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Abstract—This paper presents a design framework for the scal-
able co-design of hardware and control as applied to improving
the energy efficiency of legged robots with parallel compliance.
The proposed framework uses the Alternating Direction Method
of Multipliers (ADMM) for design synthesis by solving large-
scale trajectory optimization (TO) problems. Specifically, we use
Stochastic Programming (SP) constructs to model design uncer-
tainty associated with terrain properties, and enforce robustness
by co-optimizing the robot morphology, a nominal trajectory, and
a feedback control policy. Our framework is applied to tune the
design of parallel elastic actuation (PEA) via considering how
the PEA can be used to actively tailor compliance to different
locomotion scenarios. The design optimization framework is
validated with the MIT Mini Cheetah quadruped, where added
compliance reduces its cost of transport (CoT) by 58.3% in
simulation of optimized planar bounding gaits, and up to 17.4%
and 8.3% in experiments when executing trotting and bounding
gaits respectively.

Index Terms—Optimization and optimal control, legged robots,
mechanism design.

I. INTRODUCTION

HE passive dynamics of biological systems is envisioned

as a form of embodied intelligence during locomotion,
triggered by physical interactions with the world [1], [2]. This
paper aims to contribute toward the design of legged robots
embodied with mechanical intelligence via the concurrent
design (co-design) of their mechanical and control systems.
The complexity of jointly modeling dynamics, hardware, and
control systems has led to decoupled design strategies that
challenge the systematic engineering of robots. We propose
a computational framework, rooted in trajectory optimization
(TO), that produces robots with passive dynamics crafted via
hardware and feedback control co-design that can be applied
across different locomotion scenarios (e.g., multiple terrains).
The proposed co-design framework is an evolution of our
previous conference work [3] using the Alternating Direction
Method of Multipliers (ADMM) [4] to manage computa-
tional scalability when considering multiple scenarios. Fig. 2
presents an updated parallelizable strategy that includes steps
to handle the extra complexity that arises when considering
passive dynamics from added compliance. To exploit passive
dynamics, a global controller is complemented by a local
controller that manages the compliance of pneumatic cylinders
acting as air springs. We choose linear pneumatic actuators as
PEAs due to their light weight, high power density, and ver-
satility operating in active and passive modes, which enabled
us to modulate the PEA compliance via control. Despite their
advantages, pneumatic actuators are difficult to control due to
air compressibility and nonlinear dynamics [5], [6]. However,
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Fig. 1. MIT Mini Cheetah with pneumatic elastic actuators: (Left) Trotting
configuration, (Right) Bounding configuration.

design decentralization via the ADMM simplifies the treatment
of pneumatic models for motion planning via TO.

Similarly to series elastic actuators (SEAs), which incor-
porate an elastic element in series between an actuator and
the load, PEAs can store energy during the flight and stance
phases of a gait. PEAs have a compliant element connected in
parallel to another actuator, generally a DC electric motor. As
an advantage over SEAs, the PEA torque adds to the torque
of the actuator connected in parallel. The additive torque
combination can contribute to reduce the thermal losses of
electric motors [7]. Nonetheless, on the negative side of PEAs,
if the generated torques oppose each other, the electric motor
will end up applying more work to counteract the torque of the
elastic element. This challenge can lead to PEA designs that
are very task-specialized, wherein favorable parallel elasticity
that reduces energy use in one situation may instead lead to
drastic increases in other operating regimes [8]. Such conflicts
make design optimization difficult for PEAs, and makes them
an excellent candidate to validate our multi-scenario approach.

A. Related Work

Without explicit co-design, designs that exploited passive
dynamics started producing impressive robots in the 80’s.
Some of the best examples are the running robots of Raibert
[9], who used pneumatic actuators to imbue his robots with a
springy bouncing behavior modulated by active control. Such
a combination yielded fast and agile legged robots capable
of performing gymnastic maneuvers [10]. Similar to Raibert’s
robots, this paper aims to produce robots embodied with
mechanical intelligence via exploiting passive dynamics, but
we aim to do so through automated methods that ensure the
passive dynamics are favorable across a variety of scenarios.
Overall, we refer to mechanical intelligence as the ability of a
robot to passively execute tasks that are not pre-programmed,
as with soft robots [11], or without the sole intervention of a
centralized controller, as is intended in this work.

There are no explicit guidelines to produce designs that
exploit passive dynamics both in terms of mechanical design
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Fig. 2. Evolved ADMM-based Co-Design enforces agreement between local
designs x; and a global design X, . Distributed PEA force fulfillment, and
averaging and proximal steps ease complexity due to pneumatic models.

and control. Our work intends to fill the literature gap by
presenting the co-design of hardware and control as a formal
framework to produce robots that exploit their passive dy-
namics to facilitate control. In this paper, the connection with
passive dynamics comes from applying co-design to optimize
compliance from PEAs in legged robots.

Regarding co-design strategies, an important body of work
has used TO to produce designs targeting a single scenario
[12]-[14]. The main disadvantage is the misrepresentation
of performance in other scenarios. More recent work has
started incorporating multi-scenario strategies through bi-level
schemes that integrate hardware and control design steps
as part of outer and inner optimization loops. In a broad
sense, such schemes use artificial intelligence (Al) to manage
the hardware design step while allowing for multi-scenario
assessment. Common such methods applied recently for robot
design include covariance matrix adaptation evolution (CMA-
E) [15]-[17] and reinforcement learning (RL) [18], [19]. Our
implementation uses gradient-based optimization and exploits
the distributed structure of ADMM to manage multi-scenario
convergence requirements. Table I compares the strategies
referred above in terms of their features for robot co-design.

Adding elastic actuation to legged robots has been common
in research to improve energy efficiency for locomotion.
Among robots with elastic actuators, legged robots using SEAs
include the original HyQ [20] and ANYmal [21] quadrupeds,
and the Cassie [22] and ATRIAS [23] bipeds. Legged robots
built with compliance from PEAs include the SpaceBok [24]
and most recently modified ANYmal, AoPs [19], quadrupeds,
the BirdBot [25] biped, and the SPEAR [26] hopper. All
citations report energy-related cost reductions (e.g., AoPS 33%
torque-square efficiency improvement); however, the design
methods and metrics are robot specific, which our co-design
strategy aims to improve. Table II compares the previous
robots in terms of their features and design considerations.
In contrast to the AoPS implementation [19], which also co-
designs hardware and control and is the most recent adding
elastic actuation to a quadruped robot, we show experimen-
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tal results with bounding gaits in addition to trotting gaits.
Bounding gaits are more dynamic and challenging to control
than trotting gaits, which justifies considering them herein.

B. Preliminaries

We investigate whether the compliance in hardware can be
shaped and controlled via distributed co-design of hardware
and control to exploit passive dynamics for energetic gains.
For design exploration, we consider the addition of pneumatic
cylinders as PEAs to a pair of legs of the MIT Mini Cheetah
[27]. We apply ideas of decentralized control to ease scalability
limitations that arise in legged systems with many DoFs. Our
framework co-optimizes morphology and control parameters,
while accounting for the central or decentralized effect of
each of them in completing multiple tasks. In doing so, we
intend to embody our designs with mechanical intelligence as
a physical property (e.g., PEA compliance) that reduces energy
and control effort when facing disturbances.

C. Contribution

The contributions of this work can be summarized as
follows. First, our work formalizes the co-design of hardware
and control as a framework to produce robots that exploit
their passive dynamics to facilitate control. We aim to design
complex legged robots (i.e., high number of DoFs), which
imposes scalability limitations for simulation and control.
Second, we provide a parallelizable pipeline for design of
compliant robots. The accounting of compliance accentuates
the convergence limitations for design, which our framework
handles through distributed computation via the ADMM.

The work herein is organized as follows: Section II covers
background material on the co-design formulation and system
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dynamics. Section III describes the control policy added for
robust co-design. Section IV overviews our co-design solu-
tion method using the ADMM, with Section V describing
numerical implementation details when applied for robot co-
design with PEAs. Sections VI and VII show simulation
and experimental results, respectively. Finally, Section VIII
provides concluding remarks.

II. ROBOT REFINEMENT VIA CO-DESIGN

Our work envisions embodying mechanical intelligence into
a robot, by applying co-design strategies to refine an existing
design. We account for deployment uncertainty at design time,
by considering diverse terrain characteristics in simulation,
ensuring that the design is not overfit to a nominal scenario.
This section first describes our TO problem for a single
scenario before then extending to multi-scenario design, and
finally detailing the dynamics considered.

A. Trajectory Optimization Problem for Co-Design

The robot co-design problem for a single scenario takes the
form of a TO problem extended with decision variables for
the design parameters p, in addition to the state and control
trajectories () = (x(t), u(t)) € R™ xR™, and the final time,
ts. Assuming there exists a vector € € R® that parameterizes
this single scenario, the TO problem for co-design is given by
a baseline problem

minimize Vg (tr,v(-), p), (la)
te,y():p
subject to %¢(t) = £(¢,v(-),p) V¢, (1b)

where Eq. (1a) denotes the optimization objective using a
cost functional Vg('), (1b) represents dynamics constraints,
and (lc) includes path and boundary constraints. We used
direct collocation [28] to transcribe this problem into a finite-
dimensional nonlinear programming problem (NLP).

B. Multi-scenario Co-Design via Stochastic Programming

Our SP formulation [29] manages the morphology-control
trade-off through probabilistic reasoning, and co-optimization
of morphology parameters p, a control policy 7, and state-
control trajectories ~*(-) and {~,(-)}Y,, for a nominal sce-
nario £*, and N; perturbed scenarios {Si}gv:sl, respectively.
The multi-scenario co-design problem takes the form:

P({&h%) = . (22)

minimize Ve (", p) + i)Ve, (Vi P),

o poiminimize Ve (17, p) ;p(ﬁ) (7. p)
subject to x*(t) = f(t,v"(¢t),€", p) Vt,

(2b)
he-(t,v*(t),p) <0V, (2¢)
%;(t) = £(t,v;(t). &, p)  Vist, (2d)
he, (t,7,(t),p) <0 Vi, t, (2e)
u;(t) = w(t,x;(t),y*(t)) Vi, t, (2f)

where p(€;) € [0,1] is the probability of realization of the
scenarios parameterized by &;. There exist dynamics and tra-
jectory constraints (2b)-(2e) for the nominal and the disturbed

Fig. 3. Refined Robot: (Left) MIT Mini Cheetah with added pneumatic
actuators (green) at the front legs. (Right) Schematic of one front leg. The
distances to attach the PEAs are: 1 = AFE, lo = CE, l3 = BF,l4y = DF.

scenarios. Eq. (2f) pre-specifies the control trajectories for the
perturbed scenarios based on the control policy 7. Hence,
the disturbed scenarios shape the nominal trajectory and the
feedback policy, adding design robustness.

Using SP constructs to build a TO problem involves con-
ceptualization “stages.” The first stage considers deterministic
decisions, while the second stages include decisions that
are dependent on the realization of scenarios. The SP co-
design formulation requires consensus around the first-stage
decisions (i.e., design parameters, nominal trajectories, and
control policy). The perturbed trajectories {,(-)}\=, represent
second-stage decisions. The ADMM formulation exploits the
SP stage-decision reasoning to gain scalability.

For robot co-design herein, the optimization objectives ac-
count for the total task duration ¢y = 7" and the total electrical
energy required by the electric actuators, which measure
task performance and energy efficiency, respectively. To treat
hybrid effects, the problem P(-) in (2) is further broken into
npn motion phases. Hence, the total time 7' = > T}, where
T; is the duration of phase i. Further formulation details are
annexed as supplementary material.

C. Dynamics: Robot Model

Consider a planar floating-base robot with kinematic loops
created by a PEA at each front leg (ABCD in Fig. 3). The
robot state x = (q, q) contains the configuration g € R! with
two degrees of freedom (DoFs) per leg and three DoFs for the
floating base. The dynamics take the form:

3)

where H, C, T4, T, and S denote the joint-space inertia ma-
trix, Coriolis and centrifugal terms, generalized gravitational
and actuator torques, and the selection matrix, respectively. J.
and f. represent the contact Jacobian and associated external
forces. The PEAs are approximated as massless force sources,
acting on the thigh and shank, with A; representing the
scalar forces along the PEAs, and J; the Jacobian matrix that
accounts for the action-reaction effect at the attachment points.
In TO, we specify A; as a decision variable. Approximating
the PEA as massless thus avoids introducing a rigid-body that
would result in loop-closure constraints in the dynamics due
to the kinematic loop. We enforce (3) using constraints that
replicate the Recursive Newton Euler Algorithm (RNEA) [30]
by treating the PEA forces as equal and opposite external
forces on the thigh and shank.

H(q)§+C(q,q)+74(q) =S T+ J(q)" fo+ (@) N\,
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An alternative approach would be to add the effect of the
PEA force directly to the knee torque:
(566;111(9) ’ (4)

7
where [}, is the piston force, and with respect to Fig. 3,
ls BD, ¢ = BC, {; = CD, and 0 ZCBD.
This approach would give equivalent dynamics, but does not
accurately represent the internal joint loads within the RNEA,
and so was not used during whole-body optimization.

Tkn.eff = L'p

D. Actuators

The electrical power and the voltage limits for the gearbox
motors follow the actuator models in [29], with regeneration
efficiency 1, = 50% and parameters specified in [27]. The
pneumatic PEA models follow [5], [31]. The PEA architec-
ture involves a pneumatic system composed mainly of a bi-
directional pneumatic cylinder and a five-port proportional
control valve. The pneumatic system can be described as a
fourth-order control affine nonlinear system, with states:

x3 =P, 34=D,

®)

where, z, and &, are the piston position and velocity, re-
spectively, and P; and P, are the (absolute) pressure at the
cap-end and rod-end cylinder chambers. Details are provided
in the supplementary material.

Ty = Tp, T2 = Tp,

III. CONTROL STRATEGIES

This section describes a phase-adaptive control framework
for the robot including PEAs. The framework is primarily
composed of two components, a global controller and a local
(decentralized) PEA controller. The subsequent section details
the methods for co-design posed over top of both controllers.

A. Robust Co-Design via Global Feedback Optimization

For co-optimization, a global controller targets the kine-
matic states of the robot (i.e., not considering the PEA
dynamics). The controller co-optimization (rather than fixing
a few control policies in advance) allows the full capabili-
ties of the design to be explored and assessed. We embed
robustness reasoning into the co-design formulation through
co-optimization of the nominal trajectory, the global controller,
and the morphology. Accordingly, the control policy 7 (-) in
(2a) denotes a control law

u;(t) = u*(t) — K@) (xi(t) —x"(1)), (6)

applied for each scenario &;, where K(¢) is a time-varying gain
matrix included as a decision variable in the optimization. The
global states x;(¢) do not account for the PEA pressure states,
which are controlled locally as described below.

F1 - Flight « S1 — Stance ® F2 - Flight e S2 - Stance

r/% ’
) S o o Q

Phase Sequence — Nominal Bounding Gait

Fig. 4. Quadruped with PEA: Phases in nominal bounding gait.

B. Decentralized Control for Passive Phase Adaptation

When the cylinders are pressurized, the knee motor torque
Tm 1s modulated according to the following scheme

)

where 7, 4 is the global-controller output, and 7, ; = Tin,eff
from (4) is an effective knee torque contributed by the PEA,
and as targeted by the output of a local controller (See Fig. 5).

The local controller behaves differently across the phases
of the bounding gait depicted in Fig. 4: it generates active and
passive forces, respectively, during the F1 and S1 phases, and
zero forces during the F2 and S2 phases.

1) Active PEA Force: The force F}, = F}¢ during the F1
flight phase, prior to contact of the legs carrying PEAs, is
an active force because valve control is required to achieve a
certain piston force before the S1 stance phase.

We obviate the derivation of the active force model for
simplicity of presentation, with the interested reader referred
to [32] for further details. The model combines the pressure
dynamics of the cylinder chambers, and the result is:

. i kA3, Pol
pr:_(khApxp>pr_( nAydp Po >7 ®)

Vi ViVa
where kj, is the air specific heat (k, = 1.1 [~]' assuming
the gas expansion process is close to isentropic), A, is an
approximated cross-section piston area (average of the cap-end
and rod-end piston areas [31]), and V; o are the cap-end and
rod-end cylinder chambers, respectively. Eq. (8) reduces the
number of variables needed to mimic the pressure dynamics,
and it does not depend on the nonlinear valve flow dynamics.

The above model allowed us to distribute the complexity
of the pneumatic force dynamics across the passes of the co-
design algorithm presented in the following sections.

2) Passive PEA Force: During the S1 stance phase, we
assume the PEA becomes an air spring triggered by the
passive compression of the air in the cylinder chambers. The
pneumatic force arises from air compression in the cap-end
cylinder chamber, with the valve locked in the final position
of the previous flight phase. Modeling this control mode, we
also optimize the cylinder cap-end pressure before impact, ;.

The cylinder pressure can be considered as mechanical
feedback from the passive dynamics, which then modulate
the active motor control required. We modeled the passive
force generation in the cap-end cylinder chamber as a com-
pression/expansion process, with air treated as an ideal gas.
Assuming that the air compression/expansion are reversible
processes, the following expression relates the change in
volume to the pressure change:

Tm = Tm,g — Tm,l»

Py /Py = (Vor/ V)", 9)

where the 01 subscript denotes initial conditions, with Py; =
Py. From (9), the force generated by the piston is given by

F, = Fpo = A, {Pl* (s

)h—&my (10)

![-] denotes dimensionless quantities.
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Fig. 5. (Left) Experimental setup: (1) Pneumatic cylinder, (2) five-way proportional control valve, (3) two-port solenoid valve, (4) and (5) analog pressure
sensors, (6) compressor with air filtering and regulation unit, (7) local controller board. (Right) Control Strategy: The global controller commands the states
of the robot. The local controller commands the pneumatic cylinder. The knee-joint torque is modulated according to the PEA contribution.

where the change in piston position Az, is measured from the
start of the stance phase. Notice that (9) describes an idealized
process; however in reality, losses due to heat transfer, friction,
and valve leakage occur, which will be analyzed in Sec. VII.

IV. SCALABLE CO-DESIGN viA ADMM

The sections below describe the underlying co-design math-
ematical framework based on the ADMM [4]. The co-design
problem retains the structure given by the two-stage SP
formulation to handle uncertainty at design time, with the
ADMM coordinating the solution of reduced-size problems
that in total add to a large-size SP problem.

The following sections detail updated versions of steps that
we initially reported in the preliminary conference version of
this work [3]. We apply a multi-block decomposition that splits
the multi-scenario problem P ({&;}1¥=,) into ny, = (Ni/ns) €
Z blocks with ng < Ny scenarios each.

A. Global-Design Consensus Problem

For each scenario block s € {1,...,np}, the variable
set x, = (p,T,v*(-),K(-)) collects a local version of
the decision variables. The goal using ADMM is to reach
consensus between local sets of variables, {x,}.>,, and a
global set X, := (pg, T, V5("), Kg(+)). Hence, we define the
global-design consensus problem as

nhH
minimize  R(x,) + Y Vs(Xs) {Vsi}iz1), 11a
CRRCANOIS A ) ; s 1sitizy) (Ha)
subject to Xy =Xy, 5 =1, .., 70 (11b)

in addition to constraints (2b)-(2f) for each scenario block s.
The cost term R is a regularization function that we use to
enforce energy minimization. The second term denotes the
cost for the multi-scenario problem P({£;}2=,) split into ny,
blocks, with V(-) as a compact representation of (2a),

Va() = Ver (x) + > _p(Esi)Ve, . (e, () p),  (12)

i=1
for a reduced scenario set ng, and with the probability p(-)
prescribed from sampling of the total scenario set of size V.
The constraints (11b) enforce that the local versions
{x, s>, reach consensus with the global version Xg- The
local and global versions can represent different variations

on a single design. However, as the ADMM iteration process
evolves, the local versions become approximately equal to the
global version. The strategy follows the scheme from [33].

The ADMM accounts for the consistency constraints (11b),
via the residuals ry ; = v ; — v, ; for every block s, where
v, ; and v, ; are generic variables that take a value according
tojeJ = {p,T,7",K}.

B. ADMM-based Distributed SP Co-Design

We define P, (-) and Pg(-) as the problems to find the local
and global designs, respectively. Then, the ADMM solution of
(11) follows the steps below:

,PE(Xs? {75,1()}) :

4 G
x5 = argmin Vi()+) §J||1‘s,,7‘ +wh 3, (13a)
Xoo {75, ()} jeg
— ) . n P _
Pa(X,) : X5 = argmin R() + 3 bT@urj w2, (13b)
Xz jeg
witli=wh 4 rbtt, (13¢)

where w; ; are dual variables, (; > 0 are penalty parameters,
s =1,...,np in (13a) and (13c), and (13b) is a global-update
step with average residuals and dual variables, respectively,

1 S k+1 1 & k
(m);vs,j ) n—b;ws,j. (14)

Following the three-step sequence of the ADMM in base
form [4], (13a) optimizes the local designs x, (13b) optimizes
the global design X, and (13¢) updates the dual variables w ;
in an alternating manner.

Compared to [3], (13b) represents an averaging step, as in
consensus ADMM [4], followed by a proximal step involving
regularization R(-). For SP co-design, the proximal step
denotes the compromise of the global design X, between
minimizing R(-) and being near to the average of the local
designs x**1 across all scenarios N;. The update in (13b)
affects the convergence of the ADMM algorithm, and it was
crucial to solve the posed co-design problem. Overall, it is one
of the most important distinctions compared to our past work
[3]. In particular, this step improves the convergence of the
method for co-design of legged robots with added complexity
due to elastic actuators, considering up to Ny = 30 perturbed
scenarios for robustness assessment.

k1
Vi

—k
W, =

r; =
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C. Formulation Details

The following subsections cover strategies to improve the
convergence of the ADMM for co-design of legged robots.

1) Penalty Update: To improve convergence, the penalty
parameters (; can be updated every kc > 1 ADMM iterations
following (13c). A scheme reported to work well in [4], [34]
showed satisfactory performance for systems of up to five
DoFs (e.g., monopod robot in [3]). We applied a strategy
that spaces out the use of this standard scheme, and takes
a correction action if the global problem Pg(X,) (13b)
shows limited feasibility. The strategy follows principles of
the Bound-Constrained Lagrangian (BCL) approach [35]. The
supplementary material details our penalty-update approach.

2) Over-relaxation: Results in [34] have shown that over-
relaxation of the consensus constraints (11b) in (13b) can
lead to improved convergence. Over-relaxation is achieved by
including a parameter o > 1 as follows:

k k
VSJ;1> -1 -y,

which approximates the quadratic term in (13b). We denote
over-relaxation in (13b) by Pg(X,, @), and use a = 1.5.

3) Convergence: The ADMM iterates approach conver-
gence when r¥ — 0 as k — oo. Depending on the stopping
criteria, modest accuracy has shown to be sufficient for many
applications. We specify a maximum number of iterations
(kmax), and apply the following stopping condition [4]:

b

I‘j_Oé<,niLbZ

s=1

k41
Veij o

5)

Irslls < €7 AND [|dgyllo < €™, je g (16)

dual
J

pri

y and €

where € are user tolerances (positive scalars).

V. CO-DESIGN IMPLEMENTATION

The co-design framework was built in CasADi [36], with
IPOPT [37] and the MA97 linear solver [38]. We carried co-
design for the quadruped robot with PEAs, requiring it to jump
forward at least 0.3 [m] per gait cycle. We consider an 11-
DoF model executing bounding gaits in the sagittal plane, as
previously defined in Sec. II-C. Each leg is actuated by two
gearbox motors, and the front legs include identical pneumatic
actuators connecting the thigh and shank links (See Fig. 3). As
an exercise of design refinement, the leg geometry and motor
gear ratios are left unvaried, and the co-design formulation
optimizes the parameters that specify the pneumatic actuator
(bore diameter ¥} and stroke length /) and its position relative
to the links of each leg (¢; 3 in Fig. 3).

Perturbed scenarios were randomly sampled assuming a
stair obstacle with terrain friction coefficient y raised at a time
fraction Tv of the F1 flight phase. The stair characteristics
were taken with truncated Gaussian probability densities ~
N,.(0.7,0.05) € (0.6,0.8) and ~ N7, (0.8,0.25) € (0.5, 1.0).
The probability p(&;) in (2) follows a multivariate distribution
combining the stair characteristics as independent values.

As noted before, consensus was enforced relative to the
variable set x := (p, T,v*(-), K()), with p including the bore
diameter ¥ and stroke length ¢, of the pneumatic cylinders,
the attachment coordinates ¢; 3, and the setup pressure Py.
Table III identifies the corresponding hardware constraints.

The local problem P, () (13a) for each block n, = Ny
(chosen with one scenario each, ng = 1) included nine phases
(4 for &%, 5 for &;), adding up to 50, 159 variables in the NLP
(6 finite elements/phase, 4 Radau collocation points/element,
approximated with Lagrange polynomials) passed to [POPT.
The perturbed scenarios included a front stance (S1) after the
early impact, followed by a full gait at modified terrain height.

A. PEA Force Optimization

In contrast to the quadruped without PEAs, the number of
NLP variables increased by 12% due to the modeled piston
dynamics. We optimized the piston dynamics across separate
solve routines distributed in the ADMM algorithm as follows,
which mitigated the complexity of the pneumatic models.

Consider the three ADMM steps in Sec. IV-B. First, we
produced local designs solving problem P, (-) with the pneu-
matic force included during the S1 stance phase, only, using
Eq. (10). The solver showed intractability instances when also
including the force dynamics model (8) during flight.

The local problem P,(:) finds the work required from
the PEAs during the S1 stance phase, with P; marking the
pressure target for the PEA to reach by the end of the F1
flight phase. Accordingly, as a subroutine for each local design
x**1, we re-optimized the state-control trajectory ~*(-) over
the F1 phase alone, keeping the morphology parameters and
state-control boundaries fixed, and using the force dynamics
model (8) to plan for how to reach this pressure target at
touchdown. Fig. 2 labels this step as compliance fulfillment.

Subsequently, we solved the global problem Pg(-) with
information from the local designs x**1 complemented with
pneumatic force trajectories for the F1 and S1 phases. Also
as a subroutine, we computed a PEA averaged force F for
the F1 flight phase, similar to the averaging step in (13b).
We included this averaged force as a fixed disturbance for
optimization of the global design X,. The overall co-design
approach is summarized in Algorithm 1.

Fig. 6 shows optimization results for a global design Y’g"“
as an output of Algorithm 1. The top subplot showcases the
force-optimization scheme described in this subsection. The
optimization attempts to minimize the PEA force to zero
during the F1 flight phase. The bottom subplot shows this
effect: the opposite torque directions at the beginning and
end of the F1 flight phase represent the price to pay for

TABLE III
ADMM IMPLEMENTATION: HARDWARE CONSTRAINTS

Optimization Variables Bounds Units
Phase Duration 0 < |Tpn| < 300 [s]
Basejointangle  [fhae| < 7/2 [rad]

Hip-joint angle |fnip| < 37w/8 [rad]
Knee-joint angle |Pknee| < 3w/4  [rad]

" Joint Torque |7 ] <200 [Nm]
. Motor Volage Vi | <24 [volts]
Stance Setup Pressure  Pagm < P < 10 [Bars]
Bore Diameter 8§<9¥ <24 [mm]
Stroke Length 10 < £, <1000 [mm]
Length AE 61 </ <112 [mm]
Length BF 89 < 43 <137  [mm]
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Algorithm 1 ADMM for SP Co-Design of Compliant Robots

1. Inputs:

2 Xg, W9 5. (0 ke € 2T, e (1,2), p(&) €0, 1]

3 k<0, :={p,T,v,K}

4: repeat

5: Update Local Designs:

6: for s =1 to ny, do

7 Initialize: X, < X5 {7.:()} — {7000}
8: Xt = solve Pr(xg {7s,:()})

9: Fix p, v(to) and ~(ty), and include model (8)
10: Fo¢ s = solve (1) for the F1 phase alone

11: Update Global Design:

12: Foe = (325" Fots) /15 _

13: Initialize: X, < Y’g“ and fix Fp¢

14: Y’g“ = solve Pg(Xg: @)

15: Update Dual Variables:

16: for s =1 to ny, do

17: Wf;l = W’;j + r’;j,

18: Assess Solution and Update Penalties:

19: run Penalty-update Strategy
20: k+—k+1

21: until stopping criterion is satisfied
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Fig. 6. Quadruped with PEA: (Top) Pneumatic-actuator total length and force.
(Bottom) Knee-joint torque as prescribed by control sequence.

loading/unloading the air spring so that its passive dynamics
can then offer benefits during the S1 stance phase.

The following section assesses how the distributed structure
of the ADMM manages multi-scenario convergence require-
ments, despite scalability limitations due to the addition of
compliance as a mechanical-intelligence carrier.

B. Convergence Results

Our ADMM algorithm uses the total residual ||r ;||2, com-
puted as the norm of all the individual residuals independently
of their units, to measure the convergence attained at each
iteration. Compared to the case without PEAs in [3], the
difficulty in decreasing the residuals grew in connection to
the complexity added by the PEA models. The steps to
account for the piston force I}, impose fixed conditions, which
affected the computation time and the consensus rate. Fig. 7
shows the progression of the average normalized error, €,
where we normalized each component of the residual by half
the sum of absolute values of the local and global designs.
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Fig. 7. Co-Design with and without PEA including 30 perturbed scenarios:
(Left) Normalized average error before and after algorithm updates, (Right)
CPU time in IPOPT and ADMM iteration rate solving P (-) after updates.
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Fig. 8. Quadruped with PEA: Front-leg nominal knee-angle position and
control trajectories of the robot jumping over flat terrain after 2 (left) and 100
(right) ADMM iterations. Implementation with 30 disturbance scenarios.

The figure shows the co-design studies with and without
PEAs including 30 perturbed scenarios. After 100 ADMM
iterations, the residual and error for the case with PEAs are
[rsjlla = 0.078 and € = 1.32 x 10~* vs. ||rs ][ = 0.097
and € = 6.67 x 10~* without PEAs. The quality of the error
progression is a byproduct of the penalty-update strategy and
the recurrent initialization steps in Alg. 1. Fig. 7 contrasts the
results before (in [3]) and after the updates included in Alg. 1

Fig. 8 shows the trajectory consensus achieved. The trajec-
tory plots demonstrate the effectiveness of the ADMM pulling
the 30 local designs into consensus with the global design.

Closing this section and looking back to Fig. 7, the op-
timization with 30 perturbed scenarios ran at a rate of five
and six iterations per hour, respectively, for the co-design
studies with and without PEAs, for 100 ADMM iterations. The
added PEA complexity decreased the consensus rate; however,
the averaging global-update step (13b) and the penalty-update
strategy contributed to preserve the convergence margins close
to those observed for the design without PEAs.

VI. DESIGN VALIDATION VIA SIMULATION

This section quantifies the robustness and energy efficiency
of the optimized designs. We verify how the addition of
compliance contributes to reducing the energy and feedback
control effort when facing terrain disturbances.

A. Robustness Validation

As a robustness metric, we estimated the probability of
failure P(F") via Monte-Carlo Simulation (MCS), with failure
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denoting scenarios where a design/controller pair results in
an infeasible trajectory according to a constraint tolerance
of 1 x 10~* in IPOPT. We ran the extended multi-scenario
problem P({&;}=)) (2) with zero cost, Ny = 400 random
scenarios, and fixing the global design X found with 10, 20,
and 30 perturbed scenarios. Fig. 9 shows the operating space
covered with blue and red markers, respectively denoting the
successful and failed scenarios. The design co-optimized with
30 scenarios attains zero failure probability, P (F') = 0%, with
expanded feasibility over the left-side region of the operating
space. The same region (Ty; < 0.6, 0.6 < > 0.8) is fully
infeasible with 10 and 20 scenarios.

A limitation producing Fig. 9 is on the use of IPOPT
as a simulator. IPOPT can solve large systems of differen-
tial algebraic equations; however, it relies on initialization
to enforce convergence. Some scenarios showing adequate
constraint satisfaction (i.e., below 1x10™%) required more than
one simulation pass to achieve full convergence. We initialized
those additional simulation passes with the previous solution
or with solutions from neighboring feasible scenarios.

B. Energy Assessment

We use the cost of transport CoT as an efficiency metric.
Fig. 10 compares the CoT with and without PEAs. The
addition of compliance reduced the CoT by up to 58.3% for
the nominal scenario and the design co-optimized with 30
perturbed scenarios. There is a significant decrease in the CoT,
even when considering the use of feedback control for the
perturbed scenarios, showcasing the advantage over the system
without PEAs and the contribution of the passive dynamics via
compliance to improve energy efficiency.

Table IV summarizes the optimized results for the
quadruped with PEA. As we increased the number of scenarios
for co-optimization, the cylinder bore diameter decreased by
11%, while the setup pressure and stroke length increased by
72% and 6%, respectively, compared to the design optimized
with 10 scenarios. The morphology combination demonstrates
the trade-off achieved between size and force for the PEAs:
a small bore diameter requires high pressure to achieve the
force required during stance, and vice versa.

VII. DESIGN VALIDATION VIA EXPERIMENTS

o P(F) =21.25%

0. 2L 06 A 0.87¢
§ © Feasibl )
O Infeasible i
x Optimized
Y% 50

Friction Coefficient u [—]

Touchdown Time Fraction T[]

Fig. 9. From left to right, results for global design X, co-optimized with
10, 20, and 30 disturbance scenarios (black crosses). Blue and red markers
denote feasible and infeasible results, respectively.
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Fig. 10. CoT with and without PEA - Designs co-optimized using 10, 20,
and 30 disturbance scenarios. Orange bars inform the number of successful
scenarios out of 400 when applying the feedback policy (6).

TABLE IV
MORPHOLOGY CO-DESIGNED WITH 10-30 PERTURBED SCENARIOS

Results

Parameters Units
10 Scs. 20 Scs. 30 Scs.

Stance Setup Pressure P, 3.3 3.9 5.7 [Bars]
Bore Diameter ¢ 15.99 14.82 14.24 [mm]
Stroke Length £ 55.94 46.13 59.22 [mm)]

Length £ 70.5 87.7 70.6 [mm]
Length £3 110 106.3 110 [mm]

We used the MIT Mini Cheetah robot [27] to assess the pro-
posed PEA configuration using pneumatic cylinders. Trotting
and bounding gaits were executed using the robot’s default
convex model predictive controller (cMPC) [39].

A. Experimental Procedure

Fig. 5 shows the experimental setup. A five-way propor-
tional control valve actuated the cylinders with pressurized
air from a laboratory outlet. In addition, we used a single
two-port solenoid valve to depressurize the cylinders during
portions of the gait phases. To measure battery power, we used
a secondary setup, including a Coulomb counter connected
between the battery and the motors.

In the experiments, the robot executed trotting and bound-
ing gaits with forward motion over a treadmill running at
0.3 [m/s] for 120 seconds. When the robot performed trotting
gaits (See Fig. 1), we connected the pneumatic cylinders to
the front-left (FL) and hind-right (HR) legs to preserve gait
symmetry. For the bounding experiments, we connected the
PEAs to the front legs, paralleling the optimization setup.

We present results for three configurations described in
Table V, and collected data with supply pressure settings:
P = 3 to 6 [Bars]. Configurations C1 and C2 involve the
same cylinder, selected preliminarily from intuition, and based
on immediate market availability. Configuration C3 is the best
match of the optimized design in Table IV, using 30 scenarios.

The simulation results in Table IV considered bounding
gaits with trajectories different than those of the cMPC con-
troller. Hence, the optimized cylinders in Sec.V are likely not
optimal for the gaits produced by the cMPC controller. Using
the cMPC controller, we aim to showcase that our co-design
strategy is not overfitting to any of the optimization scenarios.
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TABLE V
MORPHOLOGY CONFIGURATIONS FOR EXPERIMENTS

Configuration

Parameters Units
Cl Cc2 Cc3

Bore Diameter ¥ 12 12 1422 [mm)]

Stroke Length £, 50 50 584 [mm)]

Length ¢ 60.73 60.73 68.03 [mm)]

Length £3 88.9 1309 1129 [mm]

Lo = 26.7 [mm], £4 = 0.0 [mm] for the three configurations

B. Results and Analysis

The results herein assess the performance of the configura-
tions in Table V, and they are categorized by the gait applied.

1) Trotting Gait: The trotting experiments considered the
three configurations in Table V, and three pressure settings:
P = 3,4,5 [Bars]. For control of the pneumatic proportional
valve, we applied an open-loop scheme increasing/decreasing
the pulse-width modulated -PWM- voltage gradually depend-
ing on the gait phase. Figure 11 shows the PWM command
sent to the proportional valve depending on the reference sig-
nal for the gait phase percent provided by the state estimator.

Regarding Fig. 11, the valve command (upper subplot) is
kept constant during the stance phase, aiming to fix the flow
for passive compression. In Sec. III-B2, the fixed pressure
condition was idealized in having a perfectly sealed cylinder
chamber and a leakage-free valve. The middle subplot shows
the pressure trajectories for both cylinder chambers. During
the swing phase, we open the proportional valve toward the
cylinder rod-end chamber and simultaneously activate the two-
way solenoid valve to depressurize the system. Due to the
tubing length, there exists a flow delay that does not allow
for immediate air discharge. The bottom subplot shows the
torque modulation achieved. The global and modulated torques
remained nearly equal during the swing phase, reducing the
motor counteraction. The ability to adjust the cylinder com-
pliance via valve command is one of the main advantages
of our PEA actuation scheme. The average torque decrease

‘— — Estimate Stance Phase % —-— - Estimate Swing Phase % ‘

T AT o T
L L

Cap end —a— Rod end ‘

2

=)

Contact

3
=}

by
=)

Contact

o
=]

Global —=— Modulated —*— PEA |

‘\M%MI

Contact

[SE=N ST
OOCCC

0

K“CIC Torque [Nm] pregsyre [Bars] Valve Cmd. [%]
- !
(=)

0 0.1 0. 0 4 0.5 046 047 0.8
Time [s]
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TABLE VI
RESULTS FROM TROTTING EXPERIMENTS: COT REDUCTION

CoT [-] | Reduction [%]
P =3 [bars] P =4 [bars] P =5 [bars]

Conf. Baseline CoT

Average

c1 3.31 2.96 | 10.6 2.80 | 15.5 2.71|17.9 2.82 | 14.7
2 3.31 2.92|11.9 2.81|15.0 2.78|16.0 2.84 | 14.3
c3 3.31 2.86 | 13.8 2.75 | 16.9 2.73 | 17.4 2.78 | 16.0

B R Lo IFL Log

Knee Square Torque
Reduction [Nm]2

Pressure [Bars]

Fig. 12. Trotting experiments: Average knee squared torque reduction for legs
with PEA in three morphology configurations and three pressure settings.

with a P = 5 [Bars| setting was about 34% (0.86 [Nm])
of the value specified by the cMPC controller. These torque
reductions are similar to those reported in [19] of up to 32.8%
for the ANYmal with PEAs (AoPS).

To account for energy efficiency, we measured the battery
power for the motors of each leg. The results are tabulated in
Table VI, showing the CoT reduction with respect to the robot
without PEAs (baseline). The computed CoT does not quantify
the positive mechanical work alone, but the net energetic losses
[40], which should better capture the morphology effect. The
optimized C3 configuration produced the overall highest CoT
reduction across all setup pressures.

Fig. 12 illustrates the knee squared torque reduction (de-
noting Joule heating power reduction) for the legs carrying
PEAs. The C2 configuration provides the highest squared
torque decrease for all the pressure levels, which denotes a
potentially misleading output considering the squared joint
torques alone as optimization objectives, by neglecting losses
due to transmission friction and physical interaction.

2) Bounding Gait: The bounding experiments considered
the C3 configuration, only, and two pressure settings: P =
5,6 [Bars]. It was challenging to complete the experiments
with the C1 and C2 configurations. We observed a higher
failure rate due to reaching the PEA kinematic-loop limits and
the resulting body trajectories then not being well matched
with those optimized by the cMPC controller. The fact that
only the optimized design allowed us to complete the bounding
experiments supports that our co-design framework does not
overfit the design to a specific scenario.

Figure 13 shows the valve PWM command and the pressure
trajectories. Opposite to the trotting experiments, the air dis-
charge during the swing phase is faster because of the shorter
tubing length having both cylinders at the front legs (See
Fig. 1). Likewise, the timing to charge/discharge the cylinder
was critical to keep the gait stable, which is trivial for trotting
thanks to the continuous support of the opposite pair of legs.

Figure 14 shows that despite the cMPC trajectories not be-
ing co-optimized for exploiting passive dynamics, the addition
of PEAs is still favorable to the reduction of the knee motor
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torque during stance: 23% on average. During the swing phase,
the strategy keeps the torque increase below 5 % (on average).

In energy terms, with the P = 5,6 [Bars] settings, the CoT
and % reduction compared to the baseline (C'oT = 6.19) were
respectively: 5.75 and 7.13%, and 5.68 and 8.25%. Fig. 15
extends the details about the CoT and knee torque reduction.
The results still show the potential advantage of the added
compliance, which can be maximized through more advanced
valve control across the swing phase.

C. Limitations

The main limitation of our validation is the lack of sim-to-
real transfer of the optimized control policy. The optimized
policy helps to emulate closed-loop control conditions during
the co-design process, but does not account for the full details
of the physical platform (e.g., deviations from the sagittal
plane). To further corroborate the experimental results, Fig. 16
shows the CoT simulated with and without PEA for different

I Simulation cMPC w/o PEA

EE= Simulation cMPC w/ PEA
© Experiment cMPC w/o PEA
¢ Experiment cMPC w/ PEA

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
Commanded x velocity [m/s]

Fig. 16. CoT computed from 3D simulation with cMPC controller: The robot
executes bounding gaits at different forward speeds with and without PEAs.

forward speeds and the robot executing nominal bounding
gaits in 3D with the cMPC controller. We simulated the ideal
PEA action (i.e., ideal stance passive compression and lossless
swing motor counteraction) assuming a P = 5.7 [Bars]
stance setup pressure (optimal value in Table IV). We concen-
trate on the results for 0.3 [m/s], the speed commanded for
experiments. For the case with PEAs, the CoT in simulation
was 20.1% lower than in experiments, while the case without
PEAs had a similar discrepancy (16.9%). Comparing the
assessed benefits from PEAs, in simulation, the CoT decreased
by 11.7% with the addition of the PEA. This simulated CoT
reduction deviates from the experimental finding (8.3%) by
3.4%, a small error margin despite the sim-to-real limitation.

VIII. CONCLUSIONS

Our main contribution is the ADMM-based co-design
framework to engineer compliance in legged robots. Despite
the complexity due to the PEA pneumatic models, our frame-
work showed favorable energy reduction and computational
convergence regarding the number of scenarios used for co-
optimization. The experimental results showed that despite
disagreements between the simulation models and the real
system, the addition of compliance led to motor energy-use re-
ductions of up to 17.4% with the robot executing trotting gaits.
The importance of co-design was demonstrated by the change
in performance with different morphology configurations. The
experiments showcase the ability of the added compliance to
adapt to gaits not optimized for exploiting passive dynamics.
This last effect can be attributed as mechanical intelligence,
which is better outsourced with the co-designed hardware.
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