

1 **Mapping Heat Stress-Induced Core Histone Post-Translational Modifications in *Acropora***
2 ***cervicornis*.**

3

4 Cassandra N. Fuller¹, Sabrina Mansoor², Santiago J. Guzman¹, Lilian Valadares Tose¹, Serena
5 Hackerott^{2,3}, Javier Rodriguez-Casariego^{2,4}, Jose M. Eirin-Lopez^{2*}, Francisco Fernandez-Lima^{1,5*}

6

7 ¹*Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199,*
8 *USA.*

9 ²*Environmental Epigenetics Laboratory, Institute of Environment, Florida International*
10 *University, Miami, FL 33199, USA.*

11 ³*College of Earth, Ocean, and Environment, School of Marine Science and Policy, University of*
12 *Delaware, Lewes, DE 19958, USA*

13 ⁴*Department of Marine Biology and Ecology, Rosenstiel School, University of Miami, Miami, FL*
14 *33124, USA.*

15 ⁵*Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.*

16

17 **Abstract**

18 Histone post-translational modifications (PTMs) participate in the dynamic regulation of
19 chromatin structure and function, through their chemical nature and specific location within the
20 histone sequence. Alternative analytical approaches for histone PTM studies are required to
21 facilitate the differentiation between ubiquitously present isomers and the detection of low-
22 abundance PTMs. Here, we report a high-sensitivity bottom-up method based on nano-liquid
23 chromatography (nLC), trapped ion mobility spectrometry (TIMS), data-dependent acquisition
24 (DDA), parallel accumulation-serial fragmentation (PASEF), and high-resolution time-of-flight
25 tandem mass spectrometry (ToF-MS/MS) for the analysis of histone PTMs. This method was
26 tested in a threatened coral species, the staghorn coral *Acropora cervicornis*, during an episode of
27 acute thermal stress. The obtained results allowed for the identification of PTM changes in core
28 histones involved in the coral's heat response. Compared to traditional LC-MS/MS approaches,
29 the incorporation of TIMS and ddaPASEF MS/MS, resulted in a highly specific and sensitive
30 method with a wide dynamic range (6 orders of magnitude). This depth of analysis allows for the
31 simultaneous measurement of low-abundance PTM signatures relative to the unmodified form. An
32 added advantage is the ability to mass- and mobility-isolate prior to peptide sequencing, resulting
33 in higher confidence identification of epigenetic markers associated with heat stress in corals (e.g.,
34 increased H4 4-17 with 2ac and 3ac, and decreases in H4 4-17 K12ac, K16ac, H4 K20me₂, and
35 H2A K5ac, K7ac, K9ac, K12ac, K14ac, and K74ac).

36 **Introduction**

37 Histones are small basic proteins which, contrary to a long-held belief, display a high level of
38 diversity within the cell nucleus⁽¹⁾, including the ubiquitous coexistence of genetic variants and
39 multiple proteoforms that bind to DNA and form the fundamental subunit of chromatin known as
40 a nucleosome⁽²⁻⁵⁾. Within the nucleosome, dimers of the four core histones (H2A, H2B, H3, and
41 H4) bind together to create the octameric face, from which the N- and C-terminal tails protrude<sup>(2-
42 4,6-8)</sup>. Due to this increased exposure, the highly basic N-terminal tails are especially amenable to
43 interactions with the cellular machinery responsible for post-translational modifications (PTMs).
44 These PTMs (e.g., acetylation [ac], methylation [me₁₋₃], ubiquitination [ub], phosphorylation [ph])
45 facilitate the modulation in the function of diverse genomic regions in response to abiotic or other
46 biological signals^(6,9-11).

47 Traditionally monitored by antibody-labeling⁽¹²⁻¹⁴⁾, alternative analytical methods are required to
48 account for the specificity needed to distinguish between isomeric histone proteoforms,
49 particularly in the case of samples that antibodies remain unavailable for. Mass spectrometry (MS)-
50 based proteomics methods are emerging and continuously evolving in terms of mass accuracy and
51 resolution which can provide a more comprehensive and cost-effective overview of the histone
52 code⁽¹⁵⁾. Top-down MS proteomics provides annotation on intact proteins using ultrahigh-
53 resolution MS to combat inherent chemical complexity and the biological diversity of histones<sup>(16-
27)</sup>. We have demonstrated the advantages of dual gas-phase separation and complementary
55 fragmentation techniques (e.g., top “double down” MS), which aids in isomeric proteoform
56 separation⁽²⁰⁾. Another option is middle-down proteomics, which utilizes enzymes (e.g.,
57 chymotrypsin Glu-C, Asp-N) to cleave proteins into large peptides (>3 kDa)⁽²⁸⁾. These methods,
58 however, do not reliably account for the high isomeric content of histones due to cleavage being
59 at the tail level (~50 amino acids [AAs]), where a large majority of PTMs occur. To address this,
60 gas-phase pre-separation in combination with electron- or UV-based fragmentation can be
61 employed for adequate peptide sequencing and PTM local elucidation⁽²⁸⁻³³⁾.

62 The most common approach to MS proteomics is bottom-up. This method employs proteases (e.g.,
63 trypsin, Arg-C⁽³⁴⁻³⁶⁾) that cleave at high-frequency AAs (e.g., lysine and/or arginine in histones)
64 and result in many small peptides (<3 kDa). Trypsin is commonly used due to its robustness and
65 higher efficiency, however, since trypsin cleaves at both lysine and arginine residues, this digestion
66 typically produces many peptides that are too short to yield confident sequence assignment in core
67 histone analysis. To account for this, we have previously published both irreversible (e.g.,
68 propionylation) and reversible (e.g., citraconylation) derivatization methods that block lysine
69 residues as cleavage sites^(7,37-41). This facilitates the use of trypsin, which is more cost-effective
70 and robust than Arg-C, and provides slightly longer peptides (still <3 kDa) for analysis. At this
71 shorter peptide level, however, there is still a need to address isomeric content among peptides
72 with multiple PTM sites^(38,41). Recently, we sequenced and annotated *Acropora cervicornis* coral
73 histone H4 proteoforms from a pooled sample set using top-down MS

74 (<https://doi.org/10.34703/gzx1-9v95/MM9SHA>)⁽⁴²⁾ however, appropriate methodology for
75 diversity comparison between individual organisms has yet to be shown.

76 Here, we describe the analytical value of online nano-liquid chromatography (nLC), trapped ion
77 mobility spectrometry (TIMS), data-dependent acquisition (DDA), parallel accumulation-serial
78 fragmentation (PASEF), and high-resolution tandem time-of-flight (ToF-MS/MS) for the analysis
79 of histone PTMs. With the recent reports of *A. cervicornis* (<https://doi.org/10.34703/gzx1-9v95/MM9SHA>)⁽⁴²⁾ histone H4, H2A, and H2B variants and sequences, we now applied bottom-
80 up strategies to demonstrate the sensitivity and applicability of this method to heat stress-induced
81 PTM changes.

83

84 **Results and Discussion**

85 The histone PTM screening using bottom-up nLC-TIMS-ddaPASEF-ToF MS/MS resulted in the
86 detection of characteristic peptides and their identification based on retention time, mobility, and
87 characteristic fragmentation pattern. Inspection of the 2D IMS-MS contour plot (Figure 1A) shows
88 distinct separation of the peptides based on their charge state; peptides were observed in the 1+ to
89 3+ charge state range, in good agreement with previous results as a consequence of the
90 derivatization step (i.e., propionylation protocol neutralizes most basic AAs^(7,38,41)). Inspection of
91 the 2D LC-IMS contour plot shows the separation of most coeluting peptides, demonstrating the
92 advantages of the added mobility separation prior to MS/MS (Figure 1B).

93 A target list based on H4, H2A, and H2B variants detected in *Acropora cervicornis* coral (H4,
94 H4.S, H2A, H2A.A, H2B-1, H2B-2, H2B-2K, and H2B-3; <https://doi.org/10.34703/gzx1-9v95/MM9SHA>)⁽⁴²⁾ was used for the verification of the high-sensitivity nLC-TIMS-ddaPASEF-
95 ToF MS/MS method as applied to the analysis of coral response to heat stress exposure (e.g.,
96 control and heat-exposed). Inspection of the LC-TIMS-MS/MS analysis resulted in the observation
97 of 84 molecular targets (out of 346 possible molecular targets) corresponding to 8 H4, 7 H2A, and
98 12 H2B peptides with varying PTMs (Table S1 and Figures 2-4 and S1-6). Noteworthy is the high
99 reproducibility, sensitivity, and depth of the analysis, which allows the detection of low-abundant
100 peptides and PTMs across six orders of magnitude.

102 Inspection of the PTM profiles showed correlation with heat exposure across the samples. The
103 number of acetylations on peptide H4 4-17 rose in exposed samples (up to 3ac) versus control
104 samples (up to 1ac). In control samples, the H4 4-17 peptide is only observed in the unmodified
105 and 1ac form (e.g., K8ac 2+ and 3+, K12ac 2+ and 3+, and K16ac 2+ and 3+). However, exposed
106 samples show an increase up to 2 and 3ac, which were below the limit of detection in the control
107 samples (Figures 1C, 2A, and S1-2). In both sample groups, H4 4-17 acetylations were observed
108 at K8ac (2+ and 3+), K12ac (2+ and 3+), and K16ac (2+ and 3+). Of the H4 4-17 1ac peptides,
109 K12ac 3+, and K16ac 2+ and 3+ were found to be reduced in the exposed corals, likely due to the
110 increase of peptides with additional acetylations (2-3ac, Figures 1C, 2A, S1-2, and Table S2). H4

111 4-17 peptides with 2ac (K5acK8ac 2+, K5acK12ac 2+, K5acK16ac 2+, K8acK12ac 2+,
112 K8acK16ac 2+, and K12acK16ac 2+) or 3ac (K5acK8acK12ac 2+, K5acK8acK16ac 2+,
113 K5acK12acK16ac 2+, and K8acK12acK16ac 2+) were only observed in the exposed coral samples
114 (Figure 2A and S1-2). All 2 and 3ac H4 4-17 peptides were enriched in the exposed coral samples,
115 compared to the control samples (Figures 1C, 2A, S1-2, and Table S2). The H4 20-23 peptide was
116 observed in the unmodified, K20me₁, K20me₂, and K20ac forms (Figure 2A and S1-2). The H4
117 20-23 K20me₂ 1+ peptide feature was reduced in the exposed coral samples (Figure 1C and Table
118 S2). All other H4 peptide features (H4 24-35, 40-45, 46-55, 68-78, 79-92, 96-102, and H4.S 79-
119 92) were observed in the unmodified form (Figures S1-2).

120 The H2A 4-16 peptide is observed in both sample groups in the 1ac (K5ac, K7ac, K9ac, K12ac,
121 and K14ac) and 2ac (K5acK7ac, K5acK9ac, K5acK12ac, K7acK9ac, K7acK12ac, K7ac, K14ac,
122 K9acK12ac, K9acK14ac, and K12acK14ac) forms (Figures 3A and S3-4). However, the exposed
123 samples show a decrease of 1ac peptides features (K5ac 3+, K7ac 3+, K9ac 3+, K12ac 3+, and
124 K14ac 2+ and 3+), primarily in the 3+ charge state forms (Figures 1C, 3A, S3-4, and Table S2).
125 Similarly, H2A 71-76 K74ac (1+ and 2+) was reduced in exposed samples compared to control
126 samples (Figure 1C and Table S2). All other H2A peptide features (H2A 20-28, 29-34, 35-41, 42-
127 70, and 81-87) were observed in the unmodified form (Figures 3A and S3-4). The H2B (2,2K,3)
128 1-12 peptide was observed in the unmodified, N-me₂A, and N-me₃A forms in both sample groups
129 (Figures 4A and S5-6). In the exposed samples, an increase of H2B (2,2K,3) 1-12 N-me₃A 2+ and
130 3+ peptide features were observed compared to the control group (Figures 1C, 4A, S5-6, and Table
131 S2). All other H2B peptide features [H2B (2) 13-26, (2K) 13-27, (3) 13-26, (1,2) 26-30, (1,2,2K)
132 27-30, (3) 26-30, (1) 70-76, (2,2K,3) 70-76, 77-89, 90-96, 97-722] were observed in the
133 unmodified form (Figures 4A and S5-6).

134 Clustering of the samples by heat exposure treatment indicates a clear distinction between control
135 and exposed sample responses to heat stress for H4 (Figure 2B), H2A (Figure 3B), and H2B
136 (Figure 4B) PTMs. The sample comparison between treatments shows tight clustering among most
137 similar PTMs (e.g., H4 4-17 1ac, 2ac, and 3ac, Figure 2B; H2A 4-16 1ac and 2ac, Figure 3B; H2B
138 (2,2K,3) 1-12 N-me₂A and N-me₃A, Figure 4B). Additionally, clustering is observed between some
139 peptide features with similar PTMs and charge states (i.e., H4 4-17 K12ac 3+ and K16ac 3+, Figure
140 2B; H2A 4-16 K5ac 3+ and K7ac 3+, Figure 3B) as well as some peptides detected at multiple
141 charge states (i.e., H4 20-23 K20me₂ 1+ and 2+, Figure 2B; H2A K12ac 2+ and 3+, and H2A
142 K14ac 2+ and 3+, Figure 3B). These types of observations are expected, as peptides with multiple
143 charge states observed would see similar decreases/increases within each charge state relevant to
144 total peptide abundance.

145 Understanding changes in the epigenetic marks in corals is critical to advance our interpretation
146 and propose gene regulation mechanisms and pathways. In particular, the elucidation and
147 quantification of histone PTMs requires advanced analytical detection methods due to the
148 ubiquitously high isomeric content and dynamic range. Online nLC-TIMS-ddaPASEF-ToF

149 MS/MS can be efficiently used for the bottom-up analysis of derivatized histone peptides when
150 applied to the *Acropora cervicornis* Caribbean staghorn coral.

151 A high diversity of core histone PTMs was observed in response to heat stress. The inspection of
152 *Acropora cervicornis* H4, H4.S, H2A, H2A.A, H2B-1, H2B-2, H2B-2K, and H2B-3 showed the
153 presence of varying numbers of acetylation (0-3ac) and methylation (me₀₋₃), mostly in the tail
154 positions. The analysis was aided by the ability to isolate mass- and mobility-selected precursors
155 for increased peptide assignment by increasing signal-to-noise and reducing the number of
156 interfering ions^(38,41), despite the high diversity of PTMs among samples. When compared,
157 increases in H4 4-17 with 2ac and 3ac, and decreases in H4 4-17 K12ac, K16ac, H4 K20me₂, and
158 H2A K5ac, K7ac, K9ac, K12ac, K14ac, and K74ac were observed from corals exposed to heat
159 stress (exposed) versus those held at ambient temperature (control). While a direct correlation
160 between these PTMs and chromatin remodeling remains to be elucidated, previous reports have
161 shown their involvement in gene transcription^(43,44), DNA replication⁽⁴⁵⁾, and DNA damage
162 repair⁽⁴⁶⁾. This work introduced a new analytical workflow capable of characterizing chromatin
163 composition in corals, providing the community with tools for future longitudinal studies and the
164 evaluation of responses of other non-model organisms to environmental change.

165

166 Materials and Methods

167 Sample Preparation.

168 *Acropora cervicornis* (staghorn) corals were obtained from the Coral Reef Foundation (CRF)
169 nursery located at Tavernier, Florida (N 24.982715°, W -80.436286°) and were propagated under
170 CRF's permit #FKNMS-2019-012-A2. Fragments represented clones of a single coral genotype
171 (CRF AC112) to limit genetic variability during method development. Corals were separated into
172 two temperature treatments including an ambient control (ctrl; n=3) and heat-exposed (exp; n=3)
173 group. Corals in the ambient control treatment group were maintained at 26 °C while heat-exposed
174 corals were subjected to acute (13h) heat stress with a maximum temperature of 33 °C with the
175 aim of inducing a detectable molecular response to thermal stress.

176 Histones were extracted from collected fragments of each coral treatment group (~10 cm each).
177 Briefly, coral fragments were flash-frozen in liquid nitrogen and ground into a fine powder using
178 a mortar and pestle. The calcium carbonate skeleton was removed from the coral tissue by
179 suspending the powdered coral (~250 mg/mL) in chilled 1X Pre-lysis buffer (EpiQuik™ Total
180 Histone Extraction Kit, EpigenTek, Farmingdale, NY) on ice for 10 min to allow carbonate
181 deposition⁽⁴³⁾. The tissue slurry was carefully transferred to a Dounce homogenizer to continue
182 the lysis and histone acid-extraction using the EpiQuik™ Total Histone Extraction Kit. Acid-
183 soluble proteins were subjected to acetone precipitation overnight as previously described⁽⁴⁴⁾. The
184 total protein concentration was determined using the Qubit Protein Assay Kit (Invitrogen:

185 Carlsbad, CA). Isolated histones were re-suspended in water and stored at -80 °C until ready for
186 further preparation steps.

187 The extracted histones were derivatized (propionylated, pr), as previously described^(7,37,38,40,41,45).
188 Briefly, histones were solubilized in 100 mM NH₄CO₃ (1 µg/µL, pH 8) and propionylation reagent
189 (1:3 v/v propionic anhydride:acetonitrile[ACN]) was added (1:4 v/v), followed quickly by NH₄OH
190 (1:5 v/v) to maintain a pH of 8. The samples were incubated for 15 min, then this procedure was
191 repeated once before drying *via* vacuum centrifuge. Propionylated histones were reconstituted in
192 NH₄CO₃ (1 µg/µL) and digested using trypsin (1:10 wt/wt)⁽⁴⁰⁾ overnight at room temperature. The
193 digest was halted by freezing at -80 °C for at least 1 h, then samples were thawed and dried. The
194 derivatization procedure was repeated as before to propionylate the newly formed peptide N-
195 terminals. Fully propionylated peptide samples were desalted using homemade stage-tips, as
196 previously described^(37,38,41). The C₁₈ tips were activated using ACN, followed by equilibration
197 with 0.1% trifluoroacetic acid (TFA). Sample pH was reduced to 4 using glacial acetic acid, then
198 samples were loaded onto the C₁₈ material and washed once with 0.1% TFA before elution using
199 0.5% acetic acid in 75% ACN. Desalting samples were dried, resuspended in 0.1% formic acid
200 (FA), and spiked with custom histone-like QC peptides to monitor the reproducibility of the
201 bottom-up MS method.

202 *Bottom-up Histone PTM screening.*

203 A nanoElute 2 nLC system fitted with a C₁₈ column (15 cm x 150 µm i.d., 1.5 µm, Bruker PepSeq
204 column) kept at 50 °C was coupled to a commercial timsTOF Pro2 mass spectrometer (Bruker
205 Daltonics, Billerica, MA). The nLC separation gradient using 0.1% FA in water (mobile phase A)
206 and 0.1% FA in ACN (mobile phase B) started at 2% B and continued as follows: i) 0-60 min to
207 35% B, ii) 60-69 min to 95% B, iii) 70-78 min to 2% B. Each injection consisted of 1 µL of sample
208 containing 250 ng/µL propionylated coral histone peptides and 25 ng/µL spiked QC peptide
209 (GVKFRGSTGGKAPRGKAPATSGMVGPHR, 2765.54 Da); the QC peptide can be traced using
210 the final QC1 (pr-GSTGGK(pr)APR, 471.75²⁺) and QC2 (pr-GK(pr)APATSGMVGPHR,
211 739.38²⁺) propionylated digest targets. A CaptiveSpray nanoESI source (Bruker Daltonics)
212 operated at 1200 V and flow rate of 500 nL/min was used as the nLC-MS interface. Tandem
213 MS/MS was performed using CID on mobility and *m/z* selected precursor ions in ddaPASEF mode
214 over a range of 0.60-1.80 1/K₀ and 100-1700 *m/z* (1+ to 4+ charge states), respectively, while CID
215 collision energy was stepped as a function of both *m/z* and 1/K₀, as previously described^(37,41). The
216 limit of detection (LOD) is specific to each peptide target and charge state; to evaluate the fold
217 changes, the LOD was estimated as the lowest value observed for a known peptide signal in a
218 biological histone pulldown (see Figure S7).

219 *Histone PTM Data Analysis.*

220 The bottom-up nLC-TIMS-PASEF-ToF MS/MS data was analyzed using a custom script in
221 DataAnalysis software (DA, v6.1, Bruker Daltonics) that considered *m/z*, mobility (1/K₀), and
222 retention time from a predetermined list of derivatized histone peptide sequences with varying

223 PTMs (e.g., ac, me₁₋₃). A target list based on H4, H2A, and H2B variants detected in *Acropora*
224 *cervicornis* coral (H4, H4.S, H2A, H2A.A, H2B-1, H2B-2, H2B-2K, and H2B-3;
225 <https://doi.org/10.34703/gzx1-9v95/MM9SHA>)⁽⁴²⁾ was used. The histone H3 sequence has not
226 been reported and therefore was not included⁽⁴²⁾. The QC1 and QC2 peptides were used as a
227 measure of the analytical reproducibility and analysis performance. Mobility and mass method
228 calibration was performed using hexakis(2,2-difluoroethoxy) phosphazine, hexakis(2,2,3,3-
229 tetrafluoropropoxy) phosphazine, and hexakis(1H, 1H, 7H-dodecafluoroheptoxy) phosphazine
230 standards (Apollo Scientific Ltd, UK). The reported peptides and PTMs were manually curated
231 using the isotopic profile of the precursor mass (± 0.01 Da), previously reported peptide mobility
232 profile patterns (including positional isomers, RSD < 2%)⁽⁴¹⁾, and MS/MS fragmentation patterns.
233 Extracted ion mass and mobility filtered chromatograms were extracted using the DA script and
234 normalized to the area of QC peptides (e.g., QC1).

235

236 Associated Content

237 Data Availability Statement

238 Bottom-up nLC-TIMS-ddaPASEF-ToF MS/MS raw data for all ambient control and heat-exposed
239 *Acropora cervicornis* samples is freely accessible at *via* the FIU Research Data Repository at
240 <https://doi.org/10.34703/gzx1-9v95/3MF7D3>.

241 Top-down LC-MS, nESI-ToF and nESI-q-ECD-ToF MS/MS raw data for *Acropora cervicornis*
242 histone H4 variant sequences is freely accessible *via* the FIU Research Data Repository at
243 <https://doi.org/10.34703/gzx1-9v95/MM9SHA>.

244

245 Supporting Information

246 Supplementary Figures S1-7 and Tables S1-2 are available at *EnvEpig* online.

247

248 Acknowledgements

249 The authors acknowledge the financial support from the National Institutes of General Medicine
250 (R35GM153450) to FFL and the National Science Foundation (1921402) to JEL. CNF
251 acknowledges the fellowship support from the National Science Foundation (HRD-1547798 and
252 HRD-2111661). These NSF grants were awarded to Florida International University as part of the
253 Centers of Research Excellence in Science and Technology (CREST) Program. This is
254 contribution number 1992 from the Institute of Environment, a Preeminent Program at Florida
255 International University.

256

257 **Author Information**

258 Corresponding Authors

259 ***Francisco Fernandez-Lima** – *Department of Chemistry and Biochemistry, Florida International*
260 *University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International*
261 *University, Miami, FL 33199; ORCID 0000-0002-1283-4390; Email: fernandf@fiu.edu*

262 ***Jose M. Eirin-Lopez** - *Environmental Epigenetics Laboratory, Institute of Environment, Florida*
263 *International University, Miami, FL 33199, USA; ORCID [0000-0002-8041-9770](https://orcid.org/0000-0002-8041-9770); Email:*
264 *jeirinlo@fiu.edu*

265

266 Authors

267 **Cassandra N. Fuller** - *Department of Chemistry and Biochemistry, Florida International*
268 *University, Miami, FL 33199, USA; <https://orcid.org/0009-0004-0412-7639>*

269 **Sabrina Mansoor** – *Environmental Epigenetics Laboratory, Institute of Environment, Florida*
270 *International University, Miami, FL 33199, USA; <https://orcid.org/0009-0002-4756-4463>*

271 **Santiago J. Guzman** - *Department of Chemistry and Biochemistry, Florida International*
272 *University, Miami, FL 33199, USA*

273 **Lilian Valadares Tose** – *Department of Chemistry and Biochemistry, Florida International*
274 *University, Miami, FL 33199, USA; <https://orcid.org/0000-0001-7445-7503>*

275 **Serena Hackerott** - *Environmental Epigenetics Laboratory, Institute of Environment, Florida*
276 *International University, Miami, FL 33199, USA; College of Earth, Ocean, and Environment,*
277 *School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA;*
278 *<https://orcid.org/0000-0001-6462-9885>*

279 **Javier Rodriguez-Casariego** – *Environmental Epigenetics Laboratory, Institute of Environment,*
280 *Florida International University, Miami, FL 33199, USA; Department of Marine Biology and*
281 *Ecology, Rosenstiel School, University of Miami, Key Biscayne, FL 33149, USA;*
282 *<https://orcid.org/0000-0001-9955-4721>*

283

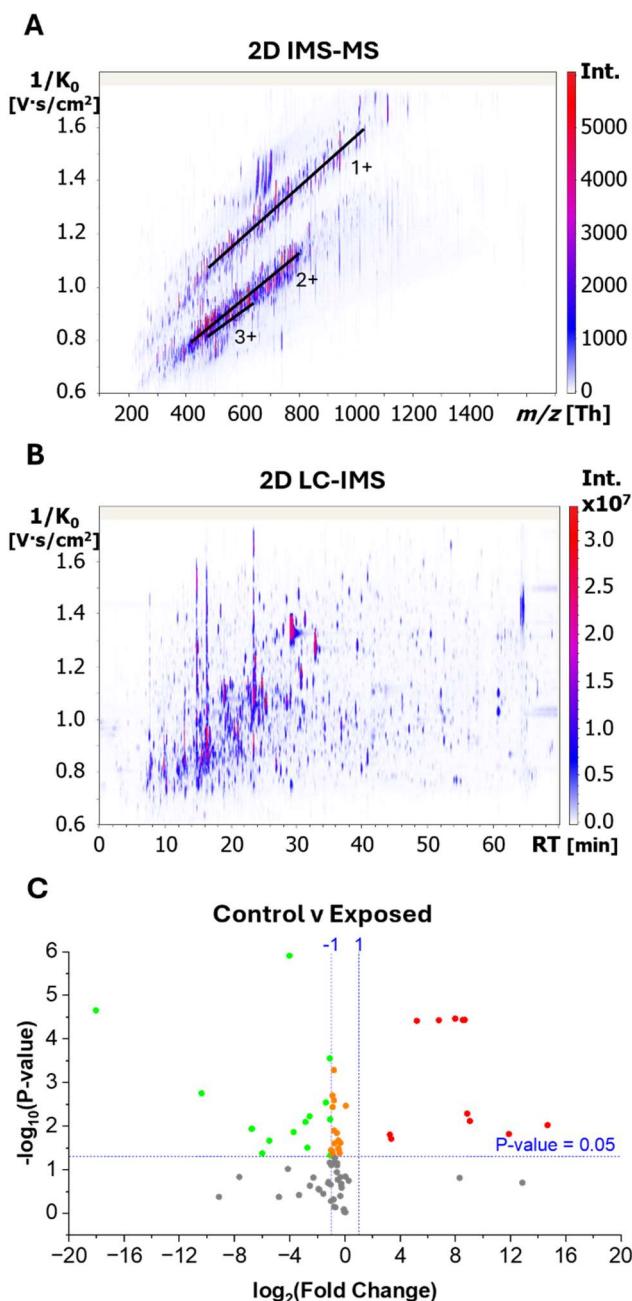
284 Author Contributions

285 FFL, JMEL, and SH conceived and designed the study. SH performed biological experiments. SM
286 and JRC optimized and performed histone extractions. CNF performed histone derivatization and
287 digestion. CNF and LVT performed analytical experiments and acquired the data. CNF and SJG
288 analyzed the data. CNF and FFL wrote the paper. All authors edited and approved the manuscript.

289

290 **References**

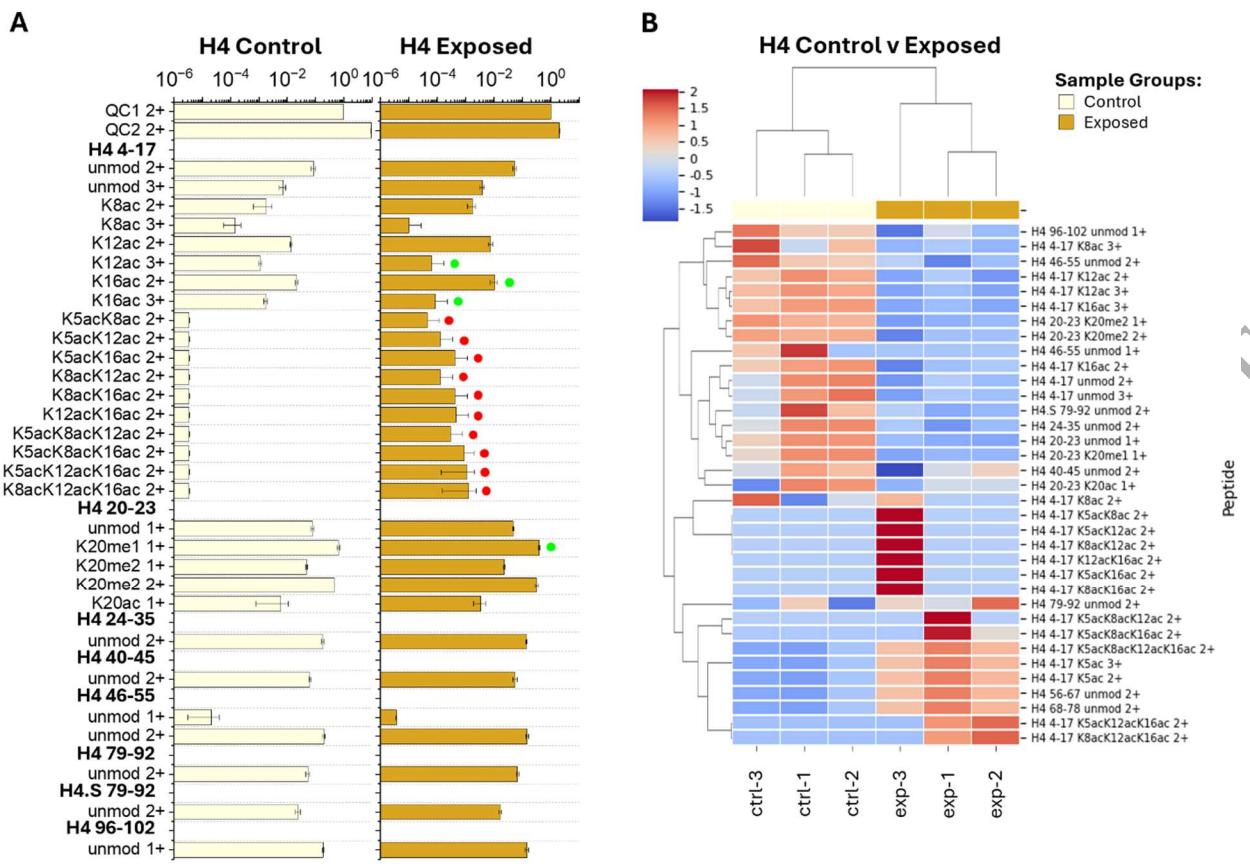
- 291 1. González-Romero, R., Rivera-Casas, C., Frehlick, L.J., Méndez, J., Ausió, J. and Eirín-López,
292 J.M. (2012) Histone H2A (H2A.X and H2A.Z) Variants in Molluscs: Molecular
293 Characterization and Potential Implications For Chromatin Dynamics. *PLOS ONE*, **7**,
294 e30006.
- 295 2. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal
296 structure of the nucleosome core particle at 2.8 Å resolution. *Nature*, **389**, 251-260.
- 297 3. Peterson, C.L. and Laniel, M.A. (2004) Histones and histone modifications. *Curr Biol*, **14**,
298 R546-551.
- 299 4. Turner, B.M. (2002) Cellular memory and the histone code. *Cell*, **111**, 285-291.
- 300 5. Zlatanova, J., Bishop, T.C., Victor, J.M., Jackson, V. and van Holde, K. (2009) The
301 nucleosome family: dynamic and growing. *Structure*, **17**, 160-171.
- 302 6. Berger, S.L. (2002) Histone modifications in transcriptional regulation. *Curr Opin Genet
303 Dev*, **12**, 142-148.
- 304 7. Garcia, B.A., Mollah, S., Ueberheide, B.M., Busby, S.A., Muratore, T.L., Shabanowitz, J. and
305 Hunt, D.F. (2007) Chemical derivatization of histones for facilitated analysis by mass
306 spectrometry. *Nat Protoc*, **2**, 933-938.
- 307 8. Spotswood, H.T. and Turner, B.M. (2002) An increasingly complex code. *J Clin Invest*, **110**,
308 577-582.
- 309 9. Bannister, A.J. and Kouzarides, T. (2011) Regulation of chromatin by histone modifications.
310 *Cell Research*, **21**, 381-395.
- 311 10. Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. *Science*, **293**, 1074-1080.
- 312 11. Zhou, X., Cain, C.E., Myrthil, M., Lewellen, N., Michelini, K., Davenport, E.R., Stephens, M.,
313 Pritchard, J.K. and Gilad, Y. (2014) Epigenetic modifications are associated with inter-
314 species gene expression variation in primates. *Genome Biol*, **15**, 547.
- 315 12. Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N. and Nozaki, N. (2008) The
316 organization of histone H3 modifications as revealed by a panel of specific monoclonal
317 antibodies. *Cell Struct Funct*, **33**, 61-73.
- 318 13. Turner, B.M., O'Neill, L.P. and Allan, I.M. (1989) Histone H4 acetylation in human cells.
319 Frequency of acetylation at different sites defined by immunolabeling with site-specific
320 antibodies. *FEBS Lett*, **253**, 141-145.
- 321 14. Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D.,
322 Allis, C.D., Wong, J., Tempst, P. *et al.* (2001) Methylation of histone H4 at arginine 3
323 facilitating transcriptional activation by nuclear hormone receptor. *Science*, **293**, 853-857.
- 324 15. Moradian, A., Kalli, A., Sweredoski, M.J. and Hess, S. (2014) The top-down, middle-down,
325 and bottom-up mass spectrometry approaches for characterization of histone variants
326 and their post-translational modifications. *Proteomics*, **14**, 489-497.
- 327 16. Anderson, L.C., Karch, K.R., Ugrin, S.A., Coradin, M., English, A.M., Sidoli, S., Shabanowitz,
328 J., Garcia, B.A. and Hunt, D.F. (2016) Analyses of Histone Proteoforms Using Front-end
329 Electron Transfer Dissociation-enabled Orbitrap Instruments*. *Molecular & Cellular
330 Proteomics*, **15**, 975-988.


- 331 17. Berthias, F., Bilgin, N., Mecinović, J. and Jensen, O.N. (2024) Top-down ion mobility/mass
332 spectrometry reveals enzyme specificity: Separation and sequencing of isomeric
333 proteoforms. *Proteomics*, **24**, e2200471.
- 334 18. Dang, X., Singh, A., Spetman, B.D., Nolan, K.D., Isaacs, J.S., Dennis, J.H., Dalton, S.,
335 Marshall, A.G. and Young, N.L. (2016) Label-Free Relative Quantitation of Isobaric and
336 Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron
337 Resonance Top-Down MS/MS. *J Proteome Res*, **15**, 3196-3203.
- 338 19. Donnelly, D.P., Rawlins, C.M., DeHart, C.J., Fornelli, L., Schachner, L.F., Lin, Z., Lippens, J.L.,
339 Aluri, K.C., Sarin, R., Chen, B. *et al.* (2019) Best practices and benchmarks for intact protein
340 analysis for top-down mass spectrometry. *Nature Methods*, **16**, 587-594.
- 341 20. Jeanne Dit Fouque, K., Miller, S.A., Pham, K., Bhanu, N.V., Cintron-Diaz, Y.L., Leyva, D.,
342 Kaplan, D., Voinov, V.G., Ridgeway, M.E., Park, M.A. *et al.* (2022) Top-“Double-Down” Mass
343 Spectrometry of Histone H4 Proteoforms: Tandem Ultraviolet-Photon and Mobility/Mass-
344 Selected Electron Capture Dissociations. *Anal Chem*, **94**, 15377-15385.
- 345 21. Li, H., Nguyen, H.H., Ogorzalek Loo, R.R., Campuzano, I.D.G. and Loo, J.A. (2018) An
346 integrated native mass spectrometry and top-down proteomics method that connects
347 sequence to structure and function of macromolecular complexes. *Nature Chemistry*, **10**,
348 139-148.
- 349 22. Roberts, D.S., Loo, J.A., Tsybin, Y.O., Liu, X., Wu, S., Chamot-Rooke, J., Agar, J.N., Paša-Tolić,
350 L., Smith, L.M. and Ge, Y. (2024) Top-down proteomics. *Nature Reviews Methods Primers*,
351 **4**, 38.
- 352 23. Schachner, L.F., Jooß, K., Morgan, M.A., Piunti, A., Meiners, M.J., Kafader, J.O., Lee, A.S.,
353 Iwanaszko, M., Cheek, M.A., Burg, J.M. *et al.* (2021) Decoding the protein composition of
354 whole nucleosomes with Nuc-MS. *Nat Methods*, **18**, 303-308.
- 355 24. Smith, L.M. and Kelleher, N.L. (2013) Proteoform: a single term describing protein
356 complexity. *Nat Methods*, **10**, 186-187.
- 357 25. Walker, J.N., Lam, R. and Brodbelt, J.S. (2023) Enhanced Characterization of Histones Using
358 193 nm Ultraviolet Photodissociation and Proton Transfer Charge Reduction. *Anal Chem*,
359 **95**, 5985-5993.
- 360 26. Wang, Q., Fang, F., Wang, Q. and Sun, L. (2024) Capillary zone electrophoresis-high field
361 asymmetric ion mobility spectrometry-tandem mass spectrometry for top-down
362 characterization of histone proteoforms. *Proteomics*, **24**, e2200389.
- 363 27. Zhang, H., Cui, W., Wen, J., Blankenship, R.E. and Gross, M.L. (2011) Native electrospray
364 and electron-capture dissociation FTICR mass spectrometry for top-down studies of
365 protein assemblies. *Anal Chem*, **83**, 5598-5606.
- 366 28. Jiang, T., Hoover, M.E., Holt, M.V., Freitas, M.A., Marshall, A.G. and Young, N.L. (2018)
367 Middle-Down Characterization of the Cell Cycle Dependence of Histone H4
368 Posttranslational Modifications and Proteoforms. *Proteomics*, **18**, e1700442.
- 369 29. Berthias, F., Cooper-Shepherd, D.A., Holck, F.H.V., Langridge, J.I. and Jensen, O.N. (2023)
370 Full Separation and Sequencing of Isomeric Proteoforms in the Middle-Down Mass Range
371 Using Cyclic Ion Mobility and Electron Capture Dissociation. *Analytical Chemistry*, **95**,
372 11141-11148.

- 373 30. Jeanne Dit Fouque, K., Kaplan, D., Voinov, V.G., Holck, F.H.V., Jensen, O.N. and Fernandez-
374 Lima, F. (2021) Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron
375 Capture Dissociation, and ToF Mass Spectrometry. *Anal Chem*, **93**, 9575-9582.
- 376 31. Miller, S.A., Jeanne Dit Fouque, K., Hard, E.R., Balana, A.T., Kaplan, D., Voinov, V.G.,
377 Ridgeway, M.E., Park, M.A., Anderson, G.A., Pratt, M.R. *et al.* (2023) Top/Middle-Down
378 Characterization of α -Synuclein Glycoforms. *Anal Chem*, **95**, 18039-18045.
- 379 32. Miller, S.A., Jeanne Dit Fouque, K., Ridgeway, M.E., Park, M.A. and Fernandez-Lima, F.
380 (2022) Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-
381 Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers
382 Discrimination. *J Am Soc Mass Spectrom*, **33**, 1267-1275.
- 383 33. Shliaha, P.V., Gorshkov, V., Kovalchuk, S.I., Schwämmle, V., Baird, M.A., Shvartsburg, A.A.
384 and Jensen, O.N. (2020) Middle-Down Proteomic Analyses with Ion Mobility Separations
385 of Endogenous Isomeric Proteoforms. *Anal Chem*, **92**, 2364-2368.
- 386 34. McKittrick, E., Gafken, P.R., Ahmad, K. and Henikoff, S. (2004) Histone H3.3 is enriched in
387 covalent modifications associated with active chromatin. *Proc Natl Acad Sci U S A*, **101**,
388 1525-1530.
- 389 35. Zhang, K., Tang, H., Huang, L., Blankenship, J.W., Jones, P.R., Xiang, F., Yau, P.M. and
390 Burlingame, A.L. (2002) Identification of Acetylation and Methylation Sites of Histone H3
391 from Chicken Erythrocytes by High-Accuracy Matrix-Assisted Laser Desorption Ionization-
392 Time-of-Flight, Matrix-Assisted Laser Desorption Ionization-Postsource Decay, and
393 Nanoelectrospray Ionization Tandem Mass Spectrometry. *Analytical Biochemistry*, **306**,
394 259-269.
- 395 36. Zhang, L., Eugeni, E.E., Parthun, M.R. and Freitas, M.A. (2003) Identification of novel
396 histone post-translational modifications by peptide mass fingerprinting. *Chromosoma*,
397 **112**, 77-86.
- 398 37. Fernandez-Rojas, M., Fuller, C.N., Valadares Tose, L., Willetts, M., Park, M.A., Bhanu, N.V.,
399 Garcia, B.A. and Fernandez-Lima, F. (2024) Histone Modification Screening using Liquid
400 Chromatography, Trapped Ion Mobility Spectrometry, and Time-Of-Flight Mass
401 Spectrometry. *J Vis Exp*.
- 402 38. Fuller, C.N., Jeanne Dit Fouque, K., Valadares Tose, L., Vitorino, F.N.L., Garcia, B.A. and
403 Fernandez-Lima, F. (2024) Online, Bottom-up Characterization of Histone H4 4-17
404 Isomers. *Analytical Chemistry*, **96**, 17165-17173.
- 405 39. Karch, K.R., Sidoli, S. and Garcia, B.A. (2016) Identification and Quantification of Histone
406 PTMs Using High-Resolution Mass Spectrometry. *Methods Enzymol*, **574**, 3-29.
- 407 40. Sidoli, S., Bhanu, N.V., Karch, K.R., Wang, X. and Garcia, B.A. (2016) Complete Workflow
408 for Analysis of Histone Post-translational Modifications Using Bottom-up Mass
409 Spectrometry: From Histone Extraction to Data Analysis. *J Vis Exp*.
- 410 41. Fuller, C.N., Valadares Tose, L., Vitorino, F.N.L., Bhanu, N.V., Panczyk, E.M., Park, M.A.,
411 Garcia, B.A. and Fernandez-Lima, F. (2024) Bottom-up Histone Post-translational
412 Modification Analysis using Liquid Chromatography, Trapped Ion Mobility Spectrometry,
413 and Tandem Mass Spectrometry. *Journal of Proteome Research*, **23**, 3867-3876.
- 414 42. Fuller, C.N., Mansoor, S., Jeanne Dit Fouque, K., Valadares Tose, L., Rodriguez-Casariego,
415 J., Kosmopoulou, M., Suckau, D., Vitorino, F.N.L., Garcia, B.A., Eirin-Lopez, J.M. *et al.* (2025)

- 416 Direct histone proteoform profiling of the unannotated, endangered coral *Acropora*
417 *cervicornis*. *In review at Nucleic Acids Res.*
- 418 43. Martin, B.J.E., Brind'Amour, J., Kuzmin, A., Jensen, K.N., Liu, Z.C., Lorincz, M. and Howe,
419 L.J. (2021) Transcription shapes genome-wide histone acetylation patterns. *Nat Commun*,
420 **12**, 210.
- 421 44. Vettese-Dadey, M., Grant, P.A., Hebbes, T.R., Crane- Robinson, C., Allis, C.D. and Workman,
422 J.L. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor
423 binding to nucleosomal DNA in vitro. *Embo j*, **15**, 2508-2518.
- 424 45. Ruan, K., Yamamoto, T.G., Asakawa, H., Chikashige, Y., Kimura, H., Masukata, H., Haraguchi,
425 T. and Hiraoka, Y. (2015) Histone H4 acetylation required for chromatin decompaction
426 during DNA replication. *Sci Rep*, **5**, 12720.
- 427 46. Dhar, S., Gursoy-Yuzugullu, O., Parasuram, R. and Price, B.D. (2017) The tale of a tail:
428 histone H4 acetylation and the repair of DNA breaks. *Philos Trans R Soc Lond B Biol Sci*,
429 **372**.

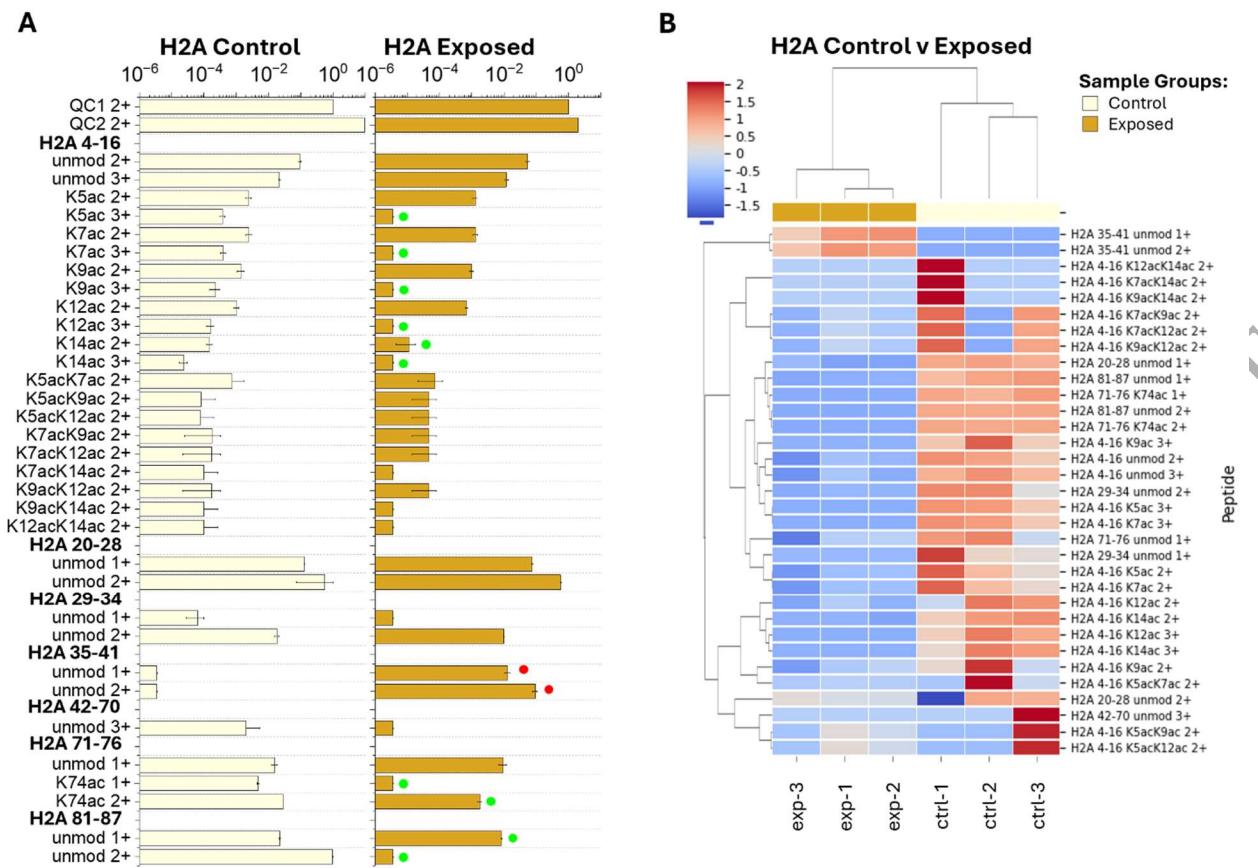
430


431

432 **Figure 1**

433

434 **Figure 1.** 2D (A) IMS-MS and (B) LC-IMS from nLC-TIMS-ddaPASEF-ToF MS/MS of bottom-up propionylated
 435 tryptic coral peptides and (C) volcano plot comparing histone PTM changes from Control to Exposed corals. The
 436 volcano plot was created by plotting the \log_2 of the fold change (x-axis, significance = $x < -1$ or $x > 1$) and $-\log_{10}$ of the
 437 1:1 comparison p-values determined by two-tailed t-test (y-axis, 95% confidence interval) using the QC1 normalized
 438 areas.


439

440 **Figure 2**

441

442 **Figure 2.** (A) Detected H4 bottom-up peptide areas normalized to QC1 from Control and Exposed coral samples with
 443 up- and downregulated peptide features distinguished by red and green dots, respectively. Bottom-up peptide feature
 444 bar plots shown were created from the QC1-normalized area means (bar) and standard deviations (error) across
 445 biological replicates. (B) Heatmap grouping samples (x-axis) by Control (light yellow) and Exposed (gold) corals and
 446 H4 peptides (y-axis) by z-score (complete comparison) of the QC1 normalized area values with dendrograms displayed
 447 using Euclidean distance.

448

449 **Figure 3**

450

451 **Figure 3.** (A) Detected H2A bottom-up peptide areas normalized to QC1 from Control and Exposed coral samples
 452 with up- and downregulated peptide features distinguished by red and green dots, respectively. Bottom-up peptide
 453 feature bar plots shown were created from the QC1-normalized area means (bar) and standard deviations (error)
 454 across biological replicates. (B) Heatmap grouping samples (x-axis) by Control (light yellow) and Exposed (gold) corals and
 455 H2A peptides (y-axis) by z-score (complete comparison) of the QC1 normalized area values with dendrograms
 456 displayed using Euclidean distance.

457

458

459 **Figure 4**

460

461 **Figure 4.** (A) Detected H2B bottom-up peptide areas normalized to QC1 from Control and Exposed coral samples
 462 with up- and downregulated peptide features distinguished by red and green dots, respectively. Bottom-up peptide
 463 feature bar plots shown were created from the QC1-normalized area means (bar) and standard deviations (error)
 464 across biological replicates. (B) Heatmap grouping samples (x-axis) by Control (light yellow) and Exposed (gold) corals and
 465 H2B peptides (y-axis) by z-score (complete comparison) of the QC1 normalized area values with dendrograms
 466 displayed using Euclidean distance.

467