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An unusual class of equal mass p-wave universal trimers with symmetry LΠ = 1± is identified, for
both a two-component fermionic trimer with s- and p-wave scattering length close to unitarity and for
a one-component fermionic trimer at p-wave unitarity. Moreover, fermionic trimers made of atoms
with two internal spin components are found for LΠ = 1±, when the p-wave interaction between
spin-up and spin-down fermions is close to unitarity and/or when the interaction between two spin-
up fermions is close to the p-wave unitary limit. The universality of these p-wave universal trimers
is tested here by considering van der Waals interactions in a Lennard-Jones potential with different
numbers of two-body bound states; our calculations also determine the value of the scattering volume
or length where the trimer state hits zero energy and can be observed as a recombination resonance.
The faux-Efimov effect appears with trimer symmetry LΠ = 1− when the two fermion interactions
are close to p-wave unitarity and the lowest 1/R2 coefficient gets modified, thereby altering the
usual Wigner threshold law for inelastic processes involving 3-body continuum channels.

I. INTRODUCTION

In recent decades, ultracold quantum gases have made
major strides by implementing tunability of the two-body
interaction, as in the use of Fano-Feshbach resonances to
manipulate the s-wave scattering length or the p-wave
scattering volume in quantum gases[1, 2]. Through the
use of these techniques, many fascinating phenomena ex-
ist in many-body environments controlled by ultracold
collisions. For example, Bose-Einstein condensation was
observed with lithium[3–5] or potassium atoms[6] and
the BCS-BEC crossover has been extensively researched.
When the s-wave scattering length is positive and large
(as > 0), universal s-wave molecules exist, and when the
s-wave scattering length is negative and large (as < 0)
between two different spin fermions, there are long range
Cooper pairs in the gas[7–10].
The good quantum numbers here are the squared total

orbital angular momentum L and total parity Π, and we
use the notation LΠ to denote the various symmetries
referred to throughout this article. For identical bosons
with symmetry LΠ = 0+, when the s-wave scattering
length goes to negative infinity (as → −∞) for each pair
of the bosons, an infinity of geometrical energy levels
of trimer bound states exists. The three-body adiabatic
potential curve is attractive at long-range, which is the
now well-known Efimov effect[11–16].
Throughout the present study, we consider only situa-

tions involving three equal mass fermions. For this reason
we will not address any of the interesting phenomena that
arise with trimers consisting of unequal mass fermions,
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such as the Kartavtsev-Malykh trimers[17] or the other
unequal mass scenarios considered recently by Naidon
[18]. For trimers consisting of single-component fermions,
a p-wave Efimov effect in the symmetry LΠ = 1− was ini-
tially predicted by Macek and Sternberg et al.[19]. How-
ever, that prediction was disproven by effective field the-
ory; that prediction of a p-wave Efimov effect in zero-
range theory turned out to be unphysical since it led to
energy eigenstates having negative probability[14, 20]. In
fact it is now clear that for trimers consisting of fermions
in two spin components, there are no known symmetries
having an Efimov effect at s-wave unitarity. Braaten
et al. also found an Efimov effect at p-wave unitarity
when there is a strong p-wave interaction between the
third equal mass particle and each of the two identi-
cal fermions, for symmetries LΠ = 0+, 1± and 2+ or
two identical bosons with LΠ = 1+[21]. Nevertheless,
these equal mass cases of a predicted fermionic Efimov
effect have all been proven to be unphysical by Nishida
et al.[20].

It is informative to consider two things from the point
of view of the adiabatic hyperspherical representation:
(i) the reason why Macek and Sternberg claimed an Efi-
mov effect at p-wave unitarity for the 1− symmetry; and
(ii) how to understand the reason why the Efimov ef-
fect goes away upon closer analysis. To understand these
points, note first of all that there are two different ways
that the adiabatic hyperspherical approximation is com-
monly implemented.

In one of those, called the Born-Oppenheimer (B-O)
approximation, the effective potential Uν(R) is an eigen-
value of the fixed-R Hamiltonian, i.e. neglecting all
derivative terms with respect to the hyperradius R. This
approximation is commonly used, and it is especially ef-
fective when nonadiabatic couplings are small. More-
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over, one formal reason by the Born-Oppenheimer poten-
tial is used, i.e. neglecting the off-diagonal nonadiabatic
couplings and also the diagonal second-derivative “Born-
Huang” correction term,[22] is that it provides a lower
bound to the ground state energy of the system which
can be useful to know in some contexts. It is also worth
pointing out that in the conventional Efimov effect for 3
identical bosons at unitarity, the second-derivative Born-
Huang correction vanishes identically, and the Born-
Oppenheimer version of the theory is exact.

The second way of treating R as an adiabatic coor-
dinate, usually called the adiabatic approximation in-
cludes the second derivative diagonal correction as part
of the potential energy function, i.e. what is used
as the adiabatic potential curve is Wν(R) = Uν(R) −
ℏ
2

2µ ⟨Φν | ∂2

∂R2Φν⟩, where Φν is the corresponding fixed-R

Hamiltonian eigenfunction and where the integration is
only over the hyperangles (and spins). The present arti-
cle demonstrates that the failed cases mentioned above,
in which an Efimov effect with p-wave interactions was
predicted, but later proven to be incorrect and not to
exist, derive in the hyperspherical approach from neglect
of the Born-Huang term. When that second-derivative
diagonal correction is included, the adiabatic potential
curves are sufficiently more repulsive to eliminate the
Efimov effect that appeared to be there within the Born-
Oppenheimer approximation. In such cases, where an
apparent Efimov effect at the B-O level is shown to be
incorrect in the (corrected) adiabatic approximation, we
denote this here, as was introduced previously in [23], as
a faux-Efimov case. This faux-Efimov scenario is identi-
fied in the explorations presented below, for several other
trimer symmetries involving equal mass two-component
or single-component fermions.
Our explorations consider additional scenarios involv-

ing three equal mass fermions, with either a single-spin
component or with two components, and we find a trimer
state for symmetry LΠ = 1±. For instance, when the two
spin-up fermion interaction is tuned close to the p-wave
unitary limit, while the interaction between the spin-up
and spin-down fermions is fixed at the s-wave unitary
limit, a universal trimer state was found for three equal
mass fermions with symmetry LΠ = 1−[24].
Furthermore, our broadened understanding of Efimov

physics also demonstrates that the coefficient of R−2 in
the lowest continuum adiabatic potential curve at large
hyperradii frequently gets lowered at s-wave and/or p-
wave unitarity. This determines a class of collision or
photofragmentation threshold exponents, which become
modified when each pair of bosonic or fermionic or mixed
quantum gases approach either the s-wave[25, 26] or the
higher partial wave (p-wave) unitary limit[23, 27, 28].
The lowest three-body continuum adiabatic potential
curve is significant for the three-body recombination rate,
as the coefficient of 1/R2 controls the exponent in the
three-body continuum Wigner threshold law for all in-
elastic processes[24, 27, 29–31].
For example, for the two-component fermionic trimer

at large and negative s-wave scattering length (as ≪ 0),
the three-body recombination rate is proportional to
|as|2.455[27]. For large and positive s-wave scattering
length (as ≫ 0) on the other hand, the recombination
rate is proportional to a6s[27, 32, 33]. In previous studies,
the interaction between spin-up and spin-down fermions
was fixed at the s-wave unitary limit and with the p-wave
interaction between two spin-up fermions tuned through
large values of the p-wave scattering volume (Vp), the
three-body recombination rate (K3) was predicted to
scale as K3 ∝ |Vp|1.182[24].

In the ultracold many-body problem, therefore, with
each pair of particles interacting near either the s-wave
or p-wave unitary limit, Efimov physics plays a key role
to control the appropriate Wigner-type threshold law for
recombination and/or dissociation, which can determine
the experimental lifetime for such an ultracold quantum
gas of fermions.

Following a description of our methodology in Sec.II,
Section III introduces a different type of p-wave universal
trimer , for two-component fermions at simultaneous s-
and p-wave unitary limits. Both the faux-Efimov effect
and a p-wave universal trimer have been found to emerge
with trimer symmetry LΠ = 1−. The adiabatic poten-
tial curves from first to third p-wave pole are presented
to enable more detailed studies, and the universality of
the trimer state has been tested by using the derivative
of the same of all eigenphase shifts with various p-wave
poles. Also, the key coefficient of R−2 in the asymptotic
3-body adiabatic potential curves for different angular
momentum LΠ is discussed, with comparisons depending
on whether the interaction between each pair of fermions
is near the s- and/or p-wave unitary limit.

In section IV, cases with trimers having only their
pairwise p-wave interactions near unitarity are discussed.
The Efimov-physics-modified coefficient of R−2 in the
asymptotic adiabatic potential curve at p-wave unitary
limit has been determined and p-wave universal trimers
with different trimer symmetries are discussed. In sub-
section IVA, the p-wave interaction is only large be-
tween the spin-up and spin-down fermions, while the
two spin-up fermions have weak interaction. In subsec-
tion IVB, the interaction between each pair of fermion
has been tuned to p-wave unitarity. A remarkable case
of doubly-degenerate faux-Efimov and p-wave universal
channels[23] is introduced.

In section V, the p-wave universal trimer for three
equal mass and spin-up fermions at the p-wave unitary
limit with LΠ = 1± will be discussed. The lowest 60
adiabatic potential curves are shown and the correspond-
ing scattering eigenphase shifts are calculated in order to
identify low-lying resonance energies and decay widths.
Note that the present study considers only a single-
channel model of the two-body interactions, in contrast
to the two-channel model treated by Lasinio et al.[34]
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II. METHOD

The adiabatic hyperspherical representation has a
strong track record in describing few-body interactions
and collisional phenomena and is used here to analyze
the three-body quantum problem[2, 29, 35]. The three-
body adiabatic equation at fixed hyperradius R for three
equal mass fermions (or any other equal mass particles)
can be written as

Had(R; Ω)Φν(R; Ω) = Uν(R)Φν(R; Ω), (1)

whose eigensolutions are R-dependent and obtained by
diagonalizing the adiabatic Hamiltonian matrix in a
suitable basis set. Here we denote the eigenvalues
Uν(R) as the Born-Oppenheimer potential curves, and
the eigenfunctions Φν(R; Ω) are the corresponding chan-
nel functions. Ω represents the five hyperangles Ω ≡
(θ, φ, α, β, γ) plus any relevant spin degrees of freedom.
The adiabatic Hamiltonian contains all hyperangular de-
pendence and interactions, which can be defined as[36]

Had(R; Ω) ≡
ℏ
2Λ2(θ, φ)

2µ3bR2
+

15ℏ2

2µ3bR2
+ V (R, θ, φ), (2)

where the µ3b is the three-body reduced mass
and Λ2(θ, φ) is called the “grand angular-momentum
operator”[37]. The three-body interaction potential
V (R, θ, φ) is taken to be a sum of two-body interactions
V (R, θ, φ) = v1(r23) + v2(r31) + v3(r12), where rij repre-
sents the distance between two particles. For a detailed
explanation of this representation, please refer to the Ap-
pendix.
The two-body potential is the following, e.g., in the

case of the Lennard-Jones potential[38]

vi(r) = −C6

r6

(

1− λ6n
r6

)

. (3)

In this article, in our chosen set of van der Waals units,
the C6 coefficient is set at 16 r6vdWEvdW where rvdW is

the van der Waals length rvdW ≡ (mC6/ℏ
2)1/4/2, (µ =

m/2 is the two-body reduced mass here) and EvdW is the
van der Waals energy unit, EvdW ≡ ℏ

2/(2µr2vdW). The
parameter λn can be adjusted to produce any desired s-
wave scattering length or p-wave scattering volume for
a chosen pair of fermions. Here the two-body s-wave
scattering length and p-wave scattering volume can be
extracted from low energy s- and p-wave solutions of the
relative radial Schrödinger equation using the form:

k2L+1 cot(δL) = −1/aL
2L+1 +

1

2
rLk

2. (4)

Here a0(≡ as) is the s-wave scattering length, and a1(≡
ap) is the p-wave scattering length, δ0(k) is the s-wave
scattering phase shift, and δ1(k) is the p-wave scatter-
ing phase shift; the corresponding effective ranges are r0
and r1, with k the wave number. The s-wave scattering

length and p-wave scattering volume can be represented
as,

as = − lim
k→0

[

tan δ0(k)

k

]

, (5)

Vp = − lim
k→0

[

tan δ1(k)

k3

]

≡ a3p. (6)

Note that Eqs.(4)-(6) are still applicable for a long range
van der Waals tail, provided L ≤ 1. For clarity in the
discussions that follow, superscripts have been used on as
and Vp to specify the interactions between fermionic par-
ticles. Specifically, V ↑↑p denotes p-wave scattering volume

for two spin-up fermions (↑↑), while a↑↓s and V ↑↓p will re-
fer to the interactions between two-component fermions
(↑↓) or fermions in different spin states.
The adiabatic representation then expands the full de-

sired wave function ψE(R; Ω) in a truncated subset of the
complete orthonormal set of hyperangular eigenfunctions
Φν(R; Ω), each multiplied by a corresponding radial wave
function FE

ν (R) to be determined[39]:

ΨE(R; Ω) = R−5/2
∞
∑

ν=0

FE
ν (R)Φν(R; Ω). (7)

In order to diagonalize the adiabatic Hamiltonian Eq.(1),
our treatment follows the standard route that expands
the channel function into Wigner D functions, which ro-
tate from the laboratory frame into a body-fixed frame
coordinate system:

Φν(R; Ω) =

L
∑

K

ϕKν(R; θ, φ)D
L
KM (α, β, γ). (8)

The quantum numbers K and M represent the pro-
jection of the orbital angular momentum operator L

onto the body-fixed and space-fixed z-axes, respectively.
The parity can be written as Π = (−1)K , which gives

Π̂DL
KM = (−1)KDL

KM [37]. As is known from the nu-
clear and atomic collisions literature, a given symmetry
is called “parity favored” if Π = (−1)L, and is called
“parity unfavored” otherwise[40]. In the present sys-
tem, for the parity favored case, L − K is even and K
takes the values L,L − 2, ...,−(L − 2),−L. For the par-
ity unfavored case, L−K is odd, and K takes the values
L−1, L−3, ...,−(L−3),−(L−1). The details concerning
hyperspherical angles and their boundary conditions, as
well as the identification of modes associated with differ-
ent symmetries and parity, are further elaborated in the
Appendix.
The three-body Schrödinger equation can be writ-

ten using modified Smith-Whitten hyperspherical
coordinates[38, 41, 42] and after the rescaling transfor-
mation ψE ≡ R5/2Ψ, the equation becomes[36]:
[

− ℏ
2

2µ3b

∂2

∂R2
+

15ℏ2

8µ3bR2
+

ℏ
2Λ2(θ, φ)

2µ3bR2
+ V (R, θ, φ)

]

ψE

= EψE . (9)



4

Substitution of the truncated expansion Eq.(7) into
the Schrödinger equation Eq.(9) leads to a set of one-
dimensional coupled hyperradial differential equations:

[

− ℏ
2

2µ3b

d2

dR2
+Wν(R)− E

]

FE
ν (R)

+
∑

ν′ ̸=ν

(

− ℏ
2

2µ3b

)[

2Pνν′(R)
d

dR
+Qνν′(R)

]

FE
ν′ (R) = 0

(10)

In the above expression, E is the total energy and
Wν(R) is the effective adiabatic potential in channel ν:

Wν(R) ≡ Uν(R)−
ℏ
2

2µ3b
Qνν(R). (11)

The adiabatic potential includes the so-called ‘diago-
nal correction’ or ‘Born-Huang correction’ Qνν(R), while
we sometimes refer instead to the uncorrected ‘Born-
Oppenheimer’ potential curve Uν(R).

In the absence of Coulomb interactions, the asymptotic
effective adiabatic potentials in the 3-body continuum are
accurately characterized at R→ ∞ as[43]

Wν(R) →
ℏ
2le,ν(le,ν + 1)

2µ3bR2
=

ℏ
2[λν(λν + 4) + 15/4]

2µ3bR2
.

(12)
where le,ν controls the effective angular momentum bar-
rier of the three free asymptotic particles at large hy-
perradius (R → ∞) and ν represents the ν-th chan-
nel. In some references, the le,ν value has been recast
as le,ν = λν + 3/2. The le,ν value also determines the
scaling law of the three-body recombination rate and the
squared scattering matrix element, through the Wigner
threshold law |SLΠ

j←i|2∝ ki
2le,i+1[44]. The long-range ef-

fective adiabatic potential curves representing any atom
plus dimer channel can be represented asympotically as

Wν(R) → Eνl +
ℏ
2l′ν(l

′
ν + 1)

2µR2
. (13)

Here Eνl is the rovibrational dimer energy (two-body
bound state), l represents the dimer angular momentum,
ν is the ν-th channel, and l′ν is the angular momentum
of the third particle relative to the dimer.

III. TWO-COMPONENT FERMI TRIMERS AT

S-WAVE UNITARITY

Recently, a previously unknown type of p-wave uni-
versal trimer was predicted[24] to exist for three equal
mass fermionic atoms at the s-wave unitary limit, in
particular for the special value of the total angular mo-
mentum and parity, LΠ = 1−. Previously an s-wave
universal trimer with a different mass ratio between the
spin-up and spin-down fermions was comprehensively re-
searched by Kartavtsev et al. [17, 45]. That system

shows an Efimov effect when the mass ratio of majority-
spin (up) fermions (m↑) divided by the mass of the lone
spin-down fermion (m↓) is larger than 13.606 at s-wave
unitary limit, namely, as → ∞ with angular momentum
LΠ = 1−. Moreover, a first s-wave universal trimer oc-
curs when the mass ratio obeys m↑/m↓ > 8.172, and a
second one appears at mass ratio m↑/m↓ > 12.917[46].

Our studies demonstrate that, for the three equal mass
fermion system (i.e. with the mass ratio m↑/m↓ = 1),
a p-wave universal trimer will emerge when the p-wave
attractive interaction between spin-up fermions (V ↑↑p ) is
strengthened, while the different-spin fermions still retain
their near-infinite value of the s-wave scattering length
value, a↑↓s → ∞. Our prediction is that another type
of fermion trimer with three equal mass particles should
exist in the symmetry LΠ = 1−. Based on our previous
study[23] and other previous research by other groups,
an s-wave unitary channel exists for a two-component
fermionic trimer at the s-wave unitary limit (a↑↓s → ∞)
with angular momentum LΠ = 1−, for which the le value
in the le(le+1) coefficient of 1/(2µR2) in the lowest con-
tinuum channel is reduced (by the Efimov physics) to
the value le = 1.272[7, 25, 26]. If there is no interac-
tion between each pair of fermions or the hyperradius is
large and the potential converges to zero energy at in-
finity, the le value of the lowest continuum channels is
5/2. This theoretical prediction is supported by exper-
imental evidence of both s-wave and p-wave Feshbach
resonances in 40K systems near 200G, as demonstrated
in experiments by C.A. Regal et al.[47] and confirmed
theoretically by Suno et al.[29], which provide direct rel-
evance to the coexistence of s-wave and p-wave unitarity
in ultracold quantum gases.

At the same time, the interaction V ↑↑p at unitarity has
a modified lowest continuum channel where the le value
approaches to 0 asymptotically, which we have denoted
as a p-wave unitary channel. Owing to the presence of
this novel channel, the new type of trimer can be created
when the interaction between each pair of different-spin
fermions is set at the s-wave unitary limit with symmetry
LΠ = 1−.

Fig.1 shows the effect of tuning the p-wave scattering
volume characterizing the interaction between the two
spin-up fermions in a two-component fermionic trimer for
the symmetry LΠ = 1−. The s-wave interaction between
the spin-up and spin-down fermions is fixed at as → ∞.
If the Vp is negative and small, namely very weak in-
teraction between the pair of spin-up fermion, no trimer
states exist, consistent with the known inequality in the
mass ratio that is necessary for formation of the KM
trimer[17, 45].

However, if the absolute value of the p-wave scatter-
ing volume is increased beyond ≳ −12 r3vdW, a universal
trimer state can be discovered. Because both the hyper-
radial potential curve barrier and the depth of the lowest
three-body continuum potential curve get lower when Vp
gets larger and more negative (i.e., as the two-body in-
teraction gets more attractive between the two spin-up
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lowest and second-lowest values. In contrast, for the sym-
metries LΠ = 0+, 1+, and 2−, there is only one lowest
potential curve each, where the le,ν values also transition
from half-integer or irrational numbers to integers.

It should be kept in mind that there are no s-wave

interactions between spin-up and spin-down fermionic
atoms that are present for symmetries LΠ = 1+ and 2−.
Hence, going to the s-wave unitary limit for the interac-
tion between unequal spin fermions does not change the
coefficient of 1/R2 asymptotically for those two symme-
tries.

LΠ a↑↓
s V ↑↑

p le,ν
Trimer Exists? Trimer Exists? Universality
(w/o Qνν(R)) (w Qνν(R)) of Trimer?

0+

0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

no no no
∞ 0 1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2 23/2
0 ∞ 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
∞ ∞ 1 1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2

1+

0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2
no no no∞ 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

0 ∞ 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
∞ ∞ 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 yes no no

1−

0 0 5/2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
no no no∞ 0 1.272 3.858 9/2 5.216 13/2 13/2 7.553 17/2 17/2

0 ∞ 0 2 5/2 9/2 9/2 13/2 13/2 13/2 17/2
∞ ∞ 0 1.272 2 3.858 9/2 5.216 13/2 13/2 7.553 faux-Efimov yes yes

2−

0 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/2

no no no
∞ 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/2
0 ∞ 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
∞ ∞ 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2

TABLE I. Comparison of the 1st to 9th le,ν values for trimers consisting of two spin-up and one spin-down fermion (↓↑↑) with
the non-interacting values of le,ν . Cases considered involve different spin fermions (a↑↓

s ) that are either at s-wave unitarity or
else are noninteracting as are labeled in the Table. Other cases show the same spin fermions (V ↑↑

p ) either at p-wave unitarity or
noninteracting. The bold and underlined numbers correspond to the le,ν values of the s-wave unitary channel and the p-wave
unitary channel, respectively. The “ Trimer Exists” columns compared of the p-wave universal trimer status for different
symmetries LΠ, with the interaction a↑↓

s and V ↑↑
p fixed at unitary limit. The “faux-Efimov” effect is present in the lowest

Born-Oppenheimer potential curve and has a negative coefficient of 1/R2 asymptotically. The “Universality of Trimer” column
means that we have tested the different s- and p-wave poles for each pair of fermion assess the possibility that the bound trimer
energy is in fact universal.

IV. TWO-COMPONENT FERMIONIC

TRIMERS AT p-WAVE UNITARITY

This section treats two types of p-wave universal
trimers occurring for different symmetries, and explores
the extent of their universality. The first case has the in-
teraction between the different spin fermions set close to
p-wave unitarity while that between two spin-up fermions
is a comparatively weak interaction. The second case
considers the p-wave universal interaction between each
pair of fermions with various symmetries.

A. Opposite fermions only interact close to p-wave

unitarity

In this subsection, two cases are discussed, where the
p-wave two-body interaction is close to unitarity be-
tween either V ↑↓p or V ↑↑p . The situation where the V ↑↓p
at the p-wave unitarity limit and with weak interaction
V ↑↑p has been mentioned in previous work by Ref.[21]
where those authors originally claimed that there would
be a p-wave Efimov effect; however, in the hyperspher-
ical viewpoint, there is a faux-Efimov effect, as was de-

scribed above, where the infinite series of Efimov states
appears (incorrectly) to occur at p-wave unitarity if one
does neglects the diagonal Qνν(R), for trimer angular
momentum LΠ = 1−. This discrepancy arises due to the
neglect of the diagonal Qνν(R) elements in the hyper-
spherical formalism. While this term decays rapidly (as
R−3 or faster) at the s-wave unitarity limit, making its
contribution minimal and often negligible, the situation
changes at the p-wave unitarity limit. In this regime,
the Qνν(R) correction becomes significant and directly
affects the Born-Oppenheimer potential, leading to in-
correct predictions if omitted. This oversight can re-
sult in a faux-Efimov effect. Despite this evident flaw
in calculations that neglect the diagonal Q, it is useful
to neglect it intentionally in some problems, because the
Born-Oppenheimer approximation without Q is known
to provide a lower bound on the exact ground state of
the system.[55]

Additionally, it is important to note that , with V ↑↓p
close to the p-wave unitary limit, still also have an s-wave
two-body interaction in a Lennard-Jones potential, with
their s-wave scattering length around as ≈ 1.988 rvdW.
Thus the three-body Hamiltonian does still include s-
wave interactions even though they are far from unitar-
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ity. We stress that it is important to included the diago-
nal correction in general because it is part of the Hamil-
tonian. But, as previously mentioned in Sec.III B.2(in
Ref.[23]), there is no p-wave Efimov effect for symmetries
LΠ = 0+, 1+ and 1−, although we have found a single
p-wave universal trimer state for symmetry LΠ = 1+ in
the presence of van der Waals interactions. Fig.4 plots

the lowest three-body effective adiabatic potential curve
as a function of the p-wave scattering volume Vp between
spin-up and spin-down fermion for the trimer symmetry
LΠ = 1+. The interaction is fixed at V ↑↑p ≈ −2 r3vdW.
A universal three-body bound state can be formed when
the |Vp| grows very large in magnitude, as the hyperradial
potential barrier decreases and the depth of the relevant
effective adiabatic potential curve gets deeper.

LΠ V ↑↓p V ↑↑p le,ν
Trimer Exists? Trimer Exists? Universality
(w/o Qνν(R)) (w Qνν(R)) of Trimer?

0+

0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

no no no
∞ 0 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
0 ∞ 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
∞ ∞ 1 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2

1+

0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2 no no no
∞ 0 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 yes yes yes
0 ∞ 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 no no no
∞ ∞ 1 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 yes yes yes

1−

0 0 5/2 9/2 9/2 13/2 13/2 17/2 17/2 17/2 17/2 no no no
∞ 0 0 2 5/2 9/2 9/2 13/2 13/2 17/2 17/2 faux-Efimov no no
0 ∞ 0 2 5/2 9/2 9/2 13/2 13/2 17/2 17/2 no no no
∞ ∞ 0 0 2 2 5/2 9/2 13/2 13/2 17/2 two faux-Efimov yes yes

2−

0 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/2

no no no
∞ 0 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
0 ∞ 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
∞ ∞ 2 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2

TABLE II. Comparison of the 1st to 9th le,ν values characterizing the long range trimer adiabatic potentials for two spin-up
and one spin-down fermion (↓↑↑) in different cases. The first row for each symmetry displayed shows the lowest le,ν values
that occur for non-interacting particles of each symmetry. The next three rows for each symmetry give this crucial asymptotic
coefficient for different scenarios where some or all p-wave interactions are set at p-wave unitarity. The values that are underlined
integers represent new le,ν values that emerge only at the p-wave unitary limit. The “ Trimer Exists” columns compared of
the p-wave universal trimer status for different symmetries LΠ, with the interaction V ↑↓

p and/or V ↑↑
p fixed at unitary limit..

The “faux-Efimov” effect is present in the lowest Born-Oppenheimer potential curve and has a negative coefficient of 1/R2

asymptotically. The “Universality of Trimer” column means that we have tested the different p-wave poles for each pair of
fermion assess the possibility that the bound trimer energy is in fact universal.

The last three columns of Table II illustrate the p-wave
universal trimer status with respect to different symme-
tries LΠ. A p-wave universal trimer is predicted to exist
with trimer angular momentum LΠ = 1+, and its univer-
sality has been tested for various p-wave poles of the two-
body Lennard-Jones potential. There is a “faux-Efimov”
effect which has a negative 1/R2 coefficient in the Born-
Oppenheimer potential curve which neglects the diagonal
correction term. However, in the more relevant effective
adiabatic potential curves that include the diagonal cor-
rection, there is no actual Efimov effect and no p-wave
universal trimer with symmetry LΠ = 1−. Fig.5a shows
p-wave universal trimer state energies as functions of the

cubic root of the p-wave scattering volume (V
1/3
p ), which

were calculated by including 30 coupled continuum chan-
nel potential curves. Here the p-wave scattering volume
V ↑↓p and V ↑↑p represent the interaction between oppo-
site spin fermions and two spin-up fermions, respectively.

Different symbols represent the different interaction sit-
uations for V ↑↑p or V ↑↓p . Squares (filled gold) are fixed at
V ↑↑p = −2 r3vdW and we tune the value of V ↑↓p which the
universal trimer energy is around E ≈ −0.624EvdW. The
other two curves (diamonds and triangles) have the same
universal trimer energies, which is E ≈ −2.0216EvdW.
Diamonds (solid green) are set V ↑↑p = ∞ r3vdW and vary-

ing V ↑↓p . Triangles (solid red) show the fixed interaction

V ↑↓p = ∞ r3vdW and tune the V ↑↑p between equal spin

fermion. The diamond points have larger |V ↑↓p | than tri-
angle points at the zero trimer energy because there is
just one pair of fermion settings at the p-wave unitary
limit. In the calculation represented by triangles, there
are two pairs of Fermi gases fixed at the p-wave pole
(unitarity). Therefore, in the diamond case, the starting
point at which the universal trimer state exists needs to
have a large p-wave scattering volume (length).

B. Opposite and same spin fermions are all

interacting at the p-wave unitary limit.

In Fig.5a, the inverted-triangles plot of universal
trimer energies is shown as a function of the cubic root

of the p-wave scattering volume, and its energy at the
original (Vp → ∞) is close to E ≈ −2.0216EvdW. The
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(a)

(b)

FIG. 5. (color online). Shown are p-wave universal trimer
state energies for the system of one spin-down and two spin-
up fermions (↑↓↑), plotted versus the inverse cubic root of

p-wave scattering volume V
1/3
p . The V ↑↓

p and V ↑↑
p represent

respectively the p-wave scattering volume between unequal
spin fermion and same spin fermions. Circles (solid blue) show
the two-body p-wave bound state. Squares (solid gold) are for
fixed V ↑↑

p = −2 r3vdW and with V ↑↓
p tuned. Inverted-triangles

are with V ↑↑
p = V ↑↓

p being tuned. Diamonds (solid green)

are for a fixed V ↑↑
p = ∞ r3vdW and with V ↑↓

p tuned. Triangles

(solid red) are for fixed V ↑↓
p = ∞ r3vdW and with V ↑↑

p tuned.
The open (red) circles are for three spin-up fermion and all
interactions V ↑↑

p tuned simultaneously. (a), trimer symmetry

LΠ = 1+. (b), trimer symmetry LΠ = 1−

because the depth of the lowest effective adiabatic poten-
tial curve for LΠ = 1+ is much deeper than the case with
LΠ = 1−.
The last three columns of Table III show the p-wave

trimer universality status for different symmetries, both
with and without inclusion of the diagonal Qνν(R) cor-
rection. These results are similar to the previous table
for the case of two spin-up and one spin-down fermion,
all interactions set at the p-wave unitary limit. The in-
teresting “faux-Efimov” case occurs for the symmetry
LΠ = 1− and the universal trimer state exists for sym-
metries LΠ = 1+ and 1−. Evidence for the universality
of the universal trimer is shown in Fig.7, which plots the
adiabatic potentials for 3 spin-up fermion at the 3rd p-
wave pole and the derivative of the total eigenphase shift
as a function of energy. Fig.7b shows that the universal
p-wave trimer still exists when the interaction between
each pair of fermion is set at the third p-wave pole. The
corresponding trimer energy is around E = −2.006EvdW

which is close to previous results shown as open-circles
in Fig.5a.
In Fig.5b, the universal trimer energy for ↑↓↑ is higher

than ↑↑↑ (open circles), with values of approximately
E ≈ −0.41127EvdW and E ≈ −0.40982EvdW, re-
spectively. Not surprisingly, there are different non-
interacting coefficients of three-body continuum chan-
nels, a consequence of the fermionic antisymmetry. (See
TableII and TableIII for the non-interacting le,ν val-
ues.) Performing a 30 channel calculation would produce
slightly different universal trimer energies. The intersec-
tion of the curves with the x-axis identifies the point of
zero trimer energy, which is the free three-body thresh-
old, and it suggests how an ultracold atomic physics ex-
periment can find the recombination resonance associ-
ated with the universal trimer state. Fig.8 shows the
evidence that the p-wave universal trimer can be found
at different p-wave poles for three spin-polarized Fermi
gases with trimer symmetry LΠ = 1−. Fig.8a and 8c
plot the lowest 60 Born-Opennheimer potential curves at
the 2nd and 3rd p-wave pole, respectively. Fig.8b and
8d illustrate use of the sum of all eigenphases to obtain
the universal trimer (resonance) energies at the 2nd and
3rd p-wave pole, respectively. The two energies are very
close, which is evidence for the universality of the p-wave
trimer. Table III represents the comparison of the first
through ninth le,ν values for three spin-up fermions at
the p-wave unitary limit in different symmetries LΠ. In-
terestingly, there is a large Efimov reduction of the lowest
le,ν when p-wave two-body interaction goes to a divergent
scattering volume for the trimer symmetry LΠ = 0+, all
the way from le = 7.5 (non-interacting) to le = 1 (uni-
tarity).

VI. CONCLUSION

In summary, we have identified the universal trimer
states of three-fermion systems distributed among either
one or two spin states, for a number of different symme-
tries. The universal trimer energies have been found for

cases where each pair of ↑↓ fermions interacts at or near
unitarity for various s-wave and/or p-wave poles and for
scenarios where each pair of ↑↑ fermions interact at differ-
ent p-wave scattering volume poles. Tables I to III illus-
trate how the le,ν values controlling the long-range R−2

centrifugal barrier and relevant Wigner-type threshold
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LΠ Interaction le,ν Trimer (w/o Qνν) Trimer (w/ Qνν) Universality of Trimer

0+

a↑↓s = ∞ & V ↑↑p = ∞
1, 1.666, 4.628, 6.615, 7/2 no no no

1+ 1, 7/2, 11/2, 15/2, 15/2 yes no no
1− 0, 1.272, 2, 3.858, 9/2 faux-Efimov yes yes
2− 2, 9/2, 9/2, 13/2, 13/2 no no no

0+

V ↑↓p = ∞ & V ↑↑p = 0

1, 7/2, 11/2, 15/2, 15/2 no no no
1+ 1, 7/2, 11/2, 15/2, 15/2 yes yes yes
1− 0, 2, 5/2, 9/2, 9/2 faux-Efimov no no
2− 2, 9/2, 9/2, 13/2, 13/2 no no no

0+

V ↑↓p = ∞ & V ↑↑p = ∞
1, 1, 7/2, 11/2, 15/2 no no no

1+ 1, 1, 7/2, 11/2, 15/2 yes yes yes
1− 0, 0, 2, 2, 5/2 faux-Efimov*2 yes yes
2− 2, 2, 9/2, 9/2, 13/2 no no no

0+

↑↑↑ all at V ↑↑p = ∞
1, 15/2, 23/2, 27/2, 31/2 no no no

1+ 1, 7/2, 15/2, 19/2, 23/2 yes yes yes
1− 0, 2, 9/2, 13/2, 17/2 faux-Efimov yes yes
2− 2, 13/2, 17/2, 21/2, 25/2 no no no

TABLE IV. Comparison of the properties of two-component or one spin component fermionic trimers at s- and/or p-wave
unitarity for various symmetries LΠ. Shown are the le,ν values from the lowest adiabatic channel to the fifth adiabatic channel.
The integer le,ν values (underlined) represent the p-wave unitary channels, the non-integer and non-half-integer le,ν values
(bold) represent the s-wave unitary channels, and the half-integer le,ν values are the same as the values for noninteracting(NI)
three particles asymptotically (R → ∞). The third to fifth column show the assessment of the universality of trimer states
with and without the non-adiabatic diagonal Qνν(R) correction.

Nature 426, 537 (2003).
[7] D. Blume, J. von Stecher, and C. H. Greene, Universal

properties of a trapped two-component fermi gas at uni-
tarity, Phys. Rev. Lett. 99, 233201 (2007).

[8] J. von Stecher and C. H. Greene, Spectrum and dynam-
ics of the BCS-BEC crossover from a few-body perspec-
tive, Physical Review Letters 99, 090402 (2007).

[9] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Con-
version of an atomic fermi gas to a long-lived molecular
bose gas, Physical Review Letters 91, 080406 (2003).

[10] Q. Chen, J. Stajic, S. Tan, and K. Levin, Bcs–bec
crossover: From high temperature superconductors to ul-
tracold superfluids, Physics Reports 412, 1 (2005).

[11] V. Efimov, Energy levels arising from resonant two-body
forces in a three-body system, Physics Letters B 33, 563
(1970).

[12] V. Efimov, Energy levels of three resonantly interacting
particles, Nuclear Physics A 210, 157 (1973).

[13] P. Naidon and S. Endo, Efimov physics: a review, Re-
ports on Progress in Physics 80, 056001 (2017).

[14] E. Braaten and H.-W. Hammer, Universality in few-body
systems with large scattering length, Physics Reports
428, 259 (2006).

[15] Y. Wang, J. P. D’Incao, and B. D. Esry, Chapter 1 -
Ultracold Few-Body Systems, in Advances in Atomic,

Molecular, and Optical Physics, Vol. 62, edited by E. Ari-
mondo, P. R. Berman, and C. C. Lin (Academic Press,
2013) pp. 1–115.

[16] J. P. D’Incao, Few-body physics in resonantly interacting
ultracold quantum gases, Journal of Physics B 51, 043001
(2018).

[17] O. I. Kartavtsev and A. V. Malykh, Low-energy three-
body dynamics in binary quantum gases, Journal of
Physics B 40, 1429 (2007).

[18] P. Naidon, L. Pricoupenko, and C. Schmickler, Shallow
trimers of two identical fermions and one particle in res-
onant regimes, SciPost Phys. 12, 185 (2022).

[19] J. H. Macek and J. Sternberg, Properties of pseudopo-
tentials for higher partial waves, Phys. Rev. Lett. 97,
023201 (2006).

[20] Y. Nishida, Impossibility of the efimov effect for p-wave
interactions, Phys. Rev. A 86, 012710 (2012).

[21] E. Braaten, P. Hagen, H.-W. Hammer, and L. Plat-
ter, Renormalization in the three-body problem with
resonant p-wave interactions, Phys. Rev. A 86, 012711
(2012).

[22] M. Born and K. Huang, Dynamical theory of crystal lat-

tices (Oxford university press, 1996).
[23] Y.-H. Chen and C. H. Greene, Efimov physics implica-

tions at p-wave fermionic unitarity, Phys. Rev. A 105,
013308 (2022).

[24] Y.-H. Chen and C. H. Greene, P -wave Efimov physics
implications at unitarity, Physical Review A 107, 033329
(2023).

[25] F. Werner and Y. Castin, Unitary quantum three-body
problem in a harmonic trap, Phys. Rev. Lett. 97, 150401
(2006).

[26] M. D. Higgins, C. H. Greene, A. Kievsky, and M. Viviani,
Nonresonant density of states enhancement at low ener-
gies for three or four neutrons, Physical Review Letters
125, 052501 (2020).



14

[27] J. P. D’Incao and B. D. Esry, Scattering length scaling
laws for ultracold three-body collisions, Phys. Rev. Lett.
94, 213201 (2005).

[28] M. D. Higgins and C. H. Greene, Three and four iden-
tical fermions near the unitary limit, Phys. Rev. A 106,
023304 (2022).

[29] H. Suno, B. D. Esry, and C. H. Greene, Recombination
of three ultracold fermionic atoms, Phys. Rev. Lett. 90,
053202 (2003).

[30] J. D’Incao, B. Esry, and C. H. Greene, Ultracold atom-
molecule collisions with fermionic atoms, Physical Re-
view A 77, 052709 (2008).

[31] J. D’Incao and B. Esry, Suppression of molecular decay in
ultracold gases without Fermi statistics, Physical Review
Letters 100, 163201 (2008).

[32] D. S. Petrov, Three-body problem in fermi gases with
short-range interparticle interaction, Phys. Rev. A 67,
010703 (2003).

[33] Y. Ji, G. L. Schumacher, G. G. Assumpção, J. Chen,
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APPENDIX

The adiabatic hyperspherical representation has a
strong track record in describing few-body interactions
and collisional phenomena and is used here to analyze
the three-body quantum problem. In this Appendix, the
details of the hyperspherical coordinate setup will be dis-
cussed and demonstrated. Jacobi coordinates are a use-
ful tool for analyzing the many-body problem. For three
particles in free space, the mass-scaled Jacobi coordinates
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can be represented as[57]

−−→
ρ
(k)
i =

r⃗j − r⃗i
dij

, (A.1)

−−→
ρ
(k)
j = dij

(

r⃗k − mir⃗i +mj r⃗j
mi +mj

)

, (A.2)

where the ijk label the three particles and follow the
permutation rotation, the r⃗i is the position of particle
i with mass mi in the laboratory-fixed frame, and the
mass-weighting factor dij is given by[57]

d2ij =
mk(mi +mj)

µ3b(mi +mj +mk)
, (A.3)

µ2
3b =

mimjmk

mi +mj +mk
. (A.4)

Here µ3b is the three-body reduced mass; for the case
of three equal mass particles treated in this article,
dij = 21/231/4 and µ3b = m/

√
3. Few-body dynamics

and interactions are known to be efficiently treated us-
ing hyperspherical coordinates, in particular withing the
framework of the adiabatic approximation, for solving
the Schrödinger equation. The positive hyperradius can
be defined in terms of its square as[58–60]
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, (A.5)

where the hyperradius R can be viewed as a three-body
averaged distance that varies in the range R ∈ [0,∞).
In the body-fixed frame system, the z-axis for Jacobi

vectors in set k is chosen to be parallel to
−−→
ρ
(k)
i ×

−−→
ρ
(k)
j and

the corresponding body-fixed plane is perpendicular to
that z-axis. The Smith-Whitten-type hyperangles θ and
φ are defined in terms of the components of the Jacobi

coordinates in the body-fixed frame[61]:

[−−→
ρ
(k)
i

]

x

= R cos(π/4− θ/2) cos(φ/2 + φij/2),

[−−→
ρ
(k)
i

]
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= R sin(π/4− θ/2) sin(φ/2 + φij/2),

[−−→
ρ
(k)
i

]
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ρ
(k)
j

]

y

= R sin(π/4− θ/2) cos(φ/2 + φij/2),

[−−→
ρ
(k)
j

]

z

= 0, (A.6)

with

φ12 = 2arctan(m2/µ3b),

φ23 = 0,

φ31 = −2 arctan(m3/µ3b). (A.7)

For the three equal mass particles, φij would be φ12 =
2π/3 and φ31 = −2π/3. Note that the convention used
for the hyperangle φ defined in Ref.[41, 49] is different
from this article and from Ref.[61], and their relation is
φ = φprevious − 4π/3. The range of the hyperangle φ
for three distinguishable, for two identical, and for three
identical particles are [0, 5π/3], [0, π] and [0, π/3] respec-
tively. The range of the hyperangle θ is [0, π/2]. The
Jacobi matrix in the body-fixed frame can be rewritten
as[62]
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where the arguments of the matrix functions N(θ′) and
Q(φ′) are the hyperangles θ′ = π/4−θ/2 and φ′ = φ/2+
φ12/2, respectively. The N(θ′) and Q(φ′) are[61]

N(θ) =
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cos θ′ 0 0
0 sin θ′ 0
0 0 0
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 , Q(φ) =
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0 0
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(A.9)
The Jacobi matrix in the space-fixed frame ρsf can be represented by the transposed rotation matrix RT (α, β, γ)

times the body-fixed Jacobi matrix ρbf
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







= RT (α, β, γ)ρbf = RT (α, β, γ)RN(θ′)Q(φ′),



16

where the Euler angles are denoted: α, β and γ. The rotation matrix R(α, β, γ) is

R(α, β, γ) =





cos γ sin γ 0
− sin γ cos γ 0

0 0 1









cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ









cosα sinα 0
− sinα cosα 0

0 0 1



 . (A.10)

The three-body interaction potential V (R, θ, φ) is taken to be a sum of two-body interactions V (R, θ, φ) = v1(r23) +
v2(r31) + v3(r12). The interparticle distance rij can be written in these coordinates as

rij = 2−1/2dijR [1 + sin θ cos(φ+ φij)]
1/2

, (A.11)

with φ12 = 2arctan(m2/µ3b), φ23 = 0 and φ31 =
−2 arctan(m3/µ3b). There are three two-body coales-
cence points for three equal mass systems at φ = π/3, π,
and 5π/3; we should be careful to design the mesh grid at
the large hyperradius R. The Schrödiner equation in the
hyperspherical coordinate can be derived by taking the
lab-fixed frame Jacobi coordinates with Eq.(A.10). The
3-body Schrödinger equation is rewritten using modified
Smith-Whitten hyperspherical coordinates[38, 41, 42]:

{

− ℏ
2

2µ3b

[

1

R5

∂

∂R
R5 ∂

∂R
− Λ2(θ, φ)

R2

]

+ V (R, θ, φ)

}

Ψ = EΨ,

(A.12)
where Λ2(θ, φ) is called the “grand angular-momentum
operator” and is given by[2, 37]

ℏ
2Λ2(θ, φ)

2µ3bR2
= T̂θ + T̂φC + T̂r, (A.13)

where

T̂θ ≡ − 2ℏ2

µ3bR2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
, (A.14)

T̂φC ≡ 2

µ3bR2 sin2 θ

(

L̂φ − cos θ
L̂z

2

)2

, (A.15)

T̂r ≡ L̂2
x

µ3bR2(1− sin θ)
+

L̂2
y

µ3bR2(1 + sin θ)
+

L̂2
z

2µ3bR2
.

(A.16)

The operators L̂x, L̂y and L̂z are the component of total
spatial angular momentum L in the body-fixed frame
and L̂φ ≡ −iℏ ∂

∂φ . These body-frame angular momentum

operators obey the anomalous commutation relation,

[L̂x, L̂y] = −iℏL̂z, (A.17)

and cycle permutation. The Euler angles α, β, and γ
are involved in the operators L̂x, L̂y and L̂z and can be
presented as[60]:

L̂x = −iℏ
(

−cos γ

sinβ

∂

∂α
+ sin γ

∂

∂β
+ cotβ cos γ

∂

∂γ

)

,

(A.18)

L̂y = −iℏ
(

sin γ

sinβ

∂

∂α
+ cos γ

∂

∂β
− cotβ sin γ

∂

∂γ

)

,

(A.19)

L̂z = −iℏ ∂

∂γ
. (A.20)

It is convenient to perform a rescaling of the solution
in Eq.(A.12), through the transformation ψE ≡ R5/2Ψ.
The three-body Schrödinger equation Eq.(A.12) then
becomes[36],

[

− ℏ
2

2µ3b

∂2

∂R2
+

15ℏ2

8µ3bR2
+

ℏ
2Λ2(θ, φ)

2µ3bR2

+V (R, θ, φ)

]

ψE = EψE . (A.21)

The volume element relevant to integrals over ψ2
E is

2dR(sin 2θ)dθdφdα(sinβ)dβdγ.
The proper boundary conditions in the hyperangles

are crucial to apply correctly when solving the adiabatic
Schrödinger equation Eq.(1), and they can be derived
from the particle permutation requirements. The con-
tinuity condition for the channel function Φν(R; Ω) can
help us to reduce the computational range of φ, which
can be represented as:

Φν(R; θ, φ, α, β, γ) = Φν(R; θ, φ+ 2π, α, β, γ + π).
(A.22)

The permutation operators affect the hyperangles φ, the Euler angles and the Wigner D function as follows:
The Born-Oppenheimer potential and nonadiabatic

couplings are obtained by solving Eq.(1) for fixed val-
ues of the hyperradius R. For each R, the set of channel
functions Φν(R; Ω) are orthonormal,

∫

dΩΦµ(R; Ω)
∗Φν(R; Ω) = δµν , (A.23)

and complete

∑

ν

Φν(R; Ω)Φν(R; Ω
′)∗ = δ(Ω− Ω′). (A.24)

The nonadiabatic coupling matrices Pνν′(R) andQνν′(R)
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TABLE V. Behavior of the hyperangle φ, Euler angles and Wigner D function under the permutation operators[61].

Permutation φ α β γ DL
KM

P12 2π/3− φ α π + β π − γ (−)LDL
−KM

P23 2π − φ π + α π − β 2π − γ (−)LDL
−KM

P31 4π/3− φ π + α π − β π − γ (−)L+KDL
−KM

P12P31 2π/3 + φ α π + β π + γ (−)KDL
KM

P12P23 4π/3 + φ α π + β γ DL
KM

are defined as

Pνν′(R) ≡
∫

dΩΦ∗ν(R; Ω)
∂

∂R
Φν′(R; Ω), (A.25)

Qνν′(R) ≡
∫

dΩΦ∗ν(R; Ω)
∂2

∂R2
Φν′(R; Ω). (A.26)

By taking the hyperradial derivative of Eq.(A.23), one
readily sees that the Pνν′(R) matrix is anti-symmetric,
since the usual Condon-Shortley phase convention is
adopted and these matrix elements are all real. If one
next differentiates the above definition of Pνν′(R), this

gives a relation between Pνν′(R) and Qνν′(R), namely

d

dR
Pνν′(R) = −P 2

νν′(R) +Qνν′(R), (A.27)

where the P 2
νν′(R) matrix can be expressed as

P 2
νν′(R) =

∫

dΩ
∂

∂R
Φ∗ν(R; Ω)

∂

∂R
Φν′(R; Ω). (A.28)

According to the above properties of Pνν′(R), only the
P 2
νν′(R) component of Qνν′ is needed in order to solve

the one-dimensional radial coupled equation Eq.(10).


