Universal trimers with p-wave interactions and the faux-Efimov effect
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An unusual class of equal mass p-wave universal trimers with symmetry L' = 17 is identified, for
both a two-component fermionic trimer with s- and p-wave scattering length close to unitarity and for
a one-component fermionic trimer at p-wave unitarity. Moreover, fermionic trimers made of atoms
with two internal spin components are found for L' = 1%, when the p-wave interaction between
spin-up and spin-down fermions is close to unitarity and/or when the interaction between two spin-
up fermions is close to the p-wave unitary limit. The universality of these p-wave universal trimers
is tested here by considering van der Waals interactions in a Lennard-Jones potential with different
numbers of two-body bound states; our calculations also determine the value of the scattering volume
or length where the trimer state hits zero energy and can be observed as a recombination resonance.
The faux-Efimov effect appears with trimer symmetry L™ = 1~ when the two fermion interactions
are close to p-wave unitarity and the lowest 1/R? coefficient gets modified, thereby altering the

usual Wigner threshold law for inelastic processes involving 3-body continuum channels.

I. INTRODUCTION

In recent decades, ultracold quantum gases have made
major strides by implementing tunability of the two-body
interaction, as in the use of Fano-Feshbach resonances to
manipulate the s-wave scattering length or the p-wave
scattering volume in quantum gases[l, 2]. Through the
use of these techniques, many fascinating phenomena ex-
ist in many-body environments controlled by ultracold
collisions. For example, Bose-Einstein condensation was
observed with lithium[3-5] or potassium atoms[6] and
the BCS-BEC crossover has been extensively researched.
When the s-wave scattering length is positive and large
(as > 0), universal s-wave molecules exist, and when the
s-wave scattering length is negative and large (as < 0)
between two different spin fermions, there are long range
Cooper pairs in the gas[7-10].

The good quantum numbers here are the squared total
orbital angular momentum L and total parity II, and we
use the notation L™ to denote the various symmetries
referred to throughout this article. For identical bosons
with symmetry L' = 0%, when the s-wave scattering
length goes to negative infinity (as — —oo) for each pair
of the bosons, an infinity of geometrical energy levels
of trimer bound states exists. The three-body adiabatic
potential curve is attractive at long-range, which is the
now well-known Efimov effect[11-16].

Throughout the present study, we consider only situa-
tions involving three equal mass fermions. For this reason
we will not address any of the interesting phenomena that
arise with trimers consisting of unequal mass fermions,
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such as the Kartavtsev-Malykh trimers[17] or the other
unequal mass scenarios considered recently by Naidon
[18]. For trimers consisting of single-component fermions,
a p-wave Efimov effect in the symmetry L' = 1~ was ini-
tially predicted by Macek and Sternberg et al.[19]. How-
ever, that prediction was disproven by effective field the-
ory; that prediction of a p-wave Efimov effect in zero-
range theory turned out to be unphysical since it led to
energy eigenstates having negative probability[14, 20]. In
fact it is now clear that for trimers consisting of fermions
in two spin components, there are no known symmetries
having an Efimov effect at s-wave unitarity. Braaten
et al. also found an Efimov effect at p-wave unitarity
when there is a strong p-wave interaction between the
third equal mass particle and each of the two identi-
cal fermions, for symmetries L' = 0T, 1* and 2% or
two identical bosons with LT = 17[21]. Nevertheless,
these equal mass cases of a predicted fermionic Efimov
effect have all been proven to be unphysical by Nishida
et al.[20].

It is informative to consider two things from the point
of view of the adiabatic hyperspherical representation:
(i) the reason why Macek and Sternberg claimed an Efi-
mov effect at p-wave unitarity for the 1~ symmetry; and
(7i) how to understand the reason why the Efimov ef-
fect goes away upon closer analysis. To understand these
points, note first of all that there are two different ways
that the adiabatic hyperspherical approximation is com-
monly implemented.

In one of those, called the Born-Oppenheimer (B-0)
approximation, the effective potential U, (R) is an eigen-
value of the fixed-R Hamiltonian, i.e. neglecting all
derivative terms with respect to the hyperradius R. This
approximation is commonly used, and it is especially ef-
fective when nonadiabatic couplings are small. More-



over, one formal reason by the Born-Oppenheimer poten-
tial is used, i.e. neglecting the off-diagonal nonadiabatic
couplings and also the diagonal second-derivative “Born-
Huang” correction term,[22] is that it provides a lower
bound to the ground state energy of the system which
can be useful to know in some contexts. It is also worth
pointing out that in the conventional Efimov effect for 3
identical bosons at unitarity, the second-derivative Born-
Huang correction vanishes identically, and the Born-
Oppenheimer version of the theory is exact.

The second way of treating R as an adiabatic coor-
dinate, usually called the adiabatic approximation in-
cludes the second derivative diagonal correction as part
of the potential energy function, i.e. what is used
as the adiabatic potential curve is W,(R) = U,(R) —

%(@A;—;@l,}, where @, is the corresponding fixed-R
Hamiltonian eigenfunction and where the integration is
only over the hyperangles (and spins). The present arti-
cle demonstrates that the failed cases mentioned above,
in which an Efimov effect with p-wave interactions was
predicted, but later proven to be incorrect and not to
exist, derive in the hyperspherical approach from neglect
of the Born-Huang term. When that second-derivative
diagonal correction is included, the adiabatic potential
curves are sufficiently more repulsive to eliminate the
Efimov effect that appeared to be there within the Born-
Oppenheimer approximation. In such cases, where an
apparent Efimov effect at the B-O level is shown to be
incorrect in the (corrected) adiabatic approximation, we
denote this here, as was introduced previously in [23], as
a faux-Efimov case. This faux-Efimov scenario is identi-
fied in the explorations presented below, for several other
trimer symmetries involving equal mass two-component
or single-component fermions.

Our explorations consider additional scenarios involv-
ing three equal mass fermions, with either a single-spin
component or with two components, and we find a trimer
state for symmetry LT = 1%, For instance, when the two
spin-up fermion interaction is tuned close to the p-wave
unitary limit, while the interaction between the spin-up
and spin-down fermions is fixed at the s-wave unitary
limit, a universal trimer state was found for three equal
mass fermions with symmetry L = 17[24].

Furthermore, our broadened understanding of Efimov
physics also demonstrates that the coefficient of R=2 in
the lowest continuum adiabatic potential curve at large
hyperradii frequently gets lowered at s-wave and/or p-
wave unitarity. This determines a class of collision or
photofragmentation threshold exponents, which become
modified when each pair of bosonic or fermionic or mixed
quantum gases approach either the s-wave[25, 26] or the
higher partial wave (p-wave) unitary limit[23, 27, 28].
The lowest three-body continuum adiabatic potential
curve is significant for the three-body recombination rate,
as the coefficient of 1/R? controls the exponent in the
three-body continuum Wigner threshold law for all in-
elastic processes[24, 27, 29-31].

For example, for the two-component fermionic trimer

at large and negative s-wave scattering length (as; < 0),
the three-body recombination rate is proportional to
las|?455[27]. For large and positive s-wave scattering
length (as > 0) on the other hand, the recombination
rate is proportional to a8[27, 32, 33]. In previous studies,
the interaction between spin-up and spin-down fermions
was fixed at the s-wave unitary limit and with the p-wave
interaction between two spin-up fermions tuned through
large values of the p-wave scattering volume (V},), the
three-body recombination rate (K3) was predicted to
scale as K3 o |V,|1182[24].

In the ultracold many-body problem, therefore, with
each pair of particles interacting near either the s-wave
or p-wave unitary limit, Efimov physics plays a key role
to control the appropriate Wigner-type threshold law for
recombination and/or dissociation, which can determine
the experimental lifetime for such an ultracold quantum
gas of fermions.

Following a description of our methodology in Sec.II,
Section III introduces a different type of p-wave universal
trimer , for two-component fermions at simultaneous s-
and p-wave unitary limits. Both the faux-Efimov effect
and a p-wave universal trimer have been found to emerge
with trimer symmetry L' = 1~. The adiabatic poten-
tial curves from first to third p-wave pole are presented
to enable more detailed studies, and the universality of
the trimer state has been tested by using the derivative
of the same of all eigenphase shifts with various p-wave
poles. Also, the key coefficient of R=2 in the asymptotic
3-body adiabatic potential curves for different angular
momentum L™ is discussed, with comparisons depending
on whether the interaction between each pair of fermions
is near the s- and/or p-wave unitary limit.

In section IV, cases with trimers having only their
pairwise p-wave interactions near unitarity are discussed.
The Efimov-physics-modified coefficient of R~2 in the
asymptotic adiabatic potential curve at p-wave unitary
limit has been determined and p-wave universal trimers
with different trimer symmetries are discussed. In sub-
section IV A, the p-wave interaction is only large be-
tween the spin-up and spin-down fermions, while the
two spin-up fermions have weak interaction. In subsec-
tion IV B, the interaction between each pair of fermion
has been tuned to p-wave unitarity. A remarkable case
of doubly-degenerate faux-Efimov and p-wave universal
channels[23] is introduced.

In section V, the p-wave universal trimer for three
equal mass and spin-up fermions at the p-wave unitary
limit with L = 1% will be discussed. The lowest 60
adiabatic potential curves are shown and the correspond-
ing scattering eigenphase shifts are calculated in order to
identify low-lying resonance energies and decay widths.
Note that the present study considers only a single-
channel model of the two-body interactions, in contrast
to the two-channel model treated by Lasinio et al.[34]



II. METHOD

The adiabatic hyperspherical representation has a
strong track record in describing few-body interactions
and collisional phenomena and is used here to analyze
the three-body quantum problem[2, 29, 35]. The three-
body adiabatic equation at fixed hyperradius R for three
equal mass fermions (or any other equal mass particles)
can be written as

Haa(R; Q)@ (R;Q) = U, (R)®,(R; Q), (1)

whose eigensolutions are R-dependent and obtained by
diagonalizing the adiabatic Hamiltonian matrix in a
suitable basis set. Here we denote the eigenvalues
U,(R) as the Born-Oppenheimer potential curves, and
the eigenfunctions @, (R; ) are the corresponding chan-
nel functions. €2 represents the five hyperangles =
(0,0, a,B,7v) plus any relevant spin degrees of freedom.
The adiabatic Hamiltonian contains all hyperangular de-
pendence and interactions, which can be defined as[36]
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where the p3, is the three-body reduced mass
and A%(0,¢) is called the “grand angular-momentum
operator”[37].  The three-body interaction potential
V (R, 0, ) is taken to be a sum of two-body interactions
V(R,0,¢) = v1(r23) + v2(r31) + v3(r12), where 7;; repre-
sents the distance between two particles. For a detailed
explanation of this representation, please refer to the Ap-
pendix.

The two-body potential is the following, e.g., in the
case of the Lennard-Jones potential[38]

w) == 1 ”) 3)

In this article, in our chosen set of van der Waals units,
the Cg coefficient is set at 16 ngwEvdW where rqw is
the van der Waals length 7,qw = (mCs/h?)/4/2, (u =
m/2 is the two-body reduced mass here) and Fyqw is the
van der Waals energy unit, Fyqw = h%/(2ur?;w). The
parameter A,, can be adjusted to produce any desired s-
wave scattering length or p-wave scattering volume for
a chosen pair of fermions. Here the two-body s-wave
scattering length and p-wave scattering volume can be
extracted from low energy s- and p-wave solutions of the
relative radial Schrodinger equation using the form:

1
k22 cot(6,) = —1/ap? 1 + §mg2. (4)

Here ao(= as) is the s-wave scattering length, and a1 (=
ap) is the p-wave scattering length, do(k) is the s-wave
scattering phase shift, and d; (k) is the p-wave scatter-
ing phase shift; the corresponding effective ranges are rq
and 71, with k the wave number. The s-wave scattering

length and p-wave scattering volume can be represented
as,

. tan 50(]{3)

a; =~ lim [ k } ’ ®)
. tan 51(k) 3
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Note that Eqgs.(4)-(6) are still applicable for a long range
van der Waals tail, provided L < 1. For clarity in the
discussions that follow, superscripts have been used on ag
and V, to specify the interactions between fermionic par-
ticles. Specifically, VpTT denotes p-wave scattering volume
for two spin-up fermions (11), while al* and V¥ will re-
fer to the interactions between two-component fermions
(14) or fermions in different spin states.

The adiabatic representation then expands the full de-
sired wave function ¥g(R; Q) in a truncated subset of the
complete orthonormal set of hyperangular eigenfunctions
D, (R; ), each multiplied by a corresponding radial wave
function FF(R) to be determined[39]:

Up(R;Q) = R°/? i FE(R)®,(R; Q). (7)
v=0

In order to diagonalize the adiabatic Hamiltonian Eq.(1),
our treatment follows the standard route that expands
the channel function into Wigner D functions, which ro-
tate from the laboratory frame into a body-fixed frame
coordinate system:

L

O, (R;Q) = dru(R;0,9)Dicpr(e, 8,7). (8)
K

The quantum numbers K and M represent the pro-
jection of the orbital angular momentum operator L
onto the body-fixed and space-fixed z-axes, respectively.
The parity can be written as II = (—1)¥, which gives
DL, = (-1)XDL,,[37]. As is known from the nu-
clear and atomic collisions literature, a given symmetry
is called “parity favored” if II = (—1)L, and is called
“parity unfavored” otherwise[40]. In the present sys-
tem, for the parity favored case, L — K is even and K
takes the values L, L — 2,...,—(L — 2),—L. For the par-
ity unfavored case, L — K is odd, and K takes the values
L-1,L-3,...,—(L-3),—(L—1). The details concerning
hyperspherical angles and their boundary conditions, as
well as the identification of modes associated with differ-
ent symmetries and parity, are further elaborated in the
Appendix.

The three-body Schrédinger equation can be writ-
ten using modified Smith-Whitten hyperspherical
coordinates[38, 41, 42] and after the rescaling transfor-
mation ¢z = R%/ 2V, the equation becomes|36]:

n 02 15h2 H2A2(6, )
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Substitution of the truncated expansion Eq.(7) into
the Schrodinger equation Eq.(9) leads to a set of one-
dimensional coupled hyperradial differential equations:

{hz d?

_%TR? + W, (R) - E] FI/E(R)

-z (- 2’;) 2P (R) 15+ Qu ()] BER) =0

(10)

In the above expression, E is the total energy and
W, (R) is the effective adiabatic potential in channel v:

Wy(R)=U,(R) — m— Q. (R). (11)

The adiabatic potential includes the so-called ‘diago-
nal correction’ or ‘Born-Huang correction’ @, (R), while
we sometimes refer instead to the uncorrected ‘Born-
Oppenheimer’ potential curve U, (R).

In the absence of Coulomb interactions, the asymptotic
effective adiabatic potentials in the 3-body continuum are
accurately characterized at R — oo as[43]

B2ley(ley +1)
Wu (R) - QMSbRQ -

B2\ (A, +4) + 15/4]

23, R? '
(12)
where [, controls the effective angular momentum bar-
rier of the three free asymptotic particles at large hy-
perradius (R — oo) and v represents the v-th chan-
nel. In some references, the I., value has been recast
as le, = A\, + 3/2. The I, value also determines the
scaling law of the three-body recombination rate and the
squared scattering matrix element, through the Wigner
threshold law |STI [*oc k;2eiT1[44]. The long-range ef-
fective adiabatic potential curves representing any atom
plus dimer channel can be represented asympotically as

RAL(I, + 1)

E
WI/<R) — Ly + 2MR2

(13)

Here E,; is the rovibrational dimer energy (two-body
bound state), | represents the dimer angular momentum,
v is the v-th channel, and [/, is the angular momentum
of the third particle relative to the dimer.

III. TWO-COMPONENT FERMI TRIMERS AT
S-WAVE UNITARITY

Recently, a previously unknown type of p-wave uni-
versal trimer was predicted[24] to exist for three equal
mass fermionic atoms at the s-wave unitary limit, in
particular for the special value of the total angular mo-
mentum and parity, L' = 17. Previously an s-wave
universal trimer with a different mass ratio between the
spin-up and spin-down fermions was comprehensively re-
searched by Kartavtsev et al. [17, 45]. That system

shows an Efimov effect when the mass ratio of majority-
spin (up) fermions (m4) divided by the mass of the lone
spin-down fermion (m,) is larger than 13.606 at s-wave
unitary limit, namely, as — oo with angular momentum
L™ = 1=. Moreover, a first s-wave universal trimer oc-
curs when the mass ratio obeys m4/m; > 8.172, and a
second one appears at mass ratio mq/my > 12.917[46].

Our studies demonstrate that, for the three equal mass
fermion system (i.e. with the mass ratio ms/m; = 1),
a p-wave universal trimer will emerge when the p-wave
attractive interaction between spin-up fermions (VPTT) is
strengthened, while the different-spin fermions still retain
their near-infinite value of the s-wave scattering length
value, alt — oo. Our prediction is that another type
of fermion trimer with three equal mass particles should
exist in the symmetry L' = 1. Based on our previous
study[23] and other previous research by other groups,
an s-wave unitary channel exists for a two-component
fermionic trimer at the s-wave unitary limit (a]¥ — 00)
with angular momentum L™ = 1~ for which the I, value
in the l.(l. + 1) coefficient of 1/(2R?) in the lowest con-
tinuum channel is reduced (by the Efimov physics) to
the value I, = 1.272[7, 25, 26]. If there is no interac-
tion between each pair of fermions or the hyperradius is
large and the potential converges to zero energy at in-
finity, the I, value of the lowest continuum channels is
5/2. This theoretical prediction is supported by exper-
imental evidence of both s-wave and p-wave Feshbach
resonances in “°K systems near 200G, as demonstrated
in experiments by C.A. Regal et al[47] and confirmed
theoretically by Suno et al.[29], which provide direct rel-
evance to the coexistence of s-wave and p-wave unitarity
in ultracold quantum gases.

At the same time, the interaction VpTT at unitarity has
a modified lowest continuum channel where the [, value
approaches to 0 asymptotically, which we have denoted
as a p-wave unitary channel. Owing to the presence of
this novel channel, the new type of trimer can be created
when the interaction between each pair of different-spin
fermions is set at the s-wave unitary limit with symmetry
L"=1-.

Fig.1 shows the effect of tuning the p-wave scattering
volume characterizing the interaction between the two
spin-up fermions in a two-component fermionic trimer for
the symmetry L' = 1. The s-wave interaction between
the spin-up and spin-down fermions is fixed at a; — oo.
If the V, is negative and small, namely very weak in-
teraction between the pair of spin-up fermion, no trimer
states exist, consistent with the known inequality in the
mass ratio that is necessary for formation of the KM
trimer[17, 45].

However, if the absolute value of the p-wave scatter-
ing volume is increased beyond > —12 rédw, a universal
trimer state can be discovered. Because both the hyper-
radial potential curve barrier and the depth of the lowest
three-body continuum potential curve get lower when V),
gets larger and more negative (i.e., as the two-body in-
teraction gets more attractive between the two spin-up



fermions), the p-wave timer state is found to not have
the restriction for the mass ratio m4/m; > 8.172, and
it already exists for equal mass atoms. The p-wave uni-
tary channel (the dashed line where V, — —o0) might
initially appear to suggest the possibility of an Efimov
effect (corresponding to an complex value of ., value
corresponding to an attractive long-range potential curve
with negative coefficient of R=2). Indeed, if we con-
sider the Born-Oppenheimer potential curve which ne-
glects the diagonal non-adiabatic coupling @, (R), there
would be an Efimov effect with an infinity series of trimer
states. However, the effective adiabatic potential curves
that include this diagonal correction do not exhibit any
evidence of the true Efimov effect, and this corrected p-
wave unitary channel has an [, value that is very close to
Zero.
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FIG. 1. (color online). Shown are the lowest effective adia-
batic potential curves versus hyperradius for several different
p-wave scattering volumes (V,) in the van der Waals length
unit rvaw, for the system |11 with the interaction set at the
s-wave unitary limit for L' = 17. As |V,| gets larger, the po-
tential curve should approach the three-body threshold whose
value closes the [ = 0 in the adiabatic potential energy curve.
The inset plots the behavior of depth of effective adiabatic po-
tential curves versus the various scattering volume V.

The behavior of the p-wave universal trimer is next ex-
plored in the range from the first p-wave pole to the sec-
ond p-wave pole, still using a Hamiltonian based on two-
body Lennard-Jones potentials. Fig.2a shows the Born-
Oppenheimer potential curves for channels 1-30, keeping
the interaction alt fixed at the 15* s-wave pole and keep-
ing the interaction V,/T at the 2" p-wave pole. There are
six atom-dimer channels with p-, f-, and h-wave bound
states. Because there are six open channels, the sum of
the eigenphase shifts (the eigenphase sum) is employed
to analyze the p-wave universal trimer resonance ener-
gies. For the previous cases explored [23, 24], namely
two-component fermions (1}1) or three spin-up fermions
(111), the interactions were tuned to the s-wave and/or
p-wave unitary limit in the 15 pole, where no atom-dimer
channels are present. As there were no open channels so

40
20
: 0 h6
ﬁ ha
o
= -20
-40 4
[7)
-60 p2
/ . , . . PO
25 50 7.5 100 125 150 17.5 20.0
R/tvaw
(a)
400} .
300F .
g ]
‘U:Ié 2001 0.00475 _
) : ]
k] i
100} .
0 _I 1 1 1 I:
-0.140 -0.135 -0.130 -0.125 -0.120
E/Eyaw
(b)

FIG. 2. (color online). (a) Three-body Born-Oppenheimer
potential curves are presented for two spin-up and one spin-
down fermion (1/1) with symmetry L™ = 17. The interac-
tion is set at al¥ — oo with no deep dimers in different spin
states, and V;,TT is set at the 2°¢ p-wave pole, which has deep
p-, f- and h-wave bound states. The letter labeling the po-
tential curves converging to a negative energy represents the
angular momentum quantum number [ of the dimer, and the
number labels the relative angular momentum between the
third atom and the dimer I’. The inset shows the detail of
Born-Oppenheimer potential curves in the short range. (b)
Shown is the derivative of the sum of eigenphase shifts as a
function of energy which is proportional to the time delay
and corresponds to a resonance that is a universal p-wave
trimer; in this case, and the resonance peak is located around
E =-0.129 Eyaw.

we could solve for the trimer bound states using a multi-
channel calculation based on the slow-variable discretiza-
tion (SVD) method[48]. The eigenphase shifts §;(E) can
be obtained by diagonalizing the KC-matrix[49, 50] fol-
lowed by taking the arctan. Therefore, the total eigen-
phase shift can be written as[51, 52],

N, N,
biot (E) = ZME) = Ztanfl()\i), (14)



where )\; is the i-th eigenvalue of K-matrix, F is the
specified (collision) energy, and N, is the number of
open channels. Fig.2b illustrates the energy derivative
of the eigenphase sum in Eq.(14), proportional to the
total Wigner-Smith time-delay, a measure of the time a
particle spends in the interaction region during scatter-
ing, derived from the energy dependence of the phase
shift.[53] The resonance peak corresponds to the 3-body
p-wave universal energy which is £ = —0.129 E,qw. This
energy is close to the previous result obtained with the
interaction between the two spin-up fermions set at the
15¢ p-wave pole, which is E = —0.1355 E,qw.

Fig.3a plots the Born-Oppenheimer potential curves
obtained when Vpﬁ set at the 3'4 p-wave pole and where

the al¥ is set at the first s-wave pole (i.e. infinite al¥).
The inset shows the short-range behavior of these po-
tential curves. There are 16 atom-dimer channels, cor-
responding to two each of spin-polarized dimer p-, f-
, h- and j-wave bound states. The p-wave universal
trimer can also be found in this situation, and the ev-
idence is shown in Fig.3b. The peak is located at around
E = —0.129 E,qw which is similar to the universal trimer
energies for two spin-up fermions interacting at the 1%
and 24 p-wave poles.

The last three columns of Table I show the p-wave uni-
versal trimer state possibilities that have been observed
for different symmetries L™ in equal mass systems. In
some cases, p-wave universal trimers would appear to
occur in our calculations when the diagonal adiabatic
correction (also known as the Born-Huang correction)
Q.. (R) matrix element is omitted; in particular this oc-
curs for trimer angular momentum L' = 17 and 1~.
We have designated such cases as a “faux-Efimov” effect
which means that it only exists in the approximation
where the diagonal correction @Q,,(R) matrix element
is omitted from the effective adiabatic potential curve.
Specifically, the Born-Oppenheimer potential curve in
that case has a negative coefficient of R~2 and a com-
plex value of I, for the symmetry L' = 1~. However,
this case is not a true Efimov effect because the 1/R?
coefficient of the full three-body effective adiabatic po-
tential curve does not have any attraction at large R [see
Ref[23] Fig.7]. The p-wave universal trimer state identi-
fied here has symmetry L' = 17, and its universality is
tested by considering two-body interactions at different
s-wave poles for the unequal spin fermions and different
p-wave poles for the same spin fermions. Table I shows
the comparison of the [, value obtained when the s-
wave or p-wave interaction is tuned to the unitary limit
for unequal spin fermions and/or at the p-wave unitar-
ity limit between the two spin-up fermions with different
trimer angular momentum. If the spin-up and spin-down
fermions interact at s-wave unitarity, the [, value be-
comes modified at large hyperradii to an irrational num-
ber, which can be calculated by solving a transcendental
equation. Specifically, as shown Eq.(1) in Ref.[7], the en-
ergies B = (s, + 2n + 3/2)hw provide the necessary
framework for these calculations. Additionally, the tran-
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FIG. 3. (color online). (a) Three-body Born-Oppenheimer
potential curves for two spin-up and one spin-down fermion
(111) with total angular momentum and parity L' = 1.
The interaction al' is set at the s-wave unitary limit with
no deep opposite spin dimers, and VpTT is set at the 3™ p-
wave pole, which has deep p-, f-, h- and j-wave bound states.
The letter represents the angular momentum quantum num-
ber [ of the dimer, and the number labels the angular mo-
mentum I’ between the third atom and the dimer. The inset
shows expanded details of the Born-Oppenheimer potential
curves in the short range. (b) The derivative of the sum
of eigenphase shift is plotted as a function of energy near
the universal p-wave trimer, and the peak is located around
E = —0.129 Evqw. The resonance decay width in van der
Waals energy units is also indicated on the figure.

scendental equation for determining I, , is further elabo-
rated in Eq.(7) of Ref.[25] or in Eq.(42) of Ref.[54] These
new values (bold number) also change the I, value of
one of the degenerate states. However, the p-wave type
of the unitary channel (underlined and integer number)
does not modify the overall structure of the degenerate
state of l.,. It changes in the lowest potential curve,
and its [, values are an integer. For example, in the
third row of Table I, the [., values for the symmetry
LM = 1~ change from half-integer to integer for both the



lowest and second-lowest values. In contrast, for the sym-
metries L' = 0%, 1%, and 27, there is only one lowest
potential curve each, where the I, , values also transition
from half-integer or irrational numbers to integers.

It should be kept in mind that there are no s-wave

interactions between spin-up and spin-down fermionic
atoms that are present for symmetries L' = 1+ and 2~
Hence, going to the s-wave unitary limit for the interac-
tion between unequal spin fermions does not change the
coefficient of 1/R? asymptotically for those two symme-
tries.

Trimer Exists? Trimer Exists? Universality

LH aTl VTT l .
s P v (w/o Quu(R)) (W Quu(R)) of Trimer?
0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

o °© 0 1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2 23/2 o o o
0 oo 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
0o 00 1 1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2
0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

Lo 00 7/2 11/2 15/2 15/2 19/2 19/2 23/2  23/2 23/2 no no no
0 oo 1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
o oo 1 7/2 112 15/2 15/2 19/2 19/2 23/2 23/2 yes no no
0 0 5/2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 172

- oo 0 1.2723.858 9/2 5.216 13/2 13/2 7.553 17/2 17/2 no no no
0 co 0 2 5/2 9/2 9/2 13/2 13/2 13/2 17/2
co oo 0 1.272 2 3.858 9/2 5.216 13/2 13/2 7.553 faux-Efimov yes yes
0 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 212

oo o0 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/ . . .
0 oo 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 172
o oo 2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2

TABLE I. Comparison of the 1% to 9*" le, values for trimers consisting of two spin-up and one spin-down fermion ({11) with
the non-interacting values of l. .. Cases considered involve different spin fermions (azL ) that are either at s-wave unitarity or
else are noninteracting as are labeled in the Table. Other cases show the same spin fermions (Vpﬁ) either at p-wave unitarity or
noninteracting. The bold and underlined numbers correspond to the l., values of the s-wave unitary channel and the p-wave

unitary channel, respectively.

The ¢ Trimer Exists” columns compared of the p-wave universal trimer status for different

symmetries L, with the interaction al¥ and VpTT fixed at unitary limit. The “faux-Efimov” effect is present in the lowest
Born-Oppenheimer potential curve and has a negative coefficient of 1/ R? asymptotically. The “Universality of Trimer” column
means that we have tested the different s- and p-wave poles for each pair of fermion assess the possibility that the bound trimer

energy is in fact universal.

IV. TWO-COMPONENT FERMIONIC
TRIMERS AT p-WAVE UNITARITY

This section treats two types of p-wave universal
trimers occurring for different symmetries, and explores
the extent of their universality. The first case has the in-
teraction between the different spin fermions set close to
p-wave unitarity while that between two spin-up fermions
is a comparatively weak interaction. The second case
considers the p-wave universal interaction between each
pair of fermions with various symmetries.

A. Opposite fermions only interact close to p-wave
unitarity

In this subsection, two cases are discussed, where the
p-wave two-body interaction is close to unitarity be-
tween either VpN or Vpﬁ. The situation where the pr
at the p-wave unitarity limit and with weak interaction
VT has been mentioned in previous work by Ref.[21]
where those authors originally claimed that there would
be a p-wave Efimov effect; however, in the hyperspher-
ical viewpoint, there is a faux-Efimov effect, as was de-

scribed above, where the infinite series of Efimov states
appears (incorrectly) to occur at p-wave unitarity if one
does neglects the diagonal @,,(R), for trimer angular
momentum LT = 17, This discrepancy arises due to the
neglect of the diagonal @,,(R) elements in the hyper-
spherical formalism. While this term decays rapidly (as
R~3 or faster) at the s-wave unitarity limit, making its
contribution minimal and often negligible, the situation
changes at the p-wave unitarity limit. In this regime,
the Q.. (R) correction becomes significant and directly
affects the Born-Oppenheimer potential, leading to in-
correct predictions if omitted. This oversight can re-
sult in a faux-Efimov effect. Despite this evident flaw
in calculations that neglect the diagonal @, it is useful
to neglect it intentionally in some problems, because the
Born-Oppenheimer approximation without @ is known
to provide a lower bound on the exact ground state of
the system.[55]

Additionally, it is important to note that , with me
close to the p-wave unitary limit, still also have an s-wave
two-body interaction in a Lennard-Jones potential, with
their s-wave scattering length around as =~ 1.988 ryqw.
Thus the three-body Hamiltonian does still include s-
wave interactions even though they are far from unitar-



ity. We stress that it is important to included the diago-
nal correction in general because it is part of the Hamil-
tonian. But, as previously mentioned in Sec.IIT B.2(in
Ref.[23]), there is no p-wave Efimov effect for symmetries
L™ = 0F, 17 and 1~, although we have found a single
p-wave universal trimer state for symmetry L = 17 in
the presence of van der Waals interactions. Fig.4 plots

the lowest three-body effective adiabatic potential curve
as a function of the p-wave scattering volume V,, between
spin-up and spin-down fermion for the trimer symmetry
L' = 1%, The interaction is fixed at VT ~ =272,
A universal three-body bound state can be formed when
the |V,| grows very large in magnitude, as the hyperradial
potential barrier decreases and the depth of the relevant
effective adiabatic potential curve gets deeper.

Trimer Exists? Trimer Exists? Universality

Ly yit ! !
PP &V (w/o Quu(R)) (wQu,(R)) of Trimer?
0 0 7/211/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2

o 00 0 1 7/2 11/215/2 15/2 19/2 19/2 23/2 23/2 . o .
0 oo 1 7/2 11/215/2 15/2 19/2 19/2 23/2 23/2
o oo 1 1 7/2 11/215/2 15/2 19/2 19/2 23/2
0 0 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2 1o 1o 1o

Lo 01 7/2 11/215/2 15/2 19/2 19/2 23/2 23/2 yes yes yes
0 oo 1 7/2 11/215/2 15/2 19/2 19/2 23/2 23/2 1o no no
c© oo 1 1 7/2 11/215/215/2 19/2 19/2 23/2 yes yes yes
0 0 5/2 9/2 9/2 13/2 13/2 17/2 17/2 17/2 172 1o 1o 1o

- © 0 0 2 5/2 9/2 9/2 13/2 13/2 17/2 17/2  faux-Efimov no no
0 oo 0 2 5/2 9/2 9/2 13/213/2 17/2 17/2 no no no
oo oo 0 0 2 2 5/2 9/2 13/213/2 17/2 two faux-Efimov yes yes
0 0 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 212

oo 00 02 9/2 9/2 13/213/2 13/2 17/2 17/2 17/2 . . .
0 oo 2 9/2 9/2 13/213/2 13/2 17/2 17/2 17/2
o oo 22 9/2 9/2 13/213/2 13/2 17/2 17/2

TABLE II. Comparison of the 1 to 9*" ., values characterizing the long range trimer adiabatic potentials for two spin-up
and one spin-down fermion (1) in different cases. The first row for each symmetry displayed shows the lowest l., values
that occur for non-interacting particles of each symmetry. The next three rows for each symmetry give this crucial asymptotic
coefficient for different scenarios where some or all p-wave interactions are set at p-wave unitarity. The values that are underlined
integers represent new l., values that emerge only at the p-wave unitary limit. The * Trimer Exists” columns compared of
the p-wave universal trimer status for different symmetries L', with the interaction VPN and/or VpTT fixed at unitary limit..
The “faux-Efimov” effect is present in the lowest Born-Oppenheimer potential curve and has a negative coefficient of 1/R?
asymptotically. The “Universality of Trimer” column means that we have tested the different p-wave poles for each pair of
fermion assess the possibility that the bound trimer energy is in fact universal.

The last three columns of Table II illustrate the p-wave
universal trimer status with respect to different symme-
tries L. A p-wave universal trimer is predicted to exist
with trimer angular momentum L = 17, and its univer-
sality has been tested for various p-wave poles of the two-
body Lennard-Jones potential. There is a “faux-Efimov”
effect which has a negative 1/R? coefficient in the Born-
Oppenheimer potential curve which neglects the diagonal
correction term. However, in the more relevant effective
adiabatic potential curves that include the diagonal cor-
rection, there is no actual Efimov effect and no p-wave
universal trimer with symmetry L' = 1. Fig.5a shows
p-wave universal trimer state energies as functions of the
cubic root of the p-wave scattering volume (Vpl/ 3)7 which
were calculated by including 30 coupled continuum chan-
nel potential curves. Here the p-wave scattering volume
Vp“f and Vpﬁ represent the interaction between oppo-
site spin fermions and two spin-up fermions, respectively.

B. Opposite and same spin fermions are all
interacting at the p-wave unitary limit.

In Fig.5a, the inverted-triangles plot of universal
trimer energies is shown as a function of the cubic root

Different symbols represent the different interaction sit-
uations for VI or V.I*. Squares (filled gold) are fixed at
VT = =273y and we tune the value of VpN which the
universal trimer energy is around F ~ —0.624 Eyqw. The
other two curves (diamonds and triangles) have the same
universal trimer energies, which is F ~ —2.0216 E qw-
Diamonds (solid green) are set VT = oo 73y, and vary-
ing V,J*. Triangles (solid red) show the fixed interaction
V¥ = cordyy and tune the VT between equal spin
fermion. The diamond points have larger [V,¥| than tri-
angle points at the zero trimer energy because there is
just one pair of fermion settings at the p-wave unitary
limit. In the calculation represented by triangles, there
are two pairs of Fermi gases fixed at the p-wave pole
(unitarity). Therefore, in the diamond case, the starting
point at which the universal trimer state exists needs to
have a large p-wave scattering volume (length).

of the p-wave scattering volume, and its energy at the
original (V, — o0) is close to E' = —2.0216 Ey,qw. The



Trimer Exists? Trimer Exists? Universality

Lyt l '

P eV (w/o Quu(R)) (wQu,(R)) of Trimer?
o+ 0 15/2 23/2 27/2 312 35/2 39/2 39/2 43/2 47/2 o " -

co 1 15/2 23/2 27/2 31/2 35/2 39/2 39/2 43/2
[+ 0 7/2 15/219/2 23/2 27/2 31/2 31/2 35/2 39/2 1o 1o 1o

co 1 7/2 15/219/2 23/2 27/2 31/2 31/2 35/2 yes yes yes
0 9/2 13/2 17/2 21/2 21/2 25/2 25/2 29/2 292 1o 1o 1o

o 0 2 9/2 13/217/2 21/2 21/2 25/2 25/2 faux-Efimov yes yes
- 0 13/2 17/2 21]2 25/2 25/2 20/2 29/2 33/2 332 1o 1o 1o

0o 2 13/2 17/2 21/2 25/2 25/2 29/2 29/2 33/2 no no 1o

TABLE III. Comparison of the 1°* through 9*" ., values for three spin-up fermions (111) for both the non-interacting limit and
for the case where each pair of fermions interacts at p-wave unitarity. The underlined (integer) number represents the new le .
value that emerges at the p-wave unitary limit. The “Trimer Exists” columns compared of p-wave trimer universality status at
different symmetries L' for three spin-up fermions at the p-wave unitary limit. The “faux-Efimov” case occurs when the lowest
Born-Oppenheimer potential curve in the 3-body continuum has a coefficient of 1/ R? that is more negative asymptotically than
—1/(8R?) in van der Waals units. The “Universality of Trimer” column reflects a test of the robustness of the trimer energy
obtained at different p-wave poles in the two-body interaction potentials.
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FIG. 4. (color online). The lowest effective adiabatic poten-
tial curves are shown versus the hyperradius for several dif-
ferent p-wave scattering volumes (V}) in van der Waals units
of length and energy, for the system |11 that has weak inter-
action at V;TT for symmetry L™ = 17, As |V, | gets larger, the
potential curve approaches the three-body threshold with a
centrifugal barrier strength close to the value implied by the
reduced value [ = 1 in the adiabatic potential energy curve.
The inset shows the evolution of the depth of the effective
adiabatic potential curves near their minima.

universal trimer energies of three spin-up fermion at p-
wave unitary limit (open circles) are slightly higher than
the two spin-up and one spin-down Fermi gases at p-wave
unitarity. The interpretation of this result is discussed in
the next section. The last three columns of Table II show
the universal trimer state and with and without diagonal
Q. (R) correction with respect to different symmetries
L. As previous mention, the “faux-Efimov” means that
the coeflicient of the Born-Oppenheimer potential curves
has a negative value (purely attractive) at spatial angu-
lar momentum L' = 1. A more interesting result we

have not observed previously is that there is a “degener-
ate faux-Efimov” case in the symmetry L' = 17, namely
that when both VI;N and Vpﬁ, i.e. all pairwise interac-
tions, are set at p-wave unitarity, this produces an asymp-
totic degeneracy in the lowest Born-Oppenheimer poten-
tial curves, i.e. degenerate only at R — oo. In this case,
the universal trimer exists at the two different trimer an-
gular momentum L™ = 11 and 17, and the trimer state
also appears with different p-wave poles. In Table II, the
p-wave unitary channel is found (representing the under-
lined number) while the p-wave interaction of each pair of
fermion either opposite spin or spin-polarized goes to in-
finity, and the interactions between every pair of fermion
is set at the p-wave unitary limit. The asymptotically
doubly-degenerate state of p-wave unitary channels also
can be found, and its states are constructed from each
pair of opposite as well as same spin Fermi gases. The
reason for the degeneracy of the state can be seen as the
orbital momentum of the pair of unequal spin fermion
relative to the spin-up fermion has the [, = 1; on the
other hand, the angular momentum between the pair of
equal spin fermion and the spin-down fermion is [, = 1
for symmetry L' = 1*. Similar reasoning applies to the
case of trimer symmetry L = 17, which also shows a
doubly-degenerate state (asymptotically) of p-wave uni-
tary channels.

V. THREE SPIN-UP FERMIONS AT P-WAVE
UNITARITY

Fig.6 compares the lowest effective adiabatic poten-
tial curves for three spin-up fermions (111) with differ-
ent p-wave scattering volumes, for both parities and one
unit of trimer orbital angular momentum. These two
figures demonstrate our finding, namely that the univer-
sal trimer energy of three spin-polarized fermions with
symmetry 17 is deeper than the case with symmetry 1~
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FIG. 5. (color online). Shown are p-wave universal trimer
state energies for the system of one spin-down and two spin-
up fermions (1)1), plotted versus the inverse cubic root of
p-wave scattering volume Vpl/ 3 The V;,N and VpTT represent
respectively the p-wave scattering volume between unequal
spin fermion and same spin fermions. Circles (solid blue) show
the two-body p-wave bound state. Squares (solid gold) are for
fixed VJT = —273 4 and with Vp” tuned. Inverted-triangles
are with VT = V¥ being tuned. Diamonds (solid green)
are for a fixed VpTT = oo 734w and with VpN tuned. Triangles
(solid red) are for fixed V;'* = cordyw and with V,!" tuned.
The open (red) circles are for three spin-up fermion and all
interactions VJT tuned simultaneously. (a), trimer symmetry

L™ =17, (b), trimer symmetry L' =1~

VI. CONCLUSION

In summary, we have identified the universal trimer
states of three-fermion systems distributed among either
one or two spin states, for a number of different symme-
tries. The universal trimer energies have been found for

10

because the depth of the lowest effective adiabatic poten-
tiermll curve for L = 17 is much deeper than the case with
L =1".

The last three columns of Table III show the p-wave
trimer universality status for different symmetries, both
with and without inclusion of the diagonal @,,(R) cor-
rection. These results are similar to the previous table
for the case of two spin-up and one spin-down fermion,
all interactions set at the p-wave unitary limit. The in-
teresting “faux-Efimov” case occurs for the symmetry
L™ = 1~ and the universal trimer state exists for sym-
metries L™ = 17 and 1~. Evidence for the universality
of the universal trimer is shown in Fig.7, which plots the
adiabatic potentials for 3 spin-up fermion at the 34 p-
wave pole and the derivative of the total eigenphase shift
as a function of energy. Fig.7b shows that the universal
p-wave trimer still exists when the interaction between
each pair of fermion is set at the third p-wave pole. The
corresponding trimer energy is around F = —2.006 Eyqw
which is close to previous results shown as open-circles
in Fig.ha.

In Fig.5b, the universal trimer energy for 1]1 is higher
than 1M1 (open circles), with values of approximately
EF ~ —041127TFE,gw and E =~ —0.40982 E,qw, re-
spectively. Not surprisingly, there are different non-
interacting coefficients of three-body continuum chan-
nels, a consequence of the fermionic antisymmetry. (See
Tablell and Tablelll for the non-interacting l., val-
ues.) Performing a 30 channel calculation would produce
slightly different universal trimer energies. The intersec-
tion of the curves with the x-axis identifies the point of
zero trimer energy, which is the free three-body thresh-
old, and it suggests how an ultracold atomic physics ex-
periment can find the recombination resonance associ-
ated with the universal trimer state. Fig.8 shows the
evidence that the p-wave universal trimer can be found
at different p-wave poles for three spin-polarized Fermi
gases with trimer symmetry L' = 17. Fig.8a and 8c
plot the lowest 60 Born-Opennheimer potential curves at
the 24 and 3'! p-wave pole, respectively. Fig.8b and
8d illustrate use of the sum of all eigenphases to obtain
the universal trimer (resonance) energies at the 2°¢ and
3'd p-wave pole, respectively. The two energies are very
close, which is evidence for the universality of the p-wave
trimer. Table III represents the comparison of the first
through ninth [., values for three spin-up fermions at
the p-wave unitary limit in different symmetries L. In-
terestingly, there is a large Efimov reduction of the lowest
le,, when p-wave two-body interaction goes to a divergent
scattering volume for the trimer symmetry L' = 0%, all
the way from I, = 7.5 (non-interacting) to l. = 1 (uni-
tarity).
cases where each pair of 17| fermions interacts at or near
unitarity for various s-wave and/or p-wave poles and for
scenarios where each pair of 11 fermions interact at differ-
ent p-wave scattering volume poles. Tables I to IIT illus-
trate how the ., values controlling the long-range R~2
centrifugal barrier and relevant Wigner-type threshold
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FIG. 6. (color online). Shown are the lowest effective adiabatic potential curves as a function of hyperradius R for several
different p-wave scattering volumes (V}) in the van der Waals volume unit 34w, for the system 11 in different symmetries
LY. As the magnitude of |Vp| gets larger, the potential curve should asymptotically approach the three-body threshold with
the parameter characterizing the centrifugal barrier approximately equal to the value [ = 0. Inset shows the detail of depth
behavior of effective adiabatic potential curves. (a), trimer symmetry " =1+, (b), trimer symmetry M=1".
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FIG. 7. (color online). (a), Shown are the 1°* through 60*" three-body Born-Oppenheimer potential curves for three spin-
polarized fermions (111) with in the symmetry L™ = 1%, The interaction between each pair of fermions has been set at the 3¢
p-wave pole unitarity which has deep p-, f- ,h-, 7 and l-wave bound states. (b), shown the derivative of the sum of eigenphase
shifts as a function of energy which peaks at the position of the universal p-wave trimer, around E = —2.006 Eyqw. The figure
indicates the width calculated as the full width at half maximum, namely I' = 0.318 Evqw.

behavior are modified when each pair of fermionic atoms  tion or breakup threshold laws in that symmetry, which
interacts at the s-wave and/or p-wave unitary limit. In-  are of interest[56] and deserving of an experimental test
terestingly, these results show that the largest Efimov  in the future. Table IV summarizes the most significant
reduction of ., that we have found for three fermionic information from Table I to Table III. The [, , value and

atoms occurs for the spin-polarized case having symme- the existence of universal fermionic trimer states for all

try L™ = 0% at p-wave unitarity with, with a difference cases with equal spin states or two spin components, for

equal to % This causes a dramatic change of recombina- trimer symmetries L' = 07, 17, 1~ and 2~ are summa-
rized in this table.
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three spin-up fermion at the 2™ and 3™ p-wave pole, respectively. The corresponding resonance widths are indicated on the
figure, in vdW energy units.The inset plots in (b) and (d) are zoomed-in views of (a) and (c), respectively, showing the detailed

behavior of diabatic potential curves near the p-wave unitarity.
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APPENDIX

The adiabatic hyperspherical representation has a
strong track record in describing few-body interactions
and collisional phenomena and is used here to analyze
the three-body quantum problem. In this Appendix, the
details of the hyperspherical coordinate setup will be dis-
cussed and demonstrated. Jacobi coordinates are a use-
ful tool for analyzing the many-body problem. For three
particles in free space, the mass-scaled Jacobi coordinates



can be represented as[57]

where the ijk label the three particles and follow the
permutation rotation, the 7; is the position of particle
1 with mass m; in the laboratory-fixed frame, and the
mass-weighting factor d;; is given by[57]

my(m; +m;)

d? = , A3

J ugb(mi +m; + mk) ( )
MMM

:U%b = ’ (A4)

mi +m; +my’

Here psp is the three-body reduced mass; for the case
of three equal mass particles treated in this article,
dij = 2Y23Y% and p3, = m/v/3. Few-body dynamics
and interactions are known to be efficiently treated us-
ing hyperspherical coordinates, in particular withing the
framework of the adiabatic approximation, for solving
the Schrodinger equation. The positive hyperradius can
be defined in terms of its square as[58—60]

2
+

, (A.5)

RO

Pi

-

R? = P;

where the hyperradius R can be viewed as a three-body
averaged distance that varies in the range R € [0, 00).
In the body-fixed frame system, the z-axis for Jacobi

vectors in set k is chosen to be parallel to pl(-k X p;-k and

the corresponding body-fixed plane is perpendicular to
that z-axis. The Smith-Whitten-type hyperangles § and
@ are defined in terms of the components of the Jacobi
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coordinates in the body-fixed frame[61]:

=

(

] = Roosta/a =8/ costor2-+ o)
] = Rein(r/a - 6/2)sin(e/2 + 013/2),
- p@: Y Y
] = —reostn/a o snte /2 + ),
%) = Rsin(n/4 = 0/2) (2 + 2.
p§_’“3 —0, (A.6)

T
I3

with

P12 = 2arctan(ma/p3p),

Y23 = 07

w31 = —2arctan(ms/[3p)- (A.7)
For the three equal mass particles, ¢;; would be 12 =
27/3 and @31 = —27/3. Note that the convention used
for the hyperangle ¢ defined in Ref.[41, 49] is different
from this article and from Ref.[61], and their relation is
© = Previous _ 4x /3 The range of the hyperangle ¢
for three distinguishable, for two identical, and for three
identical particles are [0, 57/3], [0, 7] and [0, /3] respec-
tively. The range of the hyperangle 6 is [0,7/2]. The
Jacobi matrix in the body-fixed frame can be rewritten
as[62]

= | ] 8] |z anerae). o
= -y = =Y

where the arguments of the matrix functions N(¢’) and
Q(¢’) are the hyperangles 0 = w/4—0/2 and ¢’ = ¢/2+
©12/2, respectively. The N(6') and Q(¢’) are[61]

cosf’ 0 0 cos’ sin’

N(b) = 0 sing 0 , Qp)=| —sing’ cosy’
0 0 O 0 0

(A.Q;

The Jacobi matrix in the space-fixed frame p* can be represented by the transposed rotation matrix R (a, 3,7

times the body-fixed Jacobi matrix pPf

psf_ gk—; ;)?k—;
= Jy L Jy’

=R"(a, 3,7)p" = R"(a, B,7) RN(0")Q(¢),
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where the Euler angles are denoted: «, 8 and «. The rotation matrix R(«, 3,7) is

cosy sinvy 0
R(a,B,7) = | —siny cosy 0
0 0 1

sinf 0

cosf 0 —sinf cosa sina 0
1 0 —sina cosa 0 (A.10)
cos 3 0 0 1

The three-body interaction potential V (R, 0, ) is taken to be a sum of two-body interactions V (R, 0, ¢) = vy(ra3) +
va(rs1) + v3(r12). The interparticle distance r;; can be written in these coordinates as

ri; =272d; R[1 + sin 0 cos(o + ¢i;)] /2,

with @10 = 2arctan(ma/psp), @23 = 0 and @31 =
—2arctan(ms/usp). There are three two-body coales-
cence points for three equal mass systems at ¢ = /3, m,
and 57/3; we should be careful to design the mesh grid at
the large hyperradius R. The Schrodiner equation in the
hyperspherical coordinate can be derived by taking the
lab-fixed frame Jacobi coordinates with Eq.(A.10). The
3-body Schrédinger equation is rewritten using modified
Smith-Whitten hyperspherical coordinates[38, 41, 42]:

A%(0, ¢)

R T1 9 40
{— [R5— ] +V(R,0,go)}\IJ:E\I/,
2p3p

R50R ~ OR R?

(A.12)

where A?(0, ) is called the “grand angular-momentum
operator” and is given by[2, 37]

W =Tp+Tpo+ Ty, (A.13)
where
. 2h2 0 . 0
= T RZsin00 00 sm29%, (A.14)
FN
T¢C = ugbesinQH <i¢ — cos 0%) , (A.15)

. 72 12 i2
T, T+ Y=
pspR2(1 —sinf)  pspR?(1+sinf) — 2uspR?
(A.16)

The operators ﬁx, f/y and L, are the component of total
spatial angular momentum L in the body-fixed frame
and L, = —ihai. These body-frame angular momentum

(A.11)

operators obey the anomalous commutation relation,

[Ly, Ly) = —ihL., (A.17)
and cycle permutation. The Euler angles o, 8, and ~
are involved in the operators L, L, and L, and can be
presented as[60]:

> o cosyd 0 0

L, = zh( S 90 +sm’y86 +cotﬂcos*yav) ,
(A.18)

;o (siny 9 o —

Ly, = —ih (sinﬂ@a +cos*yaﬁ cotﬂsm'ya,y) ,
(A.19)

- 0

It is convenient to perform a rescaling of the solution
in BEq.(A.12), through the transformation ¢y = R>/?W.
The three-body Schrédinger equation Eq.(A.12) then
becomes|[36],

K2 02 1542
2p3y OR? 8z, R?

+V(R707 90) wE' = E"/}E

h2A%(9, ¢)
2/131,R2

(A.21)

The volume element relevant to integrals over % is
2d R(sin 20)df0dpda(sin 8)dBdy.

The proper boundary conditions in the hyperangles
are crucial to apply correctly when solving the adiabatic
Schrodinger equation Eq.(1), and they can be derived
from the particle permutation requirements. The con-
tinuity condition for the channel function ®,(R;€2) can
help us to reduce the computational range of ¢, which
can be represented as:

(PV(R;Q?SD7O(7B77) = ¢V(R;97SD+ 27.(704767’7—’_77’)'
(A.22)

The permutation operators affect the hyperangles ¢, the Euler angles and the Wigner D function as follows:

The Born-Oppenheimer potential and nonadiabatic
couplings are obtained by solving Eq.(1) for fixed val-
ues of the hyperradius R. For each R, the set of channel
functions @, (R;$?) are orthonormal,

/ 0D, (R; Q) D, (R; Q) = 6., (A.23)

and complete

> 0, (R; Q)P (R Q)" =6(Q - Q). (A.24)

The nonadiabatic coupling matrices P,,/(R) and Q. (R)
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TABLE V. Behavior of the hyperangle ¢, Euler angles and Wigner D function under the permutation operators[61].

Permutation © «a B v Diu

P 27/3 — ¢ o T+ ™" (=) DL s
Pas 2m — ¢ T+ o m™—p 2 — (=) DL yenr
P 4 /3 — T+ o m™—p ™= (=)t EDE s
P12 P31 2w /3 + ¢ «a T+ T+ 7y (=)*Din
P12 Ps3 dm/3 4+ ¢ « T+ 0 D

are defined as

PR = [ d00(R:0) L0 (R0),  (A25)
QuoB) = [ 0w (r:0) 2w, (r:0). (A26)

OR?

By taking the hyperradial derivative of Eq.(A.23), one
readily sees that the P, (R) matrix is anti-symmetric,
since the usual Condon-Shortley phase convention is
adopted and these matrix elements are all real. If one
next differentiates the above definition of P,,/(R), this

gives a relation between P,,/(R) and @,/ (R), namely

d
P (B) = =P, (R) + Quu(R), (A.27)
where the P2 ,(R) matrix can be expressed as
P2 ,(R) = /dQ 0 @*(R-Q)icp (R; Q). (A.28)
v P T

According to the above properties of P,,/(R), only the
P2 (R) component of @,  is needed in order to solve
the one-dimensional radial coupled equation Eq.(10).



