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Abstract

Memory Editing (ME) has emerged as an ef-

ficient method to modify erroneous facts or

inject new facts into Large Language Mod-

els (LLMs). Two mainstream ME methods

exist: parameter-modifying ME and parameter-

preserving ME (integrating extra modules while

preserving original parameters). Regrettably,

previous studies on ME evaluation have two crit-

ical limitations: (i) evaluating LLMs with single

edit only, neglecting the need for continuous

editing, and (ii) evaluations focusing solely on

basic factual triples, overlooking broader LLM

capabilities like logical reasoning and reading

understanding. This study addresses these lim-

itations with contributions threefold: (i) We

explore how ME affects a wide range of funda-

mental capabilities of LLMs under sequential

editing. Experimental results reveal an intrigu-

ing phenomenon: Most parameter-modifying

ME consistently degrade performance across

all tasks after a few sequential edits. In contrast,

parameter-preserving ME effectively maintains

LLMs’ fundamental capabilities but struggles

to accurately recall edited knowledge presented

in a different format. (ii) We extend our evalu-

ation to different editing settings, such as lay-

ers to edit, model size, instruction tuning, etc.

Experimental findings indicate several strate-

gies that can potentially mitigate the adverse

effects of ME. (iii) We further explain why

parameter-modifying ME damages LLMs from

three dimensions: parameter changes after edit-

ing, language modeling capability, and the in-

context learning capability. Our in-depth study

advocates more careful use of ME in real-world

scenarios.

1 Introduction

Memory Editing (ME) was introduced as an ef-

fective method to correct erroneous facts or in-

ject new knowledge into Large Language Models

(LLMs). Previous ME methods can be roughly di-

vided into two categories: (1) parameter-modifying

ME methods, for example, MEND (Mitchell et al.,
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Figure 1: A comparison of two main limitations in

previous memory editing evaluations. (a) shows the

conventional method, assessing models after each edit,

focused solely on the modified knowledge triples. (b)

presents our approach, evaluating LLMs after a series of

edits to assess their overall impact on various capabilities

of LLMs, for a deeper insight into the enduring effects

of memory editing.

2022a), ROME (Meng et al., 2022a), and MEMIT

(Meng et al., 2022b), which directly modify a

small number of parameters within the model,

(2) parameter-preserving ME methods, such as

GRACE (Hartvigsen et al., 2022) and MELO (Yu

et al., 2023), which integrate additional modules

into the LLMs architecture without altering the

original model parameters.

Although ME has shown much promise, previ-

ous studies evaluating and analyzing ME methods

have two critical limitations, as depicted in Figure 1.

First, they only consider the performance of LLMs

after every single editing. However, in practice,

LLMs usually need to be edited sequentially, i.e.,

sequential memory editing, which edits the same

model multiple times to incorporate new knowl-

edge continuously. Sequential memory editing is

more important in real-world scenarios because new

knowledge always appears over time. Second, prior

research has predominantly concentrated on assess-

ing ME’s impact on factual knowledge. However, it

is crucial to evaluate ME’s influence on the broader

capabilities of LLMs, such as logical reasoning,
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multilingual proficiency, code generation, and so

on. Unfortunately, previous studies on evaluating

and analyzing ME tend to overlook these broader

aspects, hindering the popularity of ME methods

in practical applications.

To address these limitations, our study com-

prehensively evaluates the general capabilities of

memory-edited LLMs in sequential editing scenar-

ios. This evaluation involves four distinct ME meth-

ods, including three parameter-modifying ME meth-

ods - MEND (Mitchell et al., 2022a), ROME (Meng

et al., 2022a) and MEMIT (Meng et al., 2022b), and

one parameter-preserving ME method - GRACE

(Hartvigsen et al., 2022). We leverage three differ-

ent checkpoints of LLaMA-2 (Touvron et al., 2023),

consisting of LLaMA-2-7B, LLaMA-2-7B-Chat

and LLaMA-2-13B as base LLMs. The evaluation

framework spans six core capabilities of LLMs:

Professional Knowledge, Common Sense Knowl-

edge, Logical Reasoning, Reading Understanding,

Multilingual Proficiency, and Code Generation,

based on eight downstream evaluation benchmarks.

The experimental findings reveal varied im-

pacts of the parameter-modifying versus parameter-

preserving ME methods on LLMs in sequential

editing scenarios. Specifically, all parameter-

modifying ME methods systematically damage

all fundamental capabilities of LLMs after a few

sequential edits. On the contrary, the parameter-

preserving ME method, GRACE (Hartvigsen et al.,

2022), effectively maintains the core capabilities

of the model even after 100 sequential edits, with-

out any noticeable degradation in the performance

across various downstream tasks. However, models

edited using GRACE exhibit limited generalization,

suggesting that the edited model struggles to recall

the newly incorporated knowledge when it is pre-

sented in a different format. For example, if the

edited knowledge is “who is the CEO of Apple?

Tim Cook”, the post-edited model cannot correctly

answer the same question described differently -

“Who leads Apple as CEO?”

We then extend our analysis of parameter-

modifying ME methods - the ROME and MEMIT,

to more editing settings, including increasing the

model size, instruction tuning, editing different

layers, and the batch size of memory editing. In-

terestingly, experimental results indicate that larger

models show more robustness on multilingual and

code-generation tasks, while instruction tuning can

alleviate the decline in knowledge QA tasks. Be-

sides, editing deeper layers and increasing the batch

size are also beneficial to maintain the general ca-

pabilities of LLMs. However, these strategies can

not entirely overcome the observed performance

decline. Our findings underscore the inherent com-

plexity and challenges of applying ME in the se-

quential editing setting.

To explain how parameter-modifying ME meth-

ods damage the general capabilities of LLMs, we

further analyze the post-edited models from three

aspects: the changes in the model parameters, the

language modeling capability, and the in-context

learning capability. Experimental findings reveal

that with each sequential edit, there is an increasing

deviation in the model’s parameters from those of

the original model. This divergence is identified as

the primary cause of noted performance damage.

As a result of these parameter shifts, the language

modeling capability of post-edited LLMs suffers

a noticeable degradation after sequential edits. In-

terestingly, the post-edited LLMs can maintain the

in-context learning capability when editing shal-

low and deep layers instead of middle layers. Our

analysis provides insights into the understanding of

parameter-modifying ME methods and sheds light

on proposing new strategies to alleviate the damage

or new ME methods in the future.

In summary, our study makes several pivotal

contributions to the field:

• We pioneer a comprehensive evaluation of

post-edited LLMs to assess their general capa-

bilities in sequential memory editing scenarios.

Our study uniquely covers both types of ME

methods and examines their impacts across six

core capabilities of LLMs, revealing distinct

drawbacks.

• Our comprehensive experiments suggest that

instruction tuning, editing deeper layers, in-

creasing model size, and increasing the batch

size of memory editing are beneficial to mit-

igate the damage caused by the parameter-

modifying ME methods, but cannot entirely

overcome the adverse effect.

• We analyze the damage of ME to LLMs in three

dimensions: (1) parameter changes, (2) lan-

guage modeling capability, and (3) in-context

learning capability, which partially explains

how memory editing influences LLMs, provid-

ing insights for the development of new ME

methods and mitigation strategies.
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Figure 2: An overview of two categories of approaches

for memory editing. We adopt GRACE (Hartvigsen

et al., 2022) as an example of the parameter-preserving

ME method.

2 Related Work

Methods of Memory Editing From the perspec-

tive of whether the model parameters are modi-

fied, previous ME methods can be divided into

two categories: parameter-modifying ME methods

and parameter-preserving ME methods (Yao et al.,

2023), as illustrated in Figure 2. KN (Dai et al.,

2021), an example of the parameter-modifying ME

method, uses a knowledge attribution approach

to identify and adjust relevant neurons in a Feed

Forward Neural Network (FFN) layer. Similarly,

ROME (Meng et al., 2022a) and MEMIT (Meng

et al., 2022b) apply a Locate-Then-Edit strategy

to inject new facts into LLMs. They first conduct

causal analysis to pinpoint where the knowledge is

stored in models and then edit the located parame-

ters. Besides, meta-learning methods, for example,

KE (De Cao et al., 2021) and MEND (Mitchell

et al., 2022a), train a hypernetwork to estimate

alterations or gradients of models’ parameters for

modification. Regarding the parameter-preserving

ME methods, T-Patcher (Huang et al., 2023) and

CaliNET (Dong et al., 2022) introduce additional

neurons into the FFN layer. GRACE (Hartvigsen

et al., 2022) and MELO (Yu et al., 2023), on the

other hand, implement a discrete codebook to incor-

porate new knowledge. Besides, SERAC (Mitchell

et al., 2022b) proposes a counterfactual model to

handle the edited knowledge. Additionally, Mem-

Prompt (Madaan et al., 2022), and IKE (Zheng et al.,

2023a) explore prompt-based or in-context learning

strategies to update the knowledge of LLMs.

Evaluations and Analysis of Memory Editing

Recently, in addition to exploring new ME meth-

ods, evaluation and analysis of ME methods have

also drawn much attention. Hase et al. (2023) criti-

cally examines the limitations of causal tracing in

determining the specific layers to be edited in LLMs.

Ju and Zhang (2023) contribute a novel benchmark

for assessing knowledge localization methods in

LLMs. The scope of evaluation also extends to

more complex aspects of the robustness of ME.

For instance, Li et al. (2023a) introduces a bench-

mark dataset, underscoring two significant areas

of concern: Knowledge Conflict and Knowledge

Distortion. Similarly, Cohen et al. (2023) presents

a dataset designed to evaluate ME methods in six

challenging scenarios. In a related vein, Li et al.

(2023b) proposes the DepEdit framework, which

assesses ME methods by considering the interdepen-

dencies between a fact and its logical implications.

Regrettably, prior studies predominantly evaluate

post-edited models per edit rather than sequentially,

focusing narrowly on basic factual triples. Despite

Pinter and Elhadad (2023)’s caution, there is a

lack of experimental evidence, creating a gap in

understanding. To address this, our study conducts

comprehensive experiments, assessing the impact

of ME methods on the general capabilities of LLMs

in sequential editing scenarios. We provide de-

tailed analyses explaining the performance decline

across various tasks, offering insights for mitigating

damage or proposing improved ME methods.

3 Notation and Backgrounds

Following Meng et al. (2022a), we denote a fact

as a triple form (ĩ, Ĩ, ĥ), where ĩ represents a sub-

ject (e.g., Tim Cook), Ĩ represents a relation (e.g.,

the CEO of) and ĥ represents an object (e.g., Ap-

ple). Given a model Ĝ with parameter Ă, we have

ĜĂ (ĩ, Ĩ) = ĥ. Memory editing aims to directly edit

a model’s parameter: ĉā ( ĜĂ ) = ĜĂ ′ , to force the

model to remember a new knowledge denoted as

(ĩ, Ĩ, ĥ′), such that ĜĂ ′ (ĩ, Ĩ) = ĥ′ without chang-

ing other irrelevant facts. In the sequential model

editing problem, each edit is made to the model

after the last edit. We denote ĜĂ0
as the original

model, and ĜĂĪ−1
as the result model after Ī − 1

times edition. The Ī-th editing is ĉā ( ĜĂĪ−1
) = ĜĂĪ ,

satisfying ĜĂĪ (ĩĪ , ĨĪ ) = ĥĪ , where (ĩĪ , ĨĪ , ĥĪ ) is the

Ī-th new knowledge.

4 Experimental Settings

Base LLMs. We perform experiments on one

of the most popular open-source large language

models, LLaMA-2 (Touvron et al., 2023), in-
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Method Edit #. MMLU MBPP MATH BBH TyDiQA C3 ComQA AX-b Avg.

LLaMA 0 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

parameter-modifying ME methods

MEND

1 47.2 19.2 3.26 38.3 26.4 32.2 50.6 49.0 33.3
10 46.5 0.0 0.1 9.2 18.7 25.2 44.8 45.9 23.8
20 35.2 0.0 0.0 4.2 9.8 14.9 11.0 26.5 12.7
100 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2

ROME

1 46.9 17.6 3.3 38.4 26.8 32.0 49.6 45.5 32.5
10 46.6 17.8 3.3 38.3 27.0 32.6 50.2 45.2 32.6
20 34.3 18.4 2.6 33.8 24.1 28.9 20.6 51.5 26.8
100 25.5 2.8 1.0 28.8 8.0 23.2 19.0 38.4 18.3

MEMIT

1 46.7 18.4 3.4 38.3 26.8 32.0 50.6 45.9 32.8
10 46.7 16.6 3.2 37.8 26.7 32.9 51.1 45.4 32.6
20 25.3 16.6 1.9 32.4 19.5 15.5 19.7 31.2 20.3
100 22.9 0.0 0.0 0.0 0.0 0.0 0.49 1.8 3.1

parameter-preserving ME methods

GRACE 100 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

Table 1: Evaluation of four ME methods on eight tasks under the sequential editing setting for the LLaMA-2-7B

model. “Edit #.” refers to the number of individual edits (batch size = 1) applied sequentially to the model. “ComQA”

refers to the CommonsenseQA dataset. The scores for the MMLU, BBH, and TyDiQA datasets are the mean values

derived from all respective subsets.

cluding three different checkpoints: LLaMA-2-7B,

LLaMA-2-7B-Chat, and LLaMA-2-13B.

ME Methods. In this study, we select ROME

(Meng et al., 2022a), MEMIT (Meng et al., 2022b),

and MEND (Mitchell et al., 2022a) as representative

examples of parameter-modifying ME methods,

covering both Locate-Then-Edit methods (such as

ROME and MEMIT) and hypernetwork methods

(e.g., MEND). Regarding parameter-preserving ME

methods, we opt for GRACE (Hartvigsen et al.,

2022), a state-of-the-art method, as our chosen

method. Considering that MELO (Yu et al., 2023)

is built upon the same foundational framework and

employs the same constraint method as GRACE,

we decide to solely focus on GRACE. Furthermore,

in-context learning approaches are excluded from

our study, given that they do not modify parameters

or even add new modules into LLMs.

Datasets. We randomly select 100 samples from

the ZsRE (Levy et al., 2017) as the editing dataset.

To fully evaluate the fundamental capabilities of

LLMs, we consider six core aspects: Professional

Knowledge, Common Sense Knowledge, Logical

Reasoning, Reading Understanding, Multilingual

Proficiency, and Code Generation. Our evalua-

tion framework consists of eight main benchmarks:

MMLU (Hendrycks et al., 2020), BBH (Ghazal

et al., 2013), MATH (Hendrycks et al., 2021),

SuperGLUE-AX-b (Wang et al., 2019), Common-

senseQA (Talmor et al., 2018), C3 (Sun et al.,

2020), TydiQA (Clark et al., 2020), and MBPP

(Austin et al., 2021). Details of the experimental

settings and metrics corresponding to each dataset

are shown in Appendix B.

Evaluation Metrics. To evaluate whether

the post-edited model can successfully answer

questions about the new knowledge, we utilize

reliability, which checks if the edited model

successfully remembers the added knowledge,

and generalization, which checks if the edited

model recalls the new knowledge described

in different formats. Specifically, following

the notation in Section 3, we further denote

(ĩ′ě, Ĩ
′
ě, ĥě) a rephrased format of the knowledge

to be edited (ĩě, Ĩě, ĥě). Reliability is then for-

mulated as: E⊮

(

argmaxĥ Ĝ (ĥ | ĩě, Ĩě) = ĥě
)

,

while generalization is formulated as

E⊮

(

argmaxĥ Ĝ
(

ĥ | ĩ′ě, Ĩ
′
ě

)

= ĥě
)

. In our ex-

periments, we only use one different format

for each knowledge to calculate generalization.

In sequential editing scenarios, we define the

individual reliability and individual generalization

score to specifically assess the model’s accuracy

on the latest edit made in the most recent iteration.

These scores evaluate how effectively the model

integrates new information after each editing cycle.

Conversely, sequential reliability and sequential

generalization provide broader evaluations of the

model’s performance, considering the knowledge

edits from all previous iterations, not just the recent

ones.
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5 Evaluations of ME on LLMs

In this section, we explore the impact of the two

types of ME methods on LLMs in sequential editing

scenarios, aiming to quantify their damage to the

general capabilities of LLMs.

5.1 Evaluation of Parameter-Modifying ME

Methods

The evaluation results of the post-edited models

on eight datasets are shown in Table 1. Following

the initial edit, all the ME methods maintain per-

formance levels comparable to the baseline model

on eight benchmarks. However, after 10 sequential

edits, notable performance degradation is observed

with the MEND method, particularly in benchmarks

such as MBPP, MATH, TyDiQA, and C3. This

decline contrasts with other methods that show

relatively stable performance. After 20 edits, a

significant performance drop is evident in all three

parameter-modifying ME methods across all eval-

uation datasets. After 100 sequential edits, the

MEMIT and MEND fail in all tasks with nearly

zero scores except the MMLU dataset. Note that, as

described in Appendix B, each data instance in the

MMLU dataset comprises a question and four pos-

sible answers, thus a random choice score should

be around 25% which is similar to the evaluation

scores of all parameter-modifying ME methods

after 100 sequential edits, indicating that the post-

edited LLMs fail to answer all questions in the

MMLU dataset. All these results highlight the

systematic hurt of the parameter-modifying ME

methods on LLMs in sequential editing scenarios.

We report the individual and sequential scores

of reliability and generalization in Table 2. The

decline of the sequential reliability and generaliza-

tion indicates that in sequential editing scenarios,

post-edited models, edited by parameter-modifying

ME methods, forget previously edited knowledge

after several edits. Besides, the individual reliabil-

ity and generalization of the ROME and MEMIT

methods remain similar as the number of edits in-

creases, while the MEND method has a significant

decline, indicating that in sequential editing sce-

narios, the MEND method cannot successfully add

new knowledge into LLMs after several edits.

5.2 Evaluation of Parameter-Preserving ME

Method

The parameter-preserving ME method, GRACE,

introduces an additional codebook to store edited

Sequential Score Individual Score

Method Edit #. Rel. Gen. Rel. Gen.

parameter-modifying ME methods

MEND

1 80 80 80 80
10 79.3 74.8 86.8 87.7
20 39.1 44.1 67.2 68.1
100 0 0 13.6 13.9

ROME

1 80 80 80 80
10 66.7 69.7 93 87.3
20 53.3 52.4 90.3 85.7
100 52.3 49.5 93.3 90.4

MEMIT

1 80 80 80 80
10 87 87 86.4 83.2
20 22.4 25.3 88.3 88.1
100 0.07 0.06 87.7 85.4

parameter-preserving ME methods

GRACE 100 99.8 30.2 99.8 30.2

Table 2: The individual and sequential scores of relia-

bility, denoted as Rel. and generalization, denoted as

Gen. We evaluate the scores on the editing dataset.

knowledge. As described in Appendix A.1, it

applies a threshold to control whether the input

information uses the stored knowledge. In the ex-

periments in Table 1 and Table 2, we set 1 as the

value of the threshold. It is shown that such a

small threshold helps maintain the broad capabil-

ities of LLMs with no noticeable decline in the

performance on all downstream tasks. However, it

also restricts the post-edited model from correctly

answering the question about the edited knowledge

described in a different format. This results in a

low score of generalization, as illustrated in Table

2. We claim that a larger threshold increases the

generalization but fails to preserve the core capa-

bilities of LLMs. We discuss the influences of the

threshold in Appendix C.

6 Impact of Different Editing Settings

This section is dedicated to analyzing the influences

of ME in different editing settings. We focus on

four aspects: model size, instruction tuning, layers

to edit, and the batch size of memory editing.

Model Size. Figure 3 illustrates that all model

checkpoints edited by the ROME method, regard-

less of their size, show performance degradation

that correlates with the number of sequential edits.

Interestingly, an increase in model size appears to

have a protective effect, particularly in multilingual

understanding and code generation domains, as

shown in the TyDiQA and MBPP datasets. How-

ever, this protection does not extend to all areas.
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The post-edited LLMs with different sizes of 7B

and 13B suffer the same decline trend on knowl-

edge question-answering tasks, e.g., the MMLU and

CommonsenseQA datasets. We conjecture the rea-

son as: edited knowledge triples and the concerned

knowledge in the MMLU and CommonsenseQA

datasets are stored closer in the model’s param-

eters, compared to the concerned knowledge of

multi-lingual understanding or code generation. As

models scale up, a more precise separation between

the edited knowledge and concerned knowledge of

code generation and multi-lingual understanding

tasks emerges, potentially allowing for less disrup-

tive memory editing. We leave the proof of these

hypotheses as future work.

Figure 3: Evaluation of three different checkpoints of

LLaMA-2-7B on four datasets. We apply ROME as the

ME method.

Instruction Tuning. Compared with

LLaMA-2-7B, LLaMA-2-7B-Chat is further

instruction tuned to generate more natural

conversational responses. The implementa-

tion of instruction tuning, particularly in the

LLaMA-2-7B-Chat model, provides insightful

observations. As shown in Figure 3, despite the

overall performance degradation trend, instruction

tuning appears to impart a degree of robustness,

as evidenced by the enhanced stability across

MMLU and CommonsenseQA. This finding

suggests that instruction tuning might play a role

in safeguarding model capabilities against the

detrimental effects of memory editing, especially

for knowledge question-answering tasks, although

it does not entirely prevent performance losses.

However, instruction tuning does not help mitigate

the damage to code generation and multi-lingual

understanding tasks. We give a preliminary

explanation of this phenomenon in Appendix

D.2. The impact of instruction tuning on memory

editing suggests an intriguing area for further

investigation, especially regarding how it influences

the model’s capability to integrate and handle

edited information.

Layers to Edit. Inspired by (Hase et al., 2023),

we investigate the effects of editing different layers

in LLMs using the ROME and MEMIT methods.

Figure 4 shows a noticeable trend: editing layers

closer to the output (deeper layers) results in a

marginal decrease in performance while editing

shallower layers leads to significant performance

degradation. Specifically, when editing the 20th

layer of the LLaMA-2-7B model using ROME, the

model’s performance on CommonsenseQA after

100 editing iterations stands at 46.27%1. However,

editing shallower layers, such as the 5th, 10th, and

15th layers, severely impacts the model’s perfor-

mance, leading to significant deterioration after just

20 edits. Similarly, with MEMIT, editing layers

25 through 29 leads to a performance decrease of

just 9.6% from the post-first-edit outcomes. These

results indicate that the choice of layers for editing

in LLMs significantly impacts their general capa-

bilities, with deeper layers showing more resilience

to the editing process than shallower ones. We also

edit different layers using GRACE, whose results

are shown in Appendix D.5, suggesting a similar

conclusion as both ROME and MEMIT.

Figure 4: The performance of the LLaMA-2-7B model

on the CommonsenseQA dataset. LX represents editing

the X-th layer of the model, while LX~Y represents

editing layers between the X-th and the Y-th layer.

Batch Size of ME. In line with Meng et al.

(2022b), we conduct experiments to test the in-

fluence of varying batch sizes of memory editing.

Utilizing MEMIT to edit LLaMA-2-7B, we alter the

batch size from 1 to 1000. As shown in Figure 5,

1An intriguing observation emerges when we edit the 30th
layer using ROME, which is explained in Appendix D.3.
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with the same number of edit triples, increasing the

batch size means reducing the number of editing

times, which turns out to be beneficial in mitigating

the damage of ME to LLMs.

Figure 5: The performance of LLaMA-2-7B on Com-

monsenseQA, utilizing MEMIT as the editing method

with different batch sizes for memory editing. The x-axis

denotes the total number of edit triples. For example,

for the line of batch size 100, the first data point of this

line lies in the total number of edit triples 100, which

only edits the model once. BS denotes batch size.

Temperatures. In this experiment, we explore

how varying temperatures can affect the perfor-

mance of post-edited LLMs. Specifically, we apply

the ROME method to edit the 25th layer of LLaMA-

2-7B and subsequently evaluate its performance

on CommonsenseQA under different temperature

settings: 0, 0.2, 0.5, and 0.8. Our findings as shown

in Table 3, indicate a clear trend: as the inference

temperature increases, the edited model’s perfor-

mance deteriorates more rapidly. At a temperature

of 0, the model maintains a stable performance until

a significant number of edits are made, after which

the performance sharply declines to 0. However, at

higher temperatures (0.2, 0.5, and 0.8), the perfor-

mance starts to decrease more noticeably, even with

fewer edits. This result suggests that higher infer-

ence temperatures, which typically encourage more

diverse and less certain outputs, may exacerbate the

model’s vulnerability to memory editing, leading

to more pronounced performance degradation.

Number of Edits

Temp. 0 1 10 50 100 200 500 1000

0 49.6 49.6 50.2 44.8 44.6 38.8 1.2 0
0.2 49.6 49.6 50.1 45.1 47.8 36.7 0 0
0.5 49.6 49.6 44.6 43.7 46.6 32.4 0 0
0.8 49.6 49.6 42.1 40.2 42.3 31.2 0 0

Table 3: The evaluation results on CommonsenseQA

across different temperatures.

7 Interpreting Disruptions in LLMs

Caused by Memory Editing

To interpret the damage caused by parameter-

modifying ME methods, our investigation is struc-

tured around three pivotal aspects: (i) the model

parameter changes after being sequential edited, (ii)

the impact on the language modeling capability of

LLMs, and (iii) the in-context learning capacity.

This multifaceted exploration is designed to provide

a holistic understanding of how memory editing

affects LLMs.

7.1 Parameter Changes after Memory Editing

In this section, we investigate the changes between

the parameters of LLMs before and after sequen-

tial memory editing. We apply ROME as the ME

method and LLaMA-2-7B as the base model. We

use the Pearson product-moment correlation coef-

ficient (Ď) to measure the similarities between the

parameters of the original and edited layers within

the model. The correlation coefficient matrix, Ď,

ranges from -1 to 1. An Ď value of 1 indicates a

perfect positive linear correlation, implying that the

parameters in both the original and edited layers

are identical. Conversely, a value of -1 indicates

a perfect negative correlation, while a value of 0

suggests no similarity between the parameters."

Figure 6: Similarity score based on the Pearson product-

moment correlation coefficient, calculated between the

parameters of the original and edited model layers.

As illustrated in Figure 6, with fewer than 15

edits, the correlation coefficient (Ď) between the

edited and original layers remains high (e.g. close

to 1), indicating the significant similarity of the

parameters. However, with an increasing number

of edits, there is a marked decrease in similarity.

Such changes in the parameter lead to a “mismatch”

between the edited and original layers, which un-

dermines the model’s inherent coherence through

layers. Consequently, the model’s general capabili-

ties are significantly damaged.
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Number of Edits

Edit Layer 1 10 14 20 30 50 75 100

5 7.63 7.65 7.61 14.29 14.29 13.89 12.90 14.04

10 7.15 7.32 7.38 28.61 45.23 81.08 / /

15 7.61 7.48 81.24 50.09 21.25 28.48 29 634.93 17 220.91

20 7.61 7.75 7.69 8.12 8.09 9.48 10.67 11.15

25 7.63 7.61 7.73 8.81 15.77 18.35 31.26 9830.27

30 7.65 810.04 2477.53 603.46 49.09 78.39 1018.46 1444.29

Table 4: Perplexity scores computed by pre-trained Vicuna-7b-v1.5. The calculated texts were generated by the

edited LLaMA-2-7B. The result “/” means that the edited model fails to generate any response.

One interesting finding is that modifications in

deeper layers, especially the 20th, 25th, and 30th

layers, maintain relatively higher similarity scores

compared to editing the shallower layers. This

finding aligns with the experiments of editing differ-

ent layers in Section 6, where we find that editing

deeper layers results in a less pronounced decrease

in performance. This distinction highlights a key

architectural characteristic of LLMs: deeper lay-

ers, located closer to the output, exhibit greater

tolerance to modifications, effectively sustaining

the model’s performance. On the other hand, the

shallower layers, forming the foundational process-

ing stages of the LLMs, are more susceptible to

disruptions from edits, leading to more significant

performance degradations. This layered sensitiv-

ity within LLMs underscores the importance of

strategic layer selection in the editing process.

We argue that the diminishing similarity between

the edited and original layers is a primary factor

in the model’s reduced performance, disrupting its

internal coherence and substantially impacting its

performance in various tasks.

7.2 Language Modeling Capability

We hypothesize that the significant changes in the

edited layers damage the language modeling ca-

pability of LLMs. To validate this hypothesis,

we use Vicuna-7b-v1.5 (Zheng et al., 2023b) to

measure the Perplexity (PPL) of output sequences

generated by post-edited models edited by ROME.

CommonsenseQA is used as the evaluation dataset.

In our setting, we concatenate each question with

its corresponding generated answer and calculate

the perplexity solely for the first 20 tokens of the

answer portion. Answers with less than 20 tokens

are excluded to avoid the effect of sequence length

on the PPL. Additionally, we observe that in certain

instances, the post-edited models tend to produce

repetitive token sequences, which, while contribut-

ing to lower perplexity scores, are not meaningful

in the context of answering CommonsenseQA ques-

tions. To address this, we implement a penalty ratio

for repetitive sentences to ensure a more accurate

reflection of the model’s language modeling capa-

bility. The details of the formula to calculate the

adjusted perplexity are shown in Appendix E.1.1.

As illustrated in Table 4, after 100 sequential

edits, editing the 10th and 15th layers results in an

extremely high perplexity, which leads to a zero

score for the performance. On the other hand, edit-

ing the 5th layer results in a relatively low perplexity,

indicating that the model is not completely dam-

aged, although there is a significant decline in the

performance as shown in Table 1. Editing the 20th

layer maintains a lower perplexity, which guarantees

a high performance on CommonsenseQA. These

findings can explain the observations in Figure 4.

However, although editing the 25th and 30th layers

severely damages the language modeling capability

of LLMs, they still maintain very high performance

on CommonsenseQA, as shown in Figure 4. We

explain this by examining the in-context learning

capability in Section 7.3.

7.3 In-Context Learning Capability

We further investigate whether, after memory edit-

ing, LLMs can still maintain the in-context learning

capabilities. Wang et al. (2023) demonstrates that in

in-context learning, the shallow layers of LLMs ag-

gregate information from contexts into label words

(for example, the CommonsenseQA contains five

options as label words - A, B, C, D, or E), while

in deep layers, LLMs extract and use the aggre-

gated information of label words to perform the

final prediction. Inspired by this work, we evaluate

the post-edited LLM on SST2 (Socher et al., 2013)

where the label words are “positive” and “nega-

tive”, based on 1-shot in-context learning. We use

LLaMA-2-7B as the base LLM and edit it using
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ROME and MEMIT on different layers. To save

space, we describe the experimental setup and de-

tailed results in Appendix E.2. The experimental

results indicate that editing shallow (e.g. the 5th

layer) and deep layers (e.g. 20th, 25th, and 30th lay-

ers) does not significantly influence the in-context

learning capability of LLMs.

These findings also explain the phenomenon men-

tioned in Section 7.2 – although editing the 25th

and 30th layers severely damages the language mod-

eling capability of LLMs, they still maintain very

high performance on CommonsenseQA as shown

in Figure 4. The experiments illustrated in Figure

4 on CommonsenseQA are based on an 8-shot in-

context setting, and the first token of the generated

sequence is treated as the final prediction. Given the

maintenance of in-context learning capability, the

post-edited model is still able to correctly predict

the first token of the generated sequence, although

it fails to generate a meaningful sentence because

of the damage to language modeling capability.

8 Conclusions

We conduct a comprehensive evaluation of two

types of memory editing methods for LLMs across

eight diverse benchmarks. Our findings indicate

that parameter-modifying ME methods tend to sys-

tematically degrade the model performance on gen-

eral downstream tasks. In contrast, the parameter-

preserving ME method, GRACE, successfully main-

tains the LLMs’ capabilities but fails to maintain

generalization. We also show that increasing model

size, instruction tuning, editing deeper layers, and

increasing the batch size of memory editing are

beneficial to mitigate the damage of parameter-

modifying ME methods to LLMs. Finally, we

conduct an in-depth analysis of how parameter-

modifying ME methods hurt the general capabilities

of LLMs. Overall, our research provides compre-

hensive insights into the dynamics of how, when,

and why memory editing influences LLMs, offering

valuable guidance for future research on memory

editing.

9 Limitations

Despite the contributions, our study still has limi-

tations. Our experiments on parameter-preserving

ME methods are not exhaustive. As shown in Figure

4, there is an observed performance decrease after

100 edits when editing layers 20/25 with ROME.

Further experiments are needed to understand these

long-term effects. Besides, we do not completely

explain why LLMs can maintain in-context learning

capabilities after being sequentially edited. These

limitations highlight areas for future research, under-

scoring the need for more extensive investigations

to refine our understanding of the intricate balance

between knowledge editing and model integrity in

LLMs.
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A Editing Methods

We conduct our experiments on four ME methods.

The summary of each method is shown in Table

5. We introduce GRACE and ROME in detail in

the following sections. The MEMIT method is not

introduced as it is an improved version of ROME.

A.1 GRACE

GRACE (Hartvigsen et al., 2022) is a method de-

signed for sequential memory editing without al-

tering original model parameters. The GRACE

adapter, which is wrapped into a chosen layer of an

LLM, contains two components: (1) a codebook

that consists of a set of keys, denoted as K, and

values, denoted asV, and (2) deferral radii, denoted

as E, to decide whether the input information flow

uses the codebook. Specifically,K is a set of cached

activation ℎĢ−1 predicted by layer Ģ − 1. V is a set

of values that are randomly initialized and updated

using the LLMs’ loss for edits. Each key is corre-

sponding to a single value. The hyperparameter

Ċ ∈ E is a threshold for the similarity between the

new input and previous edited knowledge. GRACE

adapter is activated at layer Ģ only if this similarity

is smaller than the radius.

During editing, GRACE adds keys, correspond-

ing values, and Ċ entries. In the inference process,

at layer Ģ, if the similarity of the activation at layer

Ģ − 1 and keys are smaller than the corresponding

radius Ċ , the activation of the next layer becomes

the cached corresponding values. Formally, the

activation of Ģth layer is formulated as follows:

ℎĢ =

{

GRACE
(

ℎĢ−1
)

if minğ
(

Ě
(

ℎĢ−1,Kğ

) )

< Ċğ∗ ,

Ĝ Ģ
(

ℎĢ−1
)

otherwise

(1)

where ğ∗ = argminğ
(

Ě
(

ℎĢ−1
)

,Kğ

)

and Ĝ Ģ
(

ℎĢ−1
)

denotes the Ģ-th layer’s activation of the unedited

model. Ċğ and Kğ are the deferral radius and key

ğ. GRACE(ℎĢ−1) retrieves the corresponding value

associated with the closest key. Ě (.) is a distance

function. Following Hartvigsen et al. (2022), we

use Euclidean distance in our experiments.

As shown in our experiments in Section 5.2, the

hyperparameter Ċ is a trade-off between general-

ization and maintaining the broader fundamental

capabilities of LLMs.

A.2 ROME and MEMIT

ROME (Meng et al., 2022a) applies a Locate-then-

Edit strategy, which first utilizes the causal tracing
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Method
Additional
Training

Edit Layer Default Edit Parameter

Preserving Parameters GRACE NO FFN 30ĪℎģĢĦĦĨĥ Ġ

Modifying Parameters
MEND YES FFN ĉĥĚěĢℎįĦěĨ + 29/30/31ĪℎģĢĦ

ROME NO FFN 5Īℎ ģĢĦĦĨĥ Ġ
MEMIT NO FFN 4/5/6/7/8Īℎ ģĢĦĦĨĥ Ġ

Table 5: The details of memory editing methods. The edit parameter is in default for all checkpoints. We also

conduct the ablation study on edited layers where we specify the exact layers we edit. In the table, ģĢĦĦĨĥ Ġ means

the down project layer of the MLP layer, while ģĢĦ means we edit the gate/up/down project layers of the MLP layer.

method to ensure that MLP layers in LLMs play a

role in recalling factual knowledge, and then edits

specific MLP layers to integrate new knowledge

into LLMs. Following Meng et al. (2022a), we

denote the first layer of the Ģth MLP layer asē
(Ģ)

Ĝ ę
,

and the second layer asē
(Ģ)
ĦĨĥ Ġ

. ROME treatsē
(Ģ)
ĦĨĥ Ġ

as a linear associative memory, which claims that

any linear operation ē can work as a key-value

store for a set of Key-Value vectors denoted as ć =

[ġ1 |ġ2 | . . .] and Ē = [Ĭ1 |Ĭ2 | . . .], respectively. A

new key-value pair (ġ∗, Ĭ∗) can be injected intoē

by solving the following equation:

minimize ∥ē̂ć −Ē ∥ such that ē̂ ġ∗ = Ĭ∗. (2)

This can be solved by setting ē̂ = ē +

Λ
(

ÿ−1ġ∗
)Đ

, where ē is the original matrix,

ÿ = ććĐ is a pre-cached constant, and Λ =

(Ĭ∗ −ēġ∗) /
(

ÿ−1ġ∗
)Đ
ġ∗. In ROME’s work, ÿ

works as a constraint method to avoid edited pa-

rameters forgetting other unrelated knowledge. It

is computed using the hidden states ġ of 100,000

random samples from Wikipedia text. We eval-

uate whether the constraint method is beneficial

to mitigating the damage of ROME to the general

capabilities of LLMs in the Appendix D.1.

MEMIT (Meng et al., 2022b), which can edit

multiple knowledge at a time (e.g. batch editing),

is a following work of the ROME (Meng et al.,

2022a).

B Evaluation Datasets

To rigorously assess the impact of ME methods

on LLMs, we employ a diverse set of benchmarks

encompassing essential capabilities, including Pro-

fessional Knowledge, Common Sense Knowledge,

Logical Reasoning, Reading Understanding, and

Multilingual Proficiency. Our evaluation consists

of eight benchmarks, the specifics of which are de-

lineated in Table 6. We leverage the opencompass

codebase (Contributors, 2023), a widely recognized

open-source repository for LLMs evaluation. In

alignment with their established protocols, we adopt

the Perplexity (PPL) mode for the evaluation of the

MMLU dataset. For instance, in the MMLU dataset,

each item comprises a question and four possible

answers. We concatenate the question with each an-

swer option to create four distinct input sequences.

Subsequently, we compute the Perplexity for each

sequence using the edited LLMs under examination.

A lower Perplexity score indicates higher model

confidence in the corresponding sentence, thereby

guiding our selection of the answer with the low-

est score as the definitive prediction. Conversely,

for the remaining benchmarks, we utilize the Gen-

eration (GEN) mode for evaluation. Specifically,

for MATH, BBH, and TyDiQA, we ascertain the

accuracy of the model’s predictions against the

ground truth following a post-processing procedure.

Regarding the programming task MBPP, we em-

ploy Python’s built-in exec() function to verify the

error-free execution of the generated code.

C The Trade-off of the Threshold in

GRACE

As shown in Table 7, the generalization increases

rapidly when we increase the threshold from 1

to 20. However, the capabilities of multi-lingual

understanding and code generation are completely

damaged. One counter-intuitive finding is that the

performance of the MMLU is not hugely influenced.

We leave the explanation of this phenomenon as

future work.

D Additional Impact of Different Editing

Settings

D.1 Efficacy of Constraint Method in ROME

In our examination of ROME’s constraint method-

ologies, which incorporate 100,000 Wikidata en-

tries to limit the influence of edits on unrelated
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Capability Task Datasets #. Items Metrics Language Mode #. Shots

Professional
Knowledge

High School / University
Professional Examination

MMLU 15691 Acc. English PPL 5

Logical
Reasoning

Mathematical Reasoning MATH 5000 Acc. English GEN 4
Comprehensive Reasoning BBH 6511 Acc. English GEN 3

Textual Entailment AX-b 1104 Acc. English GEN 0

Common Sense
Knowledge

Knowledge
Question Answering

ComQA 1221 Acc. English GEN 8

Reading
Understanding

Reading Understanding C3 1825 Acc. Chinese GEN 0

Multilingual
Proficiency

Multi-Language
Question Answering

TyDiQA 6322 F1 13 languages GEN 0

Code
Generation

Code Generation MBPP 500 Pass. Code GEN 3

Table 6: The details of downstream evaluation benchmarks.

information, we analyze a variant of ROME with-

out constraints (ROME w/o C). Figure 3 illustrates

that applying constraints significantly enhances the

model’s performance in all datasets, validating the

effectiveness of this strategy. In the absence of

constraints, a marked deterioration in performance

is observed, notably in benchmarks like TyDiQA,

CommonsenseQA, and MBPP. This finding indi-

cates that unconstrained parameter modification

can severely impair the model’s efficacy, while the

application of constraints attenuates this negative

impact. However, it’s noteworthy that the effec-

tiveness of these constraints begins to wane after

approximately 20 edits. This observation highlights

an emerging need for innovative constraint method-

ologies in parameter modification, particularly in

the context of sequential memory editing. Devel-

oping more robust constraint mechanisms could

be vital to maintaining model performance and

integrity over a broader range of edits.

D.2 Explanation of Instruction Tuning

To preliminary explain why instruction tuning help

to safeguard model capabilities against the negative

effects of sequential editing, we conduct the fol-

lowing experiments on LLaMA-2-7B and LLaMA-

2-7B-Chat. Both of them are sequentially edited

100 times at the 5th layer, which is consistent with

the experimental setting in Figure 3. As described

in Section 7.1, parameter changes are one of the

possible reasons for the performance decline in

downstream tasks. Therefore, we compare the pa-

rameter changes of the two edited models. We

report the similarity score of edited parameters

and original parameters in Table 8. It is shown

that the parameter changes of the LLaMA-2-7B-

Chat model are always smaller than that of the

LLaMA-2-7B model, which indicates the potential

for less damage on the instruction tuning model

compared to the original model. Besides, as men-

tioned in Section 6, CommonsenseQA and MMLU

are highly different from MBPP (a code generation

task), and TyDiQA (a multi-lingual understanding

task). The instruction-tuned model is mainly tuned

for dialogue in English, which is largely different

from code generation and multi-lingual texts but

relatively similar to the English knowledge ques-

tions, which might be a potential reason for the

robustness of the instruction-tuned model on Com-

monsenseQA and MMLU after being edited.

D.3 Explanation of Editing Deeper Layers

In this section, we explain the phenomenon when

we edit the 30th layer of LLaMA-2-7B using ROME.

As shown in Figure 4, after 14 edits to the 30th layer,

the model’s performance intriguingly plummeted

to zero. However, a notable recovery occurred after

20 edits, with performance gradually increasing

to approximately 45% following 50 edits. This

unusual pattern can be attributed to the methodology

used in our evaluation, where we considered the first

token of the output generated by the edited model

as the final prediction. Initially, after 14 edits, the

model’s language modeling capability appeared to

be completely compromised. Yet, after 20 edits, the

model consistently predicted the first token as one

of the candidates - ’A, B, C, D, or E’ - although it

still failed to generate a coherent sequence beyond

this. This indicates that while the model retained

the capacity to predict the first token accurately,
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Layer Ċ C3 ComQA MBPP AX-b MMLU Rel. Gen.

20

1 27.07 44.1 15.8 46.56 46.8 99 30.2
5 27.07 44.1 15.2 45.92 46.8 98 45.0
10 27.01 39.72 15.2 41.58 46.8 99 52.1
20 10.36 12.19 0 14.49 46.2 98 97.3

30

1 32.1 49.6 18.2 45.9 46.8 99 27.2
5 32.1 49.6 18.2 45.9 46.8 99 28.1
10 28.55 46.36 17.4 45.02 46.8 99 41.5
20 24.25 42.06 16.4 43.97 46.8 99 51.8

Table 7: The evaluation results across different thresholds of GRACE. We edit the 20th and 30th layers in this

experiment, while in Table 1 where we only edit the 30th layer. We denote Ċ as the threshold. Rel. and Gen. are

reliability and generalization respectively, which is evaluated on the editing dataset.

Number of Edits

Model 1 10 20 50 75 100

7B 0.997 0.946 0.753 0.605 0.501 0.348
7B-Chat 0.999 0.949 0.775 0.625 0.525 0.361

Table 8: The similarity scores between edited models

and original models. 7B refers to LLaMA-2-7B and

7B-Chat refers to LLaMA-2-7B-Chat respectivately.

its broader language modeling capabilities were

significantly diminished. We delve into a more in-

depth analysis and explanation of this phenomenon

in Section 7, exploring this observation’s underlying

mechanisms and implications.

D.4 Long-term Effects of ROME Method

We extend our experiments in Figure 4 by sequen-

tially editing the 20th, 25th, and 30th layers of

LLaMA-2-7B 1000 times, and evaluating the edited

model on CommonsenseQA. As is shown in Table

9, after 500 edits, the model’s performance drasti-

cally declines, with almost complete degradation

observed after 1000 edits. Specifically, for layer

20, the performance drops from 46.2% after 100

edits to 0 after 1000 edits. Similar trends are noted

for the 25th and 30th layers, with performances

plummeting to zero after extensive editing. These

results illustrate the long-term effects of sequen-

tial memory editing on LLMs, revealing a critical

threshold beyond which the model fails to maintain

its capabilities, essentially ’entirely forgetting’ its

knowledge. This degradation not only confirms the

substantial impact of extensive ME but also high-

lights the necessity of developing more sustainable

editing approaches that can preserve the model’s

integrity over time.

Number of Edits

Edit Layer 100 200 500 1000

20 46.2 25.7 12.8 0
25 44.6 38.8 1.15 0
30 42.3 47.0 23.1 0

Table 9: The evaluation results on CommonsenseQA

across different editing layers of ROME.

D.5 Layers to Edit in GRACE Method

We also conduct experiments to edit different lay-

ers of LLaMA-2-7B using the GRACE method.

According to Table 10, with the same threshold,

editing the shallower layer results in more damage

to LLMs. This is because, in the shallow layer,

the activations are not much different for different

inputs because of the less calculation compared to

deeper layers. We claim that editing deeper layers

in GRACE is a better choice than that of shallower

layers.

Layer MMLU ComQA TyDiQA MBPP

10 23.1 8.7 0.1 0
20 46.8 39.7 22.8 16.4
30 46.8 46.4 23.42 17.4

Table 10: The evaluation results across different editing

layers of GRACE. The threshold is set by 10.

D.6 Different Editing Datasets

To ensure the robustness of our findings, we con-

duct further experiments using four different ran-

dom seeds to select distinct sets of 100 samples for

editing. These experiments are designed to assess

the variability in the impact of memory editing

across different subsets of the data. In these ex-

tended experiments, we apply the ROME method to

sequentially edit the 5th layer of the LLaMA-2-7B

model, with the evaluation conducted on Common-
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Figure 7: Evaluation Performance across three dif-

ferent checkpoints of LLaMA-2-7B. We denote the

ROME method without constraint strategy using 100,000

Wikipedia text as ROME w/o C.

senseQA. As is shown in Table 11, despite the

sample variance, there is a consistent trend of per-

formance degradation post-editing. Specifically,

after 100 sequential edits, all versions of the edited

LLM exhibit a significant performance decline, in-

dicating a general trend of damage across different

sample sets. However, it was also observed that the

rate of performance degradation varied among the

samples within the first 20 edits, suggesting that

some samples might induce faster degradation than

others.

Number of Edits

Sample Seed 1 10 20 50 100

a 49.6 49.1 20.6 20.1 19.0
b 49.6 49.2 48.5 31.6 22.1
c 49.6 49.1 46.7 25.4 21.2
d 49.6 49.1 24.7 20.2 19.5

Table 11: The evaluation results on CommonsenseQA

across different editing samples.

E Additional Analysis of the Damage to

LLMs by ME Methods

E.1 The Language Modeling Capability

E.1.1 Adjusted Perplexity

As described in Section 7.2, we proposed adjusted

perplexity as a measurement for the language mod-

eling capability of post-edited LLMs to avoid the

influence of the generated repetitive sequences. We

employ Vicuna-7b-v1.5 (Zheng et al., 2023b) to

measure the Perplexity of the output sequences gen-

erated by post-edited models edited by ROME to

answer questions in the CommonsenseQA dataset.

Specifically, denote a generated sequence with Ĥ

tokens as ĕ = (į1, į2, ..., įĤ), we calculate the

perplexity using the following equation:

PPL(ĕ ) = exp

{

−
1

Ī

Ī
∑

ğ

log ĦĂ (įğ | į<ğ)

}

(3)

where ĦĂ (įğ |į<ğ) is the log-likelihood of the ğth

token conditioned on the previous tokens į<ğ . How-

ever, such a naive approach is not applicable in our

situation because post-edited models tend to gen-

erate repetitive tokens, which leads to relatively

low perplexity. Therefore, we calculate the n-gram

repetitive ratio for each sequence. We first slice

the sequence into several n-gram fragments, then

we set the ratio of the number of unique fragments

over the total number of fragments as the repetitive

ratio Ā. Finally, we calculate the adjusted PPL is

calculated by:

Adj_PPL(ĕ ) = PPL(ĕ ) × ě1−Ā (4)

E.1.2 Additional Evaluation on the Language

Modeling Capability

In addition to applying pre-trained LLM to calculate

the perplexity of sequences generated by the edited

model, as described in Section 7.2 and E.1.1, we

also use the edited model to calculate the perplexity

of normal texts as another evaluation metrics of

the language modeling capability. Specifically, we

randomly select 1000 sequences from the WikiText-

103 dataset (Merity et al., 2016) and feed them

into edited LLaMA-2-7B to calculate the perplexity

scores. As is shown in Table 12, editing shallow

layers (especially for layers 10 and 15) damages the

model rapidly and severely. However, the model

retains more language modeling capabilities when

edited in deeper layers. This result is consistent

with the Table 4.

E.2 The In-Context Learning Capability

In-context learning, which concatenates several

demonstration-label pairs and the demonstration to

be predicted as input context, is one of the most

important capabilities of LLMs. Wang et al. (2023)

explain the success of LLMs in in-context learn-

ing, that in the shallow layers (near to input), the

model aggregates information from demonstrations

to label words, while in deep layers, the model
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Number of Edits

Edit Layer 0 1 10 14 50 100

5 10.6 12.71 12.72 13.01 13.23 18.31

10 10.6 18.33 18.99 50.15 417.64 1593.14

15 10.6 12.71 12.80 19.68 23.5 18 373.90

20 10.6 18.75 18.98 19.37 20.14 29.30

25 10.6 12.70 12.75 12.96 20.62 35.55

30 10.6 15.56 30.25 60.24 40.99 53.12

Table 12: Perplexity scores of standard texts, calculated by the edited LLaMA-2-7B, when different layers are

sequentially edited.

extracts and uses this information from previous

label words to form the final prediction. In this

section, we utilize the same way proposed by Wang

et al. (2023) to analyze whether the in-context learn-

ing capability has been influenced after sequential

edits. Specifically, we calculate the saliency score

(Simonyan et al., 2013) for each attention matrix:

ąĢ =

�

�

�

�

�

∑

ℎ

ýℎ,Ģ »
ĉL(Į)

ĉýℎ,Ģ

�

�

�

�

�

(5)

where L(Į) is the loss function of the task, ýℎ,Ģ

represents the value of attention matrix of the ℎ-th

attention head in the Ģ-layer and Į represents the

input. ąĢ (ğ, Ġ) is the significance of the information

flow from the ğ-th token to Ġ-th token. We denote

Ħğ as the ğ-th label words such as "True" or "False",

ħ as the target position in which the model predicts

labels, and ĭ as the words in demonstrations. ÿ

represents the number of label words. We have

three metrics as shown below:

ďĭĦ: the saliency score of information flow from

text part ĭ to label words Ħ:

ďĭĦ =

∑

(ğ, Ġ ) ∈ÿĭĦ
ąĢ (ğ, Ġ)

�

�ÿĭĦ

�

�

,

ÿĭĦ = {(Ħġ , Ġ) : ġ ∈ [1, ÿ], Ġ < Ħġ} .

(6)

ďĦħ: the saliency score of information flow from

label words Ħ to target position ħ:

ďĦħ =

∑

(ğ, Ġ ) ∈ÿĦħ
ąĢ (ğ, Ġ)

�

�ÿĦħ

�

�

,

ÿĦħ = {(ħ, Ħġ) : ġ ∈ [1, ÿ]} .

(7)

ďĦħ: the saliency of information flow except

ďĭĦ and ďĦħ:

ďĭĭ =

∑

(ğ, Ġ ) ∈ÿĭĭ
ąĢ (ğ, Ġ)

|ÿĭĭ |

ÿĭĭ = {(ğ, Ġ) : Ġ < ğ} − ÿĭĦ − ÿĦħ

(8)

We utilize SST-2 (Socher et al., 2013) as the

experimental datasets and one-shot setting. Ac-

cording to Figure 8, the original Llama-2-7B model

proves the claim proposed by Wang et al. (2023).

Specifically, in the shallow layer (from layer 0 to

layer 5), the line of ďĭĦ dominates, which shows

that the information is aggregating from text to

labels. While in the deep layer (from layer 6 to the

last layer), the line of ďĦħ dominates, indicating that

the label information is aggregating to the target

position. For the ROME method, editing layer 5 has

a slight influence on layers 6 to 10, which promotes

the information aggregating to label words process.

Because the change is not very obvious, the model

can still maintain an average score of 18.3% accu-

racy according to Table 1. While if we edit layer

15, due to the damage stored in layer 15, in the

deeper layer, there are some fluctuate between ďĭĦ

and ďĦħ, which shows unstable attention across

those layers, resulting in much worse performance

on CommonsenseQA as shown in Figure 4. The

same thing happens when we edit layers from 4th to

8th using the MEMIT method. It is shown that in

the deeper layer, the information fails to aggregate

form label words to target position, which explains

a worse average score of 3.8% according to Table

1. Finally, editing the 30th layer does not have

much influence on such an attention mechanism for

information flow. This means that the perplexity

capability is much different from the in-context

learning capability. Besides, this also partly ex-

plains why editing the 30th layer using ROME gives

a high performance after 100 edits.
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Figure 8: In-context learning saliency score

F Experiments on Other Models

In order to prove the robustness of our findings,

we conduct similar experiments on two different

models: Mistral-7B (Jiang et al., 2023) and GPT2-

XL (Radford et al., 2019).

F.1 Mistral-7B

We apply ROME to sequentially edit 1000 knowl-

edge on Mistral-7B and evaluate the edited model

on CommonsenseQA. As is shown in Figure 9, se-

quential memory editing completely damages LLM

after around 200 edits.

Figure 9: The performance of edited Mistral-7B on Com-

monsenseQA, utilizing ROME as the editing method

with different editing layers.

F.2 GPT2-XL

We further conduct the same experiments on GPT2-

XL. We use ROME to edit 1000 knowledge and

evaluate the edited model on CommonsenseQA and

WikiText. As is shown in Figure 10 and Table 13,

after sequentially editing GPT2-XL, although the

edited model can still successfully answer some

questions of CommonsenseQA, it fails to maintain

language modeling capabilities. One possible expla-

nation is that GPT-2-XL maintains high in-context

learning capabilities after sequential editing. As

explained in Section 7.3, maintaining the in-context

learning capability is helpful for the tasks Common-

senseQA. To prove this, following Appendix E.2,

we calculate the score of ďĭĦ, ďħĦ and ďĭĭ . As is

shown in Table 14, after 1000 edits, the GPT2-XL

still maintains the in-context learning capability,

which explains the reason why it maintains sim-

ilar results on CommonsenseQA after sequential

editing.

Figure 10: The performance of edited GPT2-XL on Com-

monsenseQA, utilizing ROME as the editing method

with different editing layers.
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Number of Edits

Layer 0 1 10 50 100 500 1000

5 41.1 41.2 41.4 41.9 470.9 910.7 1250.3
25 41.1 100.7 472.1 476.3 900.2 1025.7 1798.6
45 41.1 125.6 127.3 370.6 490.2 881.1 1697.9

Table 13: Perplexity scores of standard texts, calculated

by the edited GPT2-XL, when different layers are se-

quentially edited.

Layer

Score 0 5 10 15 20 25 30 35 40 45

ďĭĦ 0.68 0.61 0.3 0.17 0.13 0.01 0.02 0.01 0.01 0.01
ďħĦ 0.16 0.24 0.6 0.75 0.8 0.94 0.95 0.98 0.98 0.98
ďĭĭ 0.16 0.15 0.1 0.08 0.07 0.05 0.03 0.01 0.01 0.01

Table 14: The in-context learning salience score of each

layer of the edited GPT2-XL.
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