumar, P, & Srivastav, S. K. (2018).

Urban growth dynamics of an Indian metropolitan using CA Markov
and Logistic Regression. The Egyptian Journal of Remote Sensing and
Space Science, 21(3), 229-236. https://doi.org/10.1016/j.ejrs.2017.11.006

Steiner, F. (2013). Representing Complexity. Landscape Architecture. Frontiers,
1(6), 44-63.

Steinitz, C. (2016). Beginnings of Geodesign: A personal historical perspective.
Research in Urbanism Series, 4, 9-24. https://doi.org/10.7480/rius.4.1366

Steinitz, C. (2012). A Framework for Geodesign: Changing Geography by
Design (lllustrated edition). Esri Press.

Su,Y, Rong, G, Ma, Y, Chi, J,, Liu, X, Zhang, J,, & Li, T. (2022). Hazard Assessment
of Earthquake Disaster Chains Based on Deep Learning—A Case Study
of Mao County, Sichuan Province. Frontiers in Earth Science, 9. https://
doi.org/10.3389/feart.2021.683903

Tang, Z,Ye, Y, Jiang, Z, Fu, C, Huang, R, &Yao, D. (2020). A data-informed
analytical approach to human-scale greenway planning: Integrating
multi-sourced urban data with machine learning algorithms. Urban
Forestry & Urban Greening, 56, 126871. https://doi.org/10.1016/j.ufug.
2020.126871

Therivel, J. G, Riki. (2013). Introduction To Environmental Impact Assessment
(4th ed.). Routledge. https://doi.org/10.4324/9781315881218

Tomlinson, R. F. (1969). A Geographic Information System for Regional Plan-
ning. Journal of Geography (Chigaku Zasshi), 78(1), 45-48. https://doi.
0rg/10.5026/jgeography.78.45

Triantakonstantis, D., & Mountrakis, G. (2012). Urban Growth Prediction: A
Review of Computational Models and Human Perceptions. 2012.
https://doi.org/10.4236/jgis.2012.46060

Tulloch, D. (2017). Toward a working taxonomy of geodesign practice. Transac-
tions in GIS, 21(4), 635-646. https://doi.org/10.1111/tgis.12245

Wang, Y, Jiang, W, Liy, S., Ye, X, & Wang, T. (2016). Evaluating trade areas using
social media data with a calibrated huff model. [SPRS International
Journal of Geo-Information, 5(7), 112.

Wang, T, Yue, W, Ye, X, Liu, Y, & Lu, D. (2020). Re-evaluating polycentric urban
structure: A functional linkage perspective. Cities, 101, 102672.

Wilson, M. W. (2015). On the criticality of mapping practices: Geodesign as
critical GIS? Landscape and Urban Planning, 142, 226-234. https://doi.
0rg/10.1016/j.landurbplan.2013.12.017

Wu, C-L, & Chiang, Y--C. (2018). A geodesign framework procedure for devel-
oping flood resilient city. Habitat International, 75, 78-89. https://doi.
0rg/10.1016/j.habitatint.2018.04.009

Wu, L, Peng, Q, Lemke, M., Hu, T,, & Gong, X. (2022). Spatial social network
research: A bibliometric analysis. Computational Urban Science, 2(1), 21.

Wu, C, Ye,Y, Gao, F, & Ye, X. (2023). Using street view images to examine the
association between human perceptions of locale and urban vitality in
Shenzhen. China. Sustainable Cities and Society, 88, 104291.

Wurm, M., Droin, A, Stark, T, Geif3, C,, Sulzer, W,, & Taubenbdck, H. (2021). Deep
Learning-Based Generation of Building Stock Data from Remote Sens-
ing for Urban Heat Demand Modeling. ISPRS International Journal of
Geo-Information, 10(1), Article 1. https://doi.org/10.3390/ijgi10010023

Xiang, X, Li, Q, Khan, S,, & Khalaf, O. . (2021). Urban water resource manage-
ment for sustainable environment planning using artificial intelligence
techniques. Environmental Impact Assessment Review, 86, 106515.
https://doi.org/10.1016/j.€iar.2020.106515

Xu, L, Xiangli, Y., Rao, A, Zhao, N, Dai, B,, Liu, Z,, & Lin, D. (2021). BlockPlanner:
City Block Generation with Vectorized Graph Representation. IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, 5057-5066.
https://doi.org/10.1109/ICCV48922.2021.00503

Yamashita, R, Nishio, M., Do, R. K. G, & Togashi, K. (2018). Convolutional neural
networks: An overview and application in radiology. Insights into Imag-
ing, 9(4), 611-629. https://doi.org/10.1007/513244-018-0639-9

Ye, X, Wang, S, Lu, Z, Song, Y, &Yu, S. (2021). Towards an Al-driven framework
for multi-scale urban flood resilience planning and design. Computa-
tional Urban Science, 1, 1-12.

Ye, X, Du, J, & Ye, Y. (2022). MasterplanGAN: Facilitating the smart rendering of
urban master plans via generative adversarial networks. Environment
and Planning b: Urban Analytics and City Science, 49(3), 794-814. https.//
doi.org/10.1177/23998083211023516

Ye, X, Du, J, Han, Y, Newman, G,, Retchless, D., Zou, L., Ham, Y., & Cai, Z. (2023a).
Developing Human-Centered Urban Digital Twins for Community Infra-
structure Resilience: A Research Agenda. Journal of Planning Literature,
38(2), 187-199. https://doi.org/10.1177/08854122221137861

Page 12 of 12

Ye, X, Newman, G, Lee, C, Van Zandt, S., & Jourdan, D. (2023b). Toward Urban
artificial intelligence for developing justice-oriented smart cities. Jour-
nal of Planning Education and Research, 43(1), 6-7.

Yigitcanlar, T, Kankanamge, N., Regona, M., Ruiz Maldonado, A, Rowan, B., Ryu,
A, Desouza, K. C, Corchado, J. M, Mehmood, R, &Li, R. Y. M. (2020).
Artificial Intelligence Technologies and Related Urban Planning and
Development Concepts: How Are They Perceived and Utilized in Aus-
tralia? Journal of Open Innovation: Technology, Market, and Complexity,
6(4), Article 4. https://doi.org/10.3390/joitmc6040187

Yusoff, Y., Ngadiman, M. S,, & Zain, A. M. (2011). Overview of NSGA-I| for
Optimizing Machining Process Parameters. Procedia Engineering, 15,
3978-3983. https://doi.org/10.1016/j.proeng.2011.08.745

Zhang, C, Wei, S, Ji, S, & Lu, M. (2019). Detecting Large-Scale Urban Land
Cover Changes from Very High Resolution Remote Sensing Images
Using CNN-Based Classification. ISPRS International Journal of Geo-
Information, 8(4), Article 4. https://doi.org/10.3390/ijgi8040189

Zhu, C,, Susskind, J,, Giampieri, M., O'Neil, H. B, & Berger, A. M. (2023). Optimiz-
ing Sustainable Suburban Expansion with Autonomous Mobility
through a Parametric Design Framework. Land, 12(9), Article 9. https://
doi.org/10.3390/1and 12091786

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


https://doi.org/10.1016/j.ejrs.2017.11.006
https://doi.org/10.7480/rius.4.1366
https://doi.org/10.3389/feart.2021.683903
https://doi.org/10.3389/feart.2021.683903
https://doi.org/10.1016/j.ufug.2020.126871
https://doi.org/10.1016/j.ufug.2020.126871
https://doi.org/10.4324/9781315881218
https://doi.org/10.5026/jgeography.78.45
https://doi.org/10.5026/jgeography.78.45
https://doi.org/10.4236/jgis.2012.46060
https://doi.org/10.1111/tgis.12245
https://doi.org/10.1016/j.landurbplan.2013.12.017
https://doi.org/10.1016/j.landurbplan.2013.12.017
https://doi.org/10.1016/j.habitatint.2018.04.009
https://doi.org/10.1016/j.habitatint.2018.04.009
https://doi.org/10.3390/ijgi10010023
https://doi.org/10.1016/j.eiar.2020.106515
https://doi.org/10.1109/ICCV48922.2021.00503
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1177/23998083211023516
https://doi.org/10.1177/23998083211023516
https://doi.org/10.1177/08854122221137861
https://doi.org/10.3390/joitmc6040187
https://doi.org/10.1016/j.proeng.2011.08.745
https://doi.org/10.3390/ijgi8040189
https://doi.org/10.3390/land12091786
https://doi.org/10.3390/land12091786

	Geodesign in the era of artificial intelligence
	Abstract 
	1 Introduction
	1.1 Steinitz’s framework of Geodesign

	2 Limitations of existing methods in Geodesign
	2.1 Incorporation of Artificial Intelligence (AI) into Geodesign
	2.2 Application of AI in Geodesign

	3 Challenges in Integrating AI in Geodesign
	3.1 Future prospects and ethical considerations

	4 Conclusion
	Acknowledgements
	References


