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1 | INTRODUCTION

| Xu Guo?

Abstract

Fractional diffusion equations exhibit competitive capabil-
ities in modeling many challenging phenomena such as
the anomalously diffusive transport and memory effects.
We prove the well-posedness and regularity of an opti-
mal control of a variably distributed-order fractional dif-
fusion equation with pointwise constraints, where the
distributed-order operator accounts for, for example, the
effect of uncertainties. We accordingly develop and ana-
lyze a fully-discretized finite element approximation to the
optimal control without any artificial regularity assumption
of the true solution. Numerical experiments are also per-
formed to substantiate the theoretical findings.

KEYWORDS

error estimate, finite element method, optimal control,
regularity, variably distributed-order fractional diffusion
equation, well-posedness

Optimal control governed by classical integer-order partial differential equations (PDEs) have
been widely used in engineering design, manufacturing, biology and medicine, and a variety of
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other applications. Its mathematical analysis and numerical approximation have been well studied
[6, 13, 23, 28, 43, 47]. In applications such as solute transport in porous medium and additive manu-
facturing, the integer-order diffusion PDEs, derived assuming the existence of a mean free path and
a mean waiting time of the underlying particle movements [44], accurately model the diffusive trans-
port of solute in homogeneous media when the solute plumes in field applications were observed to
exhibit Gaussian exponential decays [8].

The diffusive transport of solutes in heterogeneous media exhibits power-law decays that indicates
why integer-order diffusion PDEs tend to yield less accurate approximations [9, 35,42, 44]. In contrast,
fractional PDEs derived via continuous time random walk under the assumption that their solutions
(i.e., the probability density function of the underlying particle jumps) have power-law decays [36,
42, 44], can accurately model the anomalously diffusive transport in heterogeneous porous materials.
In recent years, optimal control [5, 6, 12, 15, 25, 32, 46] of fractional PDEs has attracted intensive
investigations [4, 14, 17, 22, 26, 29, 45, 48, 55, 56, 59].

A pointwise optimal control problem of a space-time fractional PDE, in which a spectral frac-
tional Laplacian operator was adopted to model the superdiffusive transport while a Caputo time
fractional differential operator was used to model the subdiffusive transport, was analyzed rigor-
ously [4]. The regularities of the solution in some weighted Sobolev spaces were proved and the
Caffarelli-Silvestre extension [10] and the L1 discretization [37, 47] were employed for numeri-
cal computation. A pointwise optimal control of a time-fractional PDE was analyzed, in which a
discrete-in-space but continuous-in-time finite element method (FEM) approximation was considered
[59]. Based on the proved regularity of the solutions, the error estimate of the numerical approxima-
tions was proved, and the stability and truncation error of the fully-discretized FEM were analyzed. The
pointwise-in-time error estimate of a fully-discretized FEM approximation to the subdiffusion optimal
control problem was proved with the regularity of the solutions proved via resolvent estimates [29], in
which both the L1 temporal discretization and the backward Euler convolution quadrature were ana-
lyzed. The well-posedness and smoothing properties of the solutions to the optimal control problem
governed by a different type of time-fractional PDE were proved, and an optimal-order error estimate
of a fully discretized FEM approximation with the convolution quadrature discretization in time was
proved [26].

The motivation of this paper is as follows: The time-fractional PDE (tFDE) yields solutions with
nonphysical initial weak singularity [40, 49, 51], because it was derived as a stochastic limit when the
number of particle jumps tends to infinity and hence holds only for large time [44]. Recently, a two
time-scale mobile-immobile tFDE, which contains an additional d,u term with a partition coefficient
k in front of the time-fractional derivative term, was presented [50]. The model describes dynamic
mass exchange between the 1/(1 + k) portion of the solute mass in the mobile phase and the k/(1 +
k) portion of the solute mass in the immobile phase absorbed to the porous materials, exhibits the
Fickian diffusion behavior initially and naturally switches to the subdiffusive transport behavior as
time evolves, and so is valid on the entire interval including the initial time without the initial weak
singularity of the conventional tFDE [53].

Furthermore, the order of fractional PDE:s is related to the fractal dimension of porous materials
via the Hurst index [42]. For highly heterogeneous porous materials, a scalar Hurst index does not
necessarily suffice to quantify its fractional dimension. The distributed-order fractional differential
operator [11, 24, 38]

t
8(s) ds )

1
DY :=/ v(a) 0fgda, 0%g 1= I17%d,g, oI" :=/7 ,
t8 o t 8 8 =0 1 18> 0lr § o T(@)(r —s)l-@
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with I'(a) being the Gamma function, was introduced to integrate the accumulated impact of a wide
spectrum of fractional differential operators modeling complex phenomena. Moreover, in subsurface
solute transport and hydrocarbon or gas recovery [7, 20], the geological information is limited and
often polluted with noises and an accurate determination of a scalar fractional order is impossible
[19]. The distributed-order fractional differential operator provides a feasible approach to quantify the
uncertainties. Distributed-order FDEs have attracted extensive research on their application, analysis
and discretization [16, 21, 30, 34, 40, 41]. In applications such as bioclogging [7] and nonconventional
gas and oil recovery [20], the structure of porous materials may evolve in time so the probability density
function v(«) in (1) may depend on the time ¢ too. All these factors lead to the two time-scale variably
distributed-order FDE [53]

o+ k DPu+ Bu =f(x,t) +clx,1), (x,1) e Qx(0,T];

2
ux,0)=0, x€Q; ux,1)=0, (x,t) € 0Qx[0,T]. @

Here Q c R?, d = 1,2,3,is a simply-connected bounded domain with the piecewise smooth boundary

0Q and convex corners, D{g := fola)((x, ) ofgda, x = (x1, ... ,x4), B := =V - (K(x)V) with
V :=(d/0xi, ... ,0/0x,)" and K(x) := (k,-j(x))f"l.z1 is the symmetric diffusivity tensor. The partition

coefficient k is a positive constant, f and ¢ denote the source and the control variable, respectively.
Let u, be the target function, in this paper we discretize and analyze the optimal control

. 1
min Jw, ) = 2 llu = uallizaz@) + Sl 3)

ceA(lr
which is governed by the variably distributed-order tFDE (2). For / < r, the admissible set A(l, r) is
defined by
A r) :={c e L*(0,T;L*(Q) : [ < c(x,f) < rae.in Qx[0,T]}. @)

Let IP(Q) and W™P(Q), 1 < p < oo, m € N, be the spaces of p-th Lebesgue integrable func-
tions and those with p-th Lebesgue integrable derivatives up to order m in €, respectively, and
H™(Q) := W™(Q). For s > 0 the fractional Sobolev space H*(Q) is defined by interpolation [1].
All the spaces can also be defined on an interval. Given a Banach space S, L(a, b; S) and H'(a, b; S)
consist of functions f such that ||f||s and ||0,f||s in L”(a, b) and L?*(a, b), respectively [1, 18]. All the
spaces are equipped with the standard norms [1, 18]. For g € H'(0, T; L*(R)), the following estimates
hold for the cut-off projection [31]

Pg :=max{l,min{g,r}} € H (0, T; L*(Q)),

”Pg”H‘(O,T;LZ(Q)) < ”g”H‘(O,T;U(Q))a (5)
1Pgllan@) < lgllawe), Vg€ H*(Q), 0<u<l.

We make the following assumptions throughout the paper.

(@) w(a,t) > 0on [0,1] X [0, T] satisfies /Ola)(a, t)yda = 1 for any ¢t € [0, T]. There exist some
0 < a* < 1 and Qg > 0 such that supp @ C [0, a*] X [0, T], and |d}'w|, |0/"®|, |020,0| < Qo
on supp w form =0,1,2.

b) 0<K, <EKE<K* <0, EcR? |E| = l,klyecl(ﬁ), 1<i,j<d.

© f,uq € H'(0, T; LXQ)) 0 LX0, T; H'(Q)).

To date, the optimal control of distributed-order tFDEs of the form (1) was analyzed assuming
that the exact solution is sufficiently smooth [54]. A numerical approximation to a forward variably
distributed-order tFDE with a space-dependent probability density function was analyzed assuming the
exact solution is sufficiently smooth in both space and time [3]. However, the fact that tFDEs exhibit
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initial weak singularity [40, 49, 51] does not seem to justify these assumptions. The well-posedness of
the variably distributed-order tFDE (2) and its smoothing properties were proved and based on which
a numerical approximation was analyzed [53].

Up to now, no result on the optimal control of variably distributed-order tFDEs was reported in the
literature. This motivates the study of the variably distributed-order fractional optimal control model
(2) in this paper. Compared to the analysis of the variably distributed-order tFDE (2) [53], in the context
of the optimal control problem, we have to address the following issues:

e The coupling of the state Equation (2), the adjoint state Equation (13), and the pointwise con-
straint (4) reduces the regularity of the exact solution to the optimal control model (3) and
(2), the well-posedness and smoothing properties of which were not analyzed even in the con-
ventional distributed-order tFDEs. In particular, the high-order temporal derivatives of the
solutions may not be bounded in the L? norm in time and could only be analyzed in the L'
norm (cf. Section 4). Consequently, the results proved for the linear variably distributed-order
tFDE [53], which provided pointwise-in-time estimates of high-order temporal derivatives of
the solutions based on the high-order regularity assumptions of the data, are no longer valid.
Indeed, to find the aforementioned L! estimates, the spectral decomposition method used in
the literature [53], which is particularly suitable for L? estimates, does not apply and we instead
employ the method of resolvent estimates in this work in the analysis to circumvent this issue.

e Due to the low regularity of the exact solution to optimal control problem (3) and (2), the anal-
ysis of the truncation errors and consequently the convergence estimates of the discretization
to the state Equation (2), which are based on the pointwise-in-time estimates of the high-order
temporal derivatives of the solutions [53], does not hold any longer and need to be refined
carefully.

e Due to the time dependence of the w(«, 1), the distributed-order fractional differential operator
in the adjoint state Equation (13) acts on the product (wz) instead of z. Hence, the adjoint of
the Caputo-type distributed-order differential operator D} is no longer its Riemann-Liouville
analogue (cf. Section 2.2), which brings new difficulties in its analysis and discretization. For
instance, due to the strong coupling of the weight w and the solution z in the adjoint state
equation, the coefficients of the L1 discretization lose their monotonicity that was critical in
the error estimates of the numerical discretization.

The rest of the paper is organized as follows: In Section 2 we derive the optimality condition. In
Section 3 we prove the well-posedness and regularity of the adjoint state equation under a weaker
condition from the control problem. In Section 4 we prove the well-posedness of the optimal control
problem (3), (2) and (13) and the regularity of its solution. In Section 5 we discretize the optimal control
model. In Section 6 we prove the stability and optimal-order error estimate of the numerical approx-
imation without any artificial assumption of the true solution. In Section 7 we carry out numerical
experiments to substantiate the theoretical findings. In Section 8 we prove auxiliary lemmas.

2 | OPTIMALITY CONDITION

We go over some results in the literature and derive an optimality condition. Throughout this paper
we use Qp — O» to denote fixed positive constants and Q to denote a generic positive constant that may
assume different values at different occurrences. We may drop the subscript L2 in (-, -);2 and || - || 2, and
the domain € in the Sobolev spaces and norms, and write || - ||z»(s) for || - ||z»(0.1:5) when no confusion
occurs. We also follow the convention that a sum equals zero if its upper limit is smaller than its
lower limit.
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2.1 | Solution representation and resolvent estimates
It is well known that the eigenfunctions {¢;}2, of the Sturm-Liouville problem
Bei(x) = Aigi(x), x € Q;  ¢i(x) =0, x € 0Q (6)

form an orthonormal basis in L*(Q) and the eigenvalues {4,}$, form a positive increasing sequence
going to oo [18]. For any y > 0, define the Sobolev space by

H @) :={vel}Q): |v|§{y(g) = (Bv,v) = ZA?(V, )’ < o} (7)
i=1

172 . y
with gl = (||g||§2 + |g|§1,> cand ' = 12 and [’ = H? 0 H) [1, 49, 52].
For 6 € (x/2, ) and 6 > 0, let I’y be the contour in the complex plane

[y :={zeC: |arg(z)| =0,|zl =6} u{ze€C : |arg(z)] <0, |z| =6}
The following inequalities hold for 0 < ¢ < 1 and r € (0, T] [2, 28, 39]

/ 2|#~ €] |dz| < Qt‘”,“/ (z+ By le dz”Lz < Or* ®)
Ty T,

where |dz| denotes the arc length element on the contour I'y and Q = Q(6, p).

For g € L;,(a,b), the space of locally integrable functions on (a, b), the Laplace transform L
of its extension g(¢) with compact support on (a, b) and the corresponding inverse transform £~ are
denoted by

® _ _ 1
Lg(z) = / ge @dt, L7'(Lg(R) = — / e"Lg(z)dz = g(1).
0 2ri r,
Lg is always interpreted as the Laplace transform of g. It is known that [48]
£(Fofg) =L, O<u<li  Rofg =0 o "g. ©)

The solution u(x, f) to the heat equation o,u(x, r) + Bu(x, ) = f(x, t) with zero initial and boundary
conditions can be expressed as

t
u(x,t) = / e =IBf(x, 5)ds. (10)
0
Here ¢~*B is the semigroup of operators generated by
0, eBg4Be™Bg=0;, ¢Bg=0, x €oQ; e"Bg| , =& XE Q.
1=

Moreover, e~*3 has the following expressions for any g € L*(Q)

(o)

_ 1 . _ - 4
ePgx) = S~ / 2+ B)'gx) dz, e Pgx) = ) e (g, p)bi(x). an
2ri Jr, =1
The following estimates hold for any # > 0 [52]
le™Pllpmre < 0; NlePglly < gl g€H ., s>r> -1 (12)

2.2 | The first order optimality condition

Theorem 1. Under assumptions (a)—(c) the optimal control problem (3) and (2) admits
a unique solution (u,c). There exists an adjoint state z such that (u, c,z) satisfies state
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Equation (2), the adjoint state equation

— 0,2+ k FD¥ (w2) + Bz = u(x, t;¢) — ug(x, 1), (x,1) € Qx[0,7);

13
2(x,7)=0, x€Q; zx1)=0, (x,1)€0QXI[0,T] 19
and the variational inequality
T
/ /(yc + 2)(v — ¢)dxdt > 0, Yv e Adl,r). (14)
0o Ja
The distributed-order Riemann-Liouville fractional differential operator KDY is
“ Raa a 0

kDyg:= [ *o,gda, ®d;g 1= 0.1} g, If :=/ . 15
t 8 /0 r8aa 8 wly 8, 78 t F(a)(s—t)l‘” N (15)

Proof. The proof follows almost the same procedure as, for example, [57, theorem 2.1] or
[58, theorem 1] and is thus omitted. n

Remark 1. The variational inequality (14) implies [26, 59]
cx,t) =P (=zx,0)/7). (16)

The uniqueness of the minimizer of J(c) shows that (14) is equivalent to (16).

3 | ANALYSIS OF THE ADJOINT STATE FRACTIONAL PDE

For convenience we analyze a forward-in-time analogue of problem (13)

0z +k D} (w0) + Bo = p(e.n),  (x,1) € Qx (0, T];
72(x,00=0, xeQ; zx,nHn=0, (x,1)e€dQx][0,T].

Here R@ft* g:= foa*R()f‘g da is the forward-in-time analogue of (15).

Theorem 2. Suppose that assumptions (a) and (b) hold and p € L*(L?). Problem (17)
has a unique solution z € H'(L*) N LZ(I:I2) and

Nzl + Nzl o) < CliPllzay, Q= O™, Qo.k, T).

Proof. The proof could be performed following that of [57, theorem 3.1] based on the
estimate below: For w € H'(0,T) with w(0) = 0, one could apply w(f) = folw’ (s)ds,
=5 == —-5" " <max{1,T}({t—s)" and 0%w = Rofw to get

|Rﬁ;ﬁ(ww)‘ < /O a*|01,1_“0t(a)w)‘da

g / / 'wsooa.s) + ol@ WOl 0 <o / WOL+I Ol ()
o Jo (- a)r—s)™ 0 (t=9)

<0 /’/le’(y)|dy+ Ol <o / W©l
~ o (=9 T o =9

Thus the proof is omitted. n
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Theorem 3. Suppose assumptions (a) and (b) hold and p € H'(L*) N L2(I:12). Then the
solution z to problem (17) has the estimate

2

Id, z + ||0iz

_ *
L+ 1021, < @ (Pl + el ) @ = Q@ Q0. k. .

Proof. By Theorem 2 problem (17) has a unique solution z € H'(L?) n Lz(ﬁlz). Move
k Rﬁft (wz) in (17) to the right side and use (10) and (11) to express z as

t t N
2(x, 1) = / e~ =Bp(x, s)ds — k / e~ 9B KDY (wz(x, s))ds =: Gy — kGs. (19)
0 0

t t o0
%G =0, / D e (-, 5), pi)ids = p - / > A€ (-, 5), pi)idss,
0 =1 0 =1

907Gy =0p — Y AilpC, 1), pi)i + / D A, 5), di)pids.
i=1 0 =1

Application of the Young’s inequality yields

1/2
[ t 2
2 < 2 ,—A;(t—s) . .
102G Il 2y < [;“ /0 A7 (P, 5), pi)ds LZ(O’T)] 20)

+ “p”Hl(Lz) + “p“LZ(I:IZ) S “p“Hl(LZ) + 2I|pI|L2(I:12)

We use the expression of G in (19) to directly evaluate
t * —a*
0,Gy = —/ e~ 8 BRDY (wz(x, $))ds + *D; (wz(x, 1)). 21
0
We utilize the following relation

t " t —
0, / e "B BRD; (wz(x, 5))ds = 0, / B (RD}, (wz(x, y)))( ds
0 0

y=t—s
t . t S
- / B0, ((*DY @z, 3)) | )ds= / e IBB (05D (wz(x, 5))ds
0 y=t=s 0
and (21) to evaluate 907G, as follows

t . o
2G, = — / PRGRLS (as KD (w2, s))) ds + 0,F D" (wz(x, ). (22)
0

We integrate Rﬁf*(a)z) by parts to reformulate (),Rﬁf*(a)z) as

S _ “ [a@2) ot "t—s)'" ,
0/"D; (wz) = 0:/0 [ 2 —a + L TG-a) 0: (w(a, 5)z(x, s))ds] da -

_ [ [9@d)limor =5
_/o [ ri-o r(l—a)af(“’(“’sk(x,s))ds] da.

Passing the limit t+ — 0% in (17) yields 0,z(x,0) = p(x,0), which in turn leads to
0/(w2)|=0 = w(a, O)p(x,0). We plug them into (23) to conclude that

"|022(x, 5)|

e 48 Ol 01 24)

|(3[Rﬁf* (a)z)| <0
0
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We similarly bound *df 0,Rﬁ:1*(wz) forany 0 < & < 1 — a*. By estimate (18),
RD} (@2)],=0 = 0. We use the substitution s = y + (¢ — )0 to obtain

RoEORD; (w2) = 0, ol} ¢ 0Dy (wz) = 02 oI} *RD; (w2)

o
=/ 0; oI} =51 (wz)d
0

e " o(a,y)z(x,y) e
_/ a, [/ —F(l—s)F(l—a) </(t ) (s —y)” ds)dy]d

3 [ o,y ) — )" B(1 —£,1 - )
/ a/ T(1 -l —a) dyda

B / % / S dyda = / kg 0w da
0 0 I'l—a-¢) 0

which, together with estimates like (23) and (24), yields

|agz(x 0)|

e e (25)

|Rat o.XD; (wz)| <Q / do + Q)p(x, 0)

We use (11) and the Laplace transform to evaluate the first term on the right-hand side
of 0?G, in (22) to conclude that for 0 < £ < 1 — a*

L [_/ e—(t—s‘)BB (av Rﬁ?* (a)z(x, S))) ds]
0
=r [ / 9, <1 / (7 + B)‘ldz> (&Rﬁ?*(a)z(x, S))) dS]
0 2ri T,

=r [P / 2z + B)“dz] c (a,’@f'* (wz(x, t)))
27l T,
=2z + B)—IE (@Rﬁ;’* (wz(x, l‘))) = (ZI_E(Z + B)_l) <ZE£(():R®?* (wz(x, t)))) .

Invert the Laplace transform, use (9) and the Laplace transform of convolution to get

t *
- / e =8B (65 RDY (wz(x, s))) ds
0

t *
= / [1 / z'_e(z+B)_'eZ(’_‘)dz] (Ragas’*ﬁf.‘ (wz(x,s)))ds.
o L27i Jr,

We use (8) to bound the integral in the square brackets and use (25) to bound the first term
on the right-hand side of 97G, in (22)

”/ —(@t- WJ’B( R[D) (a)z(x s)) ds ‘|t RD (a)z( s))”ds
0 — 5)l-¢

1032, 0) D 06
SQ/ (t—S)“f< o (s— )a+ed6’+llp(,0)||s >ds

0 .
<0 / 1% Z(Q)a)”dﬂ+Qllp(-,0)llt‘“-

Use (24) to bound the L? norm of the second term on the right side of (22) by the right
side of (26). Multiply (22) by e~*’ and bound the || - || ¢,y on both sides of the equation
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by Young’s inequality to obtain

R L T P

< Qo™ e 07zl iz + QlipC, 0l

Differentiate (19) twice in time, bound the || - ||z¢(0,r) norm on both sides of the equation
multiplied by e~* and invoke (20) and (27) to obtain

@7)

—o1 32 —ot 32 —ot 32
“e 0z <lle o G1||L1(L2) + lle o; G2||L1(L2)

|L1(L2)

R
< Qo ezl + O <||P||H'(L2) + ||P||Lz(,;,2)) .

Set ¢ large enough to get ||a,2Z||L1(L2) <Q (||P||H1(L2) + ||p||L2(Hz)> , which, together with
(7), (17) and (24), yields

Pz + koD (wz) — o

oz afBzH

Lty ) L ’

< 0 (Ipllaz) + 1ol 2, )-

L1

We thus complete the proof. [

4 | ANALYSIS OF THE VARIABLY DISTRIBUTED-ORDER FRACTIONAL

OPTIMAL CONTROL MODEL

We restate Theorems 2 and 3 for the adjoint state Equation (13) in the corollary.
Corollary 1. If assumptions (a) and (b) hold and u,uy € L*(L?), the adjoint state
Equation (13) has a unique solution 7 € H'(L*) N Lz(lviz) and

Nzllan @ + llzll o ) < Ollu = uallzaz (28)

with Q = Q(a*, 0o, k, T). If u,ug € H' (L) N L2(H"), then

o L, < @ (= wallasy + = all o ) - 29)

LY(H")

()tZ

i, *
LI(L?)
Theorem 4. Suppose that assumptions (a) and (b) hold. If f,c € L*(L?), the state
Equation (2) has a unique solution u € H'(L*) N LZ(I:IZ) and

Nutll ey + Nl o 2y < QI + cllzaz). (30
If foug € H'(L2) N LAH) and ¢ € H'(L2), then

e < QU a2y + AN o ) + Ntz

6,214“ )+'

L2 0,u“ 31)

+ llugllmaz) + luall 5 p2)-

Proof. By the assumptions estimate (30) holds. However, the regularity estimate of d7u
requires ¢ € LZ(I:IZ) that is not true by (16). z € H'(L*) n L2(I:I2) and estimates (28) and
(29) hold by Corollary 1. To bound 0?u, we re-estimate 0?G, in (19) with p replaced by c.
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We use the second equation in (11) to get

t t
6,/ e 9Be(x, s)ds = 0;/ e Pe(x,t —y)dy
0 0
t t
= e Be(x,0) + / e?Poex, 1 — y)dy = e Pe(x,0) + / ™5 0,c(x, 5)ds.
0 0

We differentiate the equation with respect to ¢ to find
1 t
o7 / e 9Be(x, 5)ds = —e P Be(x, 0) + d,c(x, 1) + 0, / e 9B9c(x, s)ds. (32)
0 0

Use Young’s inequality to bound the last term on the right-hand side

1
' ray lzH/Otﬂie_ii(lﬂ)(asc("S)’ di)ds
i=1

2 2
L2(0,T)
1
0 T 2
< Z 05c(,8), p)ds | < llcllmaz).
=170

1,
We use (5), (12), (16), (29) and the equivalence between H?> andH e to bound the first
term on the right-hand side of (32) for 0 < € <« 1 by

t
d, / e~ 9By c(x, s)ds
0

e Be,0), = e Pe.0)] . < 0 () ege, oll,

1
2

<or o, <o o,

276 T

1
H?

— §+5 — §+5
<Ot <4 2)”0[1””( 7{) <0t (4 2) <||u—ud||H1(Lz)+ ||u—ud||L2(Hz)>.

—tB _ _
Consequently we have ”e Be(x, O)Hum) <0 (llu wallme + ud||L2(Flz)> . The

remaining analysis can be carried out as in Theorem 3 and is omitted. n

Theorem 5. Under assumptions (a)—(c), problem (3) and (2) has a unique solution u €
HI(LZ)an(I:IZ) and c € H'(L?). Equation (13) has a unique solution z € H' (LZ)OLZ(IEIZ).
There is a positive constant Q = Q(a*, Qq, k, T) such that

lellman < © (Haallinz + Nagll e, + W ks + el ) (33)

>
etll ez ey + Noell o 2y + N 97 ulliezy + 110ell 2,
(34)
<0 <||Md||H1(L2) F lluall o) + Wl + I o 2 + ||C||L2(L2)> ,

Nzl a2y + izl 2, + |[072 0,2

LAH)

Pl
LY(L?) LY(H™)

(35)
< 0 (Ilallma + tall e, + Nz + lellzzas )

Proof. The proof could be performed following that of [58, theorem 5] or [57, theorem
4.3] and is thus omitted. m

2591 SUOWWIOD) 2ANERL) A[qEatddE o) £q PAUILAOT AT SAIOIE YO 55N JO SA[NI 10 AIBIGIT QUIUQ A[IAN UO (SUONIPUOD-PUE-SULIOY WO KA[1mKIRIGHaUL[U0;/5dIIY) SUONIPUOD) PUE SULIAL o1 998 “[$Z0Z/80/81] U0 AIRIGYT QUIUQ AR[IA\ “PUTOIED YINOS JO ANSIPANIC £Q $€ [ £2°WNU/ZO0 ] “01/10P/W09-Kaf1mIeaqriout[uoy/:sdiy woxy papro[umod ‘0 “9ZhZ8601



ZHENG ET AL. Wl LEY 11 of 23

Remark 2. In this paper, we assume the operator /3 in (2) is self-adjoint and sym-
metric, the obtained theoretical results cannot be directly extended to the variably
distributed-order time-fractional advection-diffusion-reaction equation where the operator
I3 is non-symmetric. However, in our recent work, we obtain the well-posedness and maxi-
mal regularity estimates for the optimal control of a fractional advection-diffusion-reaction
equation with space-time-dependent order and coefficients by utilizing the Fredholm alter-
native for compact operators and a bootstrapping argument [33]. Consequently, the optimal
control of variably distributed-order time-fractional advection-diffusion-reaction equation
can also be analyzed similarly.

5 | DISCRETIZATION

In this section we discretize the optimal control model.

5.1 | Time discretization of state Equation (2) and adjoint state Equation (13)

Partition [0, T] by t, :=ntforO <n < Nandt :=T/N,and [0, a*] by a,, :=moc for0 < m < M and
o :=a"/M Letf, :=f(x,t,),c, := c(x,t,), u, := ulx,t,), and @) := w(ay,t,). We discretize o,u
by the implicit Euler method and D{’u by the composite trapezoidal rule on [0, «*] and the L1 method
for each 9,
Iﬂ
DX, 1) = Sty + Ey 1= Moo=ty 1 / OFuCx, (1 — t,_1)d1,
1

T T

n—1

M
N )
Dfu(x, t,) = Zamwﬁi’&gmun +R,+S,=:D;u, +R, +S,,

m=0
n 5 n
o b.uy ds
6 Uy, L= T = ) b (up — wy—
;1/ T(1 = t)(ty — 5)% kz, wlit = i) (36)
n—1
k=1
— l-a, _ — )l
nmk:=(tn I—1) (t, — 1) . 0<m<M. 1<n<N:
’ I'e-a,r
co=0oy=06/2, 61= ... =0y_1 =0.

Here the local truncation errors R, and S, are given by

M
w 1= DPUCE, 1) = ) @0 ulx, 1),

m=0

= icf o Ry = fa wmi/lk AU Z Oty (37
= AT A [ T = )ty — 5)%

(tn — §)
- Zama),, Z T [ [ | / Rux, e)dadz] ds.

k=1 lk—1

We plug (36) into (2) and integrate the equation multiplied by y € H}(€2) on Q to obtain the
following for Equation (2) for any y € Hg andn=1,2, ... ,N

(6;u, + k]ﬁ)(:u,, + Bup, y) =+ cn, y)— kR, +S,) + En, p). (38)
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12 of 23 Wl LEY ZHENG ET AL.

We discretize —d,z and apply Ré;xg = éftg if g(T) = 0 to discretize *D? (wz) backward in time for
n=N,N-1, ...,1 as follows

tn
L0 yt) = —Byzg + By 1= sl 2oy L / 022(x, (1, — 1)dt,
T L

n—

RDE (wz(x, ta-1)) = / RO (@2) 1=, da = / 0; (@2)] 1=, da
0

0
M
Aa”l Fal S
= Zo-mé‘r (a)nm_lzn—l) + R, + Sn—l
= (39)
NS N A
=: RDT (wff_lzn—l) + Rn—l + Sn—ly
N ik

5 _5r(wm Zk) ds
5?(602"_ Zne1) 1= / k
: 1 ; thk—1 F(l - am)(s - tn_l)am

N
= bn,nwnm_lzn—l + Z (bk,n - bk,n+l)wz1_1zk—l-

k=n+1

Here the local truncation errors Rn_l and S‘,,_1 are given by

Sn—l 3:/ at (@2)|=,  da — Zo'm at (@(am, Hz(x, D) li=,_,
0

; O (0} z1) — O(@(at, $)z(x, 5))
= D onki m d 40
n;f’ ZU Z/ T —a)s =ty (40)
M ( ¢ ) 1 z
S — Iy—

We plug (39) into (13) to get the following equation for adjoint state Equation (13): Forn = N, N —
1, ..., 1, find z(x, t,—1) such that for y € H]

( an kR]D) (a)n 1%n— l)+BZn L X >

= (n=t — g (s ta=1)s ) = (k(Ruzt + Sum) + Enct, 1) -

(41)

5.2 | A discretization of the optimal control model

Define a quasi-uniform partition of Q with the mesh diameter 4. Let S, be the space of continu-
ous piecewise linear functions on  with respect to the partition, and B, : S, — S be defined by
B¢, y) = (KVL,Vy) for ¢, y € S;,. Let A°(I,r) be a time discretization of A(/, r) in (4) such that
c(x,t) = c(x, t,—1) on each [t,_1,1,) C [0, T]. Namely,

AL = {C:={Coy @)}, 1 [<Coy<r, 1<n<N}.

We drop the last term on the right-hand side of (38) to get a discrete control model

N

; T N 2 2
(min J(U,0) := 521 (1 = aC. I + 711 Com ) - (42)
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in which U := {U,,}y= , C Sy and U, satisfies the following equation with Uy =0
(5,U,, KDY U, + BhUn,;() =(f,+Coto ). €S 1<n<N. 43)
By a similar proof as Theorem 1, we reach the following theorem.

Theorem 6. The discrete optimal control system (42) and (43) admits a unique solution
(U, C), and a adjoint state Z = {Z, }Q’;l C S, with Zy = 0 such that

(=820 + KD @ Zi) + BiZoro ) = W= st 0)e Vx €Sy (44

forn=N,N-=1, ... ,1and (yCp_i + Zy_1,v — Cy_1) > O foranyv € L> with [ <v < r.
Furthermore,
Co1(X) =P (=Zy-1(x)/y), 1<n<N. (45)

6 | STABILITY AND ERROR ESTIMATES OF THE DISCRETIZATION

We start with the stability analysis of the time-discretized Equations (38) and (41).

6.1 | Stability of the time-discretized equations
Theorem 7. The solutions (U, Z) of schemes (43) and (44) are stable

||U||iw(L2) < Q (“f”if(ﬂ) + “CHI:I(LZ)) ’ ||Z||£W(L2) < Q”U - ud”l:](U)' (46)

Here the discrete norms are defined by

Vi

1
N »
P
”V”Em(Lz) = 1I£1na<)§v”Vn”’ ”V”ﬂ(LZ) = l12| ] » P = 1’2 (47)
- n=1

with the norms of C and Z being evaluated for n from 0 to N — 1.

Proof. We set y = Z,_; in (44) and use expression (40) for Si’" to get

M
(l + kfzo-mbnm,nwr_1> ”Zn—l ”2 +7T (Bth—l’Zn—l)

m=0

M N
= (Zna Zn—l) + kTZO-m Z (beyH] - an)(wzl_lzk—l’zn—l)
m=0

=l k=n+1

+ T(Un - ud(', tn)’ Zn—l)-

We use by, | > b, forn+1 <k <Nand0 <m <M to cancel ||Z,-| on both sides to
obtain

M
<1 + eramb;;fnw;"_1> 1Z,1l

m=0
y N (48)
<NZall + k2 Y om D (BFasr = ) @ 1 Zeca [l + U = ua 1)

m=0  k=n+l

oy/:sdny wouy paprojumod *0 ‘97478601

&
£
g
5
<
g
g
g
=
3
8
4
5
H
E|
B
8
b
b
Z
c
EX
z
g
o)
2
=3
o
&
=
B
g
o
EX
E
2
[
g
£
2
°
S
z
S
x
I~}
S
S
]
»
&
&
=
g
et
g
B
=
5
2
o
3
=

>-pur-suLI) oo Ko Kei

3
5
&
o
E
E
2
|l
g
]
3
2
g
Z
&
<}
>
&
z
2
@
0
g
E]
s
3
g
&
T
Z
s
g
=
5
2
8
=
&
Q
g
3
&
a
15
2
]
g
oo
5
g
Z
&
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We use assumption (a) and the expression b, in (37) to get the estimate for 0 <m < M
and1 <n<N

oy/:sdny wouy paprojumod *0 ‘97478601

N

m QO t 1
byl — oy | < ds
kZ ¢ ru-am);n o, (5= tyg)%
_ Qo(T = t,-1)' ™ < Qomax{L.T} _.
I'2—an) I'(ro)

where yg =~ 1.46 is the minimizer of I'(:) on (0, o0). Set n = N in (48) to get
1Zy-11l < 7| Ux = waCot)|| < 21+ Qak) || Un = a1

Suppose that the following estimate holds forn+ 1 <m <N
N
1Zn-1ll < Ant DU = G| An 2= (14 @k, 49)
j=m

We use (48) and (49), A; > Ay, > --->Ay > 1 and

N N
N (B =B o = Y (B0 - b)) + (BRLef - blLal)
k=n+1 k=n+1

S B + Y b (of — o)

k=n+1
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>-pur-suLI) oo Ko Kei

(1 +kr§ambzuwn 1) 1t <An+112||u — 1)

m=0

S0+ [ 3 -

m=0 Jj=n+1

(1 +kT§:Gm Dhn®),_; + a szr> ”+ITZ||U ~ uals t’)”
J=

m=0

We divide both sides by (1 + krzgzoambf{’,nwf_l) togetthatfor ] <n <N

O:k S
1Z,111 < <1 + +erZ=1 «:mb:r,nw;"_l >Anm]§||vj — w1

<+ szf)A,,HTi”Uj - ud(-,tj)H = Anrﬁ“”zjj — ug(-, t;)”-
j=n j=n

Thus, (49) holds for m = n and for all 1 < m < N by induction. We have proved the second
estimate in (46). The first one can be proved in a similar manner. [
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6.2 | An optimal-order error estimate of the discretization
LetIT;, : H}(Q) — S, be the Ritz projection operator: for any v € H} ()
KV —-1Iv),Vy) =0, Vy s,
It is well known that the following approximation property holds [52]
v =Tl < QR |Vllm2, Vv € HX(Q) N Hy(Q). (50)

Theorem 8. Suppose that assumptions (a)—(c) hold. The optimal-order error estimate
holds for the discrete optimal control system

||M - U”Z“’"(U) + ”Z - Z”i“’(LZ) + ”C - C”[""(Lz) < QQ>‘< (T + h2 + 0-2) (51)
with Q° := lluallm @ + litall o, + sy + 11 e, + Nl
Proof. We subtract Equation (38) from scheme (43) to obtain the error equation

(66U = ) + KDY W, = ), 7 ) + KV (U, = ), V) )

= (Cot = )+ (kRy + S) + En, x) . Yy €S

We decompose U, — u, = &, + n,, where &, = U, — Ilu, € S, and 5(x,t) :=
ITyu(x, t) — u(x, t). We rewrite Equation (52) in terms of £ and # as follows

(6e6+ KDY E 7 ) + KV, V)

. 3)
== <6r’7n + k]D)rrlna )() +(Co1 — s )+ (k(R, + S,) + E,, X)-
We apply Theorem 7 to Equation (53) to obtain the following estimate
ellz= g2y < Q(enly1 g + KBl + KISy + T
(54

N
IR gy + 1€ = €l ) + 07 X llew = ol
n=1

We use estimate (34) and (50) to get
nllzowz) < QPP |ullis@ry < QR llullwiige) < QO . (55)

We apply Lemmas 1,2 and 3 in the appendix to obtain

13201+ 1Bl gy + 1R+ 11 ) +11C = €l 56
< Q0 (r+ 1 +07).
We use estimate (33) to directly bound
N N 1
Y llew — camtll <O / lorclldt < Qzliclimaz < Q" (57)
n=1 n=171I-1
We use estimates (34) and (50) to obtain
N f
ool = 3| [ omat] < QMow ~ ol < 00K (58)
n= n—1

We incorporate estimates (56)—(58) and Lemma 3 into (54) and combine the resulting
estimate with (55) to prove the estimate (51) for U — u.
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We subtract Equation (41) from scheme (44) to conclude that for any y € Sj,
(=60Z = 20) + KD (0, Zot = 20-)) o 1)
+ KV(Zyet = 20-1): V1) 59
= (Un = (> 1) = tp—1 + g, tat), 1) + (kR +85) + Encr ) -

We similarly decompose Z, —z, = &, +#, forn =0,1, ... ,N—1, where §, = Z,—II)z, €
Sy and 7j(x, 1) = Il,z(x, 1) — z(x, ). We rewrite Equation (59) in terms of & and # for
n=N,N—1,...,1and y € S, as follows

(=6ed + KD @iEyi)ox ) + (KVE, 1, V)
= (Befty =KADY @iy, 7 ) + U = s 1)+ (= thr-1, 7) (60)
+ (g o tnmt) = g Co 1), 1) + (kRuy + 8s) + Encr x) -
We apply Theorem 7 to Equation (60) to obtain the following estimate
1Elli=z) < QBN s, + DY @)

+ IR,

I:I(Lz) + ”E”zl(LZ)

oy F I8l + 10 = allr )

N
+ 07 Y (it = e[| + it 1) = e G ta ).
n=1

”E”i‘(m)’ ||]A€||£1(L2), ||S‘||11(L2), and ||RI®Z (wﬁ)”z‘(p) are bounded in Lemmas 1 and 2.
[16:7]| i 2y Was bounded in (58), ||U —u|| '@ already estimated. The last term can be esti-
mated as (57). We put these estimates into the preceding inequality and bound ||| ;=2
as in (55) to prove the estimate for Z — z in (51).

To bound C — cllzoo(Lz), we use (16) and (45) to find that for 1 <n < N

€1 () = Gt )] = [P(=20m1@)/7) = P(Zyma0)/7)]- (61)
If both —z,_1(x)/y, —Z,—1(x)/y € [/, r], then

€r10) = Cot ()] = [20-1(6) = Zoea 0] /7

Otherwise, say —z,-1/y <land —Z,_/y > r, we have from (61)

a1 () = Cpma () = 7 = 1 <

201 = Zy ()| /7.

We similarly bound |¢,—; — C,—1| by |z,—1 — Z,—1|/y for other cases, and obtain

IIC - C”i“(LZ) <0llZ - Z”[f”([}) < Q0% (r + h* + 0'2)~

We thus complete the proof of (51). u

7 | NUMERICAL EXPERIMENTS

We carry out numerical experiments to investigate the performance of the discretization of the optimal
control model by measuring its convergence rate v with respect to the time step size z, the convergence
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rate 1 with respect to the spatial mesh size &, and the convergence rate x with respect to the quadrature
mesh size o in discretizing the distribute-order differential operator. A uniform spatial partition is used
in all the experiments.

7.1 | The approximation to the optimal control (3) and (2) in one space dimension

In the numerical experiments the data are as follows: Q = (0, 1), [0,7] = [0,1], k = 1, K = 0.01,
[=02,r=03,y=1,f=1,u; =1 and w(a,t) = (t + 4)0[’+3/0.8’Jr4 on supp @ = [0,0.8] x [0, 1].
As the closed-form analytical solution to the problem is not available, we use the numerical solu-
tion computed with (z, iy, o¢) = (1/720,1/120, 1/120) as the reference solution to test the temporal
convergence rates v, (zr, h,0r) = (1/720,1/360,1/120) for the spatial convergence rates 1, and
(zy, hy, 0p) = (1/720,1/120, 1/360) for the convergence rates x of the quadrature error. When mea-
suring v, we adopt the same mesh sizes for 4 and ¢ as used for the reference solution. We similarly
measure 1 and k. We present the numerical results in Table 1 and observe second-order accuracy on A
and o and first-order convergence on 7 as proved in Theorem 8.

TABLE 1  Accuracy of the discretization of the one-dimensional optimal control in Section 7.1.

T 18 1/16 1124 1/32 v
lle = Cllg=q, 1.92E—-02 9.57E—03 6.26E—03 4.29E-03 1.00
llu = Ullg= 2, 1.38E—02 7.21E-03 4.87E—03 3.24E—03 0.96
llz = Zll= 2, 2.37E-02 1.21E-02 8.05SE—~03 5.33E-03 0.99
h 1/60 1/72 1/90 1/120 1

lle = Cllg=g, 4.66E—04 3.73E-04 2.10E-04 1.16E—04 2.07
llu = Ullz= 2 1.28E-03 8.98E—04 5.73E-04 3.12E-04 2.04
llz = Zllz= 2, 9.37E—04 6.58E—04 4.20E-04 2.31E-04 2.02
- 1/30 1/60 1/90 1/120 K
lle = Cll=q, 8.90E—05 2.18E-05 9.33E-06 4.97E-06 2.08
llu = Ullz= g2 7.09E—04 1.74E—04 7.45E-05 3.97B-05 2.07
llz = Zll= 2, 1.23E-04 3.00E-05 1.29E—05 6.85E—06 2.08

TABLE 2 Accuracy of the discretization of the two-dimensional optimal control in Section 7.2.

T 1/16 1/32 1/64 1/128 0

llc = Cllz= 2, 1.18E—02 6.31E-03 3.21E-03 1.63E—03 0.95
llu = Ullg= g2 1.59E—02 8.05E—03 4.04E—03 2.02E-03 0.99
llz—ZL7w?) 2.20E—02 1.10E—02 5.52E-03 2.76E-03 1.00
h 1/8 1/16 124 1/32 1

lle = Cliz=(z, 6.10E—03 1.63E—03 7.16E—04 4.08E—04 1.95
llu = Ullz=z 7.74E-03 1.95E-03 8.69E—04 4.89E—04 1.99
llz = Zllz=z) 1.07E—-02 2.68E—03 1.19E—03 6.70E—04 2.00
- 1/10 1/20 1/30 1/40 K
lle = Clly=2 4.08E-03 1.04E—03 4.61E-04 2.58E—04 1.99
llu = Ullz= 2, 5.15E-03 1.28E-03 5.57E—-04 3.04E—04 2.04

Iz = Zllg= 2y 7.05E-03 1.75E-03 7.63E-04 4.19E-04 2.03
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7.2 | The approximation to the optimal control (3) and (2) in two space dimensions

In this set of numerical experiments, we let Q = (0,1)?, [0,7] = [0, 1], k = 1, K = diag(0.01,0.01),
w(a,t) = (1+2at)/(0.3+ 0.3%) on supp @ = [0,0.3] X [0, 1]. The solutions are chosen to be u(x, t) =
2O sin(zx;) sin(zxy), z(x, 1) = (T — 1)*>~*D sin(zx,) sin(zx,), c(x, ) = max{l, min{—z(x,?)/y,r}}
with/ = =0.2 and r = —0.1, y = 1, and f and uy calculated accordingly. Mesh sizes of h = 1/64
and ¢ = 1/100 are used to measure the temporal convergence rate v, while 7 = 2h% and ¢ = 1/100
are used to measure the spatial convergence rate 1. To measure the convergence rates k of the quadra-
ture error, we apply 7 = 202 and & = 1/30. We present the numerical results in Table 2, which
again substantiate the second-order accuracy of 1 and x and first-order convergence of v as proved in
Theorem 8.

8 | CONCLUDING REMARKS

In this paper, we analyzed the well-posedness, smoothing properties and numerical discretization
of the optimal control problem governed by a time two-scale variably distributed-order tFDE in
heterogeneous porous media, where the integer-order term refers to the normal diffusion, and the vari-
ably distributed-order fractional derivative is employed to describe the anomalous diffusion caused by,
for example, the absorption to heterogeneous porous matrix. Therefore, the considered model enjoys
more powerful modeling capacities than the single-term variably distributed-order fractional model
or the conventional integer-order model. However, in the current analysis framework, the first-order
time derivative is crucial to derive the well-posedness and error estimates of the time two-scale vari-
ably distributed-order fractional optimal control problem, due to the limited smooth property of the
pure variably distributed-order fractional derivative. We will deeply investigate the mathematical anal-
ysis of the variably distributed-order fractional optimal control problem without the first-order time
derivative in our future work.
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APPENDIX A

We prove Lemmas 1,2 and 3 used earlier.

Al | Truncation and quadrature errors

Lemma 1. Under assumptions (a)—~(c), En, Ry, Sp, En, Ry and S, in (37) and (40) are
bounded by

NEN; +ISHeaz) + HEN o) + IR o) + 1S

v RN o)
< Q0*(r + 62).

Here Q% is given in (51) and Q is independent of N, M, and h.

'y tay

Lz (A1)

Proof. We use (35) and (47) to bound E;_; in (39) by

IEN;1 o) < Tll0F2lle < Q07
We use (35), assumption (a), the boundedness of 9, (1 /T'(1—a)) on [0, «*], and the Sobolev
embedding W(0, T)>! — W'*(0, T) to bound ||3,,_, || by

8,11l < Qo” | sup

a€l0,a*]

o (,I}“”a,(a)z)h:,H ) ’ ||

< Qc?

T _ 2
sup / |1n(s tn—l)l |asz(x’ s)lda”

a€l0,a*]J ¢ (S - [n—l)a

T oz, 9)|

2 2 2
< Qo e da” < Q07|02 w2y < OMo
-1

for some 0 < € < 1 — o, which immediately yields the estimate of 11811+ iy

We bound R),_; by using its expression in (40)

R 1’ < 2 (Srzltn_l)m) [/tk_;|ag(a)(am,9)z(x, 0))|d6’] ds

k=n" k-1

173 (t —t )l—am _ (t _ tn)l_am

k=n" k-1
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We then use (40) and (47) to bound

N M
A Am
IRl 2 < 72 D omllRom

n=1m=0

M N N Iy (tx — 1 )l—am — (-t )l—am
<TY0n), ) ||65(wz)||d9< e )

m=0 n=1k=n k-1

Iy N k 1-q L
I = tpo1) " = (e = 1) "
_ TZG’”;/, ||d§(coz)||d92 <( L 11“(2 _ af,,]; ) )
= k-1 n=

m=0

< Orllzllweiae) < QO
All remaining terms in (A1) can be bounded similarly and the proofs are omitted. [

Lemma 2. Under assumptions (a)—(c), the following estimate holds

N
S

n=1

N4 R «
[0 @iinn|) < 0.
Here Q is independent of M, N, and h.

Proof. We use the expression of R]ﬁ): (@ 171,-1) in (40) and 7y = O to obtain
N *
A N
TZ”RDT (wzl—l”ln—l)H
n=1

M N N g ' s
< m 00" #)||d
_sz:aa ZZ 10, (@™ D)l t/tk1 Aot~

n=1k=n" -1
SRV o (1 = 1)1 — (1 = 1,)1 7%
A n— n
=0) 0n), | lo@™lldt)) T
m=0 k=17t g ®m
2 2
< O |0zl ey < QQ*h”.
The first term can be estimated similarly, and the estimate is omitted. ]

A2 | Approximation to the control variable
Lemma 3. Under assumptions (a)—(c), the following estimate holds

IC = cll2 2y < QO* (7 + 1 + ).

x?
Proof. Let U(c) satisfy Up(c) =0andfor1 <n <N,
(6:U(©) + KDL UL(©) + BUL©). £ ) = o+ ot ) V7 €S, (A2)
and Z(U(c)) satisfy Zy(U(c)) =0andfor 1 <n < Nand y € S,
(=6:Z(U(©) + KD (01201 (U (D) + BZua (U 1 )

= (Un(c) —ug(-,tn), ).
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Following the standard procedure as [57, lemma 9.4], we reach

oy/:sdny wouy paprojumod *0 ‘97478601

lle = Cll; IIZ(U(C)) zll;2 (Ilz—Z(u)II+IIZ(u) ZUE)ID .- (A3)

i (Lz) - (L2) -

Here Z(u) satisfies Zy(u) =0and for ]| <n < Nand y € S,
(=6:7u0) + KD (01 Z1m100) + BZum 0 7 ) = = a1, 2) (Ad)

To bound the first term on the right side of (A3), we split Z,(u) — z, = efn + #, with
f,, = Z,(u) — Iz, € S;. We subtract (41) from (A4) and express the equation in terms of
& and 4 as

(=8:&, + k<D (w;"_lén_l),x) + (KVE,_1,Vz)
—<T77n kRD (a)n lnn 1))./>+(un_un1+ud( tn 1)—I/td( tn))()
+ (kSuot + Ro-) + Encrx), VY €Sp, n=NN-1,..,1.
We apply Theorem 7 to the equation to arrive at the following estimate

v N NS n N A
180=, < Q801 + D @ D)+ 1B o)+ IR

1811 )+Qr2(uun—un o+ Hlta 1) = )

The terms in the summation can be bounded as in (57). The remaining terms on the right
side were bounded in (58) and Lemmas 1 and 2. We combine these estimates with that of

1771 o= (z2) tO get
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1z = Z@llz= 12, < Q0" (z + W + 62, (AS)

The second term on the right side of (A3) can be estimated by subtracting (A4) from (9.2)
and employing the stability estimate in Theorem 7

1Z@) = ZWE= 2y < Qllu = U1,
The right side can be bounded as in (AS). n
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