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Abstract

Despite their vast capabilities, Large Language

Models (LLMs) often struggle with gener-

ating reliable outputs, frequently producing

high-confidence inaccuracies known as hal-

lucinations. Addressing this challenge, our

research introduces InternalInspector, a

novel framework designed to enhance confi-

dence estimation in LLMs by leveraging con-

trastive learning on internal states including

attention states, feed-forward states, and ac-

tivation states of all layers. Unlike existing

methods that primarily focus on the final acti-

vation state, InternalInspector conducts a

comprehensive analysis across all internal states

of every layer to accurately identify both correct

and incorrect prediction processes. By bench-

marking InternalInspector against existing

confidence estimation methods across various

natural language understanding and generation

tasks, including factual question answering,

commonsense reasoning, and reading compre-

hension, InternalInspector achieves signif-

icantly higher accuracy in aligning the estimated

confidence scores with the correctness of the

LLM’s predictions and lower calibration error.

Furthermore, InternalInspector excels at

HaluEval, a hallucination detection benchmark,

outperforming other internal-based confidence

estimation methods in this task.

1 Introduction

Large Language Models (LLMs) have demonstrated

remarkable capabilities across a wide range of tasks,

from reasoning to question answering (Zhao et al.,

2023; Zhou et al., 2023; Wang et al., 2024; Liang

et al., 2022). Despite these advancements, LLMs

still face significant challenges in hallucinating

facts (Ji et al., 2023a; Li et al., 2023a; Ji et al.,

2023b; Huang et al., 2023) and providing robust

confidence estimates for their predictions (Bom-

masani et al., 2022; Kuhn et al., 2023; Jiang et al.,

∗This work was done before joining Amazon.

2021a)1. This results in LLMs delivering confident

but incorrect information, undermining their relia-

bility and affecting their potential applications in

real-world scenarios. Therefore, a well-established

confidence estimator is essential for users to deter-

mine when to trust the outputs of LLMs and identify

hallucinations in the outputs, thereby enhancing the

practicality and trustworthiness of LLMs.

Recent research suggests that LLMs exhibit a

degree of self-awareness regarding the truthfulness

of the generated statements (Kadavath et al., 2022).

Studies have investigated the relationship between

the accuracy of LLM outputs and the characteristics

of their final activation state (Azaria and Mitchell,

2023a; Burns et al., 2023). Although these find-

ings are promising, they primarily focus on easy

True/False factual question-answering tasks. Fur-

thermore, relying solely on the final hidden states

offers a limited perspective on the intricate inter-

nal dynamics of LLMs. The generation process

within LLMs involves a sophisticated interplay of

internal modules, including attention mechanisms

and Feed-Forward Networks (FFNs), which are

critical for shaping the generated responses. Recent

studies have demonstrated that these internal mod-

ules play a crucial role in encoding and recalling

the factual and linguistic knowledge essential for

accurate predictions in LLMs (Clark et al., 2019b;

Kobayashi et al., 2024; Modarressi et al., 2022;

Dar et al., 2023; Ferrando et al., 2022; Modarressi

et al., 2023). It has also been shown that halluci-

nations in LLM outputs primarily originate from

these internal modules (Geva et al., 2022a; Li et al.,

2023c). These studies further lead us to the ques-

tion: can the dynamics of these internal modules

potentially indicate the confidence of LLMs in their

predictions?

1Following (Kadavath et al., 2022; Jiang et al., 2021a),
we define confidence as the probability of a model prediction
being correct, differing from uncertainty that quantifies the
ambiguity in data or model lack of knowledge (Hu et al., 2023).

12847



In response, we first provide a theoretical foun-

dation that highlights the crucial role of internal

states in robust and accurate confidence estimation.

We further propose InternalInspector (I2), a

simple yet robust confidence estimation method

that leverages the internal states of LLMs to as-

sess the truthfulness of generated statements across

various tasks. Specifically, InternalInspector

employs contrastive learning (Khosla et al., 2021)

upon an encoder, such as a Convolutional Neural

Network (O’shea and Nash, 2015) or a Transformer

(Vaswani et al., 2017a), to learn meaningful feature

representations from the internal states of an LLM

such as LLaMA-2-7B (Touvron et al., 2023). A

binary classifier is trained simultaneously on top

of these feature representations to estimate a confi-

dence score for each LLM prediction based on its

correctness, either correct or incorrect.

We evaluate InternalInspector together with

various existing confidence estimation methods,

including logit-based, self-evaluation, and other

internal-based approaches on several natural lan-

guage understanding and generation tasks, includ-

ing factual question answering, commonsense rea-

soning, and reading comprehension. Experimental

results demonstrate that InternalInspector sig-

nificantly enhances the alignment between accuracy

and confidence scores, achieving up to 20.4% im-

provement in accuracy and 8.9% in Expected Cali-

bration Error (ECE) across the various evaluation

tasks. Furthermore, InternalInspector excels

at identifying hallucinations in generated outputs,

notably existing internal-based confidence estima-

tion methods on the HaluEval benchmark (Li et al.,

2023a). We also investigate the importance of differ-

ent types of internal states in confidence estimation

and showcase that attention states are particularly

meaningful for tasks that require deep contextual

understanding, such as open-book question answer-

ing and reading comprehension, while feed-forward

states are more crucial for tasks centered on fac-

tual information, aligning with the recent research

finding that the Feed-Forward Networks (FFNs)

within Transformer blocks are functioning as key-

value memories to encode and retrieve factual and

semantic knowledge (Geva et al., 2021).

In summary, our contributions are as follows:

• We pioneer in establishing a theoretical foun-

dation underscoring the importance of internal

states of LLMs in confidence estimation.

• We propose InternalInspector, a simple

yet effective confidence estimation method

that leverages the internal states of LLMs,

including the attention states, feed-forward

states, and activation states.

• Extensive experiments demonstrate that

InternalInspector provides robust confi-

dence estimates and significantly outperforms

existing confidence estimation methods across

various natural language understanding and

generation tasks.

• InternalInspector is also proven effec-

tive in recognizing hallucinations in LLM

outputs, achieving significantly better perfor-

mance than various baselines on HaluEval.

2 Related Work

Confidence Estimation for LLMs We summa-

rize existing confidence estimation methods for

LLMs into four categories: (1) Logit-based meth-

ods (Lin et al., 2022b; Jiang et al., 2021b; Kuhn

et al., 2023) utilize output probability distributions

or entropy to directly measure confidence. How-

ever, they mainly reflect the probability distribu-

tion over possible tokens (vocabulary space) (Lin

et al., 2022b; Si et al., 2022; Tian et al., 2023).

(2) Consistency-based approaches (Vazhentsev

et al., 2023; Portillo Wightman et al., 2023; Wang

et al., 2023; Shi et al., 2022; Manakul et al., 2023;

Agrawal et al., 2023) evaluate confidence by measur-

ing the agreement among different model responses,

highlighting potential inconsistencies. However,

these methods require effective measurement of

consistency among responses which is usually chal-

lenging (Xiong et al., 2024; Jiang et al., 2021b; Li

et al., 2022; Ding et al., 2024; Kuhn et al., 2023;

Manakul et al., 2023; Zhang et al., 2023). (3)

Self-evaluation methods (Kadavath et al., 2022;

Manakul et al., 2023; Lin et al., 2024a) enable

models to internally assess the correctness of their

answers, leveraging their introspective capability.

This approach often results in circular reasoning,

exacerbating initial errors and leading to overconfi-

dent inaccuracies (Ji et al., 2023c; Chen et al., 2023).

(4) Internal-based methods (Azaria and Mitchell,

2023b; Burns et al., 2022) proposed training a linear

classifier on the final activation state of LLMs to ex-

amine whether it can differentiate between correct

and incorrect answers. InternalInspector falls

into this category but surpasses existing methods by

employing feature learning on the entire spectrum
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of the internal mechanism of LLMs to understand

the sophisticated non-linear operational process. It

generalizes effectively across various datasets and

applications, offering robust confidence estimates

grounded in comprehensive theoretical analysis.

Probing Probing utilizes linear classifiers as tools

to analyze and understand the representations within

the intermediate layers of neural networks (Alain

and Bengio, 2017). Building upon the foundational

concept of probing with linear classifiers, we ad-

vances this methodology by utilizing contrastive

learning to examine the different internal states of

LLMs. This approach allows us to investigate the

model’s confidence about its predictions, scrutiniz-

ing attention, feed-forward, and activation states

across all layers, providing a more comprehensive

view of how internal representations evolve and

interact to influence the overall task performance

of the model.

Understanding Internal States in LLMs Stud-

ies aimed at understanding the inner workings of

transformers indicate that while attention should

not be directly equated with explanation (Pruthi

et al., 2019; Jain and Wallace, 2019; Wiegreffe

and Pinter, 2019), it provides significant insights

into the model’s operational behavior and helps in

error diagnosis and hypothesis development (Park

et al., 2019; Voita et al., 2019; Vig, 2019; Hoover

et al., 2020; Vashishth et al., 2019). Concurrently,

research has shown that Feed-Forward Networks

(FFNs) within Transformer blocks, functioning as

key-value memories, encode and retrieve factual

and semantic knowledge (Geva et al., 2021). Exper-

imental studies have established a direct correlation

between modifications in FFN output distributions

and subsequent token probabilities, suggesting that

the model’s output is crafted through cumulative

updates from each layer (Geva et al., 2022b). Fur-

thermore, recent study (Li et al., 2023c) has utilized

internal states of LLM, aiming to improve the over-

all truthfulness of LLM generation.

3 Confidence Estimation using Internal

Representations

3.1 Background: Transformer Architecture

In this work, we primarily focused on confidence

estimation for transformer-based LLMs (Vaswani

et al., 2017b), as they have been the predominant ar-

chitecture backbone of most existing frontier LLMs.

Given a sequence of input tokens Į = [Į0, · · · , ĮĊ ],

a transformer-based language model first encodes

the tokens into vectors of input representations

ℎ0 = [ℎ0
0
, · · · , ℎ0

Ċ
] ∈ RĊ×Ě at layer 0. The input

representations are then updated through a sequence

of Ĉ transformer layers, where each layer is com-

posed of a MHSA sublayer followed by a FFN

sublayer, interconnected by residual connections

that facilitate the flow of information between lay-

ers. Formally, the representation of ℎĢ
ğ

of token ğ at

layer Ģ is obtained by:

ℎĢğ = ℎ
Ģ−1
ğ + ėĢğ + ģ

Ģ
ğ , (1)

where ėĢ
ğ
andģĢ

ğ
are the outputs from the Ģ-th MHSA

layer and FFN sublayers, respectively.

After the transformation through Ĉ layers, the

representation at the final layer is projected into

the vocabulary space to generate the output se-

quence į. In this work, we focus on the internal

states at the final token across all layers, defined

as Ă = {ℎĢ
Ċ
, ėĢ

Ċ
, ģĢ

Ċ
}Ĉ
Ģ=1

. Here, Ċ represents the

position of the last token in the input sequence. We

select these internal states because they encapsulate

the aggregation of all context information and are

directly involved in producing the final predictions,

making them particularly relevant for identifying

the correctness of LLM’s prediction.

3.2 Why Internal Representations for

Confidence Estimation?

To analyze the importance of internal states Θ in

assessing LLM response correctness, let Ĕ and ĕ

be the input and output random variables, respec-

tively, and ć (Ĕ) the oracle response (derived from

expert/world knowledge) as the ground truth for a

query Ĕ . Given an input-output pair (Ĕ,ĕ ), we

define a Correctness Indicator ÿ (ĕ | Ĕ) as a binary

random variable, taking the value 1 if ĕ is correct

given Ĕ , and 0 otherwise. Our confidence esti-

mator aims to predict ÿ (ĕ | Ĕ). We assume that

ÿ (ĕ | Ĕ) can be represented by a random function

ď(ć (Ĕ), ĕ ), dependent on the oracle answer ć (Ĕ)

and the LLM response ĕ , i.e., the Correctness Indi-

cator is aligned with the oracle’s judgment. Thus,

the expected value of this function represents the

Correctness Probability:

E[ď(ć (Ĕ), ĕ )] = Č(ĕ is correct | Ĕ).

Let ą (·; ·|·) andĄ (·|·) denote the conditional mutual

information/entropy, respectively. Assuming

Ą (ć (Ĕ) |Ĕ,ĕ, ď(ć (Ĕ), ĕ )) ≤ Ċ,

12849



where a small Residual Uncertainty Ċ indicates

that ĕ , combined with the correctness indicator

ď(ć (Ĕ), ĕ ), effectively captures most information

about the oracle answer ć (Ĕ).2

We further assume

ą (Θ;ć (Ĕ) | Ĕ) − ą (ĕ ;ć (Ĕ) | Ĕ) ≥ �,

where the Internal Knowledge Advantage � quan-

tifies the additional information about the oracle

answer ć (Ĕ) encoded in the LLM’s internal acti-

vation Θ, beyond what is revealed in its output ĕ .

A large � implies a richer internal understanding

compared to the expressed output. 3

Mathematically, we establish the key result:

ą (ÿ (ĕ | Ĕ);Θ|Ĕ,ĕ ) ≥ � − Ċ . (2)

This implies that when the internal knowledge ad-

vantage (�) is large and the residual uncertainty (Ċ)

is small, the internal states (Θ) provide substantial

additional information about the correctness of out-

put (ĕ ) beyond what’s contained in the input-output

pair (Ĕ,ĕ ) alone. A detailed proof is provided

in Appendix A. Appendices A.1 and A.2 further

explore how internal states influence performance

across tasks and quantitatively analyze the impact

of internal representation informativeness on confi-

dence estimation, respectively.

3.3 InternalInspector

Problem Formulation Given the dataset D =

{(Į Ġ , į Ġ , Ă Ġ)}
ĉ
Ġ=1

, each instance Ġ includes an input

text Į Ġ , a generated output į Ġ , and the internal states

Ă Ġ = {ℎĢ
Ċ , Ġ
, ėĢ

Ċ , Ġ
, ģĢ

Ċ , Ġ
}Ĉ
Ģ=1

of an LLM when gen-

erating the output į Ġ . Here, Ċ signifies the internal

states are extracted at the last token of the input

sequence. The internal states Ă Ġ include the acti-

vation states {ℎĢ
Ċ , Ġ

}Ĉ
Ģ=1

, attention states {ėĢ
Ċ , Ġ

}Ĉ
Ģ=1

,

and feed-forward states {ģĢ
Ċ , Ġ

}Ĉ
Ģ=1

of the LLM

across Ĉ layers when processing Į Ġ .

To effectively analyze the internal states across

all layers, we stack each type of internal state

2The Residual Uncertainty (Ċ) Tends to be small when the
Correctness Indicator is informative and the task is simple.

3Empirical evidence supports a large �. LLM internal
states (Θ) are repositories of open-world knowledge (Geva et al.,
2021; Dai et al., 2022; Meng et al., 2022), often containing
information not fully expressed in outputs. Even incorrect
responses can still possess relevant knowledge internally (Li
et al., 2023d). Techniques like enhanced prompting (Wei et al.,
2022) and self-evaluation (Kadavath et al., 2022; Saunders
et al., 2022; Manakul et al., 2023; Ren et al., 2023; Liu et al.,
2023; Lin et al., 2024a) further demonstrate the ability to tap
into this latent knowledge to improve accuracy, reinforcing the
notion of a substantial �.

along the layer dimension. For instance, the

activation states are constructed as ℎ
(1:Ĉ)

Ċ, Ġ
=

[ℎ1
Ċ, Ġ

; ℎ2
Ċ, Ġ

; · · · ; ℎĈ
Ċ, Ġ

] ∈ RĈ×Ě where ; denotes

the concatenation along the layer dimension and

Ě is the feature dimension. Similarly, we form

the attention states ė
(1:Ĉ)

Ċ, Ġ
and the feed-forward

states ģ
(1:Ĉ)

Ċ, Ġ
both in RĈ×Ě . We further con-

struct the stacked internal states tensor, denoted

as Ă Ġ = [ℎ
(1:Ĉ)

Ċ, Ġ
, ė

(1:Ĉ)

Ċ, Ġ
, ģ

(1:Ĉ)

Ċ, Ġ
] ∈ RĈ×Ě×3 for in-

stance Ġ , capturing the entire internal dynamics of

the LLM for instance Ġ .

We formulate the task as learning a function ĝ

that takes Ă as input and outputs a confidence score

ę indicating the correctness of į. Each instance

(Į Ġ , į Ġ , Ă Ġ) is associated with a golden binary label

ę Ġ based on whether the LLM’s prediction į Ġ is

correct, where:

ę Ġ =

{

1 if į Ġ is correct

0 if į Ġ is incorrect.

Supervised Contrastive Learning

InternalInspector employs a supervised

contrastive learning framework that learns to dif-

ferentiate the distinctive characteristics associated

with correct and incorrect output, relying solely on

the internal states. It consists of an encoder, such

as a Convolutional Neural Network (CNN) (O’shea

and Nash, 2015) or a Transformer (Vaswani et al.,

2017b) (architecture detailed at Appendix C), for

encoding the stacked internal states Ă Ġ ∈ R
Ĉ×Ě×3

into a compact representation İ Ġ = āĤę(Ă Ġ).

Subsequently, a multilayer perceptron (MLP)

classifier is utilized to predict the correctness of

the LLM’s output į Ġ via ę̂ Ġ = Ĝ (İ Ġ). Aligning

with the problem formulation, the overall function

ĝ, which maps the internal states to the confidence

scores, is defined as ę̂ Ġ = ĝ(Ă Ġ) = Ĝ (āĤę(Ă Ġ)).

InternalInspector employs a combination of

contrastive loss (Chen et al., 2020) and classification

loss to learn fine-grained differences in the internal

states that correlate with output correctness. For

the contrastive loss, we first organize mini-batches

by selecting an anchor embedding İ Ġ from the

dataset. For each anchor İ Ġ , we randomly sample

one positive embedding İ+Ġ from the set Ė+
Ġ = {İě |

ęě = ę Ġ} ensuring that both the anchor and the

positive embedding correspond to predictions with

the same correctness, i.e., ę Ġ = ęě. Additionally,

we also sample ā negative embeddings İ−Ġ ∈ Ė−
Ġ ,

where Ė−
Ġ = {İě ∈ Ė | ęě ≠ ę Ġ}, representing the

set of embeddings whose associated predictions įě
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Figure 1: Overview of our proposed

InternalInspector. InternalInspector

takes in the internal states at the final token across all

layers, denoted as Ă = {ℎĢ
Ċ
, ėĢ

Ċ
, ģĢ

Ċ
}Ĉ
Ģ=1

, as input and

outputs a confidence score ę indicating the correctness

of the LLM’s prediction.

differ in correctness from that of the anchor, i.e.,

ęě ≠ ę Ġ . Then, the contrastive loss is defined as:

Lcontr = −

ĉ
∑

Ġ=1

log
exp

(

İ Ġ · İ
+
Ġ/ă

)

∑

İ−
Ġ
∈Ė−

Ġ
exp

(

İ Ġ · İ
−
Ġ
/ă

) , (3)

where ă ∈ R+ is a scalar temperature parameter.

For classification, a cross-entropy loss is used to

directly optimize the model’s ability to classify the

embeddings correctly:

Lcls = −
1

ĉ

ĉ
∑

Ġ=1

(

ę Ġ log(ę̂ Ġ) + (1 − ę Ġ) log(1 − ę̂ Ġ)
)

, (4)

where ę Ġ denotes the golden binary label of the

output į Ġ .

The overall training objective is the combina-

tion of the contrastive loss and the classifica-

tion loss, denoted as L = Lcontr + Lcls. The

combined supervised contrastive loss empowers

InternalInspector to effectively discern the nu-

ances within the internal states that differentiate

correct from incorrect LLM predictions, thus facil-

itating InternalInspector to accurately predict

the confidence of the LLM predictions based solely

on internal states.

4 Experimental Setting

4.1 Tasks and Datasets

We evaluate InternalInspector on one

of the most popular autoregressive decoder-

only open-source large language models,

LLaMA-2-7B(Touvron et al., 2023), Mistral

7B(Jiang et al., 2023a), and GPT2-XL(Radford

et al., 2019) on three critical tasks and datasets.

For factual closed-book QA, we utilize Trivi-

aQA (Joshi et al., 2017) and MMLU (Hendrycks

et al., 2021). For commonsense reasoning, we

employ CommonsenseQA (Talmor et al., 2019)

and BoolQA (Clark et al., 2019a). For reading

comprehension, we utilize SQuAD (Rajpurkar

et al., 2016) and OpenBookQA (Mihaylov

et al., 2018). Additionally, we also evaluate the

capability of InternalInspector in detecting

hallucinations on HaluEval benchmark (Li et al.,

2023a).

Due to the page limitation, we present the results

for Mistral 7B and GPT2-XL in Appendix D.

4.2 Baselines

To effectively evaluate the effectiveness of

InternalInspector, we benchmark it against

four distinct types of baseline methods:

Logit-Based: Following (Jiang et al., 2021b),

the logit-based method utilizes the log probability

derived from the output logits as a metric for confi-

dence estimation, under the assumption that higher

log probabilities suggest greater confidence.

Self-Evaluation: Following (Kadavath et al.,

2022), the Self-Evaluation method initiates a self-

assessment phase after generating an answer. After

the model generates an answer ĕ , it feeds both the

question Ĕ and the generated answer ĕ back to the

model and asks whether the answer is true or false

for the question. The confidence is then estimated

as the probability of the generated response ‘True’

Č(True|Ĕ,ĕ ).

Temperature Scaling: Following (Desai and

Durrett, 2020a), Temperature Scaling adjusts the

scale of logits using a scalar hyperparameter Đ be-

fore the softmax operation, modifying the sharpness

of the probability distribution.
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Last Hidden States: We employ Contrast-

Consistent Search (CSS) (Burns et al., 2023), which

involves training a linear classifier on the final hid-

den states of statements rephrased in both positive

and negative formats, and SAPLMA (Azaria and

Mitchell, 2023a) that transforms an initial statement

into a true/false question and employs a classifier on

the final hidden state to map it into the confidence.

4.3 Evaluation Metrics

We assess the performance of confidence estimation

using two primary metrics: Accuracy and Expected

Calibration Error (ECE) (Guo et al., 2017).

Accuracy This metric measures the proportion

of instances where the correctness of the LLM’s

predictions aligns with the estimated confidence.

Specifically, an output of the LLM is considered

correct if its estimated confidence score exceeds

a predefined threshold and incorrect if it falls be-

low. Following (Burns et al., 2023; Azaria and

Mitchell, 2023a; Li et al., 2023a), we set this thresh-

old at 0.5 throughout our experiments, unless stated

otherwise.

Expected Calibration Error (ECE) ECE (Guo

et al., 2017) quantifies the calibration performance

of the models. It is defined as:

ECE =

ĉ
∑

ģ=1

|þģ |

Ĥ
|acc(þģ) − conf(þģ) | , (5)

where Ĥ is the total number of samples, ĉ is the

number of bins, þģ denotes theģ-th bin containing

samples with confidences falling within
(

ģ−1
ĉ
, ģ
ĉ

]

,

and |þģ | is the number of samples in the ģ-th

bin. Following (Desai and Durrett, 2020b; Kada-

vath et al., 2022), we use ĉ = 10 bins. acc(þģ)

and conf (þģ) denote the average accuracy and

confidence of the samples within þģ, respectively.

5 Results and Discussion

5.1 Main Results

Table 7 shows the performance comparison be-

tween InternalInspector and baseline confi-

dence estimation methods on various tasks and

datasets. As we can see, InternalInspector con-

sistently outperforms all baseline methods in terms

of accuracy (ACC ↑) and Expected Calibration Er-

ror (ECE ↓), demonstrating superior performance

across all evaluated tasks and datasets. Specif-

ically, InternalInspector achieves significant

improvements over the highest-performing baseline,

Figure 2: Comparative Distribution of Confidence

Scores. Each boxplot indicates the interquartile range

of confidence scores. The dashed red line represents the

decision threshold at 0.5.

including an average 19.8% increase in accuracy

and a 8.95% reduction in ECE for Factual QA. In

Commonsense Reasoning, the improvements are

20.4% in accuracy and 6.8% in ECE. For Reading

Comprehension, InternalInspector enhances

accuracy by 18.6 % and lowers ECE by 6.7%.

Additionally, we explore two differ-

ent architectures for the encoder in

InternalInspector: a Transformer-based en-

coder (InternalInspectorTF) and a CNN-based

encoder (InternalInspectorCNN), as presented

in Table 7. In general, InternalInspectorCNN

outperforms InternalInspectorTF across

most datasets. This superior performance is

likely to be attributed to CNN’s adeptness at

capturing the local structure of internal states,

thereby providing more effective representations

for confidence estimation. The discussions of

InternalInspector in the following sections

are all based on InternalInspectorCNN.

Moreover, we conduct an ablation study where

InternalInspectorCNN is trained without the

contrastive loss. This results in a notable perfor-

mance decrease across all datasets, underscoring

the critical role of contrastive loss in enhancing the

model’s effectiveness.

Distribution of Confidence Scores We further

examine the distribution of the estimated confidence

scores from InternalInspector compared to

those of SAPLMA, the highest-performing baseline.

As depicted in Figure 2, there is a clear separation in

the confidence score distributions between correct

and incorrect predictions across various datasets

for InternalInspector. InternalInspector

reliably maintains higher confidence scores for cor-

rect answers and lower for incorrect ones, compared

to SAPLMA. For InternalInspector, both the

interquartile ranges and medians for correct answers
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Model Factual QA Commonsense Reasoning Reading Comprehension

TriviaQA MMLU CommonsenseQA BoolQA SQuAD OpenBookQA

ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓

Baseline Models

Logit-Based 0.453 0.202 0.416 0.243 0.576 0.143 0.532 0.254 0.522 0.292 0.464 0.301

Temperature Scaling 0.543 0.181 0.546 0.154 0.667 0.120 0.512 0.212 0.612 0.178 0.594 0.287

Self-Evaluation (3-shot) 0.307 0.465 0.374 0.412 0.312 0.441 0.282 0.590 0.309 0.621 0.368 0.492

CSS 0.552 0.283 0.515 0.245 0.501 0.235 0.568 0.191 0.581 0.243 0.502 0.232

SAPLMA 0.596 0.163 0.606 0.148 0.575 0.123 0.591 0.193 0.617 0.126 0.609 0.157

Our Models

InternalInspectorTF 0.769 0.081 0.829 0.051 0.742 0.102 0.827 0.099 0.767 0.078 0.723 0.102

w/o Contrastive loss 0.602 / 0.615 / 0.633 / 0.582 / 0.681 / 0.655 /

InternalInspectorCNN 0.751 0.073 0.815 0.054 0.763 0.097 0.812 0.083 0.807 0.051 0.791 0.098

w/o Contrastive loss 0.627 0.142 0.641 0.111 0.603 0.168 0.618 0.199 0.660 0.153 0.615 0.171

Table 1: Comparison with baseline confidence estimation methods. Best results are highlighted in bold.

Method QA Dialogue Summarization

HaluEval (Llama2-7B) 0.480 0.443 0.476
w/ Knowledge 0.543 0.451 –
w/ CoT 0.427 0.505 0.509

CSS 0.562 0.418 0.481
SAPLMA 0.491 0.459 0.416

InternalInspector (Ours) 0.691 0.648 0.671

Table 2: Accuracy (%) of identifying whether a model’s

output contains hallucinated contents.

consistently exceed the threshold of 0.5, and remain

below this threshold for incorrect predictions. Al-

though SAPLMA similarly positions medians above

the threshold for correct responses and below for

incorrect ones, it lacks a clear separation across the

interquartile ranges, indicating less reliable perfor-

mance in distinguishing between correct and incor-

rect predictions. An analysis of high-confidence

incorrect answers is in Appendix B.

5.2 Hallucination Detection

To assess the effectiveness of our frame-

work in detecting hallucinations, we apply

InternalInspector on HaluEval (Li et al.,

2023a), a hallucination evaluation benchmark for

LLMs. The task involves taking in a question, a

corresponding answer, and an optional knowledge

context and identifying whether the given answer

contains non-factual or hallucinated information.

In our experiments, we employ LLaMA-2-7B as

the LLM that processes an optional knowledge con-

tent, a question, and an answer following the instruc-

tion templates in (Li et al., 2023a). The LLM then

outputs whether the provided answer is hallucinated

or not. We then employ InternalInspector,

which utilizes the internal states of the LLM, to

generate a confidence score indicating the likeli-

hood of the answer being hallucinated. Specif-

ically, we train InternalInspector on a 30%

Dataset In-Domain Intra-Domain Cross-Domain

Factual QA
SciQA 0.836 0.737 0.619
MMLU 0.815 0.707 0.598

Commonsense
BoolQA 0.812 0.694 0.592
CommonsenseQA 0.763 0.673 0.585

Reading Comp.
SQuAD 0.807 0.683 0.594
OpenBookQA 0.791 0.698 0.539

Table 3: Robustness Across Data Distribution Shifts.

subset of the HaluEval and evaluate it on the re-

maining test split. We apply the same training

setup to CSS and SAPLMA, two baseline con-

fidence estimation methods. We also compared

with baseline methods from HaluEval, including

methods with Chain of Thought (CoT) reasoning

(Wei et al., 2022) and knowledge retrieval (Li et al.,

2023b), which are zero-shot. As shown in Table

2, InternalInspector significantly outperforms

the confidence estimation baselines in hallucina-

tion detection, suggesting InternalInspector’s

potential in identifying hallucinations.

5.3 Robustness on Data Distribution Shifts

In this section, we explore InternalInspector’s

capability to generalize across different datasets,

focusing on Intra-Domain and Cross-Domain

settings. In the Intra-Domain setting,

InternalInspector is trained on one dataset

of a specific task category and then tested on an-

other dataset from the same task category. For

example, within the commonsense reasoning cat-

egory, the model might be trained on Common-

senseQA and tested on BoolQA. Conversely, in the

Cross-Domain setting, InternalInspector is

tested on a dataset of a specific task type while being

trained on a combination of datasets from all other
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task types that are distinct from the test dataset’s cat-

egory, exemplifying its adaptability across diverse

domains. For example, for the Cross-Domain sce-

nario involving BoolQA, InternalInspector is

evaluated on BoolQA while being trained on a com-

bination of datasets from SciQA, MMLU, SQuAD,

and OpenBook QA, none of which are within the

commonsense reasoning category of BoolQA. Ad-

ditionally, we include an In-Domain setting, where

the model is trained and tested on the same dataset

to establish a baseline for comparison. Note that,

in this experiment, for tasks categorized under Fac-

tualQA, we use SciQA (Auer et al., 2023) and

MMLU (Hendrycks et al., 2021) due to the simi-

larity in the subject matter they cover, containing

question and answers regarding science.

Table 3 showcases InternalInspector’s ro-

bust performance in the Intra-Domain sce-

narios. Although there is a performance

decrement compared to the In-Domain setting,

InternalInspector in the Intra-Domain sce-

nario consistently outperforms other baseline meth-

ods in the In-Domain one(See Table 7). This

strong performance in Intra-Domain generaliza-

tion indicates that the internal states from the

same task category exhibit similar patterns. In

Cross-Domain setting, we observe a larger per-

formance drop, suggesting distinct internal states

and patterns across different task categories. This

observation aligns with the findings that linguistic

and factual knowledge located in different layers

of LLMs (Dai et al., 2022; Tenney et al., 2019;

Meng et al., 2022; Lin et al., 2024b), resulting

in task-specific variations in internal states. De-

spite these variations, InternalInspector still

performs comparably to baseline methods that are

trained and evaluated on the same dataset, indicat-

ing the efficacy of InternalInspector.

6 Ablation Study

6.1 Effect of Different Types of Internal States

In this section, we explore the impact of various

internal states on InternalInspector’s perfor-

mance, focusing on the role of attention (Attn),

feed-forward states (FF), activation state (Act), and

their combinations across different tasks. Table 4

demonstrates that when using only one type of in-

ternal states, feed-forward states generally prove to

be the most influential for confidence estimation,

except for the reading comprehension task, where

the model using attention states achieves the best

Dataset Full FF + Attn FF + Act Attn + Act Attn FF Act

Factual QA
TriviaQA 0.751 0.711 0.724 0.613 0.504 0.703 0.627
MMLU 0.815 0.775 0.767 0.673 0.535 0.717 0.641

Commonsense
CommonsenseQA 0.763 0.692 0.708 0.619 0.602 0.634 0.617
BoolQA 0.812 0.684 0.739 0.638 0.592 0.693 0.650

Reading Comp.
SQuAD 0.807 0.771 0.628 0.759 0.728 0.615 0.624
OpenBookQA 0.791 0.719 0.615 0.727 0.707 0.577 0.635

Table 4: Effects of utilizing different combinations of

internal states, including attention states (Attn), feed-

forward states (FF), and activation states (Act). Full

represents the use of all types of internal states.

Shallow Layers [0-4] Mid Layers [13-17] Deep Layers [27-31]0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy TriviaQA

BoolQA
OpenBookQA

Figure 3: Impact of Internal States from Different Layer

Depths.

performance. This highlights the effectiveness of

feed-forward states in tasks that require robust fac-

tual recall, while attention states play a crucial role

in tasks that necessitate processing and prioritizing

extensive text segments for comprehension.

We also explore the efficacy of various combi-

nations of internal states. The results indicate that

integrating multiple types of internal states often

yields improvements over using either type of inter-

nal states alone. Moreover, models incorporating

all types of internal states consistently deliver opti-

mal performance. This suggests that the integration

of different types of internal states is necessary to

effectively capture the complexities inherent in var-

ious tasks, leading to robust confidence estimation

methods. These analyses offer insights into how

different types or combinations of internal states

might influence model performance in various task

categories, potentially informing future strategies

for the optimal utilization of internal states.

6.2 Impact of Different Layer Depths

In this section, we explore the efficacy of leveraging

internal states from different depths of layers within

LLMs. Specifically, we analyze the performance

of InternalInspector across diverse datasets

such as TriviaQA, BoolQA, and OpenBookQA,

examining how internal states from different layer

depths contribute to accurate confidence estimation.

Figure 3 presents the performance of

InternalInspector when leveraging internal

states from shallow (layers 0-4), middle (layers
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Size (%) TriviaQA MMLU CommonsenseQA BoolQA SquadQA OpenBookQA

60 0.683 0.721 0.698 0.741 0.688 0.653

70 0.700 0.758 0.705 0.776 0.728 0.702

80 0.716 0.779 0.729 0.798 0.737 0.729

90 0.733 0.811 0.752 0.808 0.803 0.748

100 0.751 0.815 0.763 0.812 0.807 0.791

Table 5: Effects of training size on the performance of

InternalInspectorCNN on different datasets

13-17), and deep (layers 27-31) layers. The dashed

horizontal line in the figure represents the baseline

performance achieved when internal states from all

layers are utilized. In general, we observe that the

middle layers (13-17) yield the highest performance

across different tasks, suggesting that the internal

states from the middle layers effectively encode fea-

tures critical for assessing the correctness of model

outputs. Moreover, InternalInspector exhibits

optimal performance when internal states from all

layers are utilized, underscoring the effectiveness

of our current model design in leveraging internal

states from all layers for confidence estimation.

6.3 Impact of Training Data Size

In this section, we explore the impact of training

data size on InternalInspector performance.

We conducted an ablation study varying the training

data size from 60% to 90% of the training split using

InternalInspectorCNN . As shown in Table 5,

our findings indicate that increasing the training

data size consistently enhances performance across

various tasks.

7 Conclusion

In this work, we propose InternalInspector, a

simple yet robust confidence estimation method

utilizing the internal states of LLMs, includ-

ing attention, feed-forward, and activation states

across all layers. Experimental results un-

derscore InternalInspector’s superior perfor-

mance, which consistently outperforms base-

line methods in a variety of natural language

processing tasks, including factual question an-

swering, commonsense reasoning, and reading

comprehension. Further analysis shows that

InternalInspectordemonstrates strong general-

ization capabilities within Intra-Domain scenarios.

Additionally, InternalInspector outperforms

other internal-state-based confidence estimation

methods in HaluEval, suggesting its potential in

hallucination detection.

8 Limitation

InternalInspector is specifically designed to

leverage the internal states of large language models

(LLMs) to estimate the confidence scores of gener-

ated responses. Consequently, our proposed model

cannot be applied to proprietary LLMs where these

internal states are not accessible.

Moreover, in this work, we propose a simple

yet effective approach for confidence estimation.

While InternalInspector demonstrates robust

performance across various tasks, we did not ex-

tensively explore complex model architectures of

InternalInspector. Future work could delve

into more advanced and complex architectures that

might offer improved performance in confidence

estimation.
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A Detailed Derivation in Section 3.2

First, we have:

� (Θ; (-) |-,. )

= � (Θ, -,. ; (-)) − � (-,. ; (-))

≥ � (Θ, -; (-)) − � (-,. ; (-))

= �.

Next, observe that:

� ((( (-), . );Θ|-,. )

= � ((( (-), . ),  (-);Θ|-,. )

− � ( (-);Θ|-,., (( (-), . ))

= � ( (-);Θ|-,. )

+ � ((( (-), . );Θ|-,.,  (-))

− � ( (-);Θ|-,., (( (-), . ))

≥ � ( (-);Θ|-,. )

− � ( (-);Θ|-,., (( (-), . ))

= � ( (-);Θ|-,. )

− � ( (-) |-,., (( (-), . ))

+ � ( (-) |-,., (( (-), . ),Θ)

≥ � ( (-);Θ|-,. )

− � ( (-) |-,., (( (-), . ))

≥ � ( (-);Θ|-,. ) − n,

where we used the fact that mutual information is

nonnegative. Combining the above inequalities, we

obtain the desired result.

A.1 Quantitive assumption

In Sec. 3.2, we demonstrate the correctness � and

internal representations Θ are not conditionally in-

dependent on (-,. ), � (�;Θ|-,. ) > 0. In this

section, we propose a more fine-grained theoret-

ical model for utilizing internal representations,

which use a quantified conditional mutual infor-

mation � (�;Θ|-,. ) to represent the captured in-

formation between Θ and  (·) and introduce the

reasoning confidence and knowledging confidence

to explain the performance discrepancies among

different datasets.

The tested capabilities of LLMs using the QA

dataset could be generally divided into two cate-

gories: knowledging and reasoning. This decompo-

sition is intuitively based on human cognition that

knowledging determines whether the LLM is incor-

porated with the required knowledge to understand

the question and answer the question. The reasoning

capability determines whether LLM could generate
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the correct conclusion. Different QA datasets em-

phasize different aspects of these capabilities. For

instance, mathematical problems focus on the LLM

reasoning capability, as they require the LLM to

apply logical computation to arrive at the correct an-

swer. Closed-book QA tasks primarily assess LLM

knowledging capability. Therefore we assume the

confidence signal � generated from the LLM could

be decomposed into knowledgeing confidence (:
and reasoning confidence (A and each component

influences the confidence independently. For sim-

plicity, we use a binary version of the confidence

score, and the contributions of each component are

described in this way:

%(� = 1|(A = 1) = %(� = 0|(A = 0) = U

%(� = 0|(A = 1) = %(� = 1|(A = 0) = 1 − U

%(� = 1|(: = 1) = %(� = 0|(: = 0) = V

%(� = 0|(: = 1) = %(� = 1|(: = 0) = 1 − V

0.5 ≤ U, V ≤ 1

U represents the contribution of reasoning confi-

dence and V represents the contribution of knowl-

edging confidence U and V are greater than 0.5

because two confidence scores contribute positively

to the correctness. Then we can derive the proba-

bility distribution of � on the joint distribution of

(A and (: :

%(� = 1|(A = 1, (: = 1) = 0.5(U + V)

%(� = 1|(A = 1, (: = 0) = 0.5(U + 1 − V)

%(� = 1|(A = 0, (: = 1) = 0.5(1 − U + V)

%(� = 1|(A = 0, (: = 0) = 1 − 0.5(U + V)

%(� = 0|(A = 1, (: = 1) = 1 − 0.5(U + V)

%(� = 0|(A = 1, (: = 0) = 0.5(1 − U + V)

%(� = 0|(A = 0, (: = 1) = 0.5(U + 1 − V)

%(� = 0|(A = 0, (: = 0) = 0.5(U + V)

� (�;Θ|-,. ) = � (� |-,. ) − � (� |Θ, -,. ).

The first term � (� |-,. ) depends on the data

distribution of the selected dataset. To sim-

plify, we assume the dataset � contains the

same number of correct and wrong answers.

%(� = 1|-,. ∈ �) = %(� = 0|-,. ∈ �) =
1
2
.

Then � (� |-,. ) = −2 ∗ ( 1
2
) log( 1

2
) = log 2.

The second term � (� |Θ, -,. ) =

−
∑
%(Θ, -,. )

∑
%(� |Θ, -,. ) log %(� |Θ, -,. ),

%(� |Θ, -,. ) =
∑
%(� |(A , (:)%((A , (: |Θ, -,. )

Inspired by the interaction tensor (Jiang et al.,

2023b), we consider a binarized formulation of

the latent features of the internal representations

and input-output pair. The three-dimension ten-

sor ¬ ∈ {0, 1}",#,) , where the binary label of

¬<=C = 1 indicates the =Cℎ data point contains the

CCℎ feature and the <Cℎ model learns the CCℎ feature.

We extend the concept of interaction tensor into

our case through two modifications. 1. We do not

consider multiple models but care about internal rep-

resentations from multiple layers. Therefore we use

the first axis with size " as the hidden states from

each layer. 2. We focus on two specific features of

data: reasoning and knowledging. Therefore, for

the third axis, we focus on two features C1 related to

reasoning capability and C2 related to knowledging

capability. Then our interaction tensor ¬<=C = 1

indicates the =Cℎ question requires the CCℎ capability

and the <Cℎ hidden states is related to the CCℎ ca-

pability. In this project, we leverage all the hidden

states to train the confidence estimator, therefore

as long as any < ∈ " hidden state is related to

the feature required by the data point, leveraging

internal representation is helpful. We define a latent

embedding Θ1 = {0, 1} of the internal represen-

tation Θ and question-answer pair (-,. ). Given

the =Cℎ data point (-,. ), any ¬<=C = 1 indicates

some hidden states capture the required capability,

we set Θ1 = 1. Otherwise, Θ1 = 0. We assume Θ1

extracts sufficient information from the question,

answer, and internal representation to infer (A and

(: . And (A and (: are conditionally independent on

Θ1. %((A , (: |Θ1) = %((A |Θ1)%((: |Θ1) Consider

the internal representation could provide a binary

signal about the reasoning confidence and knowl-

edging confidence and the relations are described

in this way:

%((A = 1|Θ1 = 1) = %((A = 0|Θ1 = 0) = X

%((A = 0|Θ1 = 1) = %((A = 1|Θ1 = 0) = 1 − X

%((: = 1|Θ1 = 1) = %((: = 0|Θ1 = 0) = n

%((: = 0|Θ1 = 1) = %((: = 1|Θ1 = 0) = 1 − n

X and n represent how the internal representation

is informative to the model reasoning confidence

and knowledging confidence respectively. Then

we can enumerate the probability function of �
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conditioned on Θ1.

%(� = 1|Θ1 = 1)

=%(� = 1|(A = 1, (: = 1)%((A = 1, (: = 1|Θ1 = 1)

+%(� = 1|(A = 1, (: = 0)%((A = 1, (: = 0|Θ1 = 1)

+%(� = 1|(A = 0, (: = 1)%((A = 0, (: = 1|Θ1 = 1)

+%(� = 1|(A = 0, (: = 0)%((A = 0, (: = 0|Θ1 = 1)

= Xn ∗ 0.5(U + V)

+ X(1 − n) ∗ 0.5(U + 1 − V)

+ (1 − X)n ∗ 0.5(1 − U + V)

+ (1 − X) (1 − n) ∗ (1 − 0.5(U + V))

%(� = 1|Θ1 = 0)

= %(� = 1|(A = 1, (: = 1)%((A = 1, (: = 1|Θ1 = 0)

+ %(� = 1|(A = 1, (: = 0)%((A = 1, (: = 0|Θ1 = 0)

+ %(� = 1|(A = 0, (: = 1)%((A = 0, (: = 1|Θ1 = 0)

+ %(� = 1|(A = 0, (: = 0)%((A = 0, (: = 0|Θ1 = 0)

= (1 − X) (1 − n) ∗ 0.5(U + V)

+ (1 − X)n ∗ 0.5(U + 1 − V)

+ X(1 − n) ∗ 0.5(1 − U + V)

+ Xn ∗ (1 − 0.5(U + V))

%(� = 0|Θ1 = 1) = 1 − %(� = 1|Θ1 = 1)

%(� = 0|Θ1 = 0) = 1 − %(� = 1|Θ1 = 0)

The numerical assumption about the probability

relation between total confidence, reasoning and

knowledging confidence, and internal representa-

tion is used to quantitatively analyze the usefulness

of leveraging internal representations to predict

answer correctness.

A.2 Anslysis in Different Regimes

To simplify the expression, ?1 = %(� = 1|Θ1 = 1),

?0 = %(� = 1|Θ1 = 0). And %(Θ1 = 1) =

%(Θ1 = 0) = 1
2
.

� (� |Θ1, -,. ) = −[?1 log ?1 + (1 − ?1) log(1 − ?1)]

− [?0 log ?0 + (1 − ?0) log(1 − ?0)]

For a fixed LLM, the binarized latent feature Θ1

is a deterministic function of (Θ, -,. ). Therefore

� (�;Θ1 |-,. ) ≤ � (�; -,.,Θ|-,. ).

� (�; -,.,Θ|-,. ) = � (-,.,Θ|-,. )

− � (-,.,Θ|-,., �)

= � (Θ|-,. ) − � (Θ|-,., �)

= � (�;Θ|-,. )

In the following sections, we quantitatively analyze

the relationship between the internal representations

and confidence through � (�;Θ1 |-,. ) in different

regimes, positive � (�;Θ1 |-,. ) implies positive

� (�;Θ|-,. ).

A.2.1 Θ1 is highly informative about the (A
and (:

When the internal representation is highly informa-

tive about the (A and (: . X and n could be both

close to 1 or both close to 0. The former case

indicates that both events often happen together

and the latter case indicates one event often hap-

pens when the other event does not. Therefore,

both cases indicate the strong dependence of �

on (A and (: . When both X and n are close to 1,

?1 ≈ 0.5(U + V) and ?0 ≈ 1 − 0.5(U + V). When

both X and n are close to 0, ?0 ≈ 0.5(U + V) and

?1 ≈ 1−0.5(U+V). Introduce W = 0.5(U+V) ≥ 0.5

for simplification. In both cases, � (� |Θ1, -,. ) ≈

−%(Θ1 = 1) [W log(W) + (1 − W) log(1 − W)] −

%(Θ1 = 0) [W log(W) + (1 − W) log(1 − W)] ≈

−W log(W) + (1 − W) log(1 − W). The conditional

entropy is a concave function with respect to

W, which achieves maximum value at [ = 0.5.

� (�;Θ1 |-,. ) = � (� |-,. ) − � (� |Θ1, -,. ) ≈

log 2− W log W + (1− W) log(1− W) is non-negative

when W ≥ 1
2

A.2.2 Θ1 provides little information about (A
and (:

When Θ1 provides little information about

(A and (: , X and n are close to 0.5. Then

?1 ≈ 0.5 and ?0 ≈ 0.5. � (� |Θ1, -,. ) ≈

−%(Θ1 = 1) [0.5 log 0.5 + 0.5 log 0.5] − %(Θ1 =

0) [0.5 log 0.5 + 0.5 log 0.5] = log 2.

� (�;Θ1 |-,. ) = � (� |-,. ) − � (� |Θ1, -,. ) ≈

log 2 − log 2 is minimized near to 0.

A.2.3 (A and (: contributes to �

When (A and (: contributes positively to �, U

and V are close to 1. Then we get ?1 ≈ X+n
2

and

?0 ≈ 1 − X+n
2

. Introduce [ =
X+n

2
for simplifica-

tion. � (� |Θ1, -,. ) ≈ −%(Θ1 = 1) [[ log [ + (1−

[) log(1 − [)] − %(Θ1 = 0) [(1 − [) log(1 − [) +

[ log [] = −[ log [ + (1 − [) log(1 − [). The con-

ditional entropy is a concave function with respect

to [, which achieves maximum value at [ = 0.5.

� (�;Θ1 |-,. ) = � (� |-,. ) − � (� |Θ1, -,. ) ≈

log 2 − [ log [ + (1 − [) log(1 − [) is non-negative

[ ≥ 1
2
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A.2.4 (A and (: are not correlated to the �

When (A and (: are not correlated to the

�, U and V are close to 0.5. Then we get

?0 ≈ 0.5 and ?1 ≈ 0.5. � (� |Θ1, -,. ) ≈

−%(Θ1 = 1) [0.5 log 0.5 + 0.5 log 0.5] − %(Θ1 =

0) [0.5 log 0.5 + 0.5 log 0.5] = log 2.

� (�;Θ1 |-,. ) = � (� |-,. ) − � (� |Θ1, -,. ) ≈

log 2 − log 2 is minimized near to 0.

B High-Confidence Incorrect Answers

We further extend our analysis to specifically focus

on high-confidence incorrect answers, a critical

metric for evaluating the reliability of confidence

estimation methods. This analysis is crucial for

identifying overconfidence in model predictions,

which can have severe implications in high-stakes

scenarios. Following the guidelines suggested in

(Lin et al., 2022a; Mielke et al., 2022; Lin et al.,

2022a), we examine instances where the model,

despite incorrect predictions, assigns dispropor-

tionately high confidence levels — scores above

0.8. Figure 4 compares the percentage of high-

confidence incorrect predictions across various

confidence estimation methods. The results demon-

strate that InternalInspectormaintains a signif-

icantly lower percentage of high-confidence errors

across all datasets and tasks compared to other base-

lines. This performance underscores the enhanced

calibration capability of InternalInspector, ef-

fectively minimizing the risk associated with over-

confident misjudgments and thereby improving the

model’s overall reliability.

Figure 4: Percentage of high-confidence incorrect an-

swers across various tasks.

C Implementation Detail and

Hyperparameters

C.1 Encoder Architecture

We employed the ResNet18 architecture (He et al.,

2016) to encode the internal states of the LLM.

The deep residual learning framework of ResNet18

efficiently captures relationships both within and

across different layers of the LLM. In designing

the Transformer as an alternative encoder for our

experimental setup, we implemented an 8-layer

configuration without an input embedding mod-

ule, utilizing a model dimensionality of 3 = 768.

Each of these layers comprises a self-attention layer

and an MLP layer. Atop the feature representa-

tions obtained from either the Transformer or the

CNN encoder, we train a binary classifier consist-

ing of a multilayer perceptron (MLP) with three

layers. This MLP is configured with ReLU activa-

tion to effectively process and classify the nuanced,

high-dimensional encoded data. To enhance the

classifier’s robustness and prevent overfitting, L2

regularization and a dropout rate of 0.1 are incorpo-

rated into the MLP. It is optimized using a learning

rate of 0.001, ensuring stable and efficient learning

dynamics.

C.2 Computational Resources

We conduct our experiments on a server equipped

with four NVIDIA A100 Tensor Core GPUs. Train-

ing InternalInspector on various datasets is

efficiently completed in under four hours using two

of these GPUs.

C.3 Data Split

We train InternalInspector on the training split

of the datasets and evaluate its performance on the

test split.

D Result for Other Models

we have conducted experiments using GPT-2 XL

and Mistral 7B, alongside initial tests on LLaMA 7B.

Results from GPT-2 XL and Mistral 7B align closely

with those from LLaMA, reinforcing our confidence

estimation method’s robustness and generalizability.

This consistency across different architectures and

scales underscores the effectiveness of our method,

suggesting its applicability to a broader array of

LLMs.
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Model Factual QA Commonsense Reasoning Reading Comprehension

TriviaQA MMLU CommonsenseQA BoolQA SQuAD OpenBookQA

Baseline Models

Logit-Based 46.02 42.82 58.46 64.93 30.12 47.76

Temperature Scaling 50.62 54.09 62.98 67.23 36.83 49.09

Self-Evaluation (3-shot) 31.27 38.12 29.95 42.93 21.42 30.56

CSS 45.10 41.62 48.89 51.50 35.39 40.20

SAPLMA 56.17 55.60 57.20 66.40 41.50 57.10

Our Models

InternalInspectorTF 69.82 70.10 69.72 79.10 65.91 69.50

InternalInspectorCNN 71.49 79.62 72.64 84.03 70.92 73.57

w/o Contrastive loss 66.04 67.63 64.81 76.71 61.29 64.50

Table 6: Main result for Mistral 7B. Comparison with baseline confidence estimation methods. Best results are

highlighted in bold.

Model Factual QA Commonsense Reasoning Reading Comprehension

TriviaQA MMLU CommonsenseQA BoolQA SQuAD OpenBookQA

Baseline Models

Logit-Based 10.72 22.76 18.01 32.63 10.69 28.92

Temperature Scaling 12.29 26.08 20.83 38.49 13.35 32.90

Self-Evaluation (3-shot) 11.92 9.52 10.11 42.50 15.92 35.50

CSS 27.02 21.79 25.20 41.50 26.40 34.10

SAPLMA 33.39 32.89 31.62 46.27 31.45 39.30

Our Models

InternalInspectorTF 39.81 39.72 39.09 57.22 38.12 44.40

InternalInspectorCNN 42.5 41.23 44.85 52.10 40.88 47.70

w/o Contrastive loss 37.11 36.69 36.30 49.80 36.30 45.13

Table 7: Main result for GPT2-XL. Comparison with baseline confidence estimation methods. Best results are

highlighted in bold.

TriviaQA MMLU Commonsense QA BoolQA Squad QA Openbook QA

Shallow Layer [0-4] 9.10 11.89 8.35 13.43 17.82 7.32

Mid Layer [13-17] 55.23 60.50 57.82 61.90 45.10 58.90

Deep Layer [27-31] 61.82 52.85 64.03 58.48 64.39 46.20

Full [0-31] 71.49 79.62 72.64 84.03 70.92 73.57

Table 8: Analysis of Different Layer on Mistral 7B.

TriviaQA MMLU Commonsense QA BoolQA Squad QA Openbook QA

Shallow Layer [0-4] 4.15 8.62 3.02 4.20 3.40 6.15

Mid Layer [22-26] 21.50 23.02 19.60 35.10 22.80 21.50

Deep Layer [43-47] 34.92 37.30 31.02 43.78 37.50 35.60

Full [0-47] 42.5 41.23 44.85 52.10 40.88 47.70

Table 9: Analysis of Different Layer on GPT2-XL.
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Data In-domain Intra-domain Cross-domain

SCIQA 71.70 61.81 48.99

MMLU 79.62 66.20 56.10

BoolQA 84.03 72.52 58.24

Commonsense QA 72.64 61.21 47.44

Squad QA 70.92 59.24 49.18

Openbook QA 73.57 63.42 46.01

Table 10: Analysis of distribution shift on Mistral 7B

Data In-domain Intra-domain Cross-domain

SCIQA 40.52 34.84 20.95

MMLU 41.23 35.54 29.76

BoolQA 52.10 44.11 26.80

Commonsense QA 44.85 38.71 24.22

Squad QA 40.88 33.60 29.03

Openbook QA 47.70 40.36 31.72

Table 11: Analysis of distribution shift on GPT2-XL
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