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Abstract
We propose a robust randomized indicator method for the reliable detection of eigenvalue
existence within an interval for symmetric matrices A. An indicator tells the eigenvalue
existence based on some statistical norm estimators for a spectral projector. Previous work
on eigenvalue indicators relies on a thresholdwhich is empirically chosen, thus often resulting
in under or over detection. In this paper, we use rigorous statistical analysis to guide the design
of a robust indicator. Multiple randomized estimators for a contour integral operator in terms
of A are analyzed. In particular, when A has eigenvalues inside a given interval, we show
that the failure probability (for the estimators to return very small estimates) is extremely
low. This enables to design a robust rejection indicator based on the control of the failure
probability. We also give a prototype framework to illustrate how the indicator method may
be applied numerically for eigenvalue detection and may potentially serve as a new way
to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that
only detect eigenvalue existence, the framework also provides a way to find eigenvectors with
little extra cost by reusing computations from indicator evaluations. Extensive numerical tests
show the reliability of the eigenvalue detection in multiple aspects.

Keywords Symmetric matrices · Eigenvalue indicator · Randomized estimator · Statistical
analysis · Failure probability · Shifted linear systems

Mathematics Subject Classification 65F15 · 65F30 · 68W20

B Jianlin Xia
xiaj@purdue.edu

Zhongyuan Chen
zhchen@mcw.edu

Jiguang Sun
jiguangs@mtu.edu

1 Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA

2 Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931,
USA

3 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02599-x&domain=pdf
http://orcid.org/0000-0002-9653-9312


48 Page 2 of 26 Journal of Scientific Computing (2024) 100 :48

1 Introduction

In scientific computing and practical applications, it often needs to find selected interior eigen-
values for large matrices. Examples include transmission eigenvalue problems arising from
inverse scattering, linear response eigenvalue problems in quantum chemistry, and interior
eigenvalue problems in density-functional theory. In this paper, we consider a randomized
strategy for reliably detecting the existence of (interior) eigenvalues of a real symmetric
matrix A within target intervals. The discussions can also be extended to some generalized
eigenvalue problems.

In matrix computations, randomization has been widely used in solving linear systems
and in finding low-rank approximations. On the other hand, the development of randomized
eigenvalue solvers is relatively limited. (Selected recent work may be found in [6, 26,
38].) Recently, a type of indicator eigensolvers is proposed in [17–19] that use randomized
detection of eigenvalues. Suppose a real symmetric matrix A has k eigenvalues inside an
interval (a, b) on the real axis that is circumscribed by a Jordan curve C . Let i = √−1 and

P = 1

2π i

∫
C

(s I − A)−1ds, (1)

which is a projection matrix. It is known that ‖P‖2 = 1 if k ≥ 1 or ‖P‖2 = 0 if k = 0 (see
(4) below). The indicator methods in [17–19] thus try to estimate ‖P‖2 based on ‖Pz‖2 with
a random vector z. If there are eigenvalues inside, the region is repeatedly partitioned and
checked.

Like various existing contour-integral eigensolvers in [2, 23, 29, 33, 47] and also eigen-
solvers based on rational approximations [4, 20, 43], such indicator eigensolvers are very
attractive for finding interior eigenvalues because of their scalability. They also enjoy two
additional significant features: the simplicity and the convenient error control. The indicator
eigensolvers do not need to extract eigenspace information corresponding to the k eigenval-
ues and do not need to estimate k. They only apply P to one single random vector z instead
of about k (and often more) random vectors [29, 33, 36]. These indicator eigensolvers can
also conveniently control the accuracy since they use a domain refinement process to decide
the convergence instead of, say, Rayleigh-Ritz iterations or Krylov subspace iterations.

An intuitive indicator is based on the following norm:

ξ = ‖Pz‖2. (2)

With appropriate choices of z, ξ may be viewed as an estimator for ‖P‖2. Thus, if ξ is
larger than a certain threshold ε, then the region is accepted (considered to have eigenvalues
inside). The reliability of the indicator in (2) is unclear in previous work, so other variations
are tried. One is in [17] based on a power method that is more reliable but is not practical
due to its high expense in general. Another indicator is designed in [18] based on the ratio of
two quadrature approximations to ‖Pz‖2. Let ym be the m-point quadrature approximation
to ‖Pz‖2. (A specific form of ym can be found in (22) later.) With a threshold δ, the region
is rejected (claimed to have no eigenvalue inside) if

y2m/ym < δ. (3)

Despite all the attractive features, all such indicator methods have one key limitation. That
is, the choice of the thresholds to determine the existence of eigenvalues is fully based on
heuristics. For example, a rejection threshold ε = 0.1 is used for (2) in [17]. In [18], a rejection
threshold δ = 0.2 is used for (3), and later in [19], δ = 0.05 is used. All these thresholds
are empirical choices based on numerical trials without justification of their reliability. Such
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thresholds around 0.1 are sensitive for making the 0/1 decision. If a large threshold is used,
an interval may be incorrectly rejected so as to miss eigenvalues. If a small threshold is used,
many intervals without eigenvalues may be accepted. This would bring extra costs and even
produce “spurious eigenvalues" which are often near the true eigenvalues but may also be
farther away.

Thus, it is difficult to control the quality of the previous indicators. In particular, all
the previous work lacks the ability to correctly reject an interval with high confidence. In
addition, previous indicator-based eigenvalue methods in [17–19] can only be used to find
the eigenvalues and miss a way to conveniently extract eigenvector information.

Therefore in this work, we aim to design robust eigenvalue indicators based on rigorous
statistical analysis of different types of randomized estimators.We also give away to compute
eigenvectors for the identified eigenvalues with very little extra cost. The main significance
includes the following.

– Rigorous statistical analysis is provided as guidelines for indicator designs. Based on
different properties of the projector P and different options of the random vector z, we
consider multiple randomized estimators and provide refined expectation and variance
results and, moreover, tight failure probability bounds.With the existence of eigenvalues,
at least one estimator has reasonably small failure probability, evenwith only one random
vector z. We also show that a larger number of eigenvalues in an interval leads to even
more reliable estimates.

– Guided by the analysis, we design a robust rejection indicator. We control the rejection
reliability through the control of failure probabilities. Our probability analysis indicates
that, if an interval contains eigenvalues, the probability for some estimators to return
estimates smaller than a tiny threshold ε (such as 10−15) is extremely low. If a certain
estimate is indeed smaller than ε, then the interval can be rejected with high confidence.

– Unlike the methods in [17–19] that rely on a single threshold to accept/reject an interval,
here we give a combination of multiple indicators so as to provide highly confident
acceptance/rejection decisions.

– We then lay out a prototype framework to illustrate how our indicator method may be
applied numerically for eigenvalue detection andmay potentially be useful and for finding
eigenvalues accurately. In a bisection scheme, the indicators are quickly evaluated via
preconditioned Lanczos iterations for partially solving multiple shifted linear systems,
where Krylov subspace information is reused to rapidly evaluate relevant vector norms
without explicit linear solutions.

– We can further produce the eigenvectors with little extra cost by reusing computations
that are already available from the indicator evaluations. The new indicator method can
also be extended to some symmetric generalized eigenvalue problems.

The work then gives a potentially practical option to extend randomization to the design of
eigenvalue methods. We point out that the prototype eigenvalue algorithm presented in this
work is only an illustration of how randomized indicator methods may be made reliable for
designing eigensolvers. Our purpose is not to present a fully practical eigensolver that can
already compete with many existing well-designed eigensolvers. The practical eigenvalue
solutionwill be considered in subsequent work. Nevertheless, several numerical tests indicate
that our robust indicator strategy can nicely capture the eigenvalues and reach a prespecified
accuracy. In comparison, the original indicator strategy from [18, 19] with various threshold
choices often produces spurious eigenvalues and sometimes misses eigenvalues.

The design of the robust rejection indicator is given in Sect. 2. Section3 presents a frame-
work for numerically applying the indicator method to eigenvalue detection and solution,
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followed by some numerical experiments in Sect. 4 and some conclusions in Sect. 5. In the
paper, z ∼ N (0, In)means a vector z is a length-n standard Gaussian random column vector
and z ∼ U (Sn−1) means z is uniformly and randomly selected from the unit n-sphere Sn−1.
Also, diag() denotes a diagonal matrix and trace() denotes the trace of a matrix.

2 Design of Robust Randomized Eigenvalue Indicators

Suppose the symmetric matrix A is n × n and has an eigenvalue decomposition

A = Q�QT ,

where Q is orthogonal and � = diag(λ1, . . . , λn) is for the eigenvalues λ1, . . . , λn . For
convenience, we suppose λ1, . . . , λk ∈ (a, b) (enclosed by C ) are the desired eigenvalues.
Then Cauchy’s residual theorem yields that P in (1) can be written as

P = Q

(
1

2π i

∫
C

(s I − �)−1ds

)
QT = Q diag(Ik, 0)Q

T , (4)

where Ik is the k × k identity matrix. Accordingly, we have

‖P‖2 = 1, ‖P‖F = √
k, trace(P) = k. (5)

To support our design of robust indicators, we consider some randomized estimators like
in (2) so as to probe the properties of P like in (5). The estimators are based on Pz with a
single appropriately chosen random vector z. It is well known that randomized methods may
be used for norm and trace estimations. There have been extensive studies of the performance
of these estimators. See [5, 9, 14, 21, 42] for some earlier work and [7, 25, 32] for examples
of more recent studies. Also see [10, 16, 24] for some reviews. Here, the special form of P
enables us to perform more concrete studies of the behaviors of several types of randomized
estimators. We would like to show how such estimators can be used to confidently decide
the existence of eigenvalues inside the interval (a, b).

2.1 Analysis of Randomized Estimators for P

We first look at different types of estimators for statistically extracting information on the
projector P . Following the properties of P , our studies below provide some refined results
on the expectation, variance, and probability. We would like to point out two things.

– For the probability studies when there are eigenvalues inside the interval, our goal is not
to show how close the randomized estimates are to the exact norms or traces. Instead, we
would like to show that, with high probability, the estimates are not too small. In other
words, the failure probability or the probability Pr(ξ ≤ ε) for an estimator ξ with small
ε is very low, even with just one vector z. For some estimators ξ , we can make Pr(ξ ≤ ε)

go to 0 as ε → 0. In contrast, traditional studies of the failure probabilities for norm
and trace estimators are typically more conservative since they would require many more
random vectors to reach small failure probabilities.

– Some of the estimators below are related. However, we use different strategies to analyze
them so as to obtain results that behave differently for different parameters.

One common way is to consider ‖Pz‖2 as an estimator of ‖P‖2 like in [9, 42]. Here with
the form of P in (4), we have the following result.
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Theorem 1 Suppose there are k ≥ 1 eigenvalues in the interval enclosed by C . Let z ∼
U (Sn−1) and ξ

(1)
U = ‖Pz‖2. Then for 0 < ε < 1,

√
k − 1

n
< E(ξ

(1)
U ) ≤

√
k

n
, Var(ξ (1)

U ) <
1

n
, Pr(ξ (1)

U ≤ ε) ≤ ε

√
2n

π
.

Proof From (4), we have

(ξ
(1)
U )2 = ‖Q diag(Ik, 0)Q

T z‖22 = ‖z̃1:k‖22, (6)

where z̃1:k is the vector given by the first k entries of z̃ = QT z. It is obvious that z̃ ∼ U (Sn−1).
Since ‖z̃1:k‖22 follows a beta distribution with parameters ( k2 ,

n−k
2 ) [1], E((ξ

(1)
U )2) = k

n .

According to Jensen’s inequality, E(ξ
(1)
U ) ≤

√
k
n . Also, ξ

(1)
U has probability density function

tk/2−1(1−t)(n−k)/2−1

B (k/2,(n−k)/2) , whereB(s, t) is the beta function. Let �(t) be the gamma function. Then
the standard expectation computation yields

E(ξ
(1)
U ) = 1

B(k/2, (n − k)/2)

∫ 1

0
t1/2tk/2−1(1 − t)(n−k)/2−1dt

= �((k + 1)/2)

�(k/2)

�(n/2)

�((n + 1)/2)
.

Standard properties of the gamma function yield (specifically, from inequalities by Gautschi
[12] and Wendel [40], respectively)

�((k + 1)/2)

�(k/2)
>

√
k − 1

2
,

�((n + 1)/2)

�(n/2)
≤

√
n

2
. (7)

Thus, E(ξ
(1)
U ) >

√
k−1
n . Also,

Var(ξ (1)
U ) = E((ξ

(1)
U )2) − (E(ξ

(1)
U ))2 <

k

n
− k − 1

n
= 1

n
.

Finally, the probability bound can be obtained from [9, proof for Theorem 1] since P is
positive semidefinite and ‖P‖2 = 1. 	


Another way to study the behaviors of the estimator ξ
(1)
U is in terms of vector norm

estimation as follows. In the next subsection, we will see that this yields some bounds of
different qualities.

Theorem 2 With the same conditions as in Theorem 1, we have

E(ξ
(1)
U ) ≥ √

kωn, Var(ξ (1)
U ) ≤ k

n
− kω2

n, Pr(ξ (1)
U ≤ ε) ≤ 2ε

πωn
,

where ωn is the Wallis factor [21]: ωn =
{

(n−2)!!
(n−1)!! , if n is odd,
2
π

(n−2)!!
(n−1)!! , otherwise.

Proof Let qi be the unit eigenvector corresponding the eigenvalue λi , i = 1, . . . , k. From
(4) and the Cauchy-Schwarz inequality, we have

‖Pz‖2 = ‖ diag(Ik, 0)QT z‖2 =
√√√√ k∑

i=1

(qTi z)
2 ≥ 1√

k

k∑
i=1

|qTi z|.
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According to [21], E(
|qTi z|
ωn

) = ‖qi‖2. Note ‖qi‖2 = 1. Then

E(ξ
(1)
U ) ≥ 1√

k

k∑
i=1

E(|qTi z|) = 1√
k
ωn

k∑
i=1

‖qi‖2 = √
kωn .

The variance satisfies Var(ξ (1)
U ) = E((ξ

(1)
U )2)− (E(ξ

(1)
U ))2 ≤ k

n −kω2
n . Also, ‖Pz‖2 ≥ |qT1 z|

yields

Pr(ξ (1)
U ≤ ε) ≤ Pr(|qT1 z| ≤ ε) = Pr(

|qT1 z|
ωn

≤ ε

ωn
) ≤ 2ε

πωn
,

where the last inequality is based on [21, Theorem 2.4]. 	

In the previous two theorems, the probability bounds do not depend on k. To study the

impact of k on the probability, we show another result that gives smaller probability bounds
for larger k. It is based on the estimation of ‖P‖2F = k.

Theorem 3 Suppose there are k ≥ 1 eigenvalues in the interval enclosed byC and k+1 < n.
Let z ∼ U (Sn−1) and ξ

(2)
U = ‖Pz‖22. Then for 0 < ε < 1,

E(ξ
(2)
U ) = k

n
, Var(ξ (2)

U ) = 2k(n − k)

n2(n + 2)
, Pr(ξ (2)

U ≤ ε) <

√
2

kπ
(ε(n + 1 − k))k/2 .

Proof The expectation has been mentioned in the proof of Theorem 1. Another way to
understand this is to view nξ

(2)
U = n‖Pz‖22 as an unbiased estimator for ‖P‖2F [14]. To show

the variance, we use a result in [14, Lemma 2.2] and the fact that all the nonzero singular
value of P are equal to 1 to get

Var(nξ
(2)
U ) = 2

n + 2
(nk − ‖P‖4F ) = 2k(n − k)

n + 2
.

Following (6) in the proof of Theorem 1, we have

Pr(ξ (2)
U ≤ ε) = Pr(‖z̃1:k‖22 ≤ ε) = 1

B(k/2, (n − k)/2)

∫ ε

0
tk/2−1(1 − t)(n−k)/2−1dt .

For the purpose of deriving a tight bound for this, let

ck,n = 1

B(k/2, (n − k)/2)
, βk,n =

√
k

2π
(n + 1 − k)k/2 .

In the following, we show ck,n < βk,n for all k ≥ 1. If k = 1, it is shown in [9] that

c1,n <
√

n
2π = β1,n . If k = 2, c2,n = �( n2 )/�

( n
2 − 1

) = n
2 − 1. Since it always holds that

n
2 − 1 <

√
1
π

(n − 1) = β2,n , we have c2,n < β2,n . If k > 2, we show the bound as follows.
With given k, the asymptotic behavior of the gamma function as n → ∞ yields

ck,n = �( n2 )

�
( k
2

)
�

( n−k
2

) ∼
( n−k

2

)k/2
�

( k
2

) = (n − k)k/2

2k/2�
( k
2

) .

Now consider gn ≡ ck,n
(n−k)k/2

. Notice that

gn > gn+2,

123



Journal of Scientific Computing (2024) 100 :48 Page 7 of 26 48

which is equivalent to
(
n+2−k
n−k

)k/2
>

ck,n+2
ck,n

= n
n−k . (Note�( n2 +1) = n

2�( n2 ).) This inequal-

ity holds since
(
1 + 2

n−k

)k/2
> 1 + k

n−k for k > 2, which follows from the (generalized)

binomial expansion. Thus, the sequences
{
g2 j−1

}
and

{
g2 j

}
strictly monotonically decrease

with j . Note n > k + 1. Then

gn ≤ max {gk+1, gk+2} = max

{
�( k+1

2 )

�
( k
2

)
�

( 1
2

) ,
�( k+2

2 )

2k/2�
( k
2

)
}

= �( k+1
2 )

�
( k
2

) √
π

≤
√

k

2π
,

where the last inequality follows from Wendel’s inequality like in (7). Thus,

ck,n ≤
√

k

2π
(n − k)k/2 < βk,n .

Combining the results to get ck,n < βk,n for all 1 ≤ k < n. Accordingly, with k + 1 < n, we
have

Pr(ξ (2)
U ≤ ε) < βk,n

∫ ε

0
tk/2−1(1 − t)(n−k)/2−1dt < βk,n

∫ ε

0
tk/2−1dt = 2εk/2βk,n

k

= 2εk/2

k

√
k

2π
(n + 1 − k)k/2 =

√
2

kπ
(ε(n + 1 − k))k/2 .

	

Note that the condition k+1 < n in the theorem is merely for the convenience of proving

the probability bound. When k = n, the probability bound is trivially true since ξ
(2)
U ≡ 1 and

Pr(ξ (2)
U ≤ ε) = 0. When k = n − 1, as long as n is not too small, the probability bound also

holds.
Other than the estimation of the norms as above, we may also consider the estimation of

trace(P) with another choice of z. The following theorem is based on some results on the χ2

distribution.

Theorem 4 Suppose there are k ≥ 1 eigenvalues in the interval enclosed by C . Let z ∼
N (0, In) and ξ

(2)
N = ‖Pz‖22. Then for 0 < ε < 1,

E(ξ
(2)
N ) = k, Var(ξ (2)

N ) = 2k, Pr(ξ (2)
N ≤ ε) ≤

√
1 − exp(− 2

π
ε).

Proof For z ∼ N (0, In), ξ
(2)
N = zT P2z = zT Pz is actually an unbiased estimator of

trace(P) [5], which is k. In fact, with z̃ = QT z, it is known that ξ
(2)
N = ‖z̃1:k‖22 follows the

χ2
k distribution (the χ2 distribution with k degrees of freedom). The expectation and variance

results then follow. For the probability, here we simply use ξ
(2)
N ≥ z̃21 so as to obtain a bound

independent of k. (The tail probability of the χ2
k distribution will be used in the next theorem

to get a tighter bound for larger k.) Since z̃21 follows theχ2
1 distribution, standard results on the

χ2
1 distribution and the error function (erf) yield Pr(ξ (2)

N ≤ ε) ≤ Pr(z̃21 ≤ ε) = erf(
√

ε
2 ). By

using an inequality for the error function in [41], the final probability bound is then obtained.
	


In Theorem 4, the probability bound does not depend on k. We may get a bound that
decreases for increasing k based on ‖Pz‖2 as an estimator.
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Theorem 5 Suppose there are k ≥ 1 eigenvalues in the interval enclosed by C . Let z ∼
N (0, In) and ξ

(1)
N = ‖Pz‖2. Then for 0 < ε < 1,

√
k − 1 < E(ξ

(1)
N ) ≤ √

k, Var(ξ (1)
N ) < 1, Pr(ξ (1)

N ≤ ε) ≤ exp

(
− k

4

(
1 − ε2

k

)2)
.

Proof Again, ξ (2)
N = ‖Pz‖22 follows the χ2

k distribution and has probability density function
tk/2−1e−t/2

2k/2�(k/2)
. Then the standard expectation computation yields

E(ξ
(1)
N ) =

∫ ∞

0
t1/2

tk/2−1e−t/2

2k/2�(k/2)
dt = √

2
�((k + 1)/2)

�(k/2)
.

We can then obtain the following bounds similarly to (7):
√
k − 1

2
<

�((k + 1)/2)

�(k/2)
≤

√
k

2
.

The result on E(ξ
(1)
N ) then follows. Also,

Var(ξ (1)
N ) = E(ξ

(2)
N ) − (E(ξ

(1)
N ))2 = k − (E(ξ

(1)
N ))2 < k − (k − 1) = 1.

The probability bound is due to a tail probability bound of the χ2
k distribution in [22, Lemma

1]. That is, for any α > 0,

Pr(ξ (2)
N ≤ k − 2

√
kα) ≤ exp(−α).

Setting k − 2
√
kα = ε2 yields α = k

4

(
1 − ε2

k

)2
. Then Pr(ξ (1)

N ≤ ε) = Pr(ξ (2)
N ≤ ε2) ≤

exp(−α). 	

In the next subsection, we will give a comparison of the quality of the estimators and then

use them in the design of reliable eigenvalue indicators.

Remark 1 As in many other randomized methods, the reliability of the estimators can be
improved via the use of multiple random vectors. For example, if zi , i = 1, . . . , m̃ are
random vectors independently and uniformly selected from Sn−1, then we may replace ξ

(1)
U

by the estimator ξ̃
(1)
U = 1

m̃

∑m̃
i=1 ‖Pzi‖2 to still get E(ξ̃

(1)
U ) ≥ √

kωn like in Theorem 2.
Moreover, the reliability result in Theorem 2 improves:

Pr(ξ̃ (1)
U ≤ ε) ≤ Pr(

1

m̃

m̃∑
i=1

|qT1 zi | ≤ ε) = Pr(
1

m̃ωn

m̃∑
i=1

|qT1 zi | ≤ ε

ωn
) ≤ 1

m̃!
(
2m̃ε

πωn

)m̃

,

where the last inequality is from [21, Theorem 2.4]. For example, with m̃ = 2, the probability

bound above is 2
(

2ε
πωn

)2
in contrast with the bound 2ε

πωn
in Theorem 2.

Similarly, if zi , i = 1, . . . , m̃ are independent standard Gaussian random vectors, then we
may replace ξ

(1)
N inTheorem5by the estimator ξ̃ (1)

N = 1
m̃

∑m̃
i=1 ‖Pzi‖2 to still have

√
k − 1 <

E(ξ̃
(1)
N ) ≤ √

k. Now, the reliability result also improves. In fact, ξ̃ (1)
N ≥ 1

m̃

√∑m̃
i=1 ‖Pzi‖22 so

that we can apply the tail probability bound of the χ2
m̃k distribution to get

Pr(m̃2(ξ̃
(1)
N )2 ≤ m̃k − 2

√
m̃kα) ≤ exp(−α).
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Setting m̃k−2
√
m̃kα

m̃2 = ε2 yields α = m̃k
4

(
1 − m̃ε2

k

)2
. Then

Pr(ξ̃ (1)
N ≤ ε) = exp

(
− m̃k

4

(
1 − m̃ε2

k

)2)
.

This shows how the probability bound in Theorem 5 improves as m̃ increases.
However, it is worth pointing out that, using multiple zi requires to significantly increase

the cost for evaluating the estimators when Krylov subspace methods like in Sect. 3 are used.
This is because each zi requires to form a new Krylov subspace like in (17) below. In this
work, one random vector is used since it is very efficient and already gives reasonably nice
reliability.

2.2 Rejection Indicators

For the purpose of designing a robust rejection indicator, we would like to compare the
estimators ξ in the previous subsection. Table 1 summarizes the behaviors of the estimators.
We can make the following observations, where we assume n is not too small.

– For the estimator ξ
(1)
U , we can compare the results in Theorems 1 and 2. Since ωn =√

2
π(n−1/2) + O(n−3/2) [21], for large n, the lower bound of E(ξ

(1)
U ) in Theorem 2 is

about
√

2k
πn , the upper bound of Var(ξ (1)

U ) is about (1 − 2
π
) kn , and the upper bound of

Pr(ξ (1)
U ≤ ε) is about ε

√
2n−1

π
. For k > 2, E(ξ

(1)
U ) in Theorem 2 has a slightly smaller

lower bound than that in Theorem 1. For k = 1 or 2, Var(ξ (1)
U ) in Theorem 2 has a smaller

upper bound. For larger n, the result Var(ξ (1)
U ) < 1

n in Theorem 1 is more satisfactory
and is further independent of k. The failure probability bound in Theorem 2 is about the
same as that in Theorem 1.

– The expectations for all the estimators increasewith k. The expectations for the estimators
ξ

(1)
N and ξ

(2)
N are further independent of n.

– The variances for ξ
(1)
U and ξ

(2)
U are relatively small.

– About the failure probabilities Pr(ξ ≤ ε), the following can be concluded.

– The failure probabilities for all the estimators get smaller as ε decreases. The prob-
ability bounds for ξ

(1)
U , ξ (2)

U , and ξ
(2)
N all go to 0 as ε → 0.

– The probability bounds for ξ (1)
U and ξ

(2)
N are independent of k. The probability bounds

for ξ
(2)
U and ξ

(1)
N decrease when k gets larger. As k increases, the probability bound

for ξ
(2)
U quickly gets very small.

– The probability bounds for ξ
(1)
N and ξ

(2)
N are also independent of n.

For some n and ε values, we plot the bounds for Pr(ξ ≤ ε) in Fig. 1. It can be seen that
at least one of the estimators gives very small failure probability. Moreover, as k increases,
some failure probability bounds quickly approach 0.

According to these discussions, we can conclude the following when k ≥ 1 or there is at
least one eigenvalue inside the interval.

1. Some of the estimators have expectations at least 1 and the expectations grow with k.
2. Moreover, the probabilities for the estimators to return estimates smaller than a tiny

threshold ε are very low. Even if k is as small as 1, at least one estimator has a reasonably
small failure probability.
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Table 1 Summary of the analysis in Theorems 1–5

z Estimator ξ E(ξ) Var(ξ) Pr(ξ ≤ ε)

z ∈ U (Sn−1) ξ
(1)
U = ‖Pz‖2 (

√
k−1
n ,

√
k
n ] < 1

n ≤ ε

√
2n
π

ξ
(1)
U = ‖Pz‖2 ≥ √

kωn ≤ k
n − kω2

n ≤ 2ε
πωn

ξ
(2)
U = ‖Pz‖22 k

n
2k(n−k)
n2(n+2)

<

√
2
kπ (ε(n + 1 − k))k/2

z ∼ N (0, In) ξ
(1)
N = ‖Pz‖2 (

√
k − 1,

√
k] < 1 ≤ exp

(
− k

4
(
1 − ε2

k

)2)

ξ
(2)
N = ‖Pz‖22 k 2k ≤

√
1 − exp(− 2

π ε)
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Fig. 1 Upper bounds for the failure probabilities Pr(ξ ≤ ε) with different estimators ξ , where the plot for ξ(1)
U

is based on the bound in Theorem 2 since the one in Theorem 1 is similar

3. In addition, when k is large, some failure probabilities are extremely small.

Based on these, we can design a rejection indicator in either of the following ways.

– Set the failure probability bound to be a small number and then use our probability
analysis to decide the corresponding ε as a threshold for the estimators.

– We may also directly set a small ε (such as 10−15) as the threshold for the estimators.

Here, we follow the second way since the discussions above indicate that, if one of the
estimators (ξ (1)

N , ξ
(2)
N , ξ

(1)
U , ξ

(2)
U ) returns a value smaller than ε, then the probability of having

an eigenvalue inside the interval is extremely low. Also see Fig. 1. That is, we claim there is
no eigenvalue inside the interval if

ξR ≡ min{ξ (1)
N , ξ

(2)
N , ξ

(1)
U , ξ

(2)
U } < ε. (8)
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For convenience, we say (8) is a safe rejection indicator, which is a key indicator in our
method. Although this design looks simple, its effectiveness is built upon the rigorous statis-
tical justifications above.

Remark 2 In our analysis, we have studied estimators with both z ∼ U (Sn−1) and z ∼
N (0, In) in order to compare the failure probabilities. When the estimators are used for
the actual design of the indicator in (8), the minimum is much more likely achieved by ξ

(1)
U

or ξ
(2)
U because of the different magnitudes of the estimators. This may be seen as follows.

Suppose ξ
(1)
N = ‖Pz‖2 is computed with z ∼ N (0, In). Then

ξ
(2)
N = (ξ

(1)
N )2, ξ

(2)
U = 1

‖z‖22
ξ

(2)
N , ξ

(1)
U =

√
ξ

(2)
U . (9)

Note ‖z‖22 = E(n). ξ (1)
U or ξ

(2)
U is likely smaller. Similarly, in the acceptance indicator (10)

below, the maximum is more likely achieved by ξ
(1)
N or ξ

(2)
N . On the other hand, (9) also

indicates that, once one of the estimators is available, the others are available with almost
no extra cost. Thus, in both (8) above and (10) below, we consistently include all the four
estimatorswithout excluding those rare cases (likewhen ξR is achieved by ξ

(1)
N or ξ (2)

N because
of particular small ‖z‖2).

In our proposed eigenvalue detection strategy, if the interval is not rejected by the safe
rejection indicator, it is not automatically accepted. Instead, we may further apply some
acceptance indicators in the next subsection. If all those acceptance indicators fail to indicate
that there are eigenvalues inside the interval, then we still claim there is no eigenvalue inside.
This also leads to a rejection indicator, called a passive rejection indicator.

As mentioned above, our failure probability bounds can be conveniently controlled and
made almost 0. Theoretically, a single zmay happen to not include the eigenvector component
for an eigenvalue. However, the probability is 0 because of the randomness of z.

2.3 Acceptance Indicators

We may then accept an interval if it is not rejected by our safe rejection indicator. On the
other hand, we may further confirm the eigenvalue existence by applying some acceptance
indicators (as auxiliary indicators). This sometimes saves a small amount of costs. We point
out that, since this is an additional layer of safeguard, we use a set of criteria where the
threshold is conservative and is not as rigorously derived as in the safe rejection indicator.
(Anyway, it is sometimes less problematic to accept an interval without eigenvalues than
to incorrectly reject an interval with eigenvalues. Often, an incorrectly accepted interval
will eventually get discarded in further interval refinements due to a self-correction effect
mentioned in Sect. 3.2 below.)

The acceptance indicators we use are as follows.

– When there are k ≥ 1 eigenvalues inside the interval, the estimators ξ
(1)
N , ξ (2)

N , ξ (1)
U , ξ (2)

U
have expectations as given in Sect. 2.1. Since the maximum of the expectations is k, we
claim there are eigenvalues within the interval if the maximum of the numerical estimates
is larger than or equal to a threshold η ∈ (0, 1):

max{ξ (1)
N , ξ

(2)
N , ξ

(1)
U , ξ

(2)
U } ≥ η. (10)
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– We also follow the strategy in [18] to define an acceptance indicator. That is, suppose
the numerical application of P in (1) to z is performed via a quadrature rule with both
m points and m/2 points, with the resulting approximations ym and ym/2 to ‖Pz‖2,
respectively. (Equation (13) below shows a specific form.) Then, ym/ym/2 is expected
to be close to 1 if k ≥ 1 and close to 0 otherwise. For some quadrature rules, this is
because of the fast error decay (see, e.g. [37]). Thus, we let m0 be the starting number of
quadrature points and m = 2lm0 and compute the length-(l + 1) vector

ρ = (
ym0 y2m0 · · · ym/2 ym

)T
. (11)

Now the interval is accepted if

max
1<i≤l

ρi+1

ρi
≥ η or

1

l

l∑
i=1

ρi+1

ρi
≥ η. (12)

These two acceptance indicators can be viewed as extended versions of those in [17–19].
Following the choice of a threshold in [18] based on extensive numerical tests, we may set
η in both (10) and (12) to be, say, 0.2. In our tests in Sect. 4, if a subinterval is not rejected
by the safe rejection indicator at the first place, it is usually also accepted next by one of the
acceptance indicators with η = 0.2.

3 A Prototype Framework for Symmetric Eigenvalue Detection and
Eigenvector Solution with the Indicators

We now present one prototype framework to illustrate how our indicator method may be
applied numerically for eigenvalue detection and how it may potentially be useful for design-
ing innovative randomized eigenvalue and eigenvector solvers.

Remark 3 We would like to emphasize the following.

1. The resulting eigenvalue detection strategy works for general symmetric matrices. How-
ever, it is not our aim here to optimize its design or to produce an already highly
competitive general-purpose eigensolver. The design of practical efficient eigensolvers
takes extensive research efforts and careful implementations which are far beyond this
work. Thus, some components of the eigensolver may not necessarily be refined, includ-
ing the quadrature approximation of ‖Pz‖2, the choice of a preconditioner in the indicator
evaluation, and the tuning of some parameters.

2. The purpose of this work is to illustrate that randomization may be made reliable for
designing accurate eigensolvers. The resulting algorithm serves as a proof-of-concept
model to show a new route to expand the applicability of randomization to eigenvalue
methods which are usually overlooked in randomized linear algebra.

3. Like other eigenvalue methods for general symmetric matrices, the performance of our
presented methods is problem dependent.

3.1 Indicator Evaluation

Themain computation in the detection of the existence of eigenvalueswithin an interval (a, b)
is the evaluation of the indicators, which comes to the approximate numerical evaluation of
‖Pz‖2 with an appropriate quadrature rule. Note that it is not necessary to form Pz itself.
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There are lots of studies of the effectiveness of quadrature rules for the purpose of eigenvalue
filtering in previous contour-integral eigensolvers [15, 39, 47]. For example, we may follow
[18, 47] and use the trapezoidal rule for convenience. (Here, since we only need the indicators
to make a 0/1 judgement of eigenvalue existence, it would be interesting to study the impact
of quadrature rules in future work.) Set C to be a circle with center c of (a, b) and radius

r = b−a
2 . Let s j = c + re

2 jπ i
m , j = 0, 1, . . . ,m − 1 be the quadrature nodes. Then the

trapezoidal approximation looks like

‖Pz‖2 = ‖ 1

2π i

∫
C

(s I − A)−1zds‖2 ≈ 1

m
‖
m−1∑
j=0

(A − s j I )
−1z‖2. (13)

The estimation of ‖Pz‖2 eventually arrives at the following shifted linear systems with a
fixed right-hand side:

(A − s j I )x j = z. (14)

There are various iterative solvers that can reuse Krylov subspaces for multiple shifts. See,
e.g., [2, 11, 35].

However, we can quickly evaluate ‖Pz‖2 without solving for the explicit solution x j . The
idea is to combine preconditioning with the Lanczos method, following a Cayley transfor-
mation strategy in [18] (originally for nonsymmetric matrices). We outline the main steps
without going into detailed derivations. Associated with the center c of the interval, let

C = (A − cI )−1, (15)

which is precomputed via a pivoted LDL factorization and will serve as a preconditioner for
the solution of (14). (We may also use approximate LDL factorizations like those in [44,
45].) The preconditioned linear system looks like

C(A − s j I )x j = (I + (c − s j )C)x j = f with f = Cz. (16)

Let d be a small integer and use Lanczos iterations to generate a Krylov subspace

Kd(C, f ) = span{ f ,C f , . . . ,Cd−1 f }. (17)

It is clear that Kd(I + (c − s j )C, f ) = Kd(C, f ).
Lanczos iterations produce a sequence of orthonormal vectors v1, . . . , vd , vd+1 and a

d × d tridiagonal matrix Tk such that

CVd = VdTd + hvd+1e
T
d ,

where Vd = ( v1 · · · vd ), h is a scalar, and ed is the d-th natural basis unit vector. Compute
an eigenvalue decomposition for the small tridiagonal matrix Td :

Td = QdDdQ
T
d . (18)

Then an iterative solution to (16) looks like (see, e.g., [30] for the detailed derivation)

x j = ‖ f ‖2VdQdu j with (19)

u j = (I + (c − s j )Dd)
−1(QT

d e1). (20)

Note u j instead of x j is explicitly formed since we just need to evaluate the norm in (13).
The residual can be conveniently evaluated based on results on the Lanczos method [30]

and also [18]:

r = |((c − s j )h‖ f ‖2)pTd u j |, (21)
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where pTd = eTd Qd is the d-th row of Qd . (We may also use the relative residual |((c −
s j )h)pTd u j |.) Thus, we can quickly compute the residual through the length-d dot product
in (21). This shows it is convenient to assess the quality of the preconditioner as needed in
the next subsection.

With u j in (20), ‖Pz‖2 in (13) can be approximated as

‖Pz‖2 ≈ 1

m
‖
m−1∑
j=0

x j‖2 = 1

m
‖ f ‖2‖

m−1∑
j=0

VdQdu j‖2 = ‖ f ‖2
m

‖
m−1∑
j=0

u j‖2, (22)

From this, it is clear that we only need to store two length-d vectors (the diagonal of Dd and
the first row of Qd ) as needed in (20) and there is no need to store x j or the Krylov subspace
basis vectors (unless eigenvectors are needed). This feature is also explored in [19].

Another thing worth mentioning is that the acceptance indicators in Sect. 2.3 need to
compute approximations with different numbers of quadrature points. (22) shows how ym
in (11) is obtained. When the number of quadrature points doubles from m/2 to m, the
evaluation of ym can reuse computations from the evaluation of ym/2.

3.2 Eigenvalue Detection and Solution

To find all the eigenvalues within an interval (a, b), we can repeatedly bisect the interval
and apply the indicator evaluation as in the previous subsection (with the preconditioner C
reused) to determine if there are eigenvalues inside the subintervals. This is done until there
is no eigenvalue inside a subinterval or the subinterval size is smaller than a given tolerance
τ :

|b − a| ≤ τ. (23)

For the latter case, return c = a+b
2 as an eigenvalue (that satisfies the prespecified accuracy τ ).

This is somewhat similar to the inertia-based bisection eigensolver [28]. Note that since the
eigenvalue is found only based on the detection of eigenvalue existence, if there is a repeated
eigenvalue in the interval, the eigensolver typically returns the eigenvalue as a single one
and does not see the multiplicity. For strategies to detect eigenvalue multiplicity based on
the extraction of eigenspace information, see [46] for an extension of the current work. One
way is to find eigenvectors via multiple z vectors. See Example 5 below.

When (a, b) is repeatedly bisected, like in [18] (for non-symmetric matrices), the precon-
ditionerC may be reused formultiple descendant subintervals in the hierarchical partitioning,
and even for some nearby subintervals if scalability is not the concern. The quality of C may
be quickly assessed through (21). When a descendant or nearby subinterval is not too far
away from c, C is expected to be effective for the shifted linear systems associated with the
subinterval. Otherwise, a new preconditioner and a new Krylov subspace might be needed.
This process thus tries to reuse computations as much as possible across indicator evalu-
ations, similarly to the bisection methods in [13, 44] that reuse computations for multiple
inertia evaluations.

Note that eigenvalue detectionmay be performed simultaneously for different subintervals
at the same level of the partitioning, similarly to the bisection method and other contour-
integral eigensolvers.

Unlike in the standardLanczos eigensolver (see, e.g., [31]), hered in (17) is usually set to be
very small and just enough to give a reasonable evaluation of the indicators. The convergence
of the eigenvalues is controlled by the bisection process instead of Lanczos iterations. Also,
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one Krylov subspace here may potentially be used to find multiple eigenvalues in different
intervals.

The cost of the overall bisection process can be counted as follows. Let NKr be the total
number of Krylov subspaces generated in the process, Nbis be the total number of visited
subintervals, θprec be the number of flops to compute the preconditioner in (15), and θsol be
the number of flops to applyC in (15) to a vector via the LDL factors. Then the complexity to
generate all theKrylov subspaces isφ0 = NKr(θprec+dθsol+O(dn+d3)), where O(dn+d3)
is mainly for appropriate vector operations in the Lanczos iterations and for the eigenvalue
decomposition of each Td . When the preconditioner quality is high, φ0 may be viewed as a
precomputation cost.

The cost to evaluate ‖Pz‖2 is just O(md) through the evaluation of ‖ ∑m−1
j=0 u j‖2. Then

the complexity to evaluate the indicators in all the bisection steps for finding the eigenvalues
in the interval (a, b) is

φ = NbisO(md) = O(kmd log
b − a

τ
). (24)

That is, it only costs O(md log b−a
τ

) per eigenvalue.With given interval and τ andwithm and
d typically small, the cost per eigenvalue is quite small. The extensive numerical experiments
in Sect. 4 confirm that small m and d are sufficient to perform reliable eigenvalue detection.

In the evaluation of the indicators, both the quadrature approximation and the Krylov
subspacemethod involve approximation errors. The precise quantification of how these errors
impact the indicator quality will be left for future investigations. Our tests below indicate the
eigenvalue detection is relatively robust with respect to these errors and some parameters.
In fact, when k ≥ 1, it is unlikely for the approximation errors to happen to make ‖Pz‖2
smaller than our prespecified threshold ε (such as 10−15). When k = 0, the indicators may
initially accept a large interval without eigenvalues since the quadrature approximation is
less accurate. With the interval further refined, the quadrature points get closer so that the
quadrature approximation likely gets more accurate. Then the estimators will eventually
return small estimates so as to reject the subintervals. This is a self-correction effect which
has also been observed previously in the preliminary indicator method in [17].

For convenience, Algorithm 1 shows the eigenvalue solution framework with the robust
indicator method.

Remark 4 If an eigenvalue happens to be on the boundary of [a, b] that is circumscribed by
the circle C , the (numerical) indicators would likely suggest the existence of eigenvalues in
the interval (so that an approximate eigenvalue within distance τ of that boundary eigenvalue
would eventually be returned in later refinements). This is because of the behavior of the
quadrature rule in filtering eigenvalues [15, 39, 47]. Roughly speaking, the quadrature rule
(as a filter function) returns a numerical estimate that is not very small at the boundary. The
filter function quickly decays to 0 only when it is evaluated at points away from the interval.
Example 5 below includes a test for such a situation.

3.3 Eigenvector Computation and Extension to Generalized Eigenvalue Problems

Now, suppose a numerical eigenvalue λ̃ j has been identified. The previous indicator methods
in [17–19] are not able to find an eigenvector corresponding to λ̃ j . Here, we can actually
reuse the computations in the indicator evaluation to also find an approximate eigenvector
q̃ j . That is, based on the preconditioned Lanczos method in the previous subsection, q̃ j can
be conveniently obtained with little extra cost.
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Algorithm 1 Robust indicator eigensolver
1: procedure eigindc(A, a, b, τ ) � Indicator eigensolver framework similar to that in [18] for finding the

eigenvalues in (a, b)
2: c ← a+b

2 , r ← b−a
2

3: if there are previously constructed Krylov subspaces then
4: Use (21) for quick accuracy check to identify a previous Krylov subspace (17)
5: end if
6: if there is no previously constructed Krylov subspace or if none of the subspaces satisfy the accuracy

requirement then
7: Construct a new Krylov subspace (17) with C in (15) and f in (16) � f = Cz with z a standard

Gaussian random vector
8: end if
9: Find Dd , Qd in (18) for the identified Krylov subspace
10: I ← indc(A, c, r , Dd , Qd , f ) � Indicator evaluation
11: if I = 1 then
12: if b − a ≤ τ then
13: Return c as a (numerical) eigenvalue
14: else
15: Run eigindc(A, a, c, τ) and eigindc(A, c, b, τ) � Bisection
16: end if
17: end if
18: end procedure

19: procedure indc(A, c, r , Dd , Qd , f ) � Robust eigenvalue detection with the rejection and acceptance
indicators

20: for i = 0, 1, . . . , l do � l: a specified power such as 4
21: mi ← 2i m0 � m0: initial number of quadrature points such as 2

22: Evaluate all u j in (20) with Dd , Qd , and quadrature points s j = c + re
2 jπ i
mi

23: ρi+1 ← ‖ f ‖2
mi

‖ ∑mi−1
j=0 u j‖2� Entries of ρ in (11): ρi+1 = ymi , which may also be updated from

ρi to save cost
24: end for
25: ξ

(1)
N ← ρl+1; obtain ξ

(2)
N , ξ

(1)
U , ξ

(2)
U as in (9)

26: if min{ξ(1)
N , ξ

(2)
N , ξ

(1)
U , ξ

(2)
U } < ε then � Safe rejection indicator with threshold ε such as 10−15

27: I ← 0; return I
28: end if
29: if max{ξ(1)

N , ξ
(2)
N , ξ

(1)
U , ξ

(2)
U } ≥ η, max1<i≤l

ρi+1
ρi

≥ η, or 1
l

∑l
i=1

ρi+1
ρi

≥ η then � Acceptance

indicators with threshold η such as 1
5

30: I ← 1; return I
31: else � Passive rejection indicator
32: I ← 0; return I
33: end if
34: end procedure

The idea is to simply apply one step of inverse iteration and evaluate the vector q̂ j =
(A − λ̃ j I )−1z and then normalize it to get q̃ j . (Classical studies of the inverse iteration
ensures the reliability of q̃ j .) That is, we solve the following system for q̂ j :

(A − λ̃ j I )q̂ j = z.

Obviously, this has the same form as (14), except with the shift s j replaced by λ̃ j . Thus, we
can directly replace s j in (19) by λ̃ j and then q̂ j is just x j :

q̂ j = ‖ f ‖2Vd(Qdũ j ),
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where ũ j comes from (20) with s j replaced by λ̃ j . Now, set the approximate eigenvector

q̃ j = q̂ j

‖q̂ j‖2 .
The computation cost for the above procedure is just O(dn + d2), which is O(n) with d

fixed. Thus, this provides a very convenient and efficient way to extract q̃ j . Of course, here
the Lanczos basis vectors in Vd in (19) need to be stored. Qd also needs to be stored, but it
is small.

The eigenvalue detection strategy can be immediately extended to generalized eigenvalue
problems of the form Aq = λBq with symmetric A and symmetric positive definite B. The
main changes are as follows. Replace I in (13)–(16) by B. Then the preconditioned system
(16) becomes

(I + (c − s j )Ĉ B)x = f̂ with Ĉ = (A − cB)−1, f̂ = Ĉz

Thus, the Krylov subspace in (17) needs to be replaced byKd(Ĉ B, f̂ ), which is already used
in [18].

Here, Ĉ B is generally nonsymmetric, so Arnoldi iterations are used to generate a set of
orthonormal basis vectors v1, v2, . . . , vd+1 and a d × d upper Hessenberg matrix Tk . Then
the remaining steps for the shifted linear system solution can proceed similarly to those in
Sect. 3.1. Note that we may revise the scheme so that symmetry is preserved and Lanczos
iterations can still be used. That is, if B has a Cholesky factorization RT R, then we may
replace A in Sect. 3.1 by R−T AR−1. Now since

(R−T AR−1 − cI )−1 = RĈ RT ,

we can then replace Kd(C, f ) in (17) by Kd(RĈ RT , f ), where symmetry is preserved in
RĈ RT . Here, since d is usually small, it may be preferable to simply use Arnoldi iterations
to form Kd(Ĉ B, f̂ ) so as to avoid the factorization of B. This is what we follow in the
numerical experiments below.

4 Numerical Experiments

We now test our indicator method for eigenvalue detection and also compare with some other
methods, especially the indicator method in [18, 19]. We point out that the tests intend to
show the reliability of the eigenvalue detection. They indicate the potential of designing new
indicator-based eigensolvers in the future. Our focus is not yet to implement a highly efficient
or practical eigensolver or to compare with existing state-of-the-art eigensolvers.

To facilitate the display of the results, we collect the frequently used notation as follows.

– NEW: the new symmetric eigenvalue detection strategy based on the indicators in this
work.

– SIM: the symmetric eigenvalue detection strategy based on the indicator used in the
original indicatormethod (called spectral indicatormethod) in [18, 19]. (Here specifically
for symmetric matrices, we use our implementation but with the indicator given in [18,
19] which is just (3).)

– ε: the rejection tolerance in (8) in NEW.
– δ: the rejection tolerance in (3) in SIM.
– τ : the accuracy of the eigenvalue solution as controlled by the stopping criterion (23).
– d: the maximum dimension of each Krylov subspace as in (17).
– NKr: the number of Krylov subspaces (17) needed.
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– k: the number of eigenvalues within an interval (either in the exact sense or as reported
by an eigensolver).

– λi : true eigenvalues as obtained by either the Matlab function eig (or eigs if n is large
and eigs works).

– λ̃i : numerical approximation to λi .
– E = maxi |λi − λ̃i |: eigenvalue error measurement. (Absolute errors are measured since

the stopping criterion is based on interval sizes.)

– γ = maxi
‖Aq̃i−λ̃i Bq̃i‖2

‖A‖2‖q̃i‖2+|λ̃i |‖B‖2‖q̃i‖2 : residual measurement for the eigenvalue problem

Aq = λBq . Since we normalize the eigenvectors, essentially ‖q̃i‖2 = 1. If it is a
standard eigenvalue problem, then B = I .

In NEW, we can use ε to conveniently control the failure probability of estimators used by
the rejection indicator. For reliability, we set ε = 10−15 in most of the tests, unless otherwise
specified. For the acceptance estimators in NEW, a threshold η = 0.2 is used in (10) and
(12). For reliability, we set the maximum number of quadrature pointsm = 32 in (11), where
m0 = 2. In the preconditioned Lanczos solution of the shifted linear systems, we use 10−6

as the residual tolerance for checking whether a new preconditioner is needed or not. With
the same k and τ , the dominant costs of NEW and SIM are controlled by NKr. In most of the
tests below, NEW and SIM have similar NKr counts.

In each example below, we try to detect some interior or extreme eigenvalues with a
same random vector z. Tests with randomly selected search intervals and different z are also
included. The timing results are obtained in Matlab on a node of the Purdue Brown Cluster
using 2 cores and 36GB of memory.

Example 1 In this first example, we consider the symmetric matrix A from the example
bodyy6 in the SuiteSparse sparse matrix collection [34]. A has size n = 19, 366 and
134, 208 nonzero entries. We treat the results from eig in Matlab as the true eigenvalues λi .

We first look at randomly selected intervals to demonstrate the reliability of the indicators
in deciding eigenvalue existence. For an indicator applied to M intervals of length s and with
center in (−‖A‖1, ‖A‖1), we look at the ratiosR0,R+, andR− of correct, over, and under
detections, respectively:

– R0: ratio of cases where the indicator correctly tells if there are eigenvalues inside or not,
– R+: ratio of cases where the indicator accepts intervals without eigenvalues inside, and
– R−: ratio of cases where the indicator rejects intervals with eigenvalues inside.

Here, ‖A‖1 ≈ 9.8 × 104 and we test a sequence of lengths s = 10−10, 10−9, . . . , 104

and randomly choose M = 1000 intervals for each length s. Set d = 50. The ratios from the
SIM and NEW indicators are reported in Fig. 2. δ = 0.4 is used in SIM and similar results are
also obtained with other δ values. For SIM, the R0 ratios are low and the R+ ratios are high
for most s sizes, indicating a substantial chance of over-detection. R− is mostly 0, but it is
0.2% for s = 102. This shows a possibility for SIM to miss eigenvalues. In comparison, the
results from NEW have all the ratios R− = 0. R0 is mostly 1 except for few larger s sizes
where R0 is near 1. Thus, NEW has a small chance of accepting larger intervals that have
no eigenvalues. (A possible reason is that the quadrature approximation with the Krylov
subspace information is not accurate enough.) On the other hand, such over-detection for
larger s is not a real problem: when a large interval without eigenvalues is further refined,
the indicator will eventually find that there is no eigenvalue inside the subintervals. This is
consistent with the self-correction effect mentioned above.
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Fig. 2 Example 1. RatiosR0,R+, andR− for correct, over, and under detections, respectively, among 1000
randomly selected intervals of size s
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Fig. 3 Example 1. RatiosR0,R+, andR− for correct, over, and under detections, respectively, among 1000
runs each with a different random vector z

We also run another set of tests with different random z. The indicators are applied to an
interval of length s randomly selected like above. This is done in M = 1000 runs, each with a
different random z. Thenwe report the ratiosR0,R+, andR− (amongM runs for each s) like
the above in Fig. 3. With SIM, the ratios are impacted by the choice of the random intervals,
and there is a high percentage of over-detection for most of the s sizes. For s = 104, it further
has R− = 2.4%, again showing the possibility of falsely rejecting intervals. In comparison,
with NEW, we have R0 = 1, R+ = R− = 0 consistently for all the s sizes. This confirms
the high reliability of NEW for detecting eigenvalue existence.

As a particular example, we consider the interval (10000, 10009) with one eigenvalue
λ = 10005.38603500869 inside. We apply bisection and try to accurately locate λ through
eigenvalue detection. With τ = 10−6, NEW uses NKr = 1 Krylov subspace to identify the
eigenvalues as 10005.38603475690, which has absolute error E = 2.52e − 7 < τ . The
corresponding residual is γ = 6.24e − 9. On the other hand, SIM with δ = 0.05 (and also
NKr = 1) returns 139 eigenvalues, including some far away from the true eigenvalue. In
fact, the largest distance between these eigenvalues from the true one is 2.83e − 4. SIM with
δ = 0.4 still returns two eigenvalues, including a spurious one.
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Fig. 4 Example 2. RatiosR0,R+, andR− for correct, over, and under detections, respectively, among 1000
randomly selected intervals of size s

Specifically, we can take a look at the subinterval [10005.062500, 10005.343750] to see
the self-correction effect of NEW. There is no eigenvalue in the interval. Since ξR in (8) is
evaluated to be 1.03e − 14 which is just slightly larger than ε = 10−15, this subinterval
tentatively passes the safe rejection indicator and is not rejected. Then the interval is bisected
into the following two subintervals, where the corresponding ξR results are also given:

[10005.062500, 10005.203125], ξR = 6.1472e − 33,

[10005.203125, 10005.343750], ξR = 1.7101e − 20.

Both subintervals are then rejected by the safe rejection indicator with high confidence,
correctly suggesting there is no eigenvalue in their parent subinterval.

Example 2 Next, consider the symmetric matrix A from lowThrust_3 in the SuiteSparse
sparse matrix collection [34]. A has size n = 7064 and 80, 645 nonzero entries. The results
from eig are treated as the true eigenvalues λi . The matrix has some small eigenvalues
clustered around 0.004515.

We first test randomly selected intervals and randomly selected vectors z like in Example
1. See Figs. 4 and 5. We can draw conclusions similar to those in Example 1. With SIM,
the R− values in Fig. 4a are 0.1%, 0.1%, and 0.5% for s = 10−3, 1, and 10, respectively.
This also indicates the chances for SIM to miss eigenvalues. NEW show significantly better
reliability in Figs. 4b and 5b. In particular, the R− ratios are all 0.

Next, we try to accurately identify the smallest 20 eigenvalues of A, which are located
within (−0.004, 0.00451518). Most of them are highly clustered. Both NEW and SIM use
d = 30, NKr = 20, and τ = 10−10. Some eigenvalue results are given in Fig. 6. Despite the
eigenvalue clustering,NEW finds all the eigenvalues within the interval with E = 4.53e−11,
γ = 8.86e−10. On the other hand, SIM returns some spurious eigenvalues with δ as small as
0.05 or as large as 0.4. If we further increase δ to 0.6, then SIM fails to identify any eigenvalue.

It isworth pointing out that, if theMatlab built-in function eigs is used to find these smallest
eigenvalues (with the command eigs(A,20,’sm’)), it is only able to find the 4 smallest ones that
are not clustered. For the 16 eigenvalues near 0.004515, eigs fails to converge and outputs
NaN (not-a-number). We may try to supply a shift to eigs. With the shift equal to 0.001,
0.002, or 0.003, eigs is only able to find no more than 3 eigenvalues and also takes longer.
With the shift equal to 0.004, eigs misses the four smallest eigenvalues.
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Fig. 5 Example 2. RatiosR0,R+, andR− for correct, over, and under detections, respectively, among 1000
runs each with a different random vector z
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Fig. 6 Example 2. Numerical eigenvalues (×) λ̃i within (−0.004, 0.00451518) from NEW and SIM

Example 3 Then consider a symmetric generalized eigenvalue problem Aq = λBq , where
A and B are matrices related to localized quantum states in disordered media [3]. A and B
have sizes n = 61, 440 and each has 307, 200 nonzero entries. The Matlab function eigs are
used to get λi .

We first find the eigenvalues inside (0.65, 0.85), which contains the 7 smallest eigenvalues
of the problem. Both NEW and SIM use d = 40, NKr = 2, and τ = 10−8. See Table 2 for
the eigenvalue results. NEW finds all the 7 eigenvalues with accuracy E = 4.31e − 09,
γ = 8.40e−11. Also, if we vary ε in NEW as ε = 10−16, 10−14, . . . , 10−8, similar accuracy
results can be observed. SIM with δ = 0.05 returns 9 eigenvalues, including two spurious
ones. SIM with δ = 0.4 does return exactly 7 eigenvalues satisfying the desired accuracy.
However, if δ = 0.6 is used, then SIM misses one eigenvalue that is in the subinterval
(0.835816192626953, 0.835816383361816). In fact, SIM outputs an estimate 0.501. Thus,
a threshold larger than this would miss the eigenvalue. This shows that δ in SIM needs to be
carefully tuned for this test. A similar behavior of SIM can be observed in the next example.
In contrast, NEW uses the acceptance indicator in (10) based on the numerical estimate
ξ

(2)
N = 7.678e7 to safely deduce the existence of eigenvalues inside. (Note this subinterval
has a very small size so the quadrature points are very close to the target eigenvalue. The
numerical approximation of the contour integral has a large norm unless a large number of
quadrature points is used. For the purpose of eigenvalue detection, such large norms are not
a problem.)
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Table 2 Example 3

True (eigs) NEW SIM (δ = 0.05) SIM (δ = 0.6)

0.669387778571829 0.669387778639793 0.669387778639793 0.669387778639793

0.714425860505378 0.714425858855247 0.669387791090374 0.714425858855247

0.807387579814707 0.807387575507164 0.714425858855247 0.807387581467629

0.835816383336921 0.835816380381584 0.714425871305828 0.836763045191765

0.836763044251227 0.836763045191765 0.807387581467629 0.845436832308769

0.845436833406130 0.845436832308769 0.835816380381584 0.848326924443245

0.848326926654481 0.848326924443245 0.836763045191765

0.845436832308769

0.848326924443245

Eigenvalues within (0.65, 0.85) from eigs, NEW, and SIM

Table 3 Example 3

ε 10−16 10−14 10−12 10−10 10−8

E 5.02e − 09 4.31e − 09 4.31e − 09 2.96e − 09 2.95e − 09

γ 8.40e − 11 8.40e − 11 8.40e − 11 8.40e − 11 8.40e − 11

Accuracy of NEW with different rejection tolerances ε

To demonstrate the robustness, we also run the methods with different parameters. With
η = 0.05, 0.1, 0.2, 0.4, 0.8 and the other parameters the same as above, NEW finds all the 7
eigenvalues in (0.65, 0.85) with consistent accuracy E = 4.31e− 09, γ = 8.40e− 11. Now
with ε = 10−16, 10−14, 10−12, 10−10, 10−8 and the other parameters the same as those at
the beginning of the example, NEW finds all the 7 eigenvalues with accuracy given in Table
3. For larger ε, the number of subintervals visited is smaller so the cost is slightly lower.
(The dominant cost is still for generating the Krylov subspaces. Here, the number of Krylov
subspaces is NKr = 2 with all these ε.)

Example 4 Now, consider a symmetric generalized eigenvalue problem Aq = λBq related
to a spectral method for the adversarial robustness evaluation of machine learning models
[8]. A and B have sizes n = 55, 000. A has 872, 268 nonzeros and B has 845, 042 nonzeros.
The Matlab function eigs are used to get λi .

We look at the interval (0, 0.01), which contains 8 smallest eigenvalues of the problem.
NEW and SIM both use d = 40, NKr = 1, and τ = 10−8. NEW finds 8 eigenvalues as follows
with accuracy E = 2.94e − 09, γ = 3.46e − 7:

0.000000033378601, 0.003730750083923, 0.005356345176697, 0.006064696311951

0.006775670051575, 0.007296595573425, 0.009292960166931, 0.009675469398499

SIM with either δ = 0.05 or 0.4 returns 9 eigenvalues, including an spurious one. In
particular, within the subinterval (0.009675479398499, 0.009675483703613), the SIM esti-
mator returns 0.515. Thus, a threshold smaller than this would return a spurious eigenvalue
0.009675481551056. In comparison, the safe rejection estimator of NEW is based on the
estimate ξR = 2.119e− 31, which gives a solid indication that there is no eigenvalue inside.

Now, further increasing δ to 0.6 makes SIM fail to find any eigenvalue within the entire
interval. In fact, the SIM estimator applied to (0, 0.01) returns the value about 0.5. Thus, any
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Table 4 Example 4

τ 10−4 10−6 10−8 10−10 10−12 10−14

Nbis 79 220 339 469 615 747

E 3.90e−5 2.70e−7 2.94e−9 2.32e−11 3.64e−13 3.20e−14

γ 6.38e−3 4.43e−5 3.46e−7 3.79e−09 6.47e−11 1.15e−12

ψ 3.04e−4 2.90e−6 3.43e−8 2.56e−10 4.94e−12 8.32e−14

Error, residual, and loss of orthogonality of NEW (with different τ )

δ larger than this would fail. In contrast, NEW decides the existence of eigenvalues within
the interval based on the numerical estimate ξ

(2)
N = 1.55e4.

Finally, we test NEW with different accuracy control τ (and with the other parameters
unchanged). Suppose B = RT R is the Cholesky factorization of the symmetric positive
definite matrix B. Let q̃i = Rq̃i/‖Rq̃i‖2 and Q̃ be the matrix formed by all q̃i corresponding

to those eigenvalues in the interval (0, 0.01). Following [27], we let ψ = max
i

‖Q̃T q̃i−ei‖2√
n

be

the measurement of the loss of orthogonality, where ei is the i-th unit vector. Table 4 shows
the error, residual, loss of orthogonality, and timing with τ ranging from 10−4 to 10−14.
With τ reduces, the accuracy improves. With the different τ values, NEW has similar timing
around 58 seconds. (In comparison, eigs takes 85.2 seconds).

Example 5 Lastly, consider a special example

A = diag(−200,−199, . . . ,−10, 0.1, 0.2, . . . , 0.5, . . . , 0.5︸ ︷︷ ︸
multiplicity 10

, 0.6, . . . , 0.9, 10, 11, . . . , 200).

The matrix is diagonal so that it is known exactly to have 10 repeated eigenvalues λ = 0.5.
The matrix size is n = 400.

We seek the 9 eigenvalues 0.1, 0.2, . . . , 0.9 within (0, 1). Note that if this interval is
directly used as the initial search interval, its center c happens to be the eigenvalue λ = 0.5
so that the algorithm would fail during the construction of the preconditioner in (15). This
is similar to eigs which also fails if 0.5 is used as a shift. To avoid this, we may either add a
small perturbation to (0, 1) similar to the suggestion from eigs documents or we may use a
different interval.

Here, we try the initial search interval [0.1, 1]. Note that now the eigenvalue λ = 0.1
falls on the boundary. NEW with d = 20, NKr = 2, and τ = 10−10 properly identifies
the 9 eigenvalues, including λ = 0.1 on the boundary. The accuracy is E = 3.78e − 11,
γ = 4.26e − 11.

As mentioned in Sect. 3.2, the multiple eigenvalue λ = 0.5 is returned as a single eigen-
value. In order to identify its multiplicity, we may use the following strategy mentioned in
[46]. Run the test with m̃ independent choices of random vector z in (13) and check the
(numerical) linear independence of the outcome numerical eigenvectors q̃. That is, collect
all q̃ into an n× m̃ matrix Q̃ and compute the m̃ singular values σi of Q̃. If there are m̂(< m̃)

dominant singular values and the remaining ones are near 0, then m̂ is the multiplicity. For
example, for m̃ = 12, the singular values σi of Q̃ corresponding to the eigenvalues λ = 0.5
and 0.1 are plotted in Fig. 7. Clearly, for λ = 0.5, there are 10 dominant singular values,
indicating that the 12 runs produce 10 (numerically) linearly independent eigenvectors. This
in turn reflects the multiplicity m̂ = 10. Not surprisingly, for the eigenvalue λ = 0.1, there
is only one (numerically) independent eigenvector, indicating that it is a simple eigenvalue.
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Fig. 7 Example 5. Singular
values σi of the matrix Q̃ formed
by the numerical eigenvectors
(corresponding to λ) from 12
runs with independent z
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5 Concluding Remarks

Indicator methods provide an elegant way for detecting eigenvalue existence. They apply the
contour integral operator P to a single random vector z so as to tell if there are eigenvalues
inside a region. Here for symmetric matrices, we propose a strategy to overcome a major
bottleneck of previous indicator methods in the threshold decision. That is, we give a robust
way to decide the threshold based on rigorous statistical analysis of some estimators built
upon Pz.We show that, if A has eigenvalues in an interval, the probability for some estimators
to fail to indicate so is very small. Thus, we control the failure probability in our rejection
indicator. We also use a framework to illustrate how our indicators may potentially be useful
for finding eigenvalues and eigenvectors when they are combined with bisection and fast
shifted linear system solution. The new indicators have significantly better robustness and
reliability than those in [17–19], as demonstrated by extensive numerical tests.

The work in this paper provides new ways to use randomization for eigenvalue solutions.
It also opens up more opportunities for subsequent studies such as the following topics.

– How to choose a low-accuracy quadrature rule that is fast and reliable enough for the
purpose of eigenvalue detection instead of precise eigenvalue filtering?

– How to find an efficient and reliable preconditioner in the shifted linear system solution
for the approximate indicator evaluation?

– How to tune the various parameters like the dimension of the Krylov subspace, the
accuracy of the preconditioner, and the number of quadrature points so as to gain high
efficiency without losing eigenvalues or producing spurious eigenvalues?

The indicator strategy can be readily modified for nonsymmetric matrices. The statistical
analysis in Sect. 2.1 becomes more challenging. This will appear in our follow-up work [46].
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