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Abstract

Fractional diffusion equations exhibit competitive capabil-

ities in modeling many challenging phenomena such as

the anomalously diffusive transport and memory effects.

We prove the well-posedness and regularity of an opti-

mal control of a variably distributed-order fractional dif-

fusion equation with pointwise constraints, where the

distributed-order operator accounts for, for example, the

effect of uncertainties. We accordingly develop and ana-

lyze a fully-discretized finite element approximation to the

optimal control without any artificial regularity assumption

of the true solution. Numerical experiments are also per-

formed to substantiate the theoretical findings.
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1 INTRODUCTION

Optimal control governed by classical integer-order partial differential equations (PDEs) have

been widely used in engineering design, manufacturing, biology and medicine, and a variety of
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other applications. Its mathematical analysis and numerical approximation have been well studied

[6, 13, 23, 28, 43, 47]. In applications such as solute transport in porous medium and additive manu-

facturing, the integer-order diffusion PDEs, derived assuming the existence of a mean free path and

a mean waiting time of the underlying particle movements [44], accurately model the diffusive trans-

port of solute in homogeneous media when the solute plumes in field applications were observed to

exhibit Gaussian exponential decays [8].

The diffusive transport of solutes in heterogeneous media exhibits power-law decays that indicates

why integer-order diffusion PDEs tend to yield less accurate approximations [9, 35, 42, 44]. In contrast,

fractional PDEs derived via continuous time random walk under the assumption that their solutions

(i.e., the probability density function of the underlying particle jumps) have power-law decays [36,

42, 44], can accurately model the anomalously diffusive transport in heterogeneous porous materials.

In recent years, optimal control [5, 6, 12, 15, 25, 32, 46] of fractional PDEs has attracted intensive

investigations [4, 14, 17, 22, 26, 29, 45, 48, 55, 56, 59].

A pointwise optimal control problem of a space-time fractional PDE, in which a spectral frac-

tional Laplacian operator was adopted to model the superdiffusive transport while a Caputo time

fractional differential operator was used to model the subdiffusive transport, was analyzed rigor-

ously [4]. The regularities of the solution in some weighted Sobolev spaces were proved and the

Caffarelli-Silvestre extension [10] and the L1 discretization [37, 47] were employed for numeri-

cal computation. A pointwise optimal control of a time-fractional PDE was analyzed, in which a

discrete-in-space but continuous-in-time finite element method (FEM) approximation was considered

[59]. Based on the proved regularity of the solutions, the error estimate of the numerical approxima-

tions was proved, and the stability and truncation error of the fully-discretized FEM were analyzed. The

pointwise-in-time error estimate of a fully-discretized FEM approximation to the subdiffusion optimal

control problem was proved with the regularity of the solutions proved via resolvent estimates [29], in

which both the L1 temporal discretization and the backward Euler convolution quadrature were ana-

lyzed. The well-posedness and smoothing properties of the solutions to the optimal control problem

governed by a different type of time-fractional PDE were proved, and an optimal-order error estimate

of a fully discretized FEM approximation with the convolution quadrature discretization in time was

proved [26].

The motivation of this paper is as follows: The time-fractional PDE (tFDE) yields solutions with

nonphysical initial weak singularity [40, 49, 51], because it was derived as a stochastic limit when the

number of particle jumps tends to infinity and hence holds only for large time [44]. Recently, a two

time-scale mobile-immobile tFDE, which contains an additional 𝜕tu term with a partition coefficient

k in front of the time-fractional derivative term, was presented [50]. The model describes dynamic

mass exchange between the 1∕(1 + k) portion of the solute mass in the mobile phase and the k∕(1 +

k) portion of the solute mass in the immobile phase absorbed to the porous materials, exhibits the

Fickian diffusion behavior initially and naturally switches to the subdiffusive transport behavior as

time evolves, and so is valid on the entire interval including the initial time without the initial weak

singularity of the conventional tFDE [53].

Furthermore, the order of fractional PDEs is related to the fractal dimension of porous materials

via the Hurst index [42]. For highly heterogeneous porous materials, a scalar Hurst index does not

necessarily suffice to quantify its fractional dimension. The distributed-order fractional differential

operator [11, 24, 38]

D
𝜈
t g ∶= ∫

1

0

𝜈(𝛼) 𝜕𝛼t g𝑑𝛼, 𝜕𝛼t g ∶=0 I1−𝛼
t 𝜕tg, 0I𝛼t g ∶= ∫

t

0

g(s)

Γ(𝛼)(t − s)1−𝛼
𝑑s, (1)
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with Γ(𝛼) being the Gamma function, was introduced to integrate the accumulated impact of a wide

spectrum of fractional differential operators modeling complex phenomena. Moreover, in subsurface

solute transport and hydrocarbon or gas recovery [7, 20], the geological information is limited and

often polluted with noises and an accurate determination of a scalar fractional order is impossible

[19]. The distributed-order fractional differential operator provides a feasible approach to quantify the

uncertainties. Distributed-order FDEs have attracted extensive research on their application, analysis

and discretization [16, 21, 30, 34, 40, 41]. In applications such as bioclogging [7] and nonconventional

gas and oil recovery [20], the structure of porous materials may evolve in time so the probability density

function 𝜈(𝛼) in (1) may depend on the time t too. All these factors lead to the two time-scale variably

distributed-order FDE [53]

𝜕tu + k D
𝜔
t u + u = f (x, t) + c(x, t), (x, t) ∈ Ω × (0,T];

u(x, 0) = 0, x ∈ Ω; u(x, t) = 0, (x, t) ∈ 𝜕Ω × [0,T].
(2)

Here Ω ⊂ R𝑑 , 𝑑 = 1, 2, 3, is a simply-connected bounded domain with the piecewise smooth boundary

𝜕Ω and convex corners, D𝜔
t g ∶= ∫ 1

0
𝜔(𝛼, t) 𝜕𝛼t g𝑑𝛼, x ∶= (x1, … , x𝑑),  ∶= −∇ ⋅ (K(x)∇) with

∇ ∶= (𝜕∕𝜕x1, … , 𝜕∕𝜕x𝑑)
⊤ and K(x) ∶= (kij(x))

𝑑
i,j=1 is the symmetric diffusivity tensor. The partition

coefficient k is a positive constant, f and c denote the source and the control variable, respectively.

Let u𝑑 be the target function, in this paper we discretize and analyze the optimal control

min
c∈Λ(l,r)

J(u, c) =
1

2
||u − u𝑑||2L2(L2(Ω)) +

𝛾

2
||c||2L2(L2(Ω)), (3)

which is governed by the variably distributed-order tFDE (2). For l ≤ r, the admissible set Λ(l, r) is

defined by

Λ(l, r) ∶= {c ∈ L2(0,T;L2(Ω)) ∶ l ≤ c(x, t) ≤ r a.e. in Ω × [0,T]}. (4)

Let Lp(Ω) and Wm,p(Ω), 1 ≤ p ≤ ∞, m ∈ N, be the spaces of p-th Lebesgue integrable func-

tions and those with p-th Lebesgue integrable derivatives up to order m in Ω, respectively, and

Hm(Ω) ∶= Wm,2(Ω). For s > 0 the fractional Sobolev space Hs(Ω) is defined by interpolation [1].

All the spaces can also be defined on an interval. Given a Banach space S, Lp(a, b; S) and H1(a, b; S)

consist of functions f such that ||f ||S and ||𝜕tf ||S in Lp(a, b) and L2(a, b), respectively [1, 18]. All the

spaces are equipped with the standard norms [1, 18]. For g ∈ H1(0,T;L2(Ω)), the following estimates

hold for the cut-off projection [31]

g ∶= max{l,min{g, r}} ∈ H1(0,T;L2(Ω)),

||g||H1(0,T;L2(Ω)) ≤ ||g||H1(0,T;L2(Ω)),

||g||H𝜇(Ω) ≤ ||g||H𝜇(Ω), ∀g ∈ H𝜇(Ω), 0 ≤ 𝜇 ≤ 1.

(5)

We make the following assumptions throughout the paper.

(a) 𝜔(𝛼, t) ≥ 0 on [0, 1] × [0,T] satisfies ∫ 1

0
𝜔(𝛼, t)𝑑𝛼 = 1 for any t ∈ [0,T]. There exist some

0 < 𝛼∗ < 1 and Q0 > 0 such that supp 𝜔 ⊂ [0, 𝛼∗] × [0,T], and |𝜕m
𝛼 𝜔|, |𝜕m

t 𝜔|, |𝜕2
𝛼𝜕t𝜔| ≤ Q0

on supp 𝜔 for m = 0, 1, 2.

(b) 0 < K∗ ≤ 𝝃T K𝝃 ≤ K∗ < ∞, 𝝃 ∈ R𝑑 , |𝝃| = 1, kij ∈ C1(Ω), 1 ≤ i, j ≤ 𝑑.

(c) f , u𝑑 ∈ H1(0,T;L2(Ω)) ∩ L2(0,T; Ȟ
2
(Ω)).

To date, the optimal control of distributed-order tFDEs of the form (1) was analyzed assuming

that the exact solution is sufficiently smooth [54]. A numerical approximation to a forward variably

distributed-order tFDE with a space-dependent probability density function was analyzed assuming the

exact solution is sufficiently smooth in both space and time [3]. However, the fact that tFDEs exhibit
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initial weak singularity [40, 49, 51] does not seem to justify these assumptions. The well-posedness of

the variably distributed-order tFDE (2) and its smoothing properties were proved and based on which

a numerical approximation was analyzed [53].

Up to now, no result on the optimal control of variably distributed-order tFDEs was reported in the

literature. This motivates the study of the variably distributed-order fractional optimal control model

(2) in this paper. Compared to the analysis of the variably distributed-order tFDE (2) [53], in the context

of the optimal control problem, we have to address the following issues:

• The coupling of the state Equation (2), the adjoint state Equation (13), and the pointwise con-

straint (4) reduces the regularity of the exact solution to the optimal control model (3) and

(2), the well-posedness and smoothing properties of which were not analyzed even in the con-

ventional distributed-order tFDEs. In particular, the high-order temporal derivatives of the

solutions may not be bounded in the L2 norm in time and could only be analyzed in the L1

norm (cf. Section 4). Consequently, the results proved for the linear variably distributed-order

tFDE [53], which provided pointwise-in-time estimates of high-order temporal derivatives of

the solutions based on the high-order regularity assumptions of the data, are no longer valid.

Indeed, to find the aforementioned L1 estimates, the spectral decomposition method used in

the literature [53], which is particularly suitable for L2 estimates, does not apply and we instead

employ the method of resolvent estimates in this work in the analysis to circumvent this issue.

• Due to the low regularity of the exact solution to optimal control problem (3) and (2), the anal-

ysis of the truncation errors and consequently the convergence estimates of the discretization

to the state Equation (2), which are based on the pointwise-in-time estimates of the high-order

temporal derivatives of the solutions [53], does not hold any longer and need to be refined

carefully.

• Due to the time dependence of the 𝜔(𝛼, t), the distributed-order fractional differential operator

in the adjoint state Equation (13) acts on the product (𝜔z) instead of z. Hence, the adjoint of

the Caputo-type distributed-order differential operator D𝜈
t is no longer its Riemann-Liouville

analogue (cf. Section 2.2), which brings new difficulties in its analysis and discretization. For

instance, due to the strong coupling of the weight 𝜔 and the solution z in the adjoint state

equation, the coefficients of the L1 discretization lose their monotonicity that was critical in

the error estimates of the numerical discretization.

The rest of the paper is organized as follows: In Section 2 we derive the optimality condition. In

Section 3 we prove the well-posedness and regularity of the adjoint state equation under a weaker

condition from the control problem. In Section 4 we prove the well-posedness of the optimal control

problem (3), (2) and (13) and the regularity of its solution. In Section 5 we discretize the optimal control

model. In Section 6 we prove the stability and optimal-order error estimate of the numerical approx-

imation without any artificial assumption of the true solution. In Section 7 we carry out numerical

experiments to substantiate the theoretical findings. In Section 8 we prove auxiliary lemmas.

2 OPTIMALITY CONDITION

We go over some results in the literature and derive an optimality condition. Throughout this paper

we use Q0 −Q2 to denote fixed positive constants and Q to denote a generic positive constant that may

assume different values at different occurrences. We may drop the subscript L2 in (⋅, ⋅)L2 and ||⋅||L2 , and

the domain Ω in the Sobolev spaces and norms, and write || ⋅ ||Lp(S) for || ⋅ ||Lp(0,T;S) when no confusion

occurs. We also follow the convention that a sum equals zero if its upper limit is smaller than its

lower limit.
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2.1 Solution representation and resolvent estimates

It is well known that the eigenfunctions {𝜙i}
∞
i=1 of the Sturm-Liouville problem

𝜙i(x) = 𝜆i𝜙i(x), x ∈ Ω; 𝜙i(x) = 0, x ∈ 𝜕Ω (6)

form an orthonormal basis in L2(Ω) and the eigenvalues {𝜆i}
∞
i=1 form a positive increasing sequence

going to ∞ [18]. For any 𝛾 ≥ 0, define the Sobolev space by

Ȟ
𝛾
(Ω) ∶= {v ∈ L2(Ω) ∶ |v|2

Ȟ
𝛾
(Ω)

∶= (𝛾v, v) =

∞∑

i=1

𝜆
𝛾
i (v, 𝜙i)

2 < ∞} (7)

with ||g||
Ȟ

𝛾 ∶=
(
||g||2

L2 + |g|2
Ȟ

𝛾

)1∕2

, and Ȟ
0
= L2 and Ȟ

2
= H2 ∩ H1

0 [1, 49, 52].

For 𝜃 ∈ (𝜋∕2, 𝜋) and 𝛿 > 0, let Γ𝜃 be the contour in the complex plane

Γ𝜃 ∶= {z ∈ C ∶ | arg(z)| = 𝜃, |z| ≥ 𝛿} ∪ {z ∈ C ∶ | arg(z)| ≤ 𝜃, |z| = 𝛿}.

The following inequalities hold for 0 < 𝜇 ≤ 1 and t ∈ (0,T] [2, 28, 39]

∫Γ𝜃

|z|𝜇−1|etz| |𝑑z| ≤ Qt−𝜇,
‖‖‖∫Γ𝜃

z𝜇(z + )−1etz 𝑑z
‖‖‖L2

≤ Qt−𝜇 (8)

where |dz| denotes the arc length element on the contour Γ𝜃 and Q = Q(𝜃, 𝜇).

For g ∈ Lloc(a, b), the space of locally integrable functions on (a, b), the Laplace transform 
of its extension g̃(t) with compact support on (a, b) and the corresponding inverse transform −1 are

denoted by

g(z) ∶= ∫
∞

0

g(t)e−tz𝑑t, −1(g(z)) ∶=
1

2𝜋i ∫Γ𝜃

etzg(z)𝑑z = g(t).

g is always interpreted as the Laplace transform of g̃. It is known that [48]

 (
R𝜕

𝜇
t g(t)

)
= z𝜇 (g(t)) , 0 ≤ 𝜇 < 1; R𝜕

𝜇
t g ∶= 𝜕t 0I

1−𝜇
t g. (9)

The solution u(x, t) to the heat equation 𝜕tu(x, t) +u(x, t) = f (x, t) with zero initial and boundary

conditions can be expressed as

u(x, t) = ∫
t

0

e−(t−s)f (x, s)𝑑s. (10)

Here e−t is the semigroup of operators generated by

𝜕t e−tg +  e−tg = 0; e−tg = 0, x ∈ 𝜕Ω; e−tg
|||t=0

= g, x ∈ Ω.

Moreover, e−t has the following expressions for any g ∈ L2(Ω)

e−tg(x) =
1

2𝜋i ∫Γ𝜃

ezt(z + )−1g(x) 𝑑z, e−tg(x) =

∞∑

i=1

e−𝜆it(g, 𝜙i)𝜙i(x). (11)

The following estimates hold for any t > 0 [52]

||e−t||L2→L2 ≤ Q; ||e−tg||Ȟs ≤ Qt−(s−r)∕2||g||Ȟr , g ∈ Ȟ
r
, s ≥ r ≥ −1. (12)

2.2 The first order optimality condition

Theorem 1. Under assumptions (a)–(c) the optimal control problem (3) and (2) admits

a unique solution (u, c). There exists an adjoint state z such that (u, c, z) satisfies state
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Equation (2), the adjoint state equation

− 𝜕tz + k R
D

𝛼∗

t (𝜔z) + z = u(x, t; c) − u𝑑(x, t), (x, t) ∈ Ω × [0,T);

z(x,T) = 0, x ∈ Ω; z(x, t) = 0, (x, t) ∈ 𝜕Ω × [0,T]
(13)

and the variational inequality

∫
T

0 ∫Ω

(𝛾c + z)(v − c)𝑑x𝑑t ≥ 0, ∀v ∈ Λ(l, r). (14)

The distributed-order Riemann-Liouville fractional differential operator RD𝛼∗

t is

R
D

𝛼∗

t g ∶= ∫
𝛼∗

0

R𝜕̂
𝛼

t g𝑑𝛼, R𝜕̂
𝛼

t g ∶= −𝜕ttI
1−𝛼
T g, tI

𝛼
Tg ∶= ∫

T

t

g(s)

Γ(𝛼)(s − t)1−𝛼
𝑑s. (15)

Proof. The proof follows almost the same procedure as, for example, [57, theorem 2.1] or

[58, theorem 1] and is thus omitted. ▪

Remark 1. The variational inequality (14) implies [26, 59]

c(x, t) =  (−z(x, t)∕𝛾) . (16)

The uniqueness of the minimizer of Ĵ(c) shows that (14) is equivalent to (16).

3 ANALYSIS OF THE ADJOINT STATE FRACTIONAL PDE

For convenience we analyze a forward-in-time analogue of problem (13)

𝜕tz + k R
D

𝛼∗

t (𝜔z) + z = p(x, t), (x, t) ∈ Ω × (0,T];

z(x, 0) = 0, x ∈ Ω; z(x, t) = 0, (x, t) ∈ 𝜕Ω × [0,T].
(17)

Here RD
𝛼∗

t g ∶= ∫ 𝛼∗

0
R𝜕𝛼t g 𝑑𝛼 is the forward-in-time analogue of (15).

Theorem 2. Suppose that assumptions (a) and (b) hold and p ∈ L2(L2). Problem (17)

has a unique solution z ∈ H1(L2) ∩ L2(Ȟ
2
) and

||z||H1(L2) + ||z||
L2(Ȟ

2
)
≤ Q||p||L2(L2), Q = Q(𝛼∗,Q0, k,T).

Proof. The proof could be performed following that of [57, theorem 3.1] based on the

estimate below: For w ∈ H1(0,T) with w(0) = 0, one could apply w(t) = ∫ t

0
w′(s)𝑑s,

(t − s)−𝛼 = (t − s)−𝛼
∗

(t − s)𝛼
∗−𝛼 ≤ max{1,T}(t − s)−𝛼

∗

and 𝜕𝛼t w = R𝜕𝛼t w to get

|||
R
D

𝛼∗

t (𝜔w)
||| ≤ ∫

𝛼∗

0

|||0I1−𝛼
t 𝜕t(𝜔w)

|||𝑑𝛼

≤ ∫
𝛼∗

0 ∫
t

0

|w(s)𝜕s𝜔(𝛼, s) + 𝜔(𝛼, s)w′(s)|
Γ(1 − 𝛼)(t − s)𝛼

𝑑s𝑑𝛼 ≤ Q∫
t

0

|w(s)| + |w′(s)|
(t − s)𝛼

∗ 𝑑s

≤ Q∫
t

0

∫ s

0
|w′(y)|𝑑y + |w′(s)|

(t − s)𝛼
∗ 𝑑s ≤ Q∫

t

0

|w′(s)|
(t − s)𝛼

∗ 𝑑s.

(18)

Thus the proof is omitted. ▪
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Theorem 3. Suppose assumptions (a) and (b) hold and p ∈ H1(L2) ∩ L2(Ȟ
2
). Then the

solution z to problem (17) has the estimate

‖‖‖𝜕
2
t z
‖‖‖L1(L2)

+
‖‖‖𝜕tz

‖‖‖L1(Ȟ
2
)
≤ Q

(
||p||H1(L2) + ||p||

L2(Ȟ
2
)

)
, Q = Q(𝛼∗,Q0, k,T).

Proof. By Theorem 2 problem (17) has a unique solution z ∈ H1(L2) ∩ L2(Ȟ
2
). Move

k RD
𝛼∗

t (𝜔z) in (17) to the right side and use (10) and (11) to express z as

z(x, t) = ∫
t

0

e−(t−s)p(x, s)𝑑s − k∫
t

0

e−(t−s) R
D

𝛼∗

s (𝜔z(x, s))𝑑s =∶ G1 − kG2. (19)

𝜕tG1 = 𝜕t∫
t

0

∞∑

i=1

e−𝜆i(t−s)(p(⋅, s), 𝜙i)𝜙i𝑑s = p − ∫
t

0

∞∑

i=1

𝜆ie
−𝜆i(t−s)(p(⋅, s), 𝜙i)𝜙i𝑑s,

𝜕2
t G1 = 𝜕tp −

∞∑

i=1

𝜆i(p(⋅, t), 𝜙i)𝜙i + ∫
t

0

∞∑

i=1

𝜆2
i e−𝜆i(t−s)(p(⋅, s), 𝜙i)𝜙i𝑑s.

Application of the Young’s inequality yields

||𝜕2
t G1||L2(L2) ≤

[
∞∑

i=1

‖‖‖∫
t

0

𝜆2
i e−𝜆i(t−s)(p(⋅, s), 𝜙i)𝑑s

‖‖‖
2

L2(0,T)

]1∕2

+ ||p||H1(L2) + ||p||
L2(Ȟ

2
)
≤ ||p||H1(L2) + 2||p||

L2(Ȟ
2
)
.

(20)

We use the expression of G2 in (19) to directly evaluate

𝜕tG2 = −∫
t

0

e−(t−s) R
D

𝛼∗

s (𝜔z(x, s))𝑑s + R
D

𝛼∗

t (𝜔z(x, t)). (21)

We utilize the following relation

𝜕t∫
t

0

e−(t−s) R
D

𝛼∗

s (𝜔z(x, s))𝑑s = 𝜕t∫
t

0

e−s (
R
D

𝛼∗

y (𝜔z(x, y))
) |||y=t−s

𝑑s

= ∫
t

0

e−s 𝜕t

((
R
D

𝛼∗

y (𝜔z(x, y))
) |||y=t−s

)
𝑑s = ∫

t

0

e−(t−s) (𝜕s
R
D

𝛼∗

s (𝜔z(x, s)))𝑑s

and (21) to evaluate 𝜕2
t G2 as follows

𝜕2
t G2 = −∫

t

0

e−(t−s) (
𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s + 𝜕t

R
D

𝛼∗

t (𝜔z(x, t)). (22)

We integrate RD
𝛼∗

t (𝜔z) by parts to reformulate 𝜕t
RD

𝛼∗

t (𝜔z) as

𝜕t
R
D

𝛼∗

t (𝜔z) = 𝜕t∫
𝛼∗

0

[
𝜕t(𝜔z)|t=0t1−𝛼

Γ(2 − 𝛼)
+ ∫

t

0

(t − s)1−𝛼

Γ(2 − 𝛼)
𝜕2

s (𝜔(𝛼, s)z(x, s))𝑑s

]
𝑑𝛼

= ∫
𝛼∗

0

[
𝜕t(𝜔z)|t=0t−𝛼

Γ(1 − 𝛼)
+ ∫

t

0

(t − s)−𝛼

Γ(1 − 𝛼)
𝜕2

s (𝜔(𝛼, s)z(x, s))𝑑s

]
𝑑𝛼.

(23)

Passing the limit t → 0+ in (17) yields 𝜕tz(x, 0) = p(x, 0), which in turn leads to

𝜕t(𝜔z)|t=0 = 𝜔(𝛼, 0)p(x, 0). We plug them into (23) to conclude that

|||𝜕t
R
D

𝛼∗

t (𝜔z)
||| ≤ Q∫

t

0

|𝜕2
s z(x, s)|
(t − s)𝛼

∗ 𝑑s + Q|p(x, 0)|t−𝛼∗ . (24)
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8 of 23 ZHENG ET AL.

We similarly bound R𝜕𝜀t 𝜕t
RD

𝛼∗

t (𝜔z) for any 0 < 𝜀 < 1 − 𝛼∗. By estimate (18),
RD

𝛼∗

t (𝜔z)|t=0 = 0. We use the substitution s = y + (t − y)𝜃 to obtain

R𝜕𝜀t 𝜕t
R
D

𝛼∗

t (𝜔z) = 𝜕t 0I1−𝜀
t 𝜕t

R
D

𝛼∗

t (𝜔z) = 𝜕2
t 0I1−𝜀

t
R
D

𝛼∗

t (𝜔z)

= ∫
𝛼∗

0

𝜕3
t 0I1−𝜀

t 0I1−𝛼
t (𝜔z)𝑑𝛼

= ∫
𝛼∗

0

𝜕3
t

[

∫
t

0

𝜔(𝛼, y)z(x, y)

Γ(1 − 𝜀)Γ(1 − 𝛼)

(

∫
t

y

(t − s)−𝜀(s − y)−𝛼𝑑s

)
𝑑y

]
𝑑𝛼

= ∫
𝛼∗

0

𝜕3
t ∫

t

0

𝜔(𝛼, y)z(x, y)(t − y)1−𝛼−𝜀B(1 − 𝜀, 1 − 𝛼)

Γ(1 − 𝜀)Γ(1 − 𝛼)
𝑑y𝑑𝛼

= ∫
𝛼∗

0

𝜕2
t ∫

t

0

𝜔(𝛼, y)z(x, y)(t − y)−𝛼−𝜀

Γ(1 − 𝛼 − 𝜀)
𝑑y𝑑𝛼 = ∫

𝛼∗

0

R𝜕𝛼+𝜀t (𝜕t(𝜔z)) 𝑑𝛼,

which, together with estimates like (23) and (24), yields

|||
R𝜕𝜀t 𝜕t

R
D

𝛼∗

t (𝜔z)
||| ≤ Q∫

t

0

|𝜕2
𝜃z(x, 𝜃)|

(t − 𝜃)𝛼
∗+𝜀

𝑑𝜃 + Q
|||p(x, 0)

|||t
−𝛼∗−𝜀. (25)

We use (11) and the Laplace transform to evaluate the first term on the right-hand side

of 𝜕2
t G2 in (22) to conclude that for 0 < 𝜀 < 1 − 𝛼∗


[
−∫

t

0

e−(t−s)(
𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s

]

= 
[

∫
t

0

𝜕t

(
1

2𝜋i ∫Γ𝜃

ez(t−s)(z + )−1dz

)(
𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s

]

= 
[

1

2𝜋i ∫Γ𝜃

eztz(z + )−1dz

]
(

𝜕t
R
D

𝛼∗

t (𝜔z(x, t))
)

= z(z + )−1(
𝜕t

R
D

𝛼∗

t (𝜔z(x, t))
)
=
(
z1−𝜀(z + )−1

) (
z𝜀(𝜕t

R
D

𝛼∗

t (𝜔z(x, t)))
)
.

Invert the Laplace transform, use (9) and the Laplace transform of convolution to get

− ∫
t

0

e−(t−s) (
𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s

= ∫
t

0

[
1

2𝜋i ∫Γ𝜃

z1−𝜀(z + )−1ez(t−s)dz

] (
R𝜕𝜀s 𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s.

We use (8) to bound the integral in the square brackets and use (25) to bound the first term

on the right-hand side of 𝜕2
t G2 in (22)

‖‖‖∫
t

0

e−(t−s) (
𝜕s

R
D

𝛼∗

s (𝜔z(x, s))
)
𝑑s
‖‖‖ ≤ Q∫

t

0

‖‖‖
R𝜕𝜀s 𝜕s

RD
𝛼∗

s (𝜔z(⋅, s))
‖‖‖𝑑s

(t − s)1−𝜀

≤ Q∫
t

0

1

(t − s)1−𝜀

(

∫
s

0

||𝜕2
𝜃z(⋅, 𝜃)||

(s − 𝜃)𝛼∗+𝜀
𝑑𝜃 + ||p(⋅, 0)||s−𝜀−𝛼∗

)
𝑑s

≤ Q∫
t

0

||𝜕2
𝜃z(⋅, 𝜃)||

(t − 𝜃)𝛼∗
𝑑𝜃 + Q||p(⋅, 0)||t−𝛼∗ .

(26)

Use (24) to bound the L2 norm of the second term on the right side of (22) by the right

side of (26). Multiply (22) by e−𝜎t and bound the || ⋅ ||Lq(0,T) on both sides of the equation
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by Young’s inequality to obtain

‖‖‖e−𝜎t𝜕2
t G2

‖‖‖L1(L2)
≤ Q

‖‖‖∫
t

0

e−𝜎(t−𝜃)

(t − 𝜃)𝛼∗
e−𝜎𝜃||𝜕2

𝜃z(⋅, 𝜃)||𝑑𝜃‖‖‖L1(0,T)
+ Q||p(⋅, 0)||

≤ Q𝜎𝛼∗−1||e−𝜎t𝜕2
t z||L1(L2) + Q||p(⋅, 0)||.

(27)

Differentiate (19) twice in time, bound the || ⋅ ||Lq(0,T) norm on both sides of the equation

multiplied by e−𝜆t and invoke (20) and (27) to obtain

‖‖‖e−𝜎t𝜕2
t z
‖‖‖L1(L2)

≤ ||e−𝜎t𝜕2
t G1||L1(L2) + ||e−𝜎t𝜕2

t G2||L1(L2)

≤ Q𝜎𝛼∗−1||e−𝜎t𝜕2
t z||L1(L2) + Q

(
||p||H1(L2) + ||p||

L2(Ȟ
2
)

)
.

Set 𝜎 large enough to get ||𝜕2
t z||L1(L2) ≤ Q

(
||p||H1(L2) + ||p||

L2(Ȟ
2
)

)
, which, together with

(7), (17) and (24), yields

‖‖‖𝜕tz
‖‖‖L1(Ȟ

2
)
=
‖‖‖𝜕tz

‖‖‖L1(L2)
=
‖‖‖𝜕

2
t z + k𝜕t

R
D

𝛼∗

t (𝜔z) − 𝜕tp
‖‖‖L1(L2)

≤ Q
(
||p||H1(L2) + ||p||

L2(Ȟ
2
)

)
.

We thus complete the proof. ▪

4 ANALYSIS OF THE VARIABLY DISTRIBUTED-ORDER FRACTIONAL

OPTIMAL CONTROL MODEL

We restate Theorems 2 and 3 for the adjoint state Equation (13) in the corollary.

Corollary 1. If assumptions (a) and (b) hold and u, u𝑑 ∈ L2(L2), the adjoint state

Equation (13) has a unique solution z ∈ H1(L2) ∩ L2(Ȟ
2
) and

||z||H1(L2) + ||z||
L2(Ȟ

2
)
≤ Q||u − u𝑑||L2(L2) (28)

with Q = Q(𝛼∗,Q0, k,T). If u, u𝑑 ∈ H1(L2) ∩ L2(Ȟ
2
), then

‖‖‖𝜕
2
t z
‖‖‖L1(L2)

+
‖‖‖𝜕tz

‖‖‖L1(Ȟ
2
)
≤ Q

(
||u − u𝑑||H1(L2) + ||u − u𝑑||L2(Ȟ

2
)

)
. (29)

Theorem 4. Suppose that assumptions (a) and (b) hold. If f , c ∈ L2(L2), the state

Equation (2) has a unique solution u ∈ H1(L2) ∩ L2(Ȟ
2
) and

||u||H1(L2) + ||u||
L2(Ȟ

2
)
≤ Q||f + c||L2(L2). (30)

If f , u𝑑 ∈ H1(L2) ∩ L2(Ȟ
2
) and c ∈ H1(L2), then

‖‖‖𝜕
2
t u
‖‖‖L1(L2)

+
‖‖‖𝜕tu

‖‖‖L1(Ȟ
2
)
≤ Q(||f ||H1(L2) + ||f ||

L2(Ȟ
2
)
+ ||c||H1(L2)

+ ||u𝑑||H1(L2) + ||u𝑑||L2(Ȟ
2
)
).

(31)

Proof. By the assumptions estimate (30) holds. However, the regularity estimate of 𝜕2
t u

requires c ∈ L2(Ȟ
2
) that is not true by (16). z ∈ H1(L2) ∩ L2(Ȟ

2
) and estimates (28) and

(29) hold by Corollary 1. To bound 𝜕2
t u, we re-estimate 𝜕2

t G1 in (19) with p replaced by c.
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We use the second equation in (11) to get

𝜕t∫
t

0

e−(t−s)c(x, s)𝑑s = 𝜕t∫
t

0

e−yc(x, t − y)𝑑y

= e−tc(x, 0) + ∫
t

0

e−y𝜕tc(x, t − y)𝑑y = e−tc(x, 0) + ∫
t

0

e−(t−s)𝜕sc(x, s)𝑑s.

We differentiate the equation with respect to t to find

𝜕2
t ∫

t

0

e−(t−s)c(x, s)𝑑s = −e−tc(x, 0) + 𝜕tc(x, t) + 𝜕t∫
t

0

e−(t−s)𝜕sc(x, s)𝑑s. (32)

Use Young’s inequality to bound the last term on the right-hand side

‖‖‖𝜕t∫
t

0

e−(t−s)𝜕sc(x, s)𝑑s
‖‖‖L2(L2)

=

[
∞∑

i=1

‖‖‖∫
t

0

𝜆ie
−𝜆i(t−s)(𝜕sc(⋅, s), 𝜙i)𝑑s

‖‖‖
2

L2(0,T)

] 1

2

≤
[

∞∑

i=1
∫

T

0

(𝜕sc(⋅, s), 𝜙i)
2𝑑s

] 1

2

≤ ||c||H1(L2).

We use (5), (12), (16), (29) and the equivalence between Ȟ
1

2
−𝜀

and H
1

2
−𝜀 to bound the first

term on the right-hand side of (32) for 0 < 𝜀 ≪ 1 by

‖‖‖e−tc(x, 0)
‖‖‖L2

=
‖‖‖e−tc(x, 0)

‖‖‖Ȟ
2 ≤ Qt

−
(

3

4
+

𝜀

2

)

||c(x, 0)||
Ȟ

1
2
−𝜀

≤ Qt
−
(

3

4
+

𝜀

2

)

||c(x, 0)||
H

1
2
−𝜀 ≤ Qt

−
(

3

4
+

𝜀

2

)

||z(x, 0)||
H

1
2
−𝜀

≤ Qt
−
(

3

4
+

𝜀

2

)

||𝜕tz||
L1

(
H

1
2
−𝜀

) ≤ Qt
−
(

3

4
+

𝜀

2

) (
||u − u𝑑||H1(L2) + ||u − u𝑑||L2(Ȟ

2
)

)
.

Consequently we have
‖‖‖e−tc(x, 0)

‖‖‖L1(L2)
≤ Q

(
||u − u𝑑||H1(L2) + ||u − u𝑑||L2(Ȟ

2
)

)
. The

remaining analysis can be carried out as in Theorem 3 and is omitted. ▪

Theorem 5. Under assumptions (a)–(c), problem (3) and (2) has a unique solution u ∈

H1(L2)∩L2(Ȟ
2
) and c ∈ H1(L2). Equation (13) has a unique solution z ∈ H1(L2)∩L2(Ȟ

2
).

There is a positive constant Q = Q(𝛼∗,Q0, k,T) such that

||c||H1(L2) ≤ Q
(
||u𝑑||H1(L2) + ||u𝑑||L2(Ȟ

2
)
+ ||f ||L2(L2) + ||c||L2(L2)

)
, (33)

||u||H1(L2) + ||u||
L2(Ȟ

2
)
+ ||𝜕2

t u||L1(L2) + ||𝜕tu||L1(Ȟ
2
)

≤ Q
(
||u𝑑||H1(L2) + ||u𝑑||L2(Ȟ

2
)
+ ||f ||H1(L2) + ||f ||

L2(Ȟ
2
)
+ ||c||L2(L2)

)
,

(34)

||z||H1(L2) + ||z||
L2(Ȟ

2
)
+
‖‖‖𝜕

2
t z
‖‖‖L1(L2)

+
‖‖‖𝜕tz

‖‖‖L1(Ȟ
2
)

≤ Q
(
||u𝑑||H1(L2) + ||u𝑑||L2(Ȟ

2
)
+ ||f ||L2(L2) + ||c||L2(L2)

)
.

(35)

Proof. The proof could be performed following that of [58, theorem 5] or [57, theorem

4.3] and is thus omitted. ▪
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Remark 2. In this paper, we assume the operator  in (2) is self-adjoint and sym-

metric, the obtained theoretical results cannot be directly extended to the variably

distributed-order time-fractional advection-diffusion-reaction equation where the operator

 is non-symmetric. However, in our recent work, we obtain the well-posedness and maxi-

mal regularity estimates for the optimal control of a fractional advection-diffusion-reaction

equation with space-time-dependent order and coefficients by utilizing the Fredholm alter-

native for compact operators and a bootstrapping argument [33]. Consequently, the optimal

control of variably distributed-order time-fractional advection-diffusion-reaction equation

can also be analyzed similarly.

5 DISCRETIZATION

In this section we discretize the optimal control model.

5.1 Time discretization of state Equation (2) and adjoint state Equation (13)

Partition [0,T] by tn ∶= n𝜏 for 0 ≤ n ≤ N and 𝜏 ∶= T∕N, and [0, 𝛼∗] by 𝛼m ∶= m𝜎 for 0 ≤ m ≤ M and

𝜎 ∶= 𝛼∗∕M. Let fn ∶= f (x, tn), cn ∶= c(x, tn), un ∶= u(x, tn), and 𝜔m
n ∶= 𝜔(𝛼m, tn). We discretize 𝜕tu

by the implicit Euler method and D𝜔
t u by the composite trapezoidal rule on [0, 𝛼∗] and the L1 method

for each 𝜕
𝛼m
t

𝜕tu(x, tn) = 𝛿𝜏un + En ∶=
un − un−1

𝜏
+

1

𝜏 ∫
tn

tn−1

𝜕2
t u(x, t)(t − tn−1)𝑑t,

D
𝜔
t u(x, tn) =

M∑

m=0

𝜎m𝜔
m
n 𝛿

𝛼m
𝜏 un + Rn + Sn =∶ Ď

𝜔

𝜏 un + Rn + Sn,

𝛿
𝛼m
𝜏 un ∶=

n∑

k=1
∫

tk

tk−1

𝛿𝜏uk 𝑑s

Γ(1 − 𝛼m)(tn − s)𝛼m

=

n∑

k=1

bm
n,k(uk − uk−1)

= bmun +

n−1∑

k=1

(bm
n,k − bm

n,k+1)uk,

bm
n,k ∶=

(tn − tk−1)
1−𝛼m − (tn − tk)

1−𝛼m

Γ(2 − 𝛼m)𝜏
, 0 ≤ m ≤ M, 1 ≤ n ≤ N;

𝜎0 = 𝜎M = 𝜎∕2, 𝜎1 = … = 𝜎M−1 = 𝜎.

(36)

Here the local truncation errors Rn and Sn are given by

Sn ∶= D
𝜔
t u(x, tn) −

M∑

m=0

𝜎m𝜔
m
n 𝜕

𝛼m
t u(x, tn),

Rn ∶=

M∑

m=0

𝜎m𝜔
m
n Rm

n ∶=

M∑

m=0

𝜎m𝜔
m
n

n∑

k=1
∫

tk

tk−1

𝜕su(x, s) − 𝛿𝜏uk

Γ(1 − 𝛼m)(tn − s)𝛼m

𝑑s

=

M∑

m=0

𝜎m𝜔
m
n

n∑

k=1
∫

tk

tk−1

(tn − s)−𝛼m

𝜏Γ(1 − 𝛼m)

[

∫
tk

tk−1
∫

s

z

𝜕2
𝜃u(x, 𝜃)𝑑𝜃𝑑z

]
𝑑s.

(37)

We plug (36) into (2) and integrate the equation multiplied by 𝜒 ∈ H1
0(Ω) on Ω to obtain the

following for Equation (2) for any 𝜒 ∈ H1
0 and n = 1, 2, … ,N

(𝛿𝜏un + kĎ
𝜔

𝜏 un +ℬun, 𝜒) = (fn + cn, 𝜒) − (k(Rn + Sn) + En, 𝜒). (38)
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12 of 23 ZHENG ET AL.

We discretize −𝜕tz and apply R𝜕̂
𝛼

t g = 𝜕̂
𝛼

t g if g(T) = 0 to discretize RD𝛼∗

t (𝜔z) backward in time for

n = N,N − 1, … , 1 as follows

−𝜕tz(x, tn−1) = −𝛿𝜏zn + Ên−1 ∶=
zn−1 − zn

𝜏
+

1

𝜏 ∫
tn

tn−1

𝜕2
t z(x, t)(tn − t)𝑑t,

R
D

𝛼∗

t (𝜔z(x, tn−1)) = ∫
𝛼∗

0

R𝜕̂
𝛼

t (𝜔z)|t=tn−1
𝑑𝛼 = ∫

𝛼∗

0

𝜕̂
𝛼

t (𝜔z)|t=tn−1
𝑑𝛼

=

M∑

m=0

𝜎m𝛿
𝛼m

𝜏 (𝜔m
n−1zn−1) + R̂n−1 + Ŝn−1

=∶ R
D̂

𝛼∗

𝜏 (𝜔m
n−1zn−1) + R̂n−1 + Ŝn−1,

𝛿
𝛼m

𝜏 (𝜔m
n−1zn−1) ∶=

N∑

k=n
∫

tk

tk−1

−𝛿𝜏 (𝜔
m
k zk) 𝑑s

Γ(1 − 𝛼m)(s − tn−1)𝛼m

= bn,n𝜔
m
n−1zn−1 +

N∑

k=n+1

(bk,n − bk,n+1)𝜔
m
k−1zk−1.

(39)

Here the local truncation errors R̂n−1 and Ŝn−1 are given by

Ŝn−1 ∶= ∫
𝛼∗

0

𝜕̂
𝛼

t (𝜔z)|t=tn−1
𝑑𝛼 −

M∑

m=0

𝜎m 𝜕̂
𝛼m

t (𝜔(𝛼m, t)z(x, t)) |t=tn−1

R̂n−1 ∶=

M∑

m=0

𝜎mR̂
m

n−1 ∶=

M∑

m=0

𝜎m

N∑

k=n
∫

tk

tk−1

𝛿𝜏(𝜔
m
k zk) − 𝜕s(𝜔(𝛼m, s)z(x, s))

Γ(1 − 𝛼m)(s − tn−1)𝛼m

𝑑s

=

M∑

m=0

𝜎m

N∑

k=n
∫

tk

tk−1

(s − tn−1)
−𝛼m

𝜏Γ(1 − 𝛼m)

[

∫
tk

tk−1
∫

z

s

𝜕2
𝜃 (𝜔(𝛼m, 𝜃)z(x, 𝜃))𝑑𝜃𝑑z

]
𝑑s.

(40)

We plug (39) into (13) to get the following equation for adjoint state Equation (13): For n = N,N−

1, … , 1, find z(x, tn−1) such that for 𝜒 ∈ H1
0

(
−𝛿𝜏zn + kR

D̂
𝛼∗

𝜏 (𝜔m
n−1zn−1) + zn−1, 𝜒

)

= (un−1 − u𝑑(⋅, tn−1), 𝜒) −
(
k(R̂n−1 + Ŝn−1) + Ên−1, 𝜒

)
.

(41)

5.2 A discretization of the optimal control model

Define a quasi-uniform partition of Ω with the mesh diameter h. Let Sh be the space of continu-

ous piecewise linear functions on Ω with respect to the partition, and h ∶ Sh → Sh be defined by

(h𝜁, 𝜒) = (K∇𝜁,∇𝜒) for 𝜁, 𝜒 ∈ Sh. Let Λ𝜏(l, r) be a time discretization of Λ(l, r) in (4) such that

c(x, t) = c(x, tn−1) on each [tn−1, tn) ⊂ [0,T]. Namely,

Λ𝜏(l, r) ∶= {C ∶= {Cn−1(x)}
N
n=1 ∶ l ≤ Cn−1 ≤ r, 1 ≤ n ≤ N}.

We drop the last term on the right-hand side of (38) to get a discrete control model

min
C∈Λ𝜏 (l,r)

J𝜏 (U,C) ∶=
𝜏

2

N∑

n=1

(
||Un − u𝑑(⋅, tn)||2 + 𝛾||Cn−1||2

)
, (42)
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ZHENG ET AL. 13 of 23

in which U ∶= {Un}
N
n=1 ⊂ Sh and Un satisfies the following equation with U0 = 0

(
𝛿𝜏Un + kĎ

𝜔

𝜏 Un + hUn, 𝜒

)
= (fn + Cn−1, 𝜒), 𝜒 ∈ Sh, 1 ≤ n ≤ N. (43)

By a similar proof as Theorem 1, we reach the following theorem.

Theorem 6. The discrete optimal control system (42) and (43) admits a unique solution

(U,C), and a adjoint state Z = {Zn}
N−1
n=0 ⊂ Sh with ZN = 0 such that

(
−𝛿𝜏Zn + kD̂

𝛼∗

𝜏 (𝜔m
n−1Zn−1) + hZn−1, 𝜒

)
= (Un − u𝑑(⋅, tn), 𝜒) , ∀𝜒 ∈ Sh (44)

for n = N,N − 1, … , 1 and (𝛾Cn−1 + Zn−1, v − Cn−1) ≥ 0 for any v ∈ L2 with l ≤ v ≤ r.

Furthermore,

Cn−1(x) =  (−Zn−1(x)∕𝛾) , 1 ≤ n ≤ N. (45)

6 STABILITY AND ERROR ESTIMATES OF THE DISCRETIZATION

We start with the stability analysis of the time-discretized Equations (38) and (41).

6.1 Stability of the time-discretized equations

Theorem 7. The solutions (U,Z) of schemes (43) and (44) are stable

||U||
L̂
∞
(L2) ≤ Q

(
||f||

L̂
1
(L2)

+ ||C||
L̂

1
(L2)

)
, ||Z||

L̂
∞
(L2) ≤ Q||U − u𝑑||L̂1

(L2)
. (46)

Here the discrete norms are defined by

||V||
L̂
∞
(L2) ∶= max

1≤n≤N
||Vn||, ||V||L̂p

(L2) ∶=

[
𝜏

N∑

n=1

‖‖‖Vn
‖‖‖

p

] 1

p

, p = 1, 2 (47)

with the norms of C and Z being evaluated for n from 0 to N − 1.

Proof. We set 𝜒 = Zn−1 in (44) and use expression (40) for 𝛿
𝛼m

𝜏 to get
(

1 + k𝜏

M∑

m=0

𝜎mbm
n,n𝜔

m
n−1

)
||Zn−1||2 + 𝜏 (hZn−1,Zn−1)

= (Zn,Zn−1) + k𝜏

M∑

m=0

𝜎m

N∑

k=n+1

(bm
k,n+1 − bm

k,n)(𝜔
m
k−1Zk−1,Zn−1)

+ 𝜏(Un − u𝑑(⋅, tn),Zn−1).

We use bm
k,n+1 > bm

k,n for n + 1 ≤ k ≤ N and 0 ≤ m ≤ M to cancel ||Zn−1|| on both sides to

obtain
(

1 + k𝜏

M∑

m=0

𝜎mbm
n,n𝜔

m
n−1

)
||Zn−1||

≤ ||Zn|| + k𝜏

M∑

m=0

𝜎m

N∑

k=n+1

(
bm

k,n+1 − bm
k,n

)
𝜔m

k−1||Zk−1|| + 𝜏||Un − u𝑑(⋅, tn)||.

(48)
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14 of 23 ZHENG ET AL.

We use assumption (a) and the expression bm
k,n in (37) to get the estimate for 0 ≤ m ≤ M

and 1 ≤ n ≤ N

N∑

k=n

bm
k,n|𝜔m

k − 𝜔m
k−1| ≤ Q0

Γ(1 − 𝛼m)

N∑

k=n
∫

tk

tk−1

1

(s − tn−1)𝛼m

𝑑s

=
Q0(T − tn−1)

1−𝛼m

Γ(2 − 𝛼m)
≤ Q0 max{1,T}

Γ(𝛾0)
=∶ Q2

where 𝛾0 ≈ 1.46 is the minimizer of Γ(⋅) on (0,∞). Set n = N in (48) to get

||ZN−1|| ≤ 𝜏
‖‖‖UN − u𝑑(⋅, tN)

‖‖‖ ≤ 𝜏(1 + Q2k𝜏)
‖‖‖UN − u𝑑(⋅, tN)

‖‖‖.

Suppose that the following estimate holds for n + 1 ≤ m ≤ N

||Zm−1|| ≤ Am𝜏

N∑

j=m

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖, Am ∶= (1 + Q2k𝜏)N−m+1. (49)

We use (48) and (49), A1 > A2 > · · · > AN > 1 and

N∑

k=n+1

(
bm

k,n+1 − bm
k,n

)
𝜔m

k−1 =

N∑

k=n+1

(
bm

k−1,n𝜔
m
k−1 − bm

k,n𝜔
m
k

)
+
(
bm

k,n𝜔
m
k − bm

k,n𝜔
m
k−1

)

≤ bm
n,n𝜔

m
n +

N∑

k=n+1

bm
k,n

(
𝜔m

k − 𝜔m
k−1

)

= bm
n,n𝜔

m
n−1 +

N∑

k=n

bm
k,n

(
𝜔m

k − 𝜔m
k−1

) ≤ bm
n,n𝜔

m
n−1 + Q2

to obtain

(
1 + k𝜏

M∑

m=0

𝜎mbm
n,n𝜔

m
n−1

)
||Zn−1|| ≤ An+1𝜏

N∑

j=n

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖

+ k𝜏

M∑

m=0

𝜎m

(
bm

n,n𝜔
m
n−1 + Q2

)
[

An+1𝜏

N∑

j=n+1

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖

]

≤
(

1 + k𝜏

M∑

m=0

𝜎mbm
n,n𝜔

m
n−1 + 𝛼∗Q2k𝜏

)
An+1𝜏

N∑

j=n

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖.

We divide both sides by (1 + k𝜏
∑M

m=0𝜎mbm
n,n𝜔

m
n−1) to get that for 1 ≤ n ≤ N

||Zn−1|| ≤
(

1 +
Q2k𝜏

1 + k𝜏
∑M

m=0𝜎mbm
n,n𝜔

m
n−1

)
An+1𝜏

N∑

j=n

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖

≤ (1 + kQ2𝜏)An+1𝜏

N∑

j=n

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖ = An𝜏

N∑

j=n

‖‖‖Uj − u𝑑(⋅, tj)
‖‖‖.

Thus, (49) holds for m = n and for all 1 ≤ m ≤ N by induction. We have proved the second

estimate in (46). The first one can be proved in a similar manner. ▪
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6.2 An optimal-order error estimate of the discretization

Let Πh ∶ H1
0(Ω) → Sh be the Ritz projection operator: for any v ∈ H1

0(Ω)

(K∇(v − Πhv),∇𝜒) = 0, ∀𝜒 ∈ Sh.

It is well known that the following approximation property holds [52]

||v − Πhv|| ≤ Qh2||v||H2 , ∀v ∈ H2(Ω) ∩ H1
0(Ω). (50)

Theorem 8. Suppose that assumptions (a)–(c) hold. The optimal-order error estimate

holds for the discrete optimal control system

||u − U||
L̂
∞
(L2) + ||z − Z||

L̂
∞
(L2) + ||c − C||

L̂
∞
(L2) ≤ QQ∗

(
𝜏 + h2 + 𝜎2

)
(51)

with Q∗ ∶= ||u𝑑||H1(L2) + ||u𝑑||L2(Ȟ
2
)
+ ||f ||H1(L2) + ||f ||

L2(Ȟ
2
)
+ ||c||L2(L2).

Proof. We subtract Equation (38) from scheme (43) to obtain the error equation
(
𝛿𝜏(Un − un) + kĎ

𝜔

𝜏 (Un − un), 𝜒
)
+ (K∇(Un − un),∇𝜒)

= (Cn−1 − cn, 𝜒) + (k(Rn + Sn) + En, 𝜒) , ∀𝜒 ∈ Sh.

(52)

We decompose Un − un = 𝜉n + 𝜂n, where 𝜉n = Un − Πhun ∈ Sh and 𝜂(x, t) ∶=

Πhu(x, t) − u(x, t). We rewrite Equation (52) in terms of 𝜉 and 𝜂 as follows
(
𝛿𝜏𝜉n + kĎ

𝜔

𝜏 𝜉n, 𝜒

)
+ (K∇𝜉n,∇𝜒)

= −
(
𝛿𝜏𝜂n + kĎ

𝜔

𝜏 𝜂n, 𝜒

)
+ (Cn−1 − cn, 𝜒) + (k(Rn + Sn) + En, 𝜒) .

(53)

We apply Theorem 7 to Equation (53) to obtain the following estimate

||𝜉||
L̂
∞
(L2) ≤ Q

(
||𝛿𝜏𝜂||L̂1

(L2)
+ k||Ď𝜔

𝜏 𝜂||L̂1
(L2)

+ k||S||
L̂

1
(L2)

+ ||E||
L̂

1
(L2)

+ ||R||
L̂

1
(L2)

+ ||C − c||
L̂

1
(L2)

)
+ Q𝜏

N∑

n=1

||cn − cn−1||.
(54)

We use estimate (34) and (50) to get

||𝜂||L∞(L2) ≤ Qh2||u||L∞(H2) ≤ Qh2||u||W1,1(H2) ≤ QQ∗h2. (55)

We apply Lemmas 1,2 and 3 in the appendix to obtain

‖‖‖Ď
𝜔

𝜏 𝜂
‖‖‖L̂

1
(L2)

+ ||E||
L̂

1
(L2)

+ ||R||
L̂

1
(L2)

+ ||S||
L̂

1
(L2)

+ ||C − c||
L̂

1
(L2)

≤ QQ∗
(
𝜏 + h2 + 𝜎2

)
.

(56)

We use estimate (33) to directly bound

𝜏

N∑

n=1

||cn − cn−1|| ≤ Q𝜏

N∑

n=1
∫

tn

tn−1

||𝜕tc||𝑑t ≤ Q𝜏||c||H1(L2) ≤ QQ∗𝜏. (57)

We use estimates (34) and (50) to obtain

||𝛿𝜏𝜂||L̂1
(L2)

=

N∑

n=1

‖‖‖∫
tn

tn−1

𝜕t𝜂𝑑t
‖‖‖ ≤ Q||Πh𝜕tu − 𝜕tu||L1(L2) ≤ QQ∗h2. (58)

We incorporate estimates (56)–(58) and Lemma 3 into (54) and combine the resulting

estimate with (55) to prove the estimate (51) for U − u.
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We subtract Equation (41) from scheme (44) to conclude that for any 𝜒 ∈ Sh

(
−𝛿𝜏(Zn − zn) + kR

D̂
𝛼∗

𝜏

(
𝜔m

n−1(Zn−1 − zn−1)
)
, 𝜒

)

+ (K∇(Zn−1 − zn−1),∇𝜒)

= (Un − u𝑑(⋅, tn) − un−1 + u𝑑(⋅, tn−1), 𝜒) +
(
k(R̂n−1 + Ŝn−1) + Ên−1, 𝜒

)
.

(59)

We similarly decompose Zn−zn = 𝜉n+ 𝜂̂n for n = 0, 1, … ,N−1, where 𝜉n = Zn−Πhzn ∈

Sh and 𝜂̂(x, t) ∶= Πhz(x, t) − z(x, t). We rewrite Equation (59) in terms of 𝜉 and 𝜂̂ for

n = N,N − 1, … , 1 and 𝜒 ∈ Sh as follows
(
−𝛿𝜏𝜉n + kR

D̂
𝛼∗

𝜏 (𝜔m
n−1𝜉n−1), 𝜒

)
+
(
K∇𝜉n−1,∇𝜒

)

=
(
𝛿𝜏 𝜂̂n − kR

D̂
𝛼∗

𝜏 (𝜔m
n−1𝜂̂n−1), 𝜒

)
+ (Un − un, 𝜒) + (un − un−1, 𝜒)

+ (u𝑑(⋅, tn−1) − u𝑑(⋅, tn), 𝜒) +
(
k(R̂n−1 + Ŝn−1) + Ên−1, 𝜒

)
.

(60)

We apply Theorem 7 to Equation (60) to obtain the following estimate

||𝜉||
L̂
∞
(L2) ≤ Q(||𝛿𝜏 𝜂̂||L̂1

(L2)
+
‖‖‖

R
D̂

𝛼∗

𝜏 (𝜔𝜂̂)
‖‖‖L̂

1
(L2)

+ ||Ê||
L̂

1
(L2)

+ ||R̂||
L̂

1
(L2)

+ ||Ŝ||
L̂

1
(L2)

+ ||U − u||
L̂

1
(L2)

)

+ Q𝜏

N∑

n=1

(||un − un−1|| + ||u𝑑(⋅, tn) − u𝑑(⋅, tn−1)||).

||Ê||
L̂

1
(L2)

, ||R̂||
L̂

1
(L2)

, ||Ŝ||
L̂

1
(L2)

, and ||RD̂
𝛼∗

𝜏 (𝜔𝜂̂)||
L̂

1
(L2)

are bounded in Lemmas 1 and 2.

||𝛿𝜏 𝜂̂||L̂1
(L2)

was bounded in (58), ||U−u||
L̂

1
(L2)

already estimated. The last term can be esti-

mated as (57). We put these estimates into the preceding inequality and bound ||𝜂̂||L∞(L2)

as in (55) to prove the estimate for Z − z in (51).

To bound C − c||
L̂
∞
(L2), we use (16) and (45) to find that for 1 ≤ n ≤ N

|||cn−1(x) − Cn−1(x)
||| =

|||(−zn−1(x)∕𝛾) − (−Zn−1(x)∕𝛾)
|||. (61)

If both −zn−1(x)∕𝛾,−Zn−1(x)∕𝛾 ∈ [l, r], then

|||cn−1(x) − Cn−1(x)
||| =

|||zn−1(x) − Zn−1(x)
|||∕𝛾.

Otherwise, say −zn−1∕𝛾 ≤ l and −Zn−1∕𝛾 ≥ r, we have from (61)

|||cn−1(x) − Cn−1(x)
||| = r − l ≤ |||zn−1(x) − Zn−1(x)

|||∕𝛾.

We similarly bound |cn−1 − Cn−1| by |zn−1 − Zn−1|∕𝛾 for other cases, and obtain

||C − c||
L̂
∞
(L2) ≤ Q||Z − z||

L̂
∞
(L2) ≤ QQ∗(𝜏 + h2 + 𝜎2).

We thus complete the proof of (51). ▪

7 NUMERICAL EXPERIMENTS

We carry out numerical experiments to investigate the performance of the discretization of the optimal

control model by measuring its convergence rate 𝜐 with respect to the time step size 𝜏, the convergence
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rate 𝜄 with respect to the spatial mesh size h, and the convergence rate 𝜅 with respect to the quadrature

mesh size 𝜎 in discretizing the distribute-order differential operator. A uniform spatial partition is used

in all the experiments.

7.1 The approximation to the optimal control (3) and (2) in one space dimension

In the numerical experiments the data are as follows: Ω = (0, 1), [0,T] = [0, 1], k = 1, K = 0.01,

l = 0.2, r = 0.3, 𝛾 = 1, f = 1, u𝑑 = 1 and 𝜔(𝛼, t) = (t + 4)𝛼t+3∕0.8t+4 on supp 𝜔 = [0, 0.8] × [0, 1].

As the closed-form analytical solution to the problem is not available, we use the numerical solu-

tion computed with (𝜏f , hf , 𝜎f ) = (1∕720, 1∕120, 1∕120) as the reference solution to test the temporal

convergence rates 𝜐, (𝜏f , hf , 𝜎f ) = (1∕720, 1∕360, 1∕120) for the spatial convergence rates 𝜄, and

(𝜏f , hf , 𝜎f ) = (1∕720, 1∕120, 1∕360) for the convergence rates 𝜅 of the quadrature error. When mea-

suring 𝜐, we adopt the same mesh sizes for h and 𝜎 as used for the reference solution. We similarly

measure 𝜄 and 𝜅. We present the numerical results in Table 1 and observe second-order accuracy on h

and 𝜎 and first-order convergence on 𝜏 as proved in Theorem 8.

TABLE 1 Accuracy of the discretization of the one-dimensional optimal control in Section 7.1.

𝝉 1/8 1/16 1/24 1/32 𝝊

||c − C||L̂∞
(L2) 1.92E−02 9.57E−03 6.26E−03 4.29E−03 1.00

||u − U||L̂∞
(L2) 1.38E−02 7.21E−03 4.87E−03 3.24E−03 0.96

||z − Z||L̂∞
(L2) 2.37E−02 1.21E−02 8.05E−03 5.33E−03 0.99

h 1/60 1/72 1/90 1/120 𝜾

||c − C||L̂∞
(L2) 4.66E−04 3.73E−04 2.10E−04 1.16E−04 2.07

||u − U||L̂∞
(L2) 1.28E−03 8.98E−04 5.73E−04 3.12E−04 2.04

||z − Z||L̂∞
(L2) 9.37E−04 6.58E−04 4.22E−04 2.31E−04 2.02

𝝈 1/30 1/60 1/90 1/120 𝜿

||c − C||L̂∞
(L2) 8.90E−05 2.18E−05 9.33E−06 4.97E−06 2.08

||u − U||L̂∞
(L2) 7.09E−04 1.74E−04 7.45E−05 3.97E−05 2.07

||z − Z||L̂∞
(L2) 1.23E−04 3.00E−05 1.29E−05 6.85E−06 2.08

TABLE 2 Accuracy of the discretization of the two-dimensional optimal control in Section 7.2.

𝝉 1/16 1/32 1/64 1/128 𝝊

||c − C||L̂∞
(L2) 1.18E−02 6.31E−03 3.21E−03 1.63E−03 0.95

||u − U||L̂∞
(L2) 1.59E−02 8.05E−03 4.04E−03 2.02E−03 0.99

||z − Z L̂
∞
(L2) 2.20E−02 1.10E−02 5.52E−03 2.76E−03 1.00

h 1/8 1/16 1/24 1/32 𝜾

||c − C||L̂∞
(L2) 6.10E−03 1.63E−03 7.16E−04 4.08E−04 1.95

||u − U||L̂∞
(L2) 7.74E−03 1.95E−03 8.69E−04 4.89E−04 1.99

||z − Z||L̂∞
(L2) 1.07E−02 2.68E−03 1.19E−03 6.70E−04 2.00

𝝈 1/10 1/20 1/30 1/40 𝜿

||c − C||L̂∞
(L2) 4.08E−03 1.04E−03 4.61E−04 2.58E−04 1.99

||u − U||L̂∞
(L2) 5.15E−03 1.28E−03 5.57E−04 3.04E−04 2.04

||z − Z||L̂∞
(L2) 7.05E−03 1.75E−03 7.63E−04 4.19E−04 2.03
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7.2 The approximation to the optimal control (3) and (2) in two space dimensions

In this set of numerical experiments, we let Ω = (0, 1)2, [0,T] = [0, 1], k = 1, K = diag(0.01, 0.01),

𝜔(𝛼, t) = (1+ 2𝛼t)∕(0.3+ 0.32t) on supp 𝜔 = [0, 0.3] × [0, 1]. The solutions are chosen to be u(x, t) =

t2−𝛼(0) sin(𝜋x1) sin(𝜋x2), z(x, t) = (T − t)2−𝛼(T) sin(𝜋x1) sin(𝜋x2), c(x, t) = max{l,min{−z(x, t)∕𝛾, r}}

with l = −0.2 and r = −0.1, 𝛾 = 1, and f and u𝑑 calculated accordingly. Mesh sizes of h = 1∕64

and 𝜎 = 1∕100 are used to measure the temporal convergence rate 𝜐, while 𝜏 = 2h2 and 𝜎 = 1∕100

are used to measure the spatial convergence rate 𝜄. To measure the convergence rates 𝜅 of the quadra-

ture error, we apply 𝜏 = 2𝜎2 and h = 1∕30. We present the numerical results in Table 2, which

again substantiate the second-order accuracy of 𝜄 and 𝜅 and first-order convergence of 𝜐 as proved in

Theorem 8.

8 CONCLUDING REMARKS

In this paper, we analyzed the well-posedness, smoothing properties and numerical discretization

of the optimal control problem governed by a time two-scale variably distributed-order tFDE in

heterogeneous porous media, where the integer-order term refers to the normal diffusion, and the vari-

ably distributed-order fractional derivative is employed to describe the anomalous diffusion caused by,

for example, the absorption to heterogeneous porous matrix. Therefore, the considered model enjoys

more powerful modeling capacities than the single-term variably distributed-order fractional model

or the conventional integer-order model. However, in the current analysis framework, the first-order

time derivative is crucial to derive the well-posedness and error estimates of the time two-scale vari-

ably distributed-order fractional optimal control problem, due to the limited smooth property of the

pure variably distributed-order fractional derivative. We will deeply investigate the mathematical anal-

ysis of the variably distributed-order fractional optimal control problem without the first-order time

derivative in our future work.
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APPENDIX A

We prove Lemmas 1,2 and 3 used earlier.

A.1 Truncation and quadrature errors

Lemma 1. Under assumptions (a)–(c), En, Rn, Sn, Ên, R̂n and Ŝn in (37) and (40) are

bounded by

||E||
L̂

1
(L2)

+ ||R||
L̂

1
(L2)

+ ||S||L1(L2) + ||Ê||
L̂

1
(L2)

+ ||R̂||
L̂

1
(L2)

+ ||Ŝ||
L̂

1
(L2)

≤ QQ∗(𝜏 + 𝜎2).
(A1)

Here Q∗ is given in (51) and Q is independent of N, M, and h.

Proof. We use (35) and (47) to bound Êk−1 in (39) by

||Ê||
L̂

1
(L2)

≤ 𝜏||𝜕2
t z||L1(L2) ≤ QQ∗𝜏.

We use (35), assumption (a), the boundedness of 𝜕𝛼(1∕Γ(1−𝛼)) on [0, 𝛼∗], and the Sobolev

embedding W(0,T)2,1 → W1,∞(0,T) to bound ||Ŝn−1|| by

||Ŝn−1|| ≤ Q𝜎2‖‖‖ sup
𝛼∈[0,𝛼∗]

|||𝜕
2
𝛼

(
tI

1−𝛼
T 𝜕t(𝜔z)|t=tn−1

) |||
‖‖‖

≤ Q𝜎2‖‖‖ sup
𝛼∈[0,𝛼∗]∫

T

tn−1

| ln(s − tn−1)|2|𝜕sz(x, s)|
(s − tn−1)𝛼

𝑑𝛼
‖‖‖

≤ Q𝜎2‖‖‖∫
T

tn−1

|𝜕sz(x, s)|
(s − tn−1)𝛼

∗+𝜀
𝑑𝛼

‖‖‖ ≤ Q𝜎2||𝜕tz||L∞(L2) ≤ QM𝜎2

for some 0 < 𝜀 < 1 − 𝛼∗, which immediately yields the estimate of ||Ŝ||
L̂

1
(L2)

.

We bound R̂
m

n−1 by using its expression in (40)

|||R̂
m

n−1
||| ≤

N∑

k=n
∫

tk

tk−1

(s − tn−1)
−𝛼m

Γ(1 − 𝛼m)

[

∫
tk

tk−1

|𝜕2
𝜃 (𝜔(𝛼m, 𝜃)z(x, 𝜃))|𝑑𝜃

]
𝑑s

=

N∑

k=n
∫

tk

tk−1

|𝜕2
𝜃 (𝜔(𝛼m, 𝜃)z(x, 𝜃))|𝑑𝜃

(
(tk − tn−1)

1−𝛼m − (tk − tn)
1−𝛼m

Γ(2 − 𝛼m)

)
.
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We then use (40) and (47) to bound

||R̂||
L̂

1
(L2)

≤ 𝜏

N∑

n=1

M∑

m=0

𝜎m||R̂
m

n−1||

≤ 𝜏

M∑

m=0

𝜎m

N∑

n=1

N∑

k=n
∫

tk

tk−1

||𝜕2
𝜃 (𝜔z)||𝑑𝜃

(
(tk − tn−1)

1−𝛼m − (tk − tn)
1−𝛼m

Γ(2 − 𝛼m)

)

= 𝜏

M∑

m=0

𝜎m

N∑

k=1
∫

tk

tk−1

||𝜕2
𝜃(𝜔z)||𝑑𝜃

k∑

n=1

(
(tk − tn−1)

1−𝛼m − (tk − tn)
1−𝛼m

Γ(2 − 𝛼m)

)

≤ Q𝜏||z||W2,1(L2) ≤ QQ∗𝜏.

All remaining terms in (A1) can be bounded similarly and the proofs are omitted. ▪

Lemma 2. Under assumptions (a)–(c), the following estimate holds

𝜏

N∑

n=1

(‖‖‖Ď
𝜔

𝜏 𝜂n
‖‖‖ +

‖‖‖
R
D̂

𝛼∗

𝜏 (𝜔m
n−1𝜂̂n−1)

‖‖‖
) ≤ QQ∗h2.

Here Q is independent of M, N, and h.

Proof. We use the expression of RD̂
𝛼∗

𝜏 (𝜔m
n−1𝜂̂n−1) in (40) and 𝜂̂N = 0 to obtain

𝜏

N∑

n=1

‖‖‖
R
D̂

𝛼∗

𝜏 (𝜔m
n−1𝜂̂n−1)

‖‖‖

≤ Q

M∑

m=0

𝜎m

N∑

n=1

N∑

k=n
∫

tk

tk−1

||𝜕t(𝜔
m𝜂̂)||𝑑t∫

tk

tk−1

𝑑s

Γ(1 − 𝛼m)(s − tn−1)𝛼m

= Q

M∑

m=0

𝜎m

N∑

k=1
∫

tk

tk−1

||𝜕t(𝜔
m𝜂̂)||𝑑t

k∑

n=1

(tk − tn−1)
1−𝛼m − (tk − tn)

1−𝛼m

Γ(2 − 𝛼m)

≤ Qh2||𝜕tz||L1(H2) ≤ QQ∗h2.

The first term can be estimated similarly, and the estimate is omitted. ▪

A.2 Approximation to the control variable

Lemma 3. Under assumptions (a)–(c), the following estimate holds

||C − c||
L̂

2
(L2)

≤ QQ∗(𝜏 + h2 + 𝜎2).

Proof. Let U(c) satisfy U0(c) = 0 and for 1 ≤ n ≤ N,

(
𝛿𝜏Un(c) + kĎ

𝜔

𝜏 Un(c) + Un(c), 𝜒
)
= (fn + cn−1, 𝜒) , ∀𝜒 ∈ Sh, (A2)

and Z(U(c)) satisfy ZN(U(c)) = 0 and for 1 ≤ n ≤ N and 𝜒 ∈ Sh

(
−𝛿𝜏Zn(U(c)) + kR

D̂
𝛼∗

𝜏

(
𝜔m

n−1Zn−1(U(c))
)
+ Zn−1(U(c)), 𝜒

)

= (Un(c) − u𝑑(⋅, tn), 𝜒) .
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Following the standard procedure as [57, lemma 9.4], we reach

||c − C||
L̂

2
(L2)

≤ 1

𝛾
||Z(U(c)) − z||

L̂
2
(L2)

≤ 1

𝛾
(||z − Z(u)|| + ||Z(u) − Z(U(c))||) . (A3)

Here Z(u) satisfies ZN(u) = 0 and for 1 ≤ n ≤ N and 𝜒 ∈ Sh

(
−𝛿𝜏Zn(u) + kR

D̂
𝛼∗

𝜏

(
𝜔m

n−1Zn−1(u)
)
+ Zn−1(u), 𝜒

)
= (un − u𝑑(⋅, tn), 𝜒) . (A4)

To bound the first term on the right side of (A3), we split Zn(u) − zn = 𝜉n + 𝜂̂n with

𝜉n = Zn(u) − Πhzn ∈ Sh. We subtract (41) from (A4) and express the equation in terms of

𝜉 and 𝜂̂ as
(
−𝛿𝜏𝜉n + kR

D̂
𝛼∗

𝜏 (𝜔m
n−1𝜉n−1), 𝜒

)
+
(
K∇𝜉n−1,∇𝜒

)

=
(
𝛿𝜏 𝜂̂n − kR

D̂
𝛼∗

𝜏 (𝜔m
n−1𝜂̂n−1), 𝜒

)
+ (un − un−1 + u𝑑(⋅, tn−1) − u𝑑(⋅, tn), 𝜒)

+
(
k(Ŝn−1 + R̂n−1) + Ên−1, 𝜒

)
, ∀𝜒 ∈ Sh, n = N,N − 1, … , 1.

We apply Theorem 7 to the equation to arrive at the following estimate

||𝜉||
L̂
∞
(L2) ≤ Q

(
||𝛿𝜏 𝜂̂||L̂1

(L2)
+ ||RD̂

𝛼∗

𝜏 (𝜔m𝜂̂)||
L̂

1
(L2)

+ ||Ê||
L̂

1
(L2)

+ ||R̂||
L̂

1
(L2)

+ ||Ŝ||
L̂

1
(L2)

)
+ Q𝜏

N∑

n=1

(||un − un−1|| + ||u𝑑(⋅, tn) − u𝑑(⋅, tn−1)||).

The terms in the summation can be bounded as in (57). The remaining terms on the right

side were bounded in (58) and Lemmas 1 and 2. We combine these estimates with that of

||𝜂̂||L∞(L2) to get

||z − Z(u)||
L̂
∞
(L2) ≤ QQ∗(𝜏 + h2 + 𝜎2). (A5)

The second term on the right side of (A3) can be estimated by subtracting (A4) from (9.2)

and employing the stability estimate in Theorem 7

||Z(u) − Z(U(c))||
L̂
∞
(L2) ≤ Q||u − U(c)||

L̂
1
(L2)

.

The right side can be bounded as in (A5). ▪
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