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Abstract

Despite their vast capabilities, Large Language
Models (LLMs) often struggle with gener-
ating reliable outputs, frequently producing
high-confidence inaccuracies known as hal-
lucinations. Addressing this challenge, our
research introduces InternalInspector, a
novel framework designed to enhance confi-
dence estimation in LLMs by leveraging con-
trastive learning on internal states including
attention states, feed-forward states, and ac-
tivation states of all layers. Unlike existing
methods that primarily focus on the final acti-
vation state, Internal Inspector conducts a
comprehensive analysis across all internal states
of every layer to accurately identify both correct
and incorrect prediction processes. By bench-
marking Internal Inspector against existing
confidence estimation methods across various
natural language understanding and generation
tasks, including factual question answering,
commonsense reasoning, and reading compre-
hension, InternalInspector achieves signif-
icantly higher accuracy in aligning the estimated
confidence scores with the correctness of the
LLM’s predictions and lower calibration error.
Furthermore, InternalInspector excels at
HaluEval, a hallucination detection benchmark,
outperforming other internal-based confidence
estimation methods in this task.

1 Introduction

Large Language Models (LLMs) have demonstrated
remarkable capabilities across a wide range of tasks,
from reasoning to question answering (Zhao et al.,
2023; Zhou et al., 2023; Wang et al., 2024; Liang
et al., 2022). Despite these advancements, LLMs
still face significant challenges in hallucinating
facts (Ji et al., 2023a; Li et al., 2023a; Ji et al.,
2023b; Huang et al., 2023) and providing robust
confidence estimates for their predictions (Bom-
masani et al., 2022; Kuhn et al., 2023; Jiang et al.,

*This work was done before joining Amazon.

2021a)!. This results in LLMs delivering confident
but incorrect information, undermining their relia-
bility and affecting their potential applications in
real-world scenarios. Therefore, a well-established
confidence estimator is essential for users to deter-
mine when to trust the outputs of LLMs and identify
hallucinations in the outputs, thereby enhancing the
practicality and trustworthiness of LLMs.

Recent research suggests that LLMs exhibit a
degree of self-awareness regarding the truthfulness
of the generated statements (Kadavath et al., 2022).
Studies have investigated the relationship between
the accuracy of LLM outputs and the characteristics
of their final activation state (Azaria and Mitchell,
2023a; Burns et al., 2023). Although these find-
ings are promising, they primarily focus on easy
True/False factual question-answering tasks. Fur-
thermore, relying solely on the final hidden states
offers a limited perspective on the intricate inter-
nal dynamics of LLMs. The generation process
within LLMs involves a sophisticated interplay of
internal modules, including attention mechanisms
and Feed-Forward Networks (FFNs), which are
critical for shaping the generated responses. Recent
studies have demonstrated that these internal mod-
ules play a crucial role in encoding and recalling
the factual and linguistic knowledge essential for
accurate predictions in LLMs (Clark et al., 2019b;
Kobayashi et al., 2024; Modarressi et al., 2022;
Dar et al., 2023; Ferrando et al., 2022; Modarressi
et al., 2023). It has also been shown that halluci-
nations in LLM outputs primarily originate from
these internal modules (Geva et al., 2022a; Li et al.,
2023c). These studies further lead us to the ques-
tion: can the dynamics of these internal modules
potentially indicate the confidence of LLMs in their
predictions?

Following (Kadavath et al., 2022; Jiang et al., 2021a),
we define confidence as the probability of a model prediction
being correct, differing from uncertainty that quantifies the
ambiguity in data or model lack of knowledge (Hu et al., 2023).
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In response, we first provide a theoretical foun-
dation that highlights the crucial role of internal
states in robust and accurate confidence estimation.
We further propose InternalInspector (1), a
simple yet robust confidence estimation method
that leverages the internal states of LLMs to as-
sess the truthfulness of generated statements across
various tasks. Specifically, InternalInspector
employs contrastive learning (Khosla et al., 2021)
upon an encoder, such as a Convolutional Neural
Network (O’shea and Nash, 2015) or a Transformer
(Vaswani et al., 2017a), to learn meaningful feature
representations from the internal states of an LLM
such as LLaMA-2-7B (Touvron et al., 2023). A
binary classifier is trained simultaneously on top
of these feature representations to estimate a confi-
dence score for each LLM prediction based on its
correctness, either correct or incorrect.

We evaluate InternalInspector together with
various existing confidence estimation methods,
including logit-based, self-evaluation, and other
internal-based approaches on several natural lan-
guage understanding and generation tasks, includ-
ing factual question answering, commonsense rea-
soning, and reading comprehension. Experimental
results demonstrate that InternalInspector sig-
nificantly enhances the alignment between accuracy
and confidence scores, achieving up to 20.4% im-
provement in accuracy and 8.9% in Expected Cali-
bration Error (ECE) across the various evaluation
tasks. Furthermore, InternalInspector excels
at identifying hallucinations in generated outputs,
notably existing internal-based confidence estima-
tion methods on the HaluEval benchmark (Li et al.,
2023a). We also investigate the importance of differ-
ent types of internal states in confidence estimation
and showcase that attention states are particularly
meaningful for tasks that require deep contextual
understanding, such as open-book question answer-
ing and reading comprehension, while feed-forward
states are more crucial for tasks centered on fac-
tual information, aligning with the recent research
finding that the Feed-Forward Networks (FFNs)
within Transformer blocks are functioning as key-
value memories to encode and retrieve factual and
semantic knowledge (Geva et al., 2021).

In summary, our contributions are as follows:

* We pioneer in establishing a theoretical foun-
dation underscoring the importance of internal
states of LLMs in confidence estimation.

* We propose InternalInspector, a simple

yet effective confidence estimation method
that leverages the internal states of LLMs,
including the attention states, feed-forward
states, and activation states.

* Extensive experiments demonstrate that
InternalInspector provides robust confi-
dence estimates and significantly outperforms
existing confidence estimation methods across
various natural language understanding and
generation tasks.

* InternalInspector is also proven effec-
tive in recognizing hallucinations in LLM
outputs, achieving significantly better perfor-
mance than various baselines on HaluEval.

2 Related Work

Confidence Estimation for LLMs We summa-
rize existing confidence estimation methods for
LLMs into four categories: (1) Logit-based meth-
ods (Lin et al., 2022b; Jiang et al., 2021b; Kuhn
et al., 2023) utilize output probability distributions
or entropy to directly measure confidence. How-
ever, they mainly reflect the probability distribu-
tion over possible tokens (vocabulary space) (Lin
et al., 2022b; Si et al., 2022; Tian et al., 2023).
(2) Consistency-based approaches (Vazhentsev
et al., 2023; Portillo Wightman et al., 2023; Wang
et al., 2023; Shi et al., 2022; Manakul et al., 2023;
Agrawal et al., 2023) evaluate confidence by measur-
ing the agreement among different model responses,
highlighting potential inconsistencies. However,
these methods require effective measurement of
consistency among responses which is usually chal-
lenging (Xiong et al., 2024; Jiang et al., 2021b; Li
et al., 2022; Ding et al., 2024; Kuhn et al., 2023;
Manakul et al., 2023; Zhang et al., 2023). (3)
Self-evaluation methods (Kadavath et al., 2022;
Manakul et al., 2023; Lin et al., 2024a) enable
models to internally assess the correctness of their
answers, leveraging their introspective capability.
This approach often results in circular reasoning,
exacerbating initial errors and leading to overconfi-
dent inaccuracies (Jietal., 2023c; Chen et al., 2023).
(4) Internal-based methods (Azaria and Mitchell,
2023b; Burns et al., 2022) proposed training a linear
classifier on the final activation state of LLMs to ex-
amine whether it can differentiate between correct
and incorrect answers. InternalInspector falls
into this category but surpasses existing methods by
employing feature learning on the entire spectrum
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of the internal mechanism of LLMs to understand
the sophisticated non-linear operational process. It
generalizes effectively across various datasets and
applications, offering robust confidence estimates
grounded in comprehensive theoretical analysis.

Probing Probing utilizes linear classifiers as tools
to analyze and understand the representations within
the intermediate layers of neural networks (Alain
and Bengio, 2017). Building upon the foundational
concept of probing with linear classifiers, we ad-
vances this methodology by utilizing contrastive
learning to examine the different internal states of
LLMs. This approach allows us to investigate the
model’s confidence about its predictions, scrutiniz-
ing attention, feed-forward, and activation states
across all layers, providing a more comprehensive
view of how internal representations evolve and
interact to influence the overall task performance
of the model.

Understanding Internal States in LLMs Stud-
ies aimed at understanding the inner workings of
transformers indicate that while attention should
not be directly equated with explanation (Pruthi
et al., 2019; Jain and Wallace, 2019; Wiegreffe
and Pinter, 2019), it provides significant insights
into the model’s operational behavior and helps in
error diagnosis and hypothesis development (Park
et al., 2019; Voita et al., 2019; Vig, 2019; Hoover
et al., 2020; Vashishth et al., 2019). Concurrently,
research has shown that Feed-Forward Networks
(FFNs) within Transformer blocks, functioning as
key-value memories, encode and retrieve factual
and semantic knowledge (Gevaetal.,2021). Exper-
imental studies have established a direct correlation
between modifications in FFN output distributions
and subsequent token probabilities, suggesting that
the model’s output is crafted through cumulative
updates from each layer (Geva et al., 2022b). Fur-
thermore, recent study (Li et al., 2023c) has utilized
internal states of LLM, aiming to improve the over-
all truthfulness of LLM generation.

3 Confidence Estimation using Internal
Representations

3.1 Background: Transformer Architecture

In this work, we primarily focused on confidence
estimation for transformer-based LLMs (Vaswani
et al., 2017b), as they have been the predominant ar-
chitecture backbone of most existing frontier LLMs.
Given a sequence of input tokens x = [xg, - ,Xn],

a transformer-based language model first encodes
the tokens into vectors of input representations
ho = [hg, -+, h%] € RN at layer 0. The input
representations are then updated through a sequence
of L transformer layers, where each layer is com-
posed of a MHSA sublayer followed by a FFN
sublayer, interconnected by residual connections
that facilitate the flow of information between lay-
ers. Formally, the representation of hf. of token i at
layer / is obtained by:

A S (1)

where a% and mf are the outputs from the /-th MHSA
layer and FFN sublayers, respectively.

After the transformation through L layers, the
representation at the final layer is projected into
the vocabulary space to generate the output se-
quence y. In this work, we focus on the internal
states at the final token across all layers, defined
as 0 = {h! ,aév,mé\,}lL:I. Here, N represents the
position of the last token in the input sequence. We
select these internal states because they encapsulate
the aggregation of all context information and are
directly involved in producing the final predictions,
making them particularly relevant for identifying
the correctness of LLM’s prediction.

3.2  Why Internal Representations for
Confidence Estimation?

To analyze the importance of internal states ® in
assessing LLM response correctness, let X and Y
be the input and output random variables, respec-
tively, and K (X) the oracle response (derived from
expert/world knowledge) as the ground truth for a
query X. Given an input-output pair (X,Y), we
define a Correctness Indicator C(Y | X) as a binary
random variable, taking the value 1 if Y is correct
given X, and O otherwise. Our confidence esti-
mator aims to predict C(Y | X). We assume that
C(Y | X) can be represented by a random function
S(K(X),Y), dependent on the oracle answer K (X)
and the LLM response Y, i.e., the Correctness Indi-
cator is aligned with the oracle’s judgment. Thus,
the expected value of this function represents the
Correctness Probability:

E[S(K(X),Y)] = P(Y is correct | X).

LetI(-;-|-) and H(-|-) denote the conditional mutual
information/entropy, respectively. Assuming

H(K(X)|X,Y,S(K(X),Y)) <€,

12849



where a small Residual Uncertainty e indicates
that Y, combined with the correctness indicator
S(K(X),Y), effectively captures most information
about the oracle answer K (X).2

We further assume

1(@:K(X) | X) - 1(Y;K(X) | X) = A,

where the Internal Knowledge Advantage A quan-
tifies the additional information about the oracle
answer K (X) encoded in the LLM’s internal acti-
vation ®, beyond what is revealed in its output Y.
A large A implies a richer internal understanding
compared to the expressed output. 3
Mathematically, we establish the key result:

I(C(Y | X);0|X,Y) > A —e. )

This implies that when the internal knowledge ad-
vantage (A) is large and the residual uncertainty (€)
is small, the internal states (®) provide substantial
additional information about the correctness of out-
put (¥) beyond what’s contained in the input-output
pair (X,Y) alone. A detailed proof is provided
in Appendix A. Appendices A.1 and A.2 further
explore how internal states influence performance
across tasks and quantitatively analyze the impact
of internal representation informativeness on confi-
dence estimation, respectively.

3.3 InternalInspector

Problem Formulation Given the dataset D =
{(xj,y;,0 j)}j”i |» each instance j includes an input
text x ;, a generated output y ;, and the internal states

Tyl i I L )
0; = {hN’j,aN’j,mN,j 1~ of an LLM when gen

erating the output y;. Here, N signifies the internal
states are extracted at the last token of the input
sequence. The internal states 6; include the acti-

: I AL ~ I AL
vation states {h}, .},-,, attention states {a), .},_,

and feed-forward states {mlN’j}lL: . of the LLM
across L layers when processing x ;.

To effectively analyze the internal states across
all layers, we stack each type of internal state

2The Residual Uncertainty (e¢) Tends to be small when the
Correctness Indicator is informative and the task is simple.

3Empirical evidence supports a large A. LLM internal
states (®) are repositories of open-world knowledge (Gevaetal.,
2021; Dai et al., 2022; Meng et al., 2022), often containing
information not fully expressed in outputs. Even incorrect
responses can still possess relevant knowledge internally (Li
et al., 2023d). Techniques like enhanced prompting (Wei et al.,
2022) and self-evaluation (Kadavath et al., 2022; Saunders
et al., 2022; Manakul et al., 2023; Ren et al., 2023; Liu et al.,
2023; Lin et al., 2024a) further demonstrate the ability to tap
into this latent knowledge to improve accuracy, reinforcing the
notion of a substantial A.

along the layer dimension. For instance, the
o (L)  _
activation states are constructed as h,, ;=
1 .p2 ... .pL Lxd .
[hN,j’hN,_/v = ,hN’j] eR wh.ere ; qenotes
the concatenation along the layer dimension and
d is the feature dimension. Similarly, we form

the attention states ag\}:jL.) and the feed-forward

states ml(\}f) both in RL*4. We further con-
struct the stacked internal states tensor, denoted
as 0; = [hﬁiﬁ), xf),mxf)] € REX4X3 for in-
stance j, capturing the entire internal dynamics of
the LLM for instance j.

We formulate the task as learning a function g
that takes 6 as input and outputs a confidence score
c indicating the correctness of y. Each instance
(xj,yj,0;) is associated with a golden binary label
¢ based on whether the LLM’s prediction y; is

correct, where:

1 if y; is correct

Cj= . .
0 if y; is incorrect.
Supervised Contrastive Learning
InternalInspector employs a supervised

contrastive learning framework that learns to dif-
ferentiate the distinctive characteristics associated
with correct and incorrect output, relying solely on
the internal states. It consists of an encoder, such
as a Convolutional Neural Network (CNN) (O’shea
and Nash, 2015) or a Transformer (Vaswani et al.,
2017b) (architecture detailed at Appendix C), for
encoding the stacked internal states ; € REXd4x3
into a compact representation z; = Enc(6;).
Subsequently, a multilayer perceptron (MLP)
classifier is utilized to predict the correctness of
the LLM’s output y; via ¢; = f(z;). Aligning
with the problem formulation, the overall function
g, which maps the internal states to the confidence
scores, is defined as ¢; = g(0;) = f(Enc(6;)).
InternalInspector employs acombination of
contrastive loss (Chen et al., 2020) and classification
loss to learn fine-grained differences in the internal
states that correlate with output correctness. For
the contrastive loss, we first organize mini-batches
by selecting an anchor embedding z; from the
dataset. For each anchor z;, we randomly sample
one positive embedding 2} from the set Z = {z |
ce = cj} ensuring that both the anchor and the
positive embedding correspond to predictions with
the same correctness, i.e., ¢; = c¢.. Additionally,
we also sample E negative embeddings €75,
where Zj‘ ={z, € Z | c. # c,}, representing the
set of embeddings whose associated predictions y,
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Figure 1: Overview of our proposed
InternalInspector. InternalInspector
takes in the internal states at the final token across all
layers, denoted as 6 = {hl R alN, mlN}lL:1 as input and
outputs a confidence score ¢ indicating the correctness
of the LLM’s prediction.

differ in correctness from that of the anchor, i.e.,
ce # c;. Then, the contrastive loss is defined as:

exp (Zj : z}f/r)

M
Leonr = — Z log , (3
Jj=1

szfezjf exp (Z_j : ZJ_-/T)

where T € R” is a scalar temperature parameter.
For classification, a cross-entropy loss is used to
directly optimize the model’s ability to classify the
embeddings correctly:
1 M
Low=—77 ]ZI (cslog(é) + (1= ¢j)log(l = ¢)) » (4)

where c; denotes the golden binary label of the
output y;.

The overall training objective is the combina-
tion of the contrastive loss and the classifica-
tion loss, denoted as £ = Leonr + Les. The
combined supervised contrastive loss empowers
InternalInspector to effectively discern the nu-
ances within the internal states that differentiate

correct from incorrect LLM predictions, thus facil-
itating InternalInspector to accurately predict
the confidence of the LLM predictions based solely
on internal states.

4 Experimental Setting

4.1 Tasks and Datasets

We evaluate Internallnspector on one
of the most popular autoregressive decoder-
only open-source large language models,
LLaMA-2-7B(Touvron et al., 2023), Mistral
7B(Jiang et al., 2023a), and GPT2-XL(Radford
et al., 2019) on three critical tasks and datasets.
For factual closed-book QA, we utilize Trivi-
aQA (Joshi et al., 2017) and MMLU (Hendrycks
et al., 2021). For commonsense reasoning, we
employ CommonsenseQA (Talmor et al., 2019)
and BoolQA (Clark et al., 2019a). For reading
comprehension, we utilize SQuAD (Rajpurkar
et al.,, 2016) and OpenBookQA (Mihaylov
et al., 2018). Additionally, we also evaluate the
capability of InternalInspector in detecting
hallucinations on HaluEval benchmark (Li et al.,
2023a).

Due to the page limitation, we present the results
for Mistral 7B and GPT2-XL in Appendix D.

4.2 Baselines

To effectively evaluate the effectiveness of
InternalInspector, we benchmark it against
four distinct types of baseline methods:

Logit-Based: Following (Jiang et al., 2021b),
the logit-based method utilizes the log probability
derived from the output logits as a metric for confi-
dence estimation, under the assumption that higher
log probabilities suggest greater confidence.

Self-Evaluation: Following (Kadavath et al.,
2022), the Self-Evaluation method initiates a self-
assessment phase after generating an answer. After
the model generates an answer Y, it feeds both the
question X and the generated answer Y back to the
model and asks whether the answer is true or false
for the question. The confidence is then estimated
as the probability of the generated response ‘True’
P(True|X,Y).

Temperature Scaling: Following (Desai and
Durrett, 2020a), Temperature Scaling adjusts the
scale of logits using a scalar hyperparameter 7" be-
fore the softmax operation, modifying the sharpness
of the probability distribution.
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Last Hidden States: We employ Contrast-
Consistent Search (CSS) (Burns et al., 2023), which
involves training a linear classifier on the final hid-
den states of statements rephrased in both positive
and negative formats, and SAPLMA (Azaria and
Mitchell, 2023a) that transforms an initial statement
into a true/false question and employs a classifier on
the final hidden state to map it into the confidence.

4.3 Evaluation Metrics

We assess the performance of confidence estimation
using two primary metrics: Accuracy and Expected
Calibration Error (ECE) (Guo et al., 2017).
Accuracy This metric measures the proportion
of instances where the correctness of the LLM’s
predictions aligns with the estimated confidence.
Specifically, an output of the LLM is considered
correct if its estimated confidence score exceeds
a predefined threshold and incorrect if it falls be-
low. Following (Burns et al., 2023; Azaria and
Mitchell, 2023a; Li et al., 2023a), we set this thresh-
old at 0.5 throughout our experiments, unless stated
otherwise.

Expected Calibration Error (ECE) ECE (Guo
et al., 2017) quantifies the calibration performance
of the models. It is defined as:

M
B
ECE = Z % lacc(B,) — conf(By)|, (5)
m=1

where 7 is the total number of samples, M is the

number of bins, B,,, denotes the m-th bin containing
m-1 m],
MM
and |B,| is the number of samples in the m-th
bin. Following (Desai and Durrett, 2020b; Kada-
vath et al., 2022), we use M = 10 bins. acc(B,;,)
and conf(B,,) denote the average accuracy and

confidence of the samples within B,,, respectively.

samples with confidences falling within (

5 Results and Discussion

5.1 Main Results

Table 7 shows the performance comparison be-
tween InternalInspector and baseline confi-
dence estimation methods on various tasks and
datasets. Aswe cansee, InternalInspector con-
sistently outperforms all baseline methods in terms
of accuracy (ACC T) and Expected Calibration Er-
ror (ECE |), demonstrating superior performance
across all evaluated tasks and datasets. Specif-
ically, InternalInspector achieves significant
improvements over the highest-performing baseline,

mm Internalinspector
. SAPLMA
Threshold

Confidence Score
o o o
> o ®

o
o

Figure 2: Comparative Distribution of Confidence
Scores. Each boxplot indicates the interquartile range
of confidence scores. The dashed red line represents the
decision threshold at 0.5.

including an average 19.8% increase in accuracy
and a 8.95% reduction in ECE for Factual QA. In
Commonsense Reasoning, the improvements are
20.4% in accuracy and 6.8% in ECE. For Reading
Comprehension, InternalInspector enhances
accuracy by 18.6 % and lowers ECE by 6.7%.

Additionally, = we explore two differ-
ent architectures for the encoder in
InternalInspector: a Transformer-based en-
coder (InternalInspectoryr)and a CNN-based
encoder (InternalInspectorcnn), as presented
in Table 7. In general, InternalInspectorcnn
outperforms InternalInspectortr across
most datasets. This superior performance is
likely to be attributed to CNN’s adeptness at
capturing the local structure of internal states,
thereby providing more effective representations
for confidence estimation. The discussions of
InternalInspector in the following sections
are all based on InternalInspectorcnn.

Moreover, we conduct an ablation study where
InternalInspectorcny is trained without the
contrastive loss. This results in a notable perfor-
mance decrease across all datasets, underscoring
the critical role of contrastive loss in enhancing the
model’s effectiveness.

Distribution of Confidence Scores We further
examine the distribution of the estimated confidence
scores from InternalInspector compared to
those of SAPLMA, the highest-performing baseline.
As depicted in Figure 2, there is a clear separation in
the confidence score distributions between correct
and incorrect predictions across various datasets
for InternalInspector. InternalInspector
reliably maintains higher confidence scores for cor-
rect answers and lower for incorrect ones, compared
to SAPLMA. For InternalInspector, both the
interquartile ranges and medians for correct answers
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Model Factual QA Commonsense Reasoning Reading Comprehension
TriviaQA MMLU CommonsenseQA BoolQA SQuAD OpenBookQA
ACCT ECE| ACCT ECE| ACCT ECE| ACCT ECE| ACCT ECE| ACCT ECE|
Baseline Models
Logit-Based 0453 0202 0416 0243 0.576 0.143 0532 0254 0522 0292 0464 0301
Temperature Scaling 0.543 0.181 0.546 0.154  0.667 0.120 0512 0212 0.612 0.178  0.594  0.287
Self-Evaluation (3-shot) 0307 0465 0374 0412 0312 0.441 0282 0590 0309 0.621 0368 0.492
CSS 0552 0283 0515 0245 0.501 0.235 0568 0.191 0581 0243 0502 0232
SAPLMA 0596 0.163 0.606 0.148 0.575 0.123 0591 0.193 0617 0.126 0.609 0.157
Our Models
InternalInspectorTg 0.769 0.081 0.829 0.051 0.742 0.102 0.827 0.099 0.767 0.078 0.723  0.102
w/o Contrastive loss 0.602 / 0.615 / 0.633 / 0.582 / 0.681 / 0.655 /
InternalInspectorcyny  0.751 0.073  0.815  0.054  0.763 0.097 0.812 0.083 0.807 0.051 0.791 0.098
w/o Contrastive loss 0.627 0.142 0.641 0.111  0.603 0.168 0.618 0.199 0660 0.153 0615 0.171

Table 1: Comparison with baseline confidence estimation methods. Best results are highlighted in bold.

Method QA Dialogue Summarization
HaluEval (Llama2-7B) 0.480 0.443 0.476

w/ Knowledge 0.543 0.451 -

w/ CoT 0.427 0.505 0.509

CSS 0.562 0.418 0.481
SAPLMA 0.491 0.459 0.416
InternalInspector (Ours) 0.691 0.648 0.671

Table 2: Accuracy (%) of identifying whether a model’s
output contains hallucinated contents.

consistently exceed the threshold of 0.5, and remain
below this threshold for incorrect predictions. Al-
though SAPLMA similarly positions medians above
the threshold for correct responses and below for
incorrect ones, it lacks a clear separation across the
interquartile ranges, indicating less reliable perfor-
mance in distinguishing between correct and incor-
rect predictions. An analysis of high-confidence
incorrect answers is in Appendix B.

5.2 Hallucination Detection

To assess the effectiveness of our frame-
work in detecting hallucinations, we apply
InternalInspector on HaluEval (Li et al.,
2023a), a hallucination evaluation benchmark for
LLMs. The task involves taking in a question, a
corresponding answer, and an optional knowledge
context and identifying whether the given answer
contains non-factual or hallucinated information.
In our experiments, we employ LLaMA-2-7B as
the LLM that processes an optional knowledge con-
tent, a question, and an answer following the instruc-
tion templates in (Li et al., 2023a). The LLM then
outputs whether the provided answer is hallucinated
or not. We then employ InternalInspector,
which utilizes the internal states of the LLM, to
generate a confidence score indicating the likeli-
hood of the answer being hallucinated. Specif-
ically, we train InternalInspector on a 30%

Dataset In-Domain Intra-Domain Cross-Domain
Factual QA

SciQA 0.836 0.737 0.619
MMLU 0.815 0.707 0.598
Commonsense

BoolQA 0.812 0.694 0.592
CommonsenseQA 0.763 0.673 0.585
Reading Comp.

SQuAD 0.807 0.683 0.594
OpenBookQA 0.791 0.698 0.539

Table 3: Robustness Across Data Distribution Shifts.

subset of the HaluEval and evaluate it on the re-
maining test split. We apply the same training
setup to CSS and SAPLMA, two baseline con-
fidence estimation methods. We also compared
with baseline methods from HaluEval, including
methods with Chain of Thought (CoT) reasoning
(Wei et al., 2022) and knowledge retrieval (Li et al.,
2023b), which are zero-shot. As shown in Table
2, InternalInspector significantly outperforms
the confidence estimation baselines in hallucina-
tion detection, suggesting InternalInspector’s
potential in identifying hallucinations.

5.3 Robustness on Data Distribution Shifts

In this section, we explore InternalInspector’s
capability to generalize across different datasets,
focusing on Intra-Domain and Cross-Domain
settings. In the Intra-Domain setting,
InternalInspector is trained on one dataset
of a specific task category and then tested on an-
other dataset from the same task category. For
example, within the commonsense reasoning cat-
egory, the model might be trained on Common-
senseQA and tested on BoolQA. Conversely, in the
Cross-Domain setting, InternalInspector is
tested on a dataset of a specific task type while being
trained on a combination of datasets from all other
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task types that are distinct from the test dataset’s cat-
egory, exemplifying its adaptability across diverse
domains. For example, for the Cross-Domain sce-
nario involving BoolQA, InternalInspector is
evaluated on BoolQA while being trained on a com-
bination of datasets from SciQA, MMLU, SQuAD,
and OpenBook QA, none of which are within the
commonsense reasoning category of BoolQA. Ad-
ditionally, we include an In-Domain setting, where
the model is trained and tested on the same dataset
to establish a baseline for comparison. Note that,
in this experiment, for tasks categorized under Fac-
tualQA, we use SciQA (Auer et al., 2023) and
MMLU (Hendrycks et al., 2021) due to the simi-
larity in the subject matter they cover, containing
question and answers regarding science.

Table 3 showcases InternalInspector’s ro-
bust performance in the Intra-Domain sce-
narios. Although there is a performance
decrement compared to the In-Domain setting,
InternalInspector in the Intra-Domain sce-
nario consistently outperforms other baseline meth-
ods in the In-Domain one(See Table 7). This
strong performance in Intra-Domain generaliza-
tion indicates that the internal states from the
same task category exhibit similar patterns. In
Cross-Domain setting, we observe a larger per-
formance drop, suggesting distinct internal states
and patterns across different task categories. This
observation aligns with the findings that linguistic
and factual knowledge located in different layers
of LLMs (Dai et al., 2022; Tenney et al., 2019;
Meng et al., 2022; Lin et al., 2024b), resulting
in task-specific variations in internal states. De-
spite these variations, InternalInspector still
performs comparably to baseline methods that are
trained and evaluated on the same dataset, indicat-
ing the efficacy of InternalInspector.

6 Ablation Study

6.1 Effect of Different Types of Internal States

In this section, we explore the impact of various
internal states on InternalInspector’s perfor-
mance, focusing on the role of attention (Attn),
feed-forward states (FF), activation state (Act), and
their combinations across different tasks. Table 4
demonstrates that when using only one type of in-
ternal states, feed-forward states generally prove to
be the most influential for confidence estimation,
except for the reading comprehension task, where
the model using attention states achieves the best

Dataset Full
Factual QA

FF + Attn  FF + Act  Attn + Act  Attn FF Act

TriviaQA 0.751 0.711 0.724 0.613 0.504 0.703 0.627
MMLU 0.815 0.775 0.767 0.673 0.535 0.717 0.641
Commonsense

CommonsenseQA  0.763 0.692 0.708 0.619 0.602 0.634 0.617
BoolQA 0.812 0.684 0.739 0.638 0.592 0.693 0.650
Reading Comp.

SQuAD 0.807 0.771 0.628 0.759 0.728 0.615 0.624
OpenBookQA 0.791 0.719 0.615 0.727 0.707 0.577 0.635

Table 4: Effects of utilizing different combinations of
internal states, including attention states (Attn), feed-
forward states (FF), and activation states (Act). Full
represents the use of all types of internal states.
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Figure 3: Impact of Internal States from Different Layer
Depths.

performance. This highlights the effectiveness of
feed-forward states in tasks that require robust fac-
tual recall, while attention states play a crucial role
in tasks that necessitate processing and prioritizing
extensive text segments for comprehension.

We also explore the efficacy of various combi-
nations of internal states. The results indicate that
integrating multiple types of internal states often
yields improvements over using either type of inter-
nal states alone. Moreover, models incorporating
all types of internal states consistently deliver opti-
mal performance. This suggests that the integration
of different types of internal states is necessary to
effectively capture the complexities inherent in var-
ious tasks, leading to robust confidence estimation
methods. These analyses offer insights into how
different types or combinations of internal states
might influence model performance in various task
categories, potentially informing future strategies
for the optimal utilization of internal states.

6.2 Impact of Different Layer Depths

In this section, we explore the efficacy of leveraging
internal states from different depths of layers within
LLMs. Specifically, we analyze the performance
of InternalInspector across diverse datasets
such as TriviaQA, BoolQA, and OpenBookQA,
examining how internal states from different layer
depths contribute to accurate confidence estimation.

Figure 3 presents the performance of
InternalInspector when leveraging internal
states from shallow (layers 0-4), middle (layers
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Size (%) TriviaQA MMLU CommonsenseQA BoolQA SquadQA OpenBookQA

60 0.683 0.721 0.698 0.741 0.688 0.653
70 0.700 0.758 0.705 0.776 0.728 0.702
80 0.716 0.779 0.729 0.798 0.737 0.729
90 0.733 0.811 0.752 0.808 0.803 0.748
100 0.751 0.815 0.763 0.812 0.807 0.791

Table 5: Effects of training size on the performance of
InternalInspectorcny on different datasets

13-17), and deep (layers 27-31) layers. The dashed
horizontal line in the figure represents the baseline
performance achieved when internal states from all
layers are utilized. In general, we observe that the
middle layers (13-17) yield the highest performance
across different tasks, suggesting that the internal
states from the middle layers effectively encode fea-
tures critical for assessing the correctness of model
outputs. Moreover, InternalInspector exhibits
optimal performance when internal states from all
layers are utilized, underscoring the effectiveness
of our current model design in leveraging internal
states from all layers for confidence estimation.

6.3 Impact of Training Data Size

In this section, we explore the impact of training
data size on InternalInspector performance.
We conducted an ablation study varying the training
data size from 60% to 90% of the training split using
InternalInspectorcnn - As shown in Table 5,
our findings indicate that increasing the training
data size consistently enhances performance across
various tasks.

7 Conclusion

In this work, we propose InternalInspector, a
simple yet robust confidence estimation method
utilizing the internal states of LLMs, includ-
ing attention, feed-forward, and activation states
across all layers.  Experimental results un-
derscore InternalInspector’s superior perfor-
mance, which consistently outperforms base-
line methods in a variety of natural language
processing tasks, including factual question an-
swering, commonsense reasoning, and reading
comprehension.  Further analysis shows that
InternalInspectordemonstrates strong general-
ization capabilities within Intra-Domain scenarios.
Additionally, InternalInspector outperforms
other internal-state-based confidence estimation
methods in HaluEval, suggesting its potential in
hallucination detection.

8 Limitation

InternalInspector is specifically designed to
leverage the internal states of large language models
(LLMs) to estimate the confidence scores of gener-
ated responses. Consequently, our proposed model
cannot be applied to proprietary LLMs where these
internal states are not accessible.

Moreover, in this work, we propose a simple
yet effective approach for confidence estimation.
While Internal Inspector demonstrates robust
performance across various tasks, we did not ex-
tensively explore complex model architectures of
InternalInspector. Future work could delve
into more advanced and complex architectures that
might offer improved performance in confidence
estimation.
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A Detailed Derivation in Section 3.2

First, we have:

1(0; K(X)|X,Y)

=1(0,X,Y;K(X)) - I(X,Y; K(X))
> 1(0,X;K(X)) - I(X,Y;K(X))

= A.

Next, observe that:

I(S(K(X),Y);0|X,Y)
=I(S(K(X),Y),K(X);0|X,Y)

- 1(K(X);0|X,Y,S(K(X),Y))
=I(K(X);0|X,Y)

+1(S(K(X),Y);0|X,Y,K(X))

- I(K(X);0|X,Y,S(K(X),Y))
> 1(K(X);0|X,Y)

- I(K(X);0|X,Y,S(K(X),Y))
= I(K(X);0|X,Y)

— H(K(X)|X,Y,S(K(X),Y))

+H(K(X)|X,Y,S(K(X),Y),®)
> I(K(X);0|X,Y)

- H(K(X)|X,Y,S(K(X),Y))
> I[(K(X);0|X,Y) — €,

where we used the fact that mutual information is
nonnegative. Combining the above inequalities, we
obtain the desired result.

A.1 Quantitive assumption

In Sec. 3.2, we demonstrate the correctness C and
internal representations ® are not conditionally in-
dependent on (X,Y), I(C;0|X,Y) > 0. In this
section, we propose a more fine-grained theoret-
ical model for utilizing internal representations,
which use a quantified conditional mutual infor-
mation /(C;®|X,Y) to represent the captured in-
formation between © and K(-) and introduce the
reasoning confidence and knowledging confidence
to explain the performance discrepancies among
different datasets.

The tested capabilities of LLMs using the QA
dataset could be generally divided into two cate-
gories: knowledging and reasoning. This decompo-
sition is intuitively based on human cognition that
knowledging determines whether the LLM is incor-
porated with the required knowledge to understand
the question and answer the question. The reasoning
capability determines whether LLM could generate
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the correct conclusion. Different QA datasets em-
phasize different aspects of these capabilities. For
instance, mathematical problems focus on the LLM
reasoning capability, as they require the LLM to
apply logical computation to arrive at the correct an-
swer. Closed-book QA tasks primarily assess LLM
knowledging capability. Therefore we assume the
confidence signal C generated from the LLM could
be decomposed into knowledgeing confidence S
and reasoning confidence S, and each component
influences the confidence independently. For sim-
plicity, we use a binary version of the confidence
score, and the contributions of each component are
described in this way:

P(C=1|S,=1)=P(C=0|S, =0) =a
P(C=0S,=1)=P(C=1]S,=0)=1-a
P(C=1|Sx=1)=P(C=0|S,=0)=p
P(C=0[S,=1)=P(C=1|Sx=0)=1-2
05<a,f<1

a represents the contribution of reasoning confi-
dence and S represents the contribution of knowl-
edging confidence @ and S are greater than 0.5
because two confidence scores contribute positively
to the correctness. Then we can derive the proba-
bility distribution of C on the joint distribution of
S, and Sy:

P(C=1|S, =1,5¢=1)=0.5(a + )

P(C=1|S,=1,5.=0)=0.5(a+1-5)
P(C=1|S,=0,5c=1)=0.5(1-a+p)
P(C=1|S,=0,5.=0)=1-05(a+5)
P(C=0|S,=1,S¢=1)=1-05(a+p)
P(C=0|S,=1,5=0)=0.5(1 —a+f)
P(C=0|S,=0,Sc=1)=0.5(a+1-5)
P(C=0|S, =0,S¢ =0) =0.5(c + )

I(C;0]|X,Y) = H(C|X,Y) - H(C|®,X,Y).
The first term H(C|X,Y) depends on the data
distribution of the selected dataset. To sim-
plify, we assume the dataset D contains the
same number of correct and wrong answers.
P(C =1|X,Y € D) = P(C =0|X,Y € D) = 1.
Then H(C|X,Y) = -2 x ($)log()) = log2.
The second term  H(C|0©,X,Y) =
-2 P(0,X,Y) > P(C|O,X,Y)logP(C|O, X,Y),
P(C|®,X,Y) =2 P(C|S,, Sk)P(S,,Sk|®, X,Y)

Inspired by the interaction tensor (Jiang et al.,
2023b), we consider a binarized formulation of

the latent features of the internal representations
and input-output pair. The three-dimension ten-
sor Q € {0,1}M-N-T where the binary label of
Qun: = 1 indicates the n'" data point contains the
t'" feature and the m'" model learns the ¢'" feature.
We extend the concept of interaction tensor into
our case through two modifications. 1. We do not
consider multiple models but care about internal rep-
resentations from multiple layers. Therefore we use
the first axis with size M as the hidden states from
each layer. 2. We focus on two specific features of
data: reasoning and knowledging. Therefore, for
the third axis, we focus on two features #; related to
reasoning capability and ¢, related to knowledging
capability. Then our interaction tensor €,,,,; = 1
indicates the n'"* question requires the ¢*"* capability
and the m’" hidden states is related to the #'* ca-
pability. In this project, we leverage all the hidden
states to train the confidence estimator, therefore
as long as any m € M hidden state is related to
the feature required by the data point, leveraging
internal representation is helpful. We define a latent
embedding ®, = {0, 1} of the internal represen-
tation ® and question-answer pair (X,Y). Given
the n'" data point (X,Y), any Q,,,,,; = 1 indicates
some hidden states capture the required capability,
we set @, = 1. Otherwise, ®, = 0. We assume Oy,
extracts sufficient information from the question,
answer, and internal representation to infer S, and
Sk. And S, and Sy are conditionally independent on
@b. P(Sr, Sk|®b) = P(Sr|®b)P(Sk|®b) Consider
the internal representation could provide a binary
signal about the reasoning confidence and knowl-
edging confidence and the relations are described
in this way:

P(S, =110, =1) = P(S, =0|0, =0) =6
P(S, =010, =1)=P(S, = 1|0, =0)=1-6
P(Sr =110, =1)=P(Sx =0|0, =0) =€
P(Sk=0l0p=1)=P(Sk =10, =0)=1-¢

¢ and e represent how the internal representation
is informative to the model reasoning confidence
and knowledging confidence respectively. Then
we can enumerate the probability function of C
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conditioned on ®p,. In the following sections, we quantitatively analyze
the relationship between the internal representations
and confidence through 7(C; ®,|X,Y) in different
regimes, positive 1(C; ®p|X,Y) implies positive

1(C;0|X,Y).

P(C=1|0p =1)
=P(C=1|S, =1L,Sg=DP(S, =1,5 =110, = 1)
+P(C=1|S,=1,5,=0)P(S, =1,5,=0|0p = 1)
+P(C=1|S,=0,S,=1DP(S, =0,5, =1|0p = 1) L. . .

A.2.1 Oy is highly informative about the S,

+P(C=1|S,=0,5, =0)P(S, =0,5,=0|0p = 1) and S,

=0ex0.5(a+p)

+6(1-€)*0.5(a+1-p)

+(1-6)ex0.5(l—a+p)

+(1-06)(1-¢€)=(1-0.5(a+p))

When the internal representation is highly informa-
tive about the S, and Si. ¢ and € could be both
close to 1 or both close to 0. The former case
indicates that both events often happen together
and the latter case indicates one event often hap-

ens when the other event does not. Therefore,
P(C =118, =0) Eoth cases indicate the strong dependence of C
=P(C=1|S, = 1,85k = DP(S, = 1.8 =110 =0) oy S, and S%. When both ¢ and € are close to 1,
+P(C=1[S,=1,8c=0)P(S, =1,5=0|0; =0) p; ~ 0.5(c + ) and pg = 1 — 0.5(a + 3). When
+P(C=1|S,=0,S=1DP(S, =0,S; = 1|0, = 0) both 6 and € are close to 0, po ~ 0.5(a + ) and

+P(C=1]|S,=0,5: =0)P(S, =0,5, =0|0,
= (1-6)(1-¢€)*0.5(a+p)
+(1-06)ex05(a+1-p)

+6(1-€)«0.5(l —a+p)
+5ex(1-0.5(a+pP))

P(C=00,=1)=1-P(C=1]|0, = 1)
P(C=0|@,=0)=1-P(C = 1|0, = 0)

The numerical assumption about the probability
relation between total confidence, reasoning and
knowledging confidence, and internal representa-
tion is used to quantitatively analyze the usefulness
of leveraging internal representations to predict
answer correctness.

A.2 Anslysis in Different Regimes

To simplify the expression, p; = P(C = 1|0, = 1),
po = P(C = 1|0, = 0). And P(Op = 1) =
P(©, =0) = 1.

H(C|©p, X,Y) = =[p1log p1 + (1 = p1) log(1 - p1)]
= [polog po + (1 = po) log(1 = po)] and  are close to 1. Then we get p; ~ %€

For a fixed LLLM, the binarized latent feature ®,
is a deterministic function of (®, X,Y). Therefore
I(C;0,|X,Y) < I(C;X,Y,0]X,Y).

I(C;X,Y,0|X,Y)=H(X,Y,0|X,Y)
-H(X,Y,0|X,Y,C)
=H(O|X,Y) - H(BO|X,Y,C)
=I1(C;0|X,Y)

_0) P11~ 1-0.5(a+p). Introduce y = 0.5(a+pB) > 0.5

for simplification. In both cases, H(C|®p, X,Y) =~
—P(©p = 1)[ylog(y) + (1 = y)log(l — y)] -
PO, = 0)[ylog(y) + (1 - y)log(l = )] =
—ylog(y) + (1 —y)log(1l — ). The conditional
entropy is a concave function with respect to
v, which achieves maximum value at n = 0.5.
I(C;0,|X,Y) = H(C|X,Y) - H(C|®p, X,Y) =~
log2 —ylogy+(1-1vy)log(l—y) is non-negative
when y > %

A.2.2 O, provides little information about S,
and Sj

When ©; provides little information about
S, and S, 6 and € are close to 0.5. Then
p1 ~ 0.5 and pg =~ 0.5. H(C|0p,X,Y) =~
—P(0p = 1)[0.510g0.5 + 0.510g0.5] — P(Op =
0)[0.510g0.5 + 0.510g0.5] = log 2.
I(C;0|X,Y) = H(C|X,Y) - H(C|®p, X,Y) =
log2 — log?2 is minimized near to 0.

A.2.3 S, and S; contributes to C

When S, and Sy contributes positively to C, «

and
po ~ 1 — &<, Introduce n = %< for simplifica-
tion. H(C|®p, X,Y) ~ —P(0Op, = 1)[nlogn+ (1 -
mlog(1 —=n)] = P(®p = 0)[(1 —n)log(l —n) +
nlogn] = —nlogn + (1 — ) log(1 — ). The con-
ditional entropy is a concave function with respect
to 1, which achieves maximum value at 7 = 0.5.
1(C;0,|X,Y) = H(C|X,Y) — H(C|®, X,Y) ~
log2 —nlogn+ (1 —n)log(1 —n) is non-negative
=3
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A.2.4 S, and S; are not correlated to the C

When S, and S, are not correlated to the
C, @ and B are close to 0.5. Then we get
po = 0.5 and p; = 05. H(C|Op, X,Y) =
—P(®p = 1)[0.510g0.5 + 0.510g0.5] — P(®) =
0)[0.510g0.5 + 0.510g0.5] = log 2.
I(C;04|X,Y) = H(C|X,Y) - H(C|Op, X,Y) =
log2 — log 2 is minimized near to 0.

B High-Confidence Incorrect Answers

We further extend our analysis to specifically focus
on high-confidence incorrect answers, a critical
metric for evaluating the reliability of confidence
estimation methods. This analysis is crucial for
identifying overconfidence in model predictions,
which can have severe implications in high-stakes
scenarios. Following the guidelines suggested in
(Lin et al., 2022a; Mielke et al., 2022; Lin et al.,
2022a), we examine instances where the model,
despite incorrect predictions, assigns dispropor-
tionately high confidence levels — scores above
0.8. Figure 4 compares the percentage of high-
confidence incorrect predictions across various
confidence estimation methods. The results demon-
strate that Internal Inspector maintains a signif-
icantly lower percentage of high-confidence errors
across all datasets and tasks compared to other base-
lines. This performance underscores the enhanced
calibration capability of InternalInspector, ef-
fectively minimizing the risk associated with over-
confident misjudgments and thereby improving the
model’s overall reliability.

100

B Internallnspector
CCS

0 SAPLMA

Self-Evaluation

Logit-Based

60

Percentage %

40

20

Factual QA

Commonsense
Reasoning

Reading
Comprehension

Figure 4: Percentage of high-confidence incorrect an-
SWers across various tasks.

C Implementation Detail and
Hyperparameters

C.1 Encoder Architecture

We employed the ResNet18 architecture (He et al.,
2016) to encode the internal states of the LLM.
The deep residual learning framework of ResNet18
efficiently captures relationships both within and
across different layers of the LLM. In designing
the Transformer as an alternative encoder for our
experimental setup, we implemented an 8-layer
configuration without an input embedding mod-
ule, utilizing a model dimensionality of d = 768.
Each of these layers comprises a self-attention layer
and an MLP layer. Atop the feature representa-
tions obtained from either the Transformer or the
CNN encoder, we train a binary classifier consist-
ing of a multilayer perceptron (MLP) with three
layers. This MLP is configured with ReLLU activa-
tion to effectively process and classify the nuanced,
high-dimensional encoded data. To enhance the
classifier’s robustness and prevent overfitting, L2
regularization and a dropout rate of 0.1 are incorpo-
rated into the MLP. It is optimized using a learning
rate of 0.001, ensuring stable and efficient learning
dynamics.

C.2 Computational Resources

We conduct our experiments on a server equipped
with four NVIDIA A100 Tensor Core GPUs. Train-
ing InternalInspector on various datasets is
efficiently completed in under four hours using two
of these GPUs.

C.3 Data Split

We train InternalInspector on the training split
of the datasets and evaluate its performance on the
test split.

D Result for Other Models

we have conducted experiments using GPT-2 XL
and Mistral 7B, alongside initial tests on LLaMA 7B.
Results from GPT-2 XL and Mistral 7B align closely
with those from LLaMA, reinforcing our confidence
estimation method’s robustness and generalizability.
This consistency across different architectures and
scales underscores the effectiveness of our method,
suggesting its applicability to a broader array of
LLM:s.
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Model Factual QA Commonsense Reasoning

Reading Comprehension

TriviaQA MMLU CommonsenseQA BoolQA  SQuAD  OpenBookQA

Baseline Models
Logit-Based 46.02 42.82 58.46 64.93 30.12 47.76
Temperature Scaling 50.62 54.09 62.98 67.23 36.83 49.09
Self-Evaluation (3-shot) 31.27 38.12 29.95 42.93 21.42 30.56
CSS 45.10 41.62 48.89 51.50 35.39 40.20
SAPLMA 56.17 55.60 57.20 66.40 41.50 57.10
Our Models
InternalInspectortg 69.82 70.10 69.72 79.10 65.91 69.50
InternalInspectorcnn 71.49 79.62 72.64 84.03 70.92 73.57
w/o Contrastive loss 66.04 67.63 64.81 76.71 61.29 64.50

Table 6: Main result for Mistral 7B. Comparison with baseline confidence estimation methods. Best results are

highlighted in bold.
Model Factual QA Commonsense Reasoning  Reading Comprehension
TriviaQA MMLU CommonsenseQA BoolQA SQuAD  OpenBookQA

Baseline Models

Logit-Based 10.72 22.76 18.01 32.63 10.69 28.92

Temperature Scaling 12.29 26.08 20.83 38.49 13.35 32.90

Self-Evaluation (3-shot) 11.92 9.52 10.11 42.50 15.92 35.50

CSS 27.02 21.79 25.20 41.50 26.40 34.10

SAPLMA 33.39 32.89 31.62 46.27 31.45 39.30
Our Models

InternallInspectoryg 39.81 39.72 39.09 57.22 38.12 44.40

InternalInspectorcnn 42.5 41.23 44.85 52.10 40.88 47.70

w/o Contrastive loss 37.11 36.69 36.30 49.80 36.30 45.13

Table 7: Main result for GPT2-XL. Comparison with baseline confidence estimation methods. Best results are

highlighted in bold.

TriviaQA MMLU Commonsense QA BoolQA Squad QA Openbook QA
Shallow Layer [0-4] 9.10 11.89 8.35 13.43 17.82 7.32
Mid Layer [13-17] 55.23 60.50 57.82 61.90 45.10 58.90
Deep Layer [27-31] 61.82 52.85 64.03 58.48 64.39 46.20
Full [0-31] 71.49 79.62 72.64 84.03 70.92 73.57

Table 8: Analysis of Different Layer on Mistral 7B.

TriviaQA MMLU Commonsense QA BoolQA Squad QA Openbook QA

Shallow Layer [0-4] 4.15 8.62 3.02
Mid Layer [22-26] 21.50 23.02 19.60
Deep Layer [43-47] 34.92 37.30 31.02
Full [0-47] 42.5 41.23 44.85

4.20
35.10
43.78
52.10

3.40 6.15
22.80 21.50
37.50 35.60
40.88 47.70

Table 9: Analysis of Different Layer on GPT2-XL.
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Data In-domain Intra-domain Cross-domain

SCIQA 71.70 61.81 48.99
MMLU 79.62 66.20 56.10
BoolQA 84.03 72.52 58.24
Commonsense QA 72.64 61.21 47.44
Squad QA 70.92 59.24 49.18
Openbook QA 73.57 63.42 46.01

Table 10: Analysis of distribution shift on Mistral 7B

Data In-domain Intra-domain Cross-domain
SCIQA 40.52 34.84 20.95
MMLU 41.23 35.54 29.76
BoolQA 52.10 44.11 26.80
Commonsense QA 44.85 38.71 24.22
Squad QA 40.88 33.60 29.03
Openbook QA 47.70 40.36 31.72

Table 11: Analysis of distribution shift on GPT2-XL
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