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Abstract

Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses
indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more
than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures,
which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are
mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing
evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal
entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the elF4A3 component of the exon
junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that
are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
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Introduction

Circular RNAs contribute considerably to
transcriptome diversity

Thirty-three years ago, reverse transcriptase-polymerase chain
reaction (RT-PCR) analysis of the tumor suppressor gene DCC
(Deleted in Colorectal Carcinoma) revealed the order of exons
to be reversed in a small portion of messenger RNAs (mRNA).
For example, for an RNA corresponding to a genomic clone
with the order exon B — exon C - exon D, the orientation
exon D to exon B was observed (1). It was later found that
eukaryotic genes form circular RNAs (circRNA) using canon-
ical splice sites (2,3), which explained the scrambled arrange-

ment. Early reports indicated that a circRNA made from an
archaea pre-23S rRNA is translated into an endonuclease of
194 amino acids (4). Technical progress in RNA sequencing
showed then a widespread expression of circRNAs that are
present in all eukaryotes tested (5,6).

CircRNAs are covalently closed RNAs generated from pre-
mRNA. With some exceptions, for example circHIPK3 (6),
circRNAs are less abundant than linear mRNAs, making
it necessary to enrich most circRNAs for detection using
rRNA removal and digestion of linear mRNA with RNase
R, which is followed by next generation sequencing. How-
ever, highly abundant circRNAs are present in standard RNA
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Table 1. Resources and databases for circRNAs

FL-circAS Full-length circRNA sequences, shows (10)
internal sequences and alternative
splicing
circVis Visualization of circRNA, including (69)
open reading frames
circNET 2.0 Regulatory network in cancer (139)
circMine Disease related circRNAs (140)
riboCirc Translatable circRNA (68)
transCirc Translatable circRNA (62)
Circ2Disease CircRNAs in human disease (141)
CircInteractome Database of circRNA interaction with (59)

miRNAs and proteins

List of web-based resources useful to study circRNAs.

sequencing (RNA-seq) libraries. This approach identifies the
backsplice junction, which allows prediction of the RNA
structure based on the annotated exons. However, with this
approach the sequence information outside the reads of the
backsplice site remains unknown. Recently, rolling circle am-
plification of circRNAs, followed by adaptor addition and
long range nanopore sequencing allowed identification of full-
length circRNAs (7-9). These circRNAs were collected in
databases (10) (Table 1). Collectively, sequencing efforts iden-
tified >880 000 backsplicing events in humans that poten-
tially generate >1.8 million human circRNA isoforms. De-
pending on the library preparation, between 6 and 19% of
these circRNAs were detected by more than five reads (10).
This diversity compares to about 320 000 human mRNA
isoforms from annotated genes and over 30 million tran-
scripts from other human genomic loci (11), suggesting that
circRNAs play a so far overlooked role in the eukaryotic tran-
scriptome.

Formation of circRNAs through backsplicing that
depends on intronic regions

CircRNAs can be generated by several mechanisms, including
circularization of lariat introns, circularization during transfer
RNA (tRNA) and ribosomal RNA (rRNA) splicing [reviewed
in (12)] and self-splicing of group I introns (13). In humans,
most circRNAs are generated from pre-mRNA through back-
splicing, where a downstream 5’ splice site is connected to an
upstream 3’ splice site. Backsplicing contrasts standard pre-
mRNA splicing where this order is reversed and an upstream
5’ splicing site is linked to a downstream 3’ splice site, resulting
in removal of an intron (Figure 1A and B).

The backsplice splice sites can be thousands of base pairs
apart in the pre-mRNA, indicating that additional mecha-
nisms are necessary to bring the backsplice sites into appo-
sition. Pre-mRNAs secondary structures formed by comple-
mentary intronic sequences are likely a major contributor to
circRNA formation (6,14,15), reviewed in (16). The com-
plementary sequences are often provided by repetitive ele-
ments, for example Alu elements in primates or B1 elements in
rodents.

Alu elements are about 300 nt long repetitive elements and
comprise 11% of the human genome (17). RNA i situ con-
formation sequencing showed that Alu elements promoted
>37% of all RNA-RNA interactions across enhancers (18).
It is likely that Alu elements play a similar prominent role in
forming pre-mRNA structures, a model which is supported
by the findings that in humans circRNA backsplice sites are
often surrounded by Alu elements (6) and these likely ac-
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Figure 1. Generation and overall functions of mMRNAs and circRNAs. (A) A
pre-mRNA containing three exons and two introns flanking the central
exon is processed into a mMRNA containing a 5’ cap and a poly adenosine
tail using the ‘linear’ pre-mRNA pathway, dashed lines. The invariant
AG-GT nucleotides of the 3’ and 5’ splice sites are indicated. mRNAs are
predominantly exported by the TREX (transcription and RNA export)
complex from the nucleus to the cytosol where they are translated. (B) A
small fraction of the pre-mRNA can undergo backsplicing when the &’
and 3’ splice site are brought into close proximity, which is promoted by
RNA secondary structures or mediated by proteins. In humans,
pre-mRNA structures are often introduced by Alu elements that form
long complementary sequences, which are the major substrate for ADAR
enzymes. CircRNAs are exported via an exportin-2-IGFBP2-RanGTP
complex. In the cytosol they can sequester miRNAs, RNA binding
proteins or act as translational templates.

count for the numerous human-specific circRNAs (10). Alu
elements are similar to the 5" and 3’ end of the 7SL RNA
from which they originated but lack a 155 nt long 7SL-specific
part. Alu elements consist of a left arm composed of a head
to tail dimer of two similar sequences, each of which is about
130 nt long. Following a stretch of adenosines, the right Alu-
arm contains an additional insert (19). Reflecting the highly
structured 7SL RNA, Alu elements exhibit complementarity
through direct RNA interactions, especially when present in
a sense to antisense orientation in the pre-mRNA. Double-
stranded RNAs are the substrate of ADAR enzymes (adeno-
sine deaminase acting on RNA) that change adenosines to
inosines. In humans >99% of all edited RNAs are derived
from Alu elements (20,21), demonstrating that intramolecular
double-strand RNA (dsRNA) regions formed by Alu elements
are common in pre-mRNAs.

As Alu elements are species-specific (17), they could con-
tribute to the species-specificity reported in databases for some
circRNAs (10). The survival of motoneuron (SMN) gene is an
example for an Alu-rich gene, as it contains >40 Alu elements,
occupying about 40% of the SMN gene sequence. A system-
atic PCR-based study showed that the human SMN gene gen-
erates at least 53 circRNAs, that include four novel exons,
which are not expressed in mouse (22,23).

Mouse B1 elements are related to human Alu elements
and are also derived from 7SL-RNA. However, B1 elements
are more diverse and shorter (about 140 nt) than Alu ele-
ments, consisting of only one monomer, which likely decreases
the preponderance of self-complementarity and overall RNA
editing (24).
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Back splicing can also be promoted by proteins. For ex-
ample, the interaction between Alu element RNA can be in-
creased by SLU7 Homolog-Splicing Factor (SLU7) binding to
Alu sequences flanking circCAPG, which promotes circRNA
generation (25). Protein-dependent promotion of circRNA
formation can occur without Alu elements, and >15 RNA-
binding proteins were shown to promote circRNA formation,
among them QKI (26), RBM20 (27), hnRNP L (28) and FUS
(29) (reviewed in 30). Conversely, the nuclear RNA helicase
DHX9 reduces the number of circRNAs, likely by resolving
Alu element-dependent secondary structures (31,32).

CircRNAs are cytosolic, more stable than mRNAs
and use a nuclear-cytoplasmic export pathway
different from mRNAs

Due to their generation through backsplicing, circRNAs lack
a 7-methyl guanosine cap at their 5 end (5’ cap) and also do
not have a poly A tail at their 3’ end. CircRNAs collected in
recent databases have an average (median) length of around
750 nt and about 20% of circRNAs are longer than 500 nt,
the largest up to 81 000 nt in length. CircRNAs are mostly
composed of exons that are already found in linear RNAs, i.e.
contain exons annotated in the database (10). Nanopore se-
quencing of full-length brain circRNAs showed that 3.2% of
exons in circRNAs are completely new, and 5.3% show a new
splicing pattern of known exons (33). circRNAs are generated
in the nucleus and can be exported into the cytosol. A promi-
nent export mechanism depends on insulin-like growth factor
2 mRNA-binding protein (IGF2BP1). The circRNA-IGF2BP1
complex is exported into the cytosol through interaction with
exportin 2 and Ran-GTP (34). It is likely that other pathways
exist that depend on the length of the circRNA. For example,
exportin 4 (35) and UAP56 (DDX39B) are involved in export
of long circRNAs, whereas URH49 (DDX39A) (36) promotes
export of shorter circRNAs.

Thus, the circRNA export mechanisms are distinct from
mRNAs. Cytosolic export of the vast majority of mRNAs de-
pends on pre-mRNA splicing, where the exon junction com-
plex is recognized by the TREX (transcription export) com-
plex (37,38). The transport of mRNAs into the cytosol is
further promoted by numerous other factors, notably SR-
proteins (39,40) and poly (A) binding protein (PABP) (41).

The nuclear-cytosolic distribution of circRNAs can be in-
fluenced by external stimuli, such as hypoxia that leads to
a translocation of circLRP6 from the nucleus to the cy-
tosol. This transport is possibly mediated by binding of the
circRNA to hnRNP M that accumulates in the cytosol under
hypoxic conditions (42). The export of circRNAs can be cell-
type specific. For example, in pluripotent cell, but not differ-
entiated cells, adenosine-rich circRNAs are retained in the nu-
cleus through interaction with PABPC1 (poly A binding pro-
tein C1) (43).

The high stability of circRNAs is another striking dif-
ference between circular and mRNAs. Half-lives have been
measured for several protein coding circRNAs, for example,
for circYAP1 (44), circTRCP (45), circARHGAP3S5 (46) and
circHER2 (47). In cell-based assays, circRNA half-lives were
found to be longer than 24 h, which is the upper limit of de-
tection, indicating that the true half-lives may be longer. The
data reflect the half-lives (18.8-23.7 h) previously measured
for 61 circRNA (48). In comparison, mRNAs have a half-life
of 4.3 h (49) making circRNA considerably more stable.

CircRNAs can function by binding to nucleic acids
and proteins

Interaction with nucleic acids

Despite the widespread expression of circRNAs, their bi-
ological functions are poorly understood. CircRNAs were
found to bind to nucleic acids and proteins and could thus
act by sequestering these molecules. Most circRNAs are ex-
pressed at low levels, which needs to be taken into ac-
count when interpreting their interaction with proteins and
RNAs. Binding to miRNAs was the first function identified for
circRNAs where the unusually abundant circRNA ciRS-
7/CDR1as binds to miR-7 and exerts biological effects
through miR-7 sequestration (‘sponging’) (50,51). Later stud-
ies showed that ciRS-7/CDR1as is part of a network of
non-coding RNAs that likely controls spatial and tempo-
ral miR-7 availability in neurons (52) and ciRS-7/CDR1as
knock-out impacts synaptic transmission (53). Sequestra-
tion of miRNAs by circRNAs has been reported for other
circRNAs (reviewed in 54,55). Binding to DNA via base-
pair interaction is also possible. For example, in ara-
bidopsis thaliana the circRNA made from exon 6 of the
SEPALLATA3 gene binds to its own DNA locus, form-
ing an R-loop of circRNA and DNA (56). Expression of
circRNAs from the SMN gene changed expression of 15%
of all genes in HEK293 cells, underlining the possible influ-
ence that circRNAs can have on gene expression, although
the molecular mechanisms remain unclear (57).

Binding to proteins

CircRNAs were shown to bind to numerous proteins, mainly
RNA binding proteins, but some circRNAs, like circFOXO3
were reported to sequester p21 and CSK2, which are proteins
without known RNA binding activity (58). Computational
predicted binding sites were collected in databases (59). Se-
questration of proteins by circRNAs can effect transcription,
cell cycle progression, apoptosis and cell migration (reviewed
in 60).

Evidence for translation of circRNAs

Most circRNAs contain open reading frames and initially over
4000 circRNAs were predicted to encode proteins (61). That
number has increased to >300 000 in the recent transCirc
database. The updated prediction for translation of circRNAs
is based on available mass-spectrometry data, the association
with polysomes, the presence of internal ribosomal entry sites
(IRESes) as well as known and predicted mé6A sites (62). There
is now an increasing number of studies showing translation of
endogenous circRNAs.

Early evidence that circRNAs can be translated came from
studies in 1988 using the archaebacterium Desulfurococcus
mobilis, where an intron from the pre-23S rRNA is excised as
a stable circRNA that encodes an endonuclease of 194 amino
acids that can spread through other strains (4). In mammalian
systems, exon 2 of circSLC8A1 (previously named NCX1)
was shown in 1999 to encode a protein that transports cal-
cium across a membrane (63). Proof of principle studies in
1995 showed that circRNAs can be translated in vitro if they
contain IRESes (64), which has been confirmed for different
IRESes (65). Rolling circle translation has been observed even
in chemically modified circRNAs containing phosphorami-
date linkages (66). The translational potential of circRNAs
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was controversial, as initial screens of circRNAs with open
reading frames did not detect translation (67). However, fur-
ther studies validated the translation of a growing number of
circRNAs in physiological systems (Table 2). Evidence that
circRNAs are translated comes from their association with
polysomes, indicating active translation; validation of back-
splice site-encoded peptides using mass-spectrometry and de-
tection of circRNA-encoded proteins using specific antisera.

Association with polysomes

Over 3000 publicly available Ribosome profiling (Ribo-
seq) databases were analyzed for the presence of circRNAs,
identifying 1969 polysome associated circRNAs in six differ-
ent species, which were collected in the riboCirc database (68).
Similarly, the circVIS database reported 9859 polysome asso-
ciated circRNAs (69), which expanded the previous transCirc
database (62). Polysome association was confirmed for nu-
merous transcripts using RT-PCR of independent polysome
preparations (70). Similarly, numerous studies focusing on a
defined circRNA showed polysome association, indicated in
Table 2.

Ribosome foot printing experiments showed a significant
increase in circRNAs when the polysomes were prepared
in the presence of detergent (0.1% Triton), indicating that
circRNA translating ribosomes are associated with mem-
branes (71). Since detergent is omitted in most polysome
preparation protocols, the actual number of circRNAs asso-
ciated with polysomes could be underestimated. Translation
and polysome association of circRNAs could be specific for
the developmental stages of a given cell. For example, erythro-
cytes and platelets contain high levels of circRNAs, but only
32 circRNAs were polysome associated in the progenitor ery-
throblasts (72).

Validation by mass-spectrometry

The translation of several circRNAs was also confirmed by
mass-spectrometry that detected a peptide corresponding to
the backsplice junction. One of the first of these proteins was
Drosophila muscleblind (71) for which backsplice site pep-
tides of numerous human proteins were identified and sim-
ilar mass-spectrometry evidence has been found for other
circRNA-encoded proteins (Table 2). During sperm devel-
opment, mRNAs are degraded in pachytene spermatocytes,
leading to an enrichment of circRNAs. Mass-spectrometry
analysis using mouse testes identified over 1600 peptides
corresponding to backsplice junctions, indicating widespread
circRNA translation (73). Analysis of human heart tissue
showed 8878 circRNAs, of which 40 were associated with
polysomes and mass-spectrometry evidence for translation
was found for six of these proteins (74), showing translation
of human circRNAs in a differentiated tissue.

Detection of circRNA-encoded proteins using
specific antisera

Proteins encoded by circRNAs often have amino and car-
boxy termini that are specific for the circRNA and are
not found in the mRNA (Figure 3A). These peptides
encoded only by circRNAs make it possible to gener-
ate circRNA-encoded protein specific antisera (Table 2).
A common problem is that these circRNA-specific se-
quences (shown in Supplementary Table S1) are usually
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short, which can make it difficult to generate specific
antisera.

Detection of circRNA-encoded proteins using
reporter genes

Transfection studies with reporter genes were first used to
prove the possibility of circRNA translation. Usually, these re-
porter genes contain a protein tag like a 3x Flag tag that is
located upstream of the start codon and thus depends on cir-
cRNA formation for translation. It is possible that translation
initiates from the linear RNA, using intronic start codons up-
stream of the flag tag (75). These putative start codons need to
be removed from the reporter constructs. The circRNA trans-
lational reporters often use heterologous flanking intronic
sequences, provided for example by the ZKSCANT1 gene
that strongly expresses circZKSCAN1. However, heterolo-
gous and authentic flanking introns can give different amounts
of circRNAs and circRNA-encoded protein expression
(76).

Precautions in interpreting circRNA translation
experiments

As circRNAs usually have low expression levels, investigat-
ing their translation needs to be carefully controlled (77).
The ectopic expression from reporter gene assays can pro-
duce artefacts, such as trans-splicing (78), and protein expres-
sion from linear byproducts (75). These problems can be ad-
dressed by controls, including comparison with mutated back-
splice sites where the invariable GU is changed to UU, re-
moval of the introns necessary for circularization, introduc-
tion of in frame stop codons, and splitting the epitope tag in
the backsplice site. Splice site mutations will affect both trans-
splicing and circRNA-generating backsplicing. However, only
circRNAs will be resistant to RNaseR treatment, which can
be used to discriminate between #rans-spliced mRNA and
circRNA. Additional controls are vectors that use group
I self-splicing as a different mechanism for circularization
(79), which can be used to show translation of the circRNA
(79,80).

The association of circRNAs with ribosomes does not
prove that these circRNAs are translated. Ribo-seq analy-
sis of translated mRNA shows a triplet periodicity that has
not been observed with most circRNAs (67,77), suggest-
ing that most ribosome-associated circRNAs are not actively
translated and modulate ribosomal function, similar to pro-
teins like SMA (81) and other ribosome associated proteins
(82). Furthermore, it is possible that the triplet periodic-
ity cannot be detected due to the low number of circRNA
reads.

Several reports indicate that the interaction between
circRNAs and ribosomes inhibits translation. For example,
circHIPK2 binds directly to the pre-ribosomal initiation factor
RPL7, which inhibits myogenesis (83). Similarly, circTRPS1
binds to several ribosomal proteins, which reduces transla-
tion (84). Testing translation of specific mRNAs, it was found
that circMALAT1 inhibits PAXS5 mRNA translation (85), circ-
SMAD?2 sequesters el[F4A3 which inhibits translation of linear
SMAD?2 (86). However, as detailed below, circRNA transla-
tion depends on RNA modifications (79,87,88), which were
not considered in the Ribo-seq analysis. Finally, interpreting
mass-spectrometry results of short, circRNA-specific peptides
is challenging, as the mass-spectrometric false discovery rate
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of peptides from the whole proteome does not necessarily ap-
ply to a small subset of backsplice-junction-encoded peptides
from circRNAs (77).

Mechanisms of circRNA translation

Cap-dependent translation initiation of mMRNAs

Cellular circRNAs were initially considered non-protein-
coding RNAs, because they lack a 5’ 7-methyl guanosine
(7mG) cap or known ribosomal entry sites necessary for trans-
lational initiation. Thus, circRNAs cannot be translated sim-
ilar to the vast majority of mRNAs in a cap-dependent man-
ner. For mRNAs, the 40S ribosomal subunit binds to a ternary
complex of eukaryotic initiation factors eIlF2 bound to Met-
tRNA(i) and GTP, which binds to the 40S ribosomal subunit
with the help of elF1, elF1A, elF3 and elF5, generating the
43S ribosomal pre-initiation complex. This 43S complex is
recruited to the mRNA via the elF4F complex composed of
elF4E, e[F4G and elF4A and interacts with the cytosolic poly
A binding protein (PABPC) (89). The 43S preinitiation com-
plex then scans the mRNA for the AUG start codon. Thus,
cap-dependent translation occurs on a mRNA structure that
is closed through protein interactions bringing the 7mG cap in
proximity to the poly adenosine tail (90,91) (Figure 2A). Sim-
ilarly, translation of circRNAs occurs on a circular structure.

Cap-independent translation initiation of mMRNAs

Under cellular stress conditions, caused by hypoxia, nutrient
starvation, oxidative or endoplasmic reticulum stress, mMRNAs
can be translated without a 7mG cap (91). Cap-independent
translation has been first discovered in viruses, where an IRES
is present (92). The IRES forms tertiary RNA structures that
interact with the 40S rRNA allowing to recruit the 43S pre-
initiation complex (reviewed in 93). IRESes act through var-
ious mechanisms, including direct rRNA-IRES contacts and
trans-acting factors mediated contacts. After their discovery in
viruses, IRESes have been identified in many cellular mRNAs
(93) and cap-independent translation using IRES sequences is
potentially used by up to 15% of human mRNAs (94,95).

A second mechanism of cap-independent translation is
methylation of adenosine on the N6 position, called m6A.
M6A modifications are one of the most common RNA mod-
ifications likely present in all classes of RNAs (reviewed in
96). The m6A methylation is catalyzed by METTL3 (methyl-
transferase like 3), which needs cofactors for positioning that
is provided by METTL14 for circRNAs. M6A modification
are reversible and can be removed by fat mass and obesity
associated protein (FTO) and AlkB homolog 5 (ALKBHS).
M6A modifications are recognized by the YTH domain [yeast
two hybrid, after YTHS521-B, now YTHDC1 (97)]. M6A
modifications influence RNA stability, tertiary structure, sub-
cellular localization and pre-mRNA processing. M6A mod-
ification promotes circRNA formation, likely mediated by
its nuclear reader YTHDC1 (88). YTHDF1 promotes cap-
dependent translation of m6A modified mRNAs by interact-
ing with elF3 (98), which can make mRNA translation inde-
pendent of the 7mG cap under cellular stress conditions (99)
(Figure 2B). Thus, using various mechanisms, numerous mR-
NAs undergo cap-independent translation that usually occurs
under cellular stress conditions. These conditions include hy-
poxia which is frequently observed in cancer (91).
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Translation of circRNAs in prokaryotes

Bacterial RNA lacks a 5’ cap and translational initiation is
mediated by mRNA-ribosome interaction. This explains why
circRNAs can also be translated in bacteria, which has been
observed in vitro, using the first translated circRNAs from
archaea (4) and has been suggested as a protein expression
platform. In this approach circRNAs are generated as a group
I intron and are translated by Escherichia coli if the Shine—
Dalgarno Sequence and the downstream sequence element
surrounding the AUG start codon are present (100). This
mechanism could be physiologically important, as viroid-like
circRNAs were discovered in the microbiome of the human
gut (101,102).

Four major models have been proposed for cap-
independent circRNA translation (103): IRES, m6A methyla-
tion, adenosine to inosine RNA editing and 40S recruitment
via e[F4A3 that is deposited on exon junctions.

IRESes of circRNAs

Early proof of principle studies showed that the introduc-
tion of viral IRESes into circRNA strongly increased transla-
tion through eIF4G recruitment, leading to translational initi-
ation (64). Screens using circGFP-reporter that took circRNA
structure and complementarity to 18S rRNA into account
identified over 17 000 possible circRNA IRES sequences.
One of these endogenous IRESes regulated translation of the
circFGFR RNA (104). A systematic screen for shorter ribo-
somal entry sites using GFP reporters identified 97 purine
rich hexamer sequences in circRNAs that promote translation
(105). The identified hexamers partially overlap with m6A
sites but given the presence of adenosines these sequences
could also be substrates for A > I editing. The potential m6A
sites are annotated in databases (10) and computational anal-
ysis using known translated circRNAs identified short, A-U
rich putative ribosomal entry sites (106). The presence of these
distinct classes of IRESes indicate that circRNAs use several
molecular mechanisms for translational initiation.

m6A methylation of circRNAs promotes their translation

A second mechanism of cap-independent translation of
circRNAs is due to the methylation of adenosine on the N6
position, called m6A. Using an siRNA screen, it was found
that the m6A reader YTHDEF3 is responsible for the trans-
lation of circRNAs, but YTHDF3 knock out did not affect
the translation of linear mRNAs and could thus be specific
for circRNAs. YTHDF3 binds directly to eIF4G2, leading to
cap-independent circRNA translation (87,88) (Figure 2C). At
least 13% of circRNAs show m6A modification, indicating
that m6A could contribute to the translation of numerous
circRNAs. Analysis of pachytene spermatocytes showed that
m6A enrichment correlated with both an increase of back-
splicing and circRNA translation, resulting in the detection
of 1600 translated circRNAs (73). These data demonstrate a
general role of m6A modification in circRNA translation and
expression levels.

Splicing-promoted translation of circRNAs through the exon
junction complex

During the splicing reaction, an exon junction protein com-
plex is deposited on the nascent mRNA. The exon junction
complex is necessary for RNA export into the cytosol and
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cap-dependent translational initiation complex. Eukaryotic initiation factors and RNA modification readers are indicated by color. (B) Cap-dependent
translational initiation of m6A-methylated mRNA: M6A methylation promotes formation of the cap-dependent translational initiation complex by
stabilizing the interaction of the 40S subunit through interaction of the m6A reader YTHDF1 with elF3. (C) m6A-methylation-dependent translation of
circRNAs: The complex of methyltransferases 3 and 14 catalyzes m6A methylation of adenosines. MBA binds to the YTHDF3, which binds to elF3G that
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all exon junctions.

is composed of el[F4A3, MAGOH, Y14/RBMS8A and CASC3
(107,108).

Every circRNA generated by backsplicing contains at least
one exon—exon junction on which an exon-junction complex
is likely deposited. CircRNAs made from one exon contain
the backsplice junction and addition of other exons to the cir-
cRNAs adds exon junctions also found in linear RNAs. A key
component present in the exon junction complex is e[F4A3,
which could be bound to backsplice sites or other exon-
junctions present in the circRNAs. EIF4A3 likely plays a role
in circRNA biogenesis as it promotes formation of some cir-
cRNAs (109-111). eIF4A3 initiates translation by recruiting
elF3 through direct interaction with its subunit elF3G. elF3
recruits the small 40S ribosomal subunit that scans for a start
codon, which initiates translation. This mechanism has been
found for luciferase-reporter genes and translation of the cir-
cCTNNB1 (beta catenin) RNA (112), circINSIG1 (113) and
for the translation of succinate dehydrogenase assembly fac-
tor 2 (circSDHAF2) (114). CircISIG1 translation is likely pro-
moted by hypoxia acting on elF4A3. Notably, circSSDHAF2
contains no known méA-enhancers or m6A modifications. Its
translation is further enhanced by the presence of introns, sug-
gesting that translation of this circRNA mainly depends on
the exon junction complex (114). Reporter gene studies in-
dicate that generation of exon junction complexes also pro-
mote circRNA expression levels. For example, addition of in-
ternal introns within circSMN reporter constructs increased

circSMN expression levels, either by recruitment of splicing
factors during circRNA formation or an increase in circRNA
stability (1135).

Inosine-dependent translational initiation

CircRNAs form intramolecular double-stranded regions
(76,116) making them substrates for ADAR enzymes (adenine
deaminase acting on RNA) that recognize double-stranded
RNA structures and convert adenosines into inosines (117). A
screen of trans-acting factors found that ADAR1 and ADAR2
strongly increase translation of the circTau RNAs (76). In hu-
mans, there are three different ADAR genes: ADAR1-ADARS3.
ADART1 is expressed in all tissues with an interferon-induced
cytosolic (p150) and a constitutive nuclear (p110) isoform;
ADAR?2 is weakly expressed in brain and the catalytic inac-
tive ADAR3 gene is highly expressed in brain. ADAR1-p150
has the strongest effect on circRNA translation (118), possi-
bly due to its cytosolic localization. ADAR activity results in
decoding of RNAs, as an inosine is read as a guanosine and
thus an AUA changed into an AUI could serve as a start codon.
The decoding was shown for circTau 12— 10 RNA, generated
by backsplicing of exons 12-10. This 288 nt long circRNA
does contain an infinite open reading frame (iORF), but lacks
a start or stop codon. ADAR activity changes an AUA to AUI,
which initiates translation in reporter gene assays, showing
that in principle ADAR activity can change the amino acid us-
age of circRNAs (76) (Figure 3B). RNA-seq of reporter genes
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transmembrane domain and is likely cytosolic.

in the presence of co-transfected ADAR enzymes showed a
widespread change of adenosines to inosines. In most posi-
tions <10% of a given adenosine site is changed. The editing
profile of the circRNA depends on the type of Alu element in
the flanking introns, suggesting that at least some of the edit-
ing occurs in the nucleus, before intron removal. Thus, Alu el-
ements surrounding circRNAs could promote circRNA trans-
lation by influencing A > I editing. In addition, Alu elements
could promote circRNA biogenesis.

Using circTau reporter genes the interaction between RNA
modifications was tested. There was no strong increase in
translation when m6A-dependent circRNA translation was
initiated. However, when both pathways were activated,
an additive effect was seen (119). The mechanism lead-
ing to inosine-dependent translation of circRNAs remains
to be determined, as the trams-acting factors connecting
circRNA translation and inosines are unknown. Several pro-
teins, NOGO, p54nrb and vigilin/HDLBP were shown to pre-
dominantly bind to inosines (120) and vigilin/HDLBP di-

rectly interacts with the 40S rRNA subunit (121), suggest-
ing that vigilin/HDLBP might promote translational initiation
of edited circRNAgs, i.e. it could act as a reader for inosines,
which needs further experimental validation.

General features of proteins made from
circRNAs

In their capacity to encode proteins, circRNAs are distinct
from linear RNAs as they can potentially undergo rolling
circle translation, where the ribosome moves around the
circRNA. Due to the backsplicing mechanism, circRNAs lack
the first and last exons of mRNAs that cannot provide a 3’ or
5’ splice site, respectively.

CircRNAs can increase proteome diversity through
frameshifts during rolling circle translation

The potential of circRNA rolling circle translation is illus-
trated by a 220 nt long circRNA that represent the viroid-
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like satellite RNA of the rice yellow mottle virus. Viroids are
single-stranded circRNAs that infect flowering plants (116)
and that potentially are also present in prokaryotes (101).
The 220 nt long viroid-like satellite RNA can undergo three
rounds of rolling circle translation where the reading frame
shifts during each round. The three frameshifts generate three
distinct proteins of 16, 18 and 23 kDa from only 220 nt ge-
netic information (122).

The circRNA translation allows the generation of novel
proteins that contain parts of the full-length linear proteins.
If the number of nucleotides of a circRNA cannot be di-
vided by three (is not an integer multiple of three) frameshifts
will occur during translation, which generates proteins with
a specific amino-terminus, carboxy terminus or both a spe-
cific amino and carboxy terminus (Figure 3A). If the circRNA
lacks stop codons and the number of nucleotides can be di-
vided by three, multimers of proteins can be generated using
rolling circle translation of an iORF (Figure 3A and B). Trans-
lation of iORFs have been observed in transfection assays, and
the number of rounds of translation can be from 1.5 (76) to
>5 (123) and depends on the circRNA and cell type. In some
cases, the circRNA encodes a completely new protein using a
circRNA-specific reading frame (124,125).

Backsplicing removes membrane-translocation
signals if they are located in the first exon

Proteins can be inserted into the membrane or enter the endo-
plasmic reticulum when they express a signal peptide at their
amino-terminus. This 16-30 amino acid long hydrophobic se-
quence binds to the signal recognition particle (SRP) and en-
ters the endoplasmic reticulum through the SRP receptor. The
signal peptide is usually located in the first exon (126) that
lacks a 3’ splice site and can thus not participate in backsplic-
ing. Thus genes encoding proteins localized in the endoplasmic
reticulum, Golgi or endosomes as well as membrane proteins
can generate cytosolic variants using backsplicing (Figure 3C),
which has been confirmed for circCadherin (127) and circIN-
SIG1 (113). The presence of non-coding exons in the 5" UTR
are exceptions to this mechanism. For example, the first exon
of the Fibroblast growth factor receptor 1 is non coding and
circFGFR1 generated by exon 7 to exon 2 backsplicing con-
tains the signal sequence, making the translated circFGFR1
protein membrane bound (104). Thus, changing the intra-
cellular localization by removal of the transmembrane signal
could be a common feature of circRNA-encoded proteins.

Currently known translated circRNAs

Experimentally validated circRNA-encoded proteins are sum-
marized in Table 2. As the nomenclature of circRNAs is
currently refined (128), we include their protein sequences
in Supplementary Table S1, where circRNA-specific protein
parts are indicated. Most of the circRNA-encoded proteins
play a role in cancer, which reflects the current research fo-
cus and possibly the hypoxia conditions in tumors that pro-
mote circRNA translation. Reflecting the backsplicing mecha-
nism, the circRNA-encoded proteins are smaller than mRNA-
encoded proteins, with an average size of 268 aa [human mean
456 aa (129)].38% (13/34) of the experimentally studied pro-
teins show a high propensity (>0.8) for phase separation pre-
dicted by MolPhase (130), indicating that they could form
aggregates. The mean molecular recognition features (131)
for circRNA-encoded proteins is 12.08%, compared to 1%

"

to eukaryotic proteins, indicating that circRNA-encoded pro-
teins have a high likelihood to interaction with other proteins
and adopt a structure upon binding (Supplemental Table S2).
Thus, circRNA-encoded proteins likely have different bio-
physical characteristics than mRNA-encoded proteins and
could change cellular properties once translated.

Outlook

CircRNAs generate an astonishing number of isoforms that
are less abundant, but more stable than mRNAs. The num-
ber of known circRNA isoforms far exceeds the number of
mRNA isoforms suggesting that circRNAs could provide so
far unknown functions to an organism, especially the nervous
system, which has the highest expression of circRNAs.

Evidence reviewed here shows that one of these functions is
to serve as templates for translation. CircRNAs must use cap-
independent translational mechanisms, that are likely more
employed when cap-dependent translation is repressed, fre-
quently under pathophysiological conditions. Due to their cy-
tosolic localization, presence of internal secondary structures
and high stability, circRNAs can accumulate base modifica-
tions, some of which allow translation of circRNAs. Since
circRNA translation is often increased under pathophysio-
logical conditions, circRNA-encoded proteins could be novel
biomarkers, as well as new therapeutic targets (132,133), in-
cluding cancer vaccines (134-136).

As >170 RNA modifications are known, it is possible that
other RNA modifications could lead to circRNA translation,
and there is some evidence N1-methyladenosine could con-
tribute to circRNA translation (137). These modifications
could potentially change translation itself, like N1-methyl
pseudouridine that promotes translational frameshifts (138).
The interplay between RNA modification and translation
makes circRNAs a fascinating research area to understand
transcriptome and proteome diversity.
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