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Faster single-source shortest paths with
negative real weights via proper hop distance”

Yufan Huang Peter Jin Kent Quanrud

Abstract

The textbook algorithm for single-source shortest paths with real-valued edge weights runs in O(mn) time
on a graph with m edges and n vertices. A recent breakthrough algorithm by Fineman [11] takes O(mns/ 9)

randomized time. We present an O(mn4/ 5) randomized time algorithm building on ideas from [11].

1 Introduction

Let G = (V, E) be a directed graph with m edges, n vertices, and real-valued edge lengths ¢ : E — R. For a
fixed source vertex s, the single-source shortest path (SSSP) problem is to compute either a negative length
cycle in G, or the shortest-path distance from s to every other vertex in G. The textbook O(mn) time dynamic
programming algorithm; discovered in the 1950’s by Shimbel [19], Ford [12], Bellman [3], and Moore [17]; is a
staple of introductory algorithms courses. Until very recently, it was also the fastest algorithm for this problem.

There are much faster algorithms for important special cases. When the edge weights are nonnegative,
Dijkstra’s algorithm takes O(m + nlogn) time [9, 13]. There is also a long line of research when the edge weights
are integer [14, 15, 18, 20, 8, 5, 2, 7, 4, 6], leading to a remarkable nearly linear running time in [4]. These
algorithms all have at least a logarithmic dependence on the magnitude of the most negative edge weight.

The textbook bound of O(mn) held its ground until a recent and exciting breakthrough by Fineman [11], who
gave an O(mn®°) randomized time algorithm in the Real RAM model. (O(---) hides log(n) factors.) Many of
the interesting ideas in this work are detailed below in Section 2.

This work was inspired by [11]. Building on Fineman’s ideas, we obtain:

THEOREM 1.1. There is a (Las Vegas) randomized algorithm solving the SSSP problem for real-weighted graphs
that runs in O(mn4/5 1og2/5 n 4 n%5 log7/5 n) randomized time with high probability.

The algorithm follows the same general framework laid out by [11], which eliminates negative edges incrementally
along randomly sampled “independent sets” or “sandwiches” of negative edges. An interesting idea that we found
useful was to focus on “proper” walks, where all the negative edges are required to be distinct, and on “proper hop
distances”, which consider proper walks with an exact number of negative edges (or “hops”). Morally, it is much
harder for a random sample of negative edges to preserve a negative proper hop distance between two vertices,
especially when the number of hops is large. This fact allows us to aggressively sample larger “sandwiches” for the
same amount of effort. We explain in greater detail below.

2 Preliminaries

Let G = (V, E) be a directed graph with m edges, n vertices, and real-valued edge lengths ¢ : E — R. We let k
denote the number of negative edges in G. The distance from u to v is defined as the infimum length over all
walks from u to v. We let d(u,v) denote the distance from u to v with respect to £. More generally, for vertex sets
S and T, we let d(S,T) denote the minimum distance d(s,t) over alls € Sand t € T.
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Vertex potentials. Given vertex potentials ¢ : V' — R, let £,(e) = £(e) + p(u) — p(v) for an edge e = (u,v).
Johnson [16] observed that the potentials p(v) = d(V,v) give £,(e) > 0 for all e (assuming there are no negative-
length cycles). We let G, denote the graph with edges reweighted by ¢ and d, denote distances with respect to
Ly,

We say that potentials ¢ are wvalid if £,(e) > 0 for all e with ¢(e) > 0; i.e., ¢ does not introduce any new
negative edges. Given two valid potentials ¢ and ¢s, max{p1, v2} and min{p;, @2} are also valid potentials. If
1 is valid for G, and > is valid for G, then ¢ + ¢ is valid for G.

We say that ¢ neutralizes a negative edge e if £,(e) > 0. This work, like other previous work since [15],
iteratively computes and integrates valid potentials ¢ that neutralize more and more negative edges, until all edges
are nonnegative.

Preprocessing and negative vertices. By standard techniques, we may assume the maximum in-degree
and out-degree are both O(m/n). We also preprocess the input graph G as follows [11]. For each vertex v, let
py = min{l(v,x) : (v,z) € E} be the minimum length of the edges leaving v. Consider the graph G’ where we:

1. Replace each vertex v with two vertices v—,v", and an arc (v, v") with length ..

2. Replace each arc (u,v) with the arc (ut,v™) with length £(u,v) — iy,

G’ has similar size to GG, and distances in G’ give distances in G. Additionally, all the negative edges in G’ have
the form (v, v™) for some vertex v. So there are at most n/2 negative edges, and each negative edge (u,v) is the
unique outgoing edge of its tail u.

Henceforth we assume that G has at most n/2 negative edges, and that each negative edge (u,v) is the unique
incoming edge of its head v and the unique outgoing edge of its tail u. We identify each negative edge (u,v) with
its tail u, and call v a negative verter. When there is no risk of confusion, we may reference a negative edge by its
negative vertex and vice-versa. For example, we say we neutralize a negative verter when we mean we neutralize
its associated negative edge.

We let N denote the set of negative vertices in G. For a set of negative vertices S, we let G denote the
subgraph obtained by restricting the set of negative edges to those corresponding to S.

When computing Johnson’s potentials ¢(v) = d(V,v), any nontrivial shortest walk to v might as well start
with a negative edge. Therefore d(V,v) = min{0, d(N,v)} for all v.

Hop distance. The number of hops in a walk is the number of negative edges along the walk, counted with
repetition. An r-hop walk is a walk with at most 7 negative edges. For an integer r, and vertices s,t € V| we let
d"(s,t) denote the infimum length over all r-hop walks from s to t. Hop distances obey the recurrence

(2.1) d™ (s, t) = min{dr(s,t), 1121]1\[1 d"(s,u) + dl(u,t)}.

For fixed s, if d""1(s,v) = d"(s,v) for all v € N, then d(s,v) = d""1(s,v) for all v. Also, for 7 € N and any set of
vertices S, the potentials ¢;(v) = d"(S,v) and p2(v) = —d"(v, S) are valid.

For fixed s, and r € N, one can compute the r-hop distance d"(s,v) for all v € V by a hybrid of Dijkstra’s
algorithm and Bellman-Ford-Moore-Shimbel in O(rm + rnlogn) time [10, 4]. The algorithm can be inferred from
(2.1): given d"(s,u) for all u, we can compute min, ey d"(s,u) + d*(u,t) for all ¢ with a single call to Dijkstra’s
algorithm over an appropriate auxiliary graph. By maintaining parent pointers, we can also obtain the walks
supporting the r-hop distances.

More generally, hop distance can be defined with respect to any set of vertices S that contains N, and the
observations above would still hold. We need this generalization for the following reason. Our algorithm, following
[11], reweights the graph along multiple valid potential functions in a single iteration. The initial potential
functions in an iteration are not intended to neutralize any edges but rather massage the graph for subsequent
steps. However, they may incidentally neutralize some negative edges, which can decrease the hop counts of walks
and disrupt various assumptions about hop distances. To avoid this, like [11], we freeze the set of negative vertices
at the beginning of each iteration. During an iteration, we continue to refer to a negative vertex as negative even
if its associated edge becomes nonnegative. This ensures the identity df; (u,v) = d"(u,v) + o(u) — (v) for any
potential ¢ within an iteration.
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Remote edges, betweenness, and sandwiches. We say that one vertex u can negatively reach another vertex
v if there is a negative length walk from u to v. More specifically, we say that u can negatively reach v in h hops if
there is a negative walk from w to v with at most h negative edges.

For a parameter € N, and a set of negative vertices U C V', U is r-remote if U can reach at most n/r vertices
via negative r-hop paths. They are important because they can be neutralized efficiently.

LeEMMA 2.1. ([11, LEMMA 3.3]) Let G have mazimum in-degree and out-degree O(m/n). There is an algorithm
that, given a set of r-remote vertices U, returns either a set of potentials neutralizing U or a negative cycle in
O((r+1U|/r)(m + nlogn)) time.

(As stated, [11, Lemma 3.3] reports the existence of a negative cycle, but the algorithm can easily be amended to
return the negative cycle. The same comment applies to Lemma 2.2 below.)

To generate r-remote sets, [11] introduced the notions of betweenness and negative sandwiches. For a parameter
r €N, and s,t € V, the r-betweenness is defined as the number of vertices v such that d"(s,v) +d"(v,t) < 0. [11]
gave the following randomized procedure to reduce the betweenness of all pairs of vertices.

LEMMA 2.2. ([11, LEMMA 3.5]) There is an O(rbmlogn + rbnlog®n + b*nlog®n) time randomized algorithm
that returns either a set of valid potentials ¢ or a negative cycle. With high probability, all pairs (s,t) € V xV
have r-betweenness (at most) n/b with respect to £,,.

[11] defines a negative sandwich as a triple (s,U,t), where s,t € V, and U C N, such that d'(s,u) < 0 and
d*(u,t) < 0 for all u € U. We generalize this as follows. For a parameter h, a weak h-hop negative sandwich
is a triple (s, U, t) such that d"(s,u) + d"(u,t) < 0 for all u € U. The following lemma, converting sandwiches
into remote edges when the betweenness is low, generalizes [11, Corollary 3.9] from negative sandwiches to weak
multi-hop negative sandwiches.

LEMMA 2.3. Let (s,U,t) be a weak h-hop negative sandwich and let (s,t) have (r + h)-betweenness n/r. Then
one can compute valid potentials © making U r-remote in O((r + h)(m + nlogn)) time.

Proof. Without loss of generality, we assume all the vertices are reachable from s. (Given potentials making U
r-remote in the subgraph reachable from s, assign the remaining vertices the maximum of these potentials.) Define
o(v) = max{d " (s,v), —~d"t"(v,t)} for v € V. For all u € U,

—dT () > —dP (u,t) S dP (s, u) > (s, ),

where (a) is because d"(s,u) + d"(u,t) < 0. Thus p(u) = —d" " (u,t) > d"(s,u) for all u € U.
For v € V with d"+"(s,v) + d"""(v,t) > 0, since d"*"(s,v) > —d"*"(v,t), we have

p(v) = d"(s,v).
Now, let u € U and v € V with d"+"(s,v) +d"T"(v,t) > 0. We have
— h +h
di(u,v) = d"(u,v) + p(u) — p(v) > d"(u,v) +d"(s,u) —d"""(s,v) > 0

by the triangle inequality.

Thus a vertex v is negatively reachable in r steps from U only if d"+"(s,v) + d"t"(v,t) < 0. There are only
n/r such vertices, making U r-remote. As for the running time, it takes O((r + h)(m + nlogn)) time to compute
(v) for all v. |

Sketch of [11]. To help motivate the preliminaries above, and to place ensuing ideas in their proper context, we
briefly sketch the existing O (mn®/?) randomized time algorithm of [11].

Call a set of negative vertices U independent if d*(U,x) > 0 for all x € U. If U is independent, then in the
graph restricting the negative vertices to U, we have d(V,z) = d'(V,z) for all z. Thus an independent set can be
neutralized by Johnson’s technique in nearly linear time.

Suppose there are currently k negative vertices and edges in G. [11] gives a randomized algorithm that
produces either an independent set or a negative sandwich of size Q(kl/ 3). The independent set can be neutralized
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directly in nearly linear time. To neutralize the negative sandwich with Lemma 2.1, we need the endpoints of the
sandwich to have low betweenness. Thus [11] first spends O (mk?/?) time to decrease the k'/-betweenness to
n/ k'/9 for all pairs of vertices, before sampling the independent set or negative sandwich. Then, if the sample
returns a negative sandwich, the negative sandwich is neutralized in O(mk2/ 9) time. One way or another, it takes
O(mk??) time to neutralize k'/* negative edges. It takes O (mn®/?) randomized time overall to repeat these steps
until there are no negative edges remaining.

3 Proper multi-hop walks

Let h € N be a parameter to be determined. Consider the following stricter notion of hops and hop distance. We
define a proper h-hop walk as a walk with exactly h negative edges and where all negative vertices are distinct.
For vertices s, t, let d"(s,t) denote the infimum length over all proper h-hop walks from s to t. We call d"(s, t) the
proper h-hop distance from s to t.

Computing proper hop distances is tricky because negative vertices cannot repeat. Even if there are no
negative cycles, and all distances are attained by paths, standard algorithms will still want to reuse negative
edges in order to meet the hop requirement. For small values of h, single-source proper h-hop distances can be
computed with high probability in O(?O(h)m) randomized time using color-coding techniques [1]. Fortunately, we
can sidestep computing proper h-hop distances altogether, and take h to be much larger, with the following lemma.

LEMMA 3.1. There is an O(h(m + nlogn))-time algorithm that, given a set of negative vertices S, returns either
a negative cycle, a pair s,t € S with d"(s,t) <0, or the distances d(V,t) in Gg for allt € V.

Proof. Consider the subgraph Gg. We first compute d"~1(S,t) and d"(S,t) (and the supporting walks) for all
te V. Ifd"(S,t) =d"1(S,t) for all t € S, then d(V,t) = min{0,d(S,t)} = min{0,d"(S,t)} for all t € V.
Otherwise, d"(S,t) < d"=1(S,t) < 0 for some ¢t € S. Consider the h-hop walk attaining d"(S,t). We know
this walk has exactly h negative edges because it has length less than d"~!(S,t). If some negative vertex repeats,
then the cycle along the walk between occurrences must be a negative cycle, since otherwise removing the cycle
would give an (h — 1)-hop walk to ¢ with length less than d"~!(S,t). If the negative vertices are distinct, then we
have a proper h-hop walk to ¢ with negative length, as desired. 0

4 Sampling weak negative sandwiches

Recall that weak negative sandwiches can be efficiently neutralized by the techniques in Section 2. Similar to [11],
we try to find large sandwiches quickly by random sampling. We leverage proper h-hop distances to increase the
size of the sandwich by a factor of Q(v/h).

LEMMA 4.1. For h = Q(logn), there is a randomized algorithm that, in O(h(m + nlogn)) randomized time,
returns either a negative cycle, a weak h-hop sandwich (s,U,t), or a set of negative vertices S and the distances

d(V,v) for all vertices v in the subgraph Gg. With high probability, we have |U|,|S| > Q(\/ﬁ) (when they are
returned by the algorithm).

Proof. Let ¢ =24/k/h. Let S C N randomly sample each negative vertex independently with probability 1/q. S
has at least k/2q = v/kh/4 negative vertices with high probability by the multiplicative Chernoff bound. Applying
Lemma 3.1 to S, we obtain either (a) a negative cycle, (b) the distances d(V,t) for all vertices ¢ in Gg, or (c) a
pair of s,t € S with cfh(s, t) < 0. The negative cycle and the distances are returned immediately. In the third case,
we return the sandwich (s, B, ;,t), where B, ; = {ue N :d"(s,u)+ d"(u,t) <0}, in O(h(m + nlogn)) time.

We say that an ordered pair (s,t) is sampled by S if s € S, ¢t € S, and (fh(s,t) < 0in Gg. Call (s,t) weak if
| Bs.1| < Vkh, and strong otherwise. We claim that with high probability no weak pairs are sampled by S.

This is where proper hop distance comes to the fore: any proper h-hop walk from s to ¢t with negative length
must include at least h —1 vertices from Bj; \ {s,t}. For fixed s,t, |Bs; N S| is a sum of independent {0, 1}-random
variables. If (s,t) is weak, then this sum has mean at most h/2. Since h = Q(log n), by the multiplicative Chernoff
bound, |Bs: NS| < h, hence (s,t) is not sampled, with high probability.

By the union bound, S samples at least \/ﬁ/ 4 negative vertices and no weak pairs with high probability.
Then |S| and |Bs | (when available) both have the desired size. 0
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5 Putting it all together

We now present the overall algorithm and analysis, combining ingredients from Section 2 with the new sampling
techniques from Section 4.

THEOREM 5.1. There is a (Las Vegas) randomized algorithm solving the SSSP problem for real-weighted graphs
that runs in O(mn4/5 logz/5 n 4 no/° 10g7/5 n) randomized time with high probability.

Proof. The algorithm iteratively tries to compute valid potentials ¢ that neutralizes some of the remaining negative
edges, until no negative edges remain. We describe a single iteration.

Suppose there are k negative edges. We assume that k& = Q(log7 n), since otherwise we can use Johnson’s
technique with k-hop distances in O(k(m + nlogn)) time. Let h = k'/%/log?/® n = Q(log n). By Lemma 2.2, in
O(hQ(m log n + nlog? n)) time, we compute either a negative cycle (and halt) or compute valid potentials ¢, that,
with high probability, reduce the O(h)-betweenness of all pairs of vertices to n/h. Henceforth we work in G,

Next we invoke Lemma 4.1. If it returns a negative cycle then we halt. If it returns a set of negative vertices
S, and all the Johnson potentials po(v) = d(V,v) in Gg, then we re-weight the graph with @5 and neutralize S.

Otherwise we obtain a weak h-hop negative sandwich (s, U, t). If the betweenness-reduction succeeded, then by
Lemma 2.3, we either return a negative cycle or compute potentials @9 that make U h-remote in O(h(m + nlogn))
time. Note that we can test if U is indeed h-remote in the same amount of time. If not, then the betweenness-
reduction failed, and we restart the iteration. Otherwise, by Lemma 2.1, we either find a negative cycle (and halt)
or compute potentials @3 neutralizing U (in Gy, 44,) in O((h + |U|/h)(m + nlogn)) time.

Altogether, with high probability of success, and in O((h2 logn + E/h) (m + nlog n)) randomized time, we

either neutralize £ = Q (\/ kh) negative edges, or return a negative cycle.

Starting from at most n negative vertices, it takes O(\/n/ hlog n) successful iterations to reduce the number

of negative vertices to O(log7 n) By the union bound, all the iterations succeed with high probability.

The running time is dominated by the time spent to reduce the number of negative vertices by half. Thus
the overall running time is O((n'/2h3/2logn + n/h)(m + nlogn)) = O (mn4/5 log?® n + n%3log™/® n) with high
probability. 1]
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