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ABSTRACT

Performance optimization continues to be a challenge in modern HPC software. Existing performance optimiza-
tion techniques, including profiling-based and auto-tuning techniques, fail to indicate program modifications
at the source level thus preventing their portability across compilers. This paper describes Mupper, a new
approach that identifies program modifications called mutations aimed at improving program performance.
Murper’s mutations help developers reason about performance defects and missed opportunities to improve
performance at the source code level. In contrast to compiler techniques that optimize code at intermediate
representations (IR), Mupper uses the idea of source-level mutation testing to relax correctness constraints and
automatically discover optimization opportunities that otherwise are not feasible using the IR. We demonstrate
the Mupper’s concept in the OpenMP programming model. Murper generates a list of OpenMP mutations that
alter the program parallelism in various ways, and is capable of running a variety of optimization algorithms
such as delta debugging, Bayesian Optimization and decision tree optimization to find a subset of mutations
which, when applied to the original program, cause the most speedup while maintaining program correctness.
When Mupper is evaluated against a diverse set of benchmark programs and proxy applications, it is capable

of finding sets of mutations that induce speedup in 75.9% of the evaluated programs.

1. Introduction

Performance optimization continues to be a challenge in modern
HPC software. The adoption of multi-core heterogeneous systems and
the use of multi-process and multi-threaded programming models to
fully utilize modern architectures are some of the factors that limit the
ability of developers to solve performance issues; these issues can result
in poor user experience, lower system throughput, limit scalability, and
a waste of computational resources [1-3].

Problems with Existing Techniques. A lot of work has been
proposed to identify performance issues and several tools are used
in current HPC production environments to analyze the performance
of applications [4-7]. However, the process of isolating performance
problems and/or generating tests to identify them is still mostly a
manual process. Most performance optimization techniques focus on
highlighting performance hotspots in the program, but ultimately they
rely on programmers to identify code modifications that fix a per-
formance problem or improve overall performance. Other approaches
are based on the concept of quantifying hardware or runtime system
events [8-10], but metrics of these events do not directly relate to
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program performance, and these approaches do not explicitly inform
the programmer how to modify the code to improve performance.
Compiler optimizations improve performance usually at the interme-
diate representation (IR) level; however, reasoning about correctness
at the IR level is much more difficult than at the source level. As
a result, compiler optimizations can leave optimization opportunities
on the table. Moreover, IR-level optimizations are not portable across
compilers.

We could potentially solve performance problems given accurate
performance models for each available platform and application. If
performance models are available, we could simply check if application
behavior falls into the bounds of such models. However, such an ideal
mechanism is hard to realize in practice as performance models are
notoriously difficult to build accurately given the complexity of the
HPC software stack and underlying hardware. There are solutions to
build performance models for specific aspects of the hardware and
applications [11-13], but they are usually not composable and thus of
little practical use in modeling an entire application and platform.
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Our Contributions. We present an approach based on mutation test-
ing [14] to identify source code changes, or mutations, that (1) improve
performance, and (2) help developers reason about performance at the
source-code level, in contrast to IR- or assembly-level like in existing
methods. Since such an approach is based on source modifications, it
is portable across compilers.

Mutation testing has been proposed to identify correctness faults [14],
and assumes that a syntactic change (a mutant) along with an ex-
ploration campaign of multiple mutants can help discover program
defects faster than traditional methods. While some previous work has
applied mutation testing to solve performance defects [15], mutation
testing for performance has not been applied on parallel code and/or
HPC programs. We demonstrate our approach in the OpenMP program-
ming model, although our approach is also applicable to other HPC
programming paradigms such as CUDA and OpenACC.

We implement our approach in the framework named MuppET
(Mutation-Utilized Parallel Performance Enhancement Tester). First,
Murper generates a list of OpenMP mutations, which are defined as
either a change in an existing OpenMP directive in the program that
could change the performance of the code block that the directive
targets, or adding a new OpenMP directive that introduces parallelism
to existing serial code. MuppeT considers only mutations that are not
likely to change the correctness of the code block. Next, MuppET con-
siders different optimization algorithms, such as delta debugging [16],
Bayesian optimization (BO) [17], and decision tree optimization [18],
to find a subset of mutations that, when applied to the original pro-
gram, causing the highest speedup. We implement Murper in the
Clang/LLVM front-end and evaluate it in a variety of programs, includ-
ing benchmark programs like the Rodinia benchmarks [19], the NAS
Parallel Benchmarks [20], HPCG [21], and four scientific applications
(LULESH [22], CoMD [23], CoSP2 [24], and the CLOUDSC cloud
physics mini-app [25]).

In summary, our contributions are:

» We present a source-level approach that uses mutation testing to
optimize HPC code. Our approach considers five classes of source
mutations and applies them in OpenMP directives. To the best of
our knowledge, we are the first to explore using mutation testing to
optimize OpenMP code (Section 3).

We design and implement our idea in the Murper framework
via the Clang/LLVM front-end. Our approach integrates MuppEr
with several optimization algorithms, such as delta debugging,
Bayesian optimization and decision tree optimization. The output
of Mupper is a set of source modifications, or mutations, that
produce a maximum speedup among the explored mutations,
without affecting correctness (Section 4).

We evaluate Mupper on several benchmarks and proxy appli-
cations. We demonstrate that Mupper is capable of identifying
mutations that improve performance in 75.9% of the evaluated
programs, with the best speedup of 3.57x (Section 5).

Comparison to Previous Work. An earlier version of our ap-
proach was published in [26]. The approach has been expanded in
this paper and a more comprehensive experimental evaluation has been
conducted with new key findings. New insights include:

» A new OpenMP mutation focusing on thread affinity management
has been added in Muprer: schedule.

» A new optimization algorithm, decision tree optimization, has
been integrated into Mupper and evaluated for its efficacy.

+ A set of new programs, including benchmark programs and sci-
entific applications, is evaluated alongside programs tested in
the original paper, with varying levels of code complexity. The
maximum speedup discovered is higher than in the previous

paper.
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+ In addition to comparing speedups discovered by different algo-
rithms, we also compare the time used to run different algorithms
to find these speedups. With this information, we can illustrate a
more complete picture of how Murper performs across programs
from different knowledge domains, with different data structures,
and with varying time complexity.

» We provide new detailed analysis of source code and associ-
ated OpenMP mutations on a set of selected programs that have
performance speedup discovered.

2. Overview

In this section, we describe the philosophy of our approach, provide
background information on mutation testing, and provide a simple mu-
tation example in a matrix multiply kernel that improves performance.

2.1. Approach’s philosophy

Existing approaches to isolate performance issues are difficult to
use in practice. A number of performance problems can be fixed by
changes in the source code; however, existing methods do not directly
point to developers’ source modifications that fix such issues. Compilers
optimize code at the IR level but such solutions are not portable across
compilers and make it harder to reason about correctness than solutions
based on source modifications.

We believe that tools and techniques for performance optimization
should have the following features:

» Fine granularity detection: tools should pinpoint, with fine
granularity, the location (code line) of performance issues or
potential performance improvements.

» Guided fixes: the approach should help programmers under-
stand and reason about performance defects—without a good
understanding, it is hard to solve the problem or avoid it in the
future.

» Automatic recommendations: the approach should automati-
cally suggest code modifications that improve performance or fix
a performance problem.

We designed Murper using the above criteria to identify changes in
OpenMP directives that improve performance.

2.2. Mutation testing for performance

2.2.1. Challenges

The key idea of Muppet is to perform small changes in the code,
called mutations, and use exploratory algorithms to search for cases
where mutations improve performance or fix a performance problem.
Mutation testing has been studied before to detect faulty programs by
injecting small syntactical changes that expose correctness defects [14].
The idea of mutation testing is to generate sufficient data to expose
real software defects in the code. However, it is challenging to use
traditional mutation testing in isolating performance defects because
the syntactic changes could create faults, i.e., breaking the semantics
of the program and producing incorrect programs.

2.2.2. Our solution

Inspired by the previous work on mutation testing, we propose a
different approach: to inject only mutations that are semantically correct
and do not yield an incorrect program for the purpose of exposing perfor-
mance defects or speedup opportunities. Semantically correct mutants, or
equivalent mutants, are considered problematic for traditional mutation
testing because by definition, they cannot fail the test suite, so they
should be avoided to increase the effectiveness of mutation testing.
In contrast, our approach explores semantically correct mutations, or
a weaker form of mutations that successfully pass correctness tests,
to identify any mutations that increase performance, thus indicating
performance defects.
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2.3. Mutation example

Here, we present a synthetic matrix-multiplication example, shown
in Listing 1, that demonstrates MuppEr’s capabilities—when we apply

Moupeer, it can find a set of mutations that yields faster code execution.

Listing 1: Example code with a mutation found by Muppet that improves
performance.

1 #define ARRAY_SIZE (2048)

2 double A[ARRAY_SIZE] [ARRAY_SIZE];

3 double B[ARRAY_SIZE] [ARRAY_SIZE];

4 double C[ARRAY_SIZE] [ARRAY_SIZE];

5

6 int main(void) {

7 // initialize array and timer setup
omitted

8 float var = 2.3f;

9 #pragma omp parallel for shared(var)

10 // mutation adds an OpenMP directive

11 #pragma omp tile sizes(16,16,16)
12 for (int i = 0; i < ARRAY_SIZE; ++i)

13 for (int j = 0; j < ARRAY_SIZE; ++j)

14 for(int k = 0; k < ARRAY_SIZE; ++k) {
15 CLil [j] += var*A[i] [k]1*B[k][j];

16 }

17 // end processing omitted

18

Originally, the code has only the OpenMP parallel for direc-
tive to parallelize the loop. Murrer applies mutations to the existing
OpenMP directives found in the code. Note that while Mupper only
considers semantically correct mutations (and are likely to produce
a correct program), it relies on existing correctness checks of the
program, as shown in Section 5.1.1 for the evaluated programs. Possible
mutations are shown in Fig. 2 as references. When we run MuppET on
this example with delta debugging, after 20 tryouts, MuppET reports a
mutation that, when applied to the program, improves performance.
With BO, it takes 66 tryouts to finish the optimization process; but
the mutation was reported with 11 tryouts. The identified mutation is
highlighted in the source code. In this simple example, the mutation is
the addition of the OpenMP tile construct, which converts the three-
dimensional loop space in this program into smaller-sized “tiles” in
16 x 16 x 16 increments and suggests to the compiler that each tile
is to be assigned to one OpenMP thread. In the end, MuppET reports to
the developer that adding this construct to the loop introduces a 18.84x
speedup, from 7.116801 s to 0.377674 s.

3. Approach
3.1. Problem statement

Given an OpenMP program P with running time 7, MuppET analyzes
the program and generates a set of mutations, M = {m;,m,,...,m,},
which potentially could induce program speedup. We define the pro-
gram running time for the original variant program as:

T = P(®)
We define the running time for a variant program as:
T' = P(M’'),where M' C M,and accurate(P, M') = True.
We define the ideal minimum program running time as:
Tin = P(M i),
where M,,, C M,
and accurate(P, M

min) =

and YM'Cc M, T' >=T,,,

True,

The goal of Murrer is find a subset of M, M,,;,, with T, as close to
T,,:n as possible.

min
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3.2. Tool workflow

The overall workflow of Mupeer is illustrated in Fig. 1. The purposes
of these modules are described below:

Mutation generator analyzes the program and finds a set of source
code mutations, which can potentially be applied to change the
OpenMP parallelism of the program.

Transformer generates a program variant with a subset of muta-
tions found in the Mutation generator module.

Tester runs the mutated programs from Transformer and tests the
performance speedup and correctness of the mutated variant.
Optimizer applies a user-specified optimization algorithm to find
the minimum of the function 7' = P(M').

Next, we delve into the details of these modules, following the order
as they appear in Fig. 1.

3.3. Mutation generator

The Mutation Generator module traverses the abstract syntax tree
(AST) of the program, looking for source code locations that potentially
can be mutated so that program parallelism is changed. The time
complexity of this step is ©O(n) where n is the number of statement nodes
on the AST. The mutators in Mupper focus on mutating parallel/loop
OpenMP constructs such as the parallel directive, for directive, or
the parallel for directive. All of these directives specify a source
code region to be executed in parallel, but the parallelism may not be
high enough to utilize all available cores for the OpenMP program.
Mureer also looks for the beginning of for loops for both SIMD
mutations. Lastly, tiling mutations may be added in case tiling can
be performed in an inner part of a multiple-dimension parallel loop.

3.3.1. Mutation classes
There are five classes of mutations possible to apply to certain
source code locations:

+ Collapse Mutations add a collapse clause to a multiple-
dimension parallel for loop. Collapse clauses may poten-
tially improve parallelism by having more iterations, thus higher
hardware thread usage, at the top level of the loop.

SIMD Mutations have two forms: adding a simd clause to an
OpenMP parallelism-related directive such as a parallel for
loop or a omp for loop; or adding a simd directive to a for
loop. SIMD clauses or directives hint at the compiler to check
if there is a possibility to vectorize the loops and apply SIMD
vectorization if possible.

Tiling Mutations add tile directives at the top of a multiple-
dimension OpenMP loop. Tile directives split the loop space into
smaller-sized “tiles”, and each tile is ideally only accessed by one
OpenMP thread. This design can potentially improve cache local-
ity depending on how the data within memory is accessed within
the loops, and thus may also introduce performance speedup.
Due to the difficulty in determining loop size at compile time,
Murpet only supports setting a fixed set of differently sized tiles
as different mutations. For example, we can only set the tile
size as a power of 8, 16, or 32. Given the limitations, users can
still see from the optimization results whether using a smaller or
larger-sized tile can have a higher speedup.

Firstprivate Mutations put read-only shared variables into a
firstprivate clause for an OpenMP parallel region, so that
these variables are kept a copy in each parallel thread. This is
to reduce data dependency between parallel threads when these
variables are accessed.



D. Miao et al. Parallel Computing 121 (2024) 103097
main.c [0] main.c:398,33: [0] main.c:398,33:
funcl.c add collapse (3) add collapse (3)

[1] funcl.c:293,35: [1] funcl.c:293,35:
func2.c f1s X i1 :

add tiling sizes 16 R Terminate add tiling sizes 16
func3.c (1) Mutation Generator [2] func2.c:113,23: (80 (j‘)enc;p(t;:;er ing) [2] func2.c:113,23:
func4.c add simd i 9ging add simd

N
Program Source List of Mutations Optimizer can Optimized Mutation Set
continue tryouts

Function output is returned to Optimizer

main.c

funcl.c

E func2.c

(4) Tester
func3.c

funcéd.c

Mutated Program

(3) Transformer

[0] main.c:398,33:
add collapse (3)
[1] funcl.c:293,35:
add tiling sizes 16
[2] func2.c¢:113,23:
add simd

—]

Mutation Subset

Fig. 1. The workflow of Muppet. Red texts in italic indicates the mutation is applied, or the source file is changed.

Schedule Mutations add a schedule clause to an OpenMP
parallel or parallel for directive. OpenMP by default
statically assigns loop iterations to OpenMP threads when running
a parallel block. This mutation modifies the scheduling behavior
of OpenMP programs. Similar to tiling mutations, MuppeT supports
two different schedule mutations: dynamic- and auto-scheduling,
implemented as two different mutations for each parallel block.

For all mutations, once a language construct of interest is detected,
the Mutation Generator module then checks the associated source code
around the current language construct. If the source code around it sat-
isfies certain statically defined criteria (see Section 3.3.2), then unique
information regarding the current mutation, such as source location,
the way source code is modified with this mutation (insert before a
source code location, insert after a source code location, modify a
source code range), and the class of the mutation is added to the list of
mutations. The algorithm for this process is shown in Algorithm 1.

3.3.2. Criteria selection

The criteria for each class of mutation follow the syntax of OpenMP
language specifications. These criteria can be expanded for any new
class of mutations added. A list of criteria is below:

Mutations should not be added in a for loop that has statements
that change the control flow, such as a break, continue and
a return statement. OpenMP parallel loops in existing code
already follow this rule, but other standalone for loops may not,
so condition checking is necessary.

Tiling and SIMD mutations should not be added when the affected
OpenMP block contains specific OpenMP directives such as a
critical, barrier, or a master directive.

There should not be OpenMP blocks inside SIMD directives, oth-
erwise such mutations should not be added.

In general, there should only be SIMD directives inside a SIMD
directive, and no other directives are allowed.

We illustrate OpenMP mutations that can be applied to in the
previously shown matmul example in Fig. 2. The one that shows the
highest speedup in matmul is the tiling mutation.

3.4. Optimizer
Once a list of mutations is generated, it is exported to the Optimizer.

This module runs an optimization algorithm specified by the end user
to find the minimum point of 7/ = P(M’). During the optimization

Algorithm 1: The mutation generator algorithm.

1 Function GenerateMutations(AST):

2 M =g

// Traverse the AST.

3 foreach Statement in AST do

4 if Statement is an OpenMP directive then

5 if can add collapse mutation then

6 L M = M u CollapseMutation(Statement);

7 if can add SIMD mutation then

8 L M = M uSIMDMutation(Statement);

9 if can add tiling mutation then

10 L M = M v TilingMutation(Statement);

11 if can add firstprivate mutation then

12 L M = M UFirstprivateMutation(Statement);
13 if can add schedule mutation then

14 L M = M U ScheduleMutation(Statement);
15 if Statement is a for loop then

16 if can add SIMD mutation then

17 L M = M U SIMDMutation(Statement);

18 if can add tiling mutation then

19 | M = MuTilingMutation(Statement);
20 return M

process, it finds specific points on the 7/ = P(M') function by selecting
a subset of mutations, sending these mutations to the Transformer
and Tester module, and receiving 7’ from the Transformer and Tester
module once the mutated program has finished execution and running
time statistics are collected.

Mupper supports three optimization algorithms: delta debugging
[16], Bayesian Optimization [17], and decision tree optimization [18].
The goal of all three algorithms, albeit vastly different in implemen-
tation, is to find the subset of source mutations that would introduce
maximum speedup. The inclusion in MuppeT of a variety of algorithms
shows how algorithms with vastly different original purposes can solve
the same problem in different ways with varying efficacy. MuppEr can
also be extended to run other optimization algorithms such as differ-
ential evolution or simulated annealing. The details for each algorithm
and how they are adapted to Muprper are detailed below.

3.4.1. Delta debugging

Delta debugging (DD) is an algorithm that was originally developed
as a software testing algorithm to isolate bugs inside a program, which
is then adapted into finding speedup in program variants in previous
work such as Precimonious [27] with regards to precision tuning. We
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#pragma omp parallel for shared(var)
collapse(3)
—p for (int i = @; i < 2048; ++1i)
for (int j = @; j < 2048; ++j)
for(int k = @; k < 2048; ++k)
C[i][j]+=var*A[i][k]*B[k][]];

Collapse

#pragma omp parallel for simd
shared(var)
for (int i = @; i < 2048; ++i)
for (int j = 0; j < 2048; ++j)
for(int k = 0; k < 2048; ++k)
Cli][j]+=var*A[i][k]*B[K][]];

SIMD

#pragma omp parallel for shared(var)
#pragma omp tiles size(16,16,16)
for (int i = @; i < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = @; k < 2048; ++k)
Cli][j]+=var*A[i][k]*B[K][]];

Tiling

#pragma omp parallel for shared(var)
for (int i = @; i < 2048; ++i)
for (int j = 0; j < 2048; ++j) T
for(int k = 0; k < 2048; ++k)
CLi][3] += var*A[i][k]*B[K][]];

#pragma omp parallel for
firstprivate(var)
for (int i = @; 1 < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = @; k < 2048; ++k)
Cli][]+=var*A[1][k]*B[K][3];

Firstprivate

—»|

#pragma omp parallel for
schedule(dynamic, 25)
for (int i = 0; 1 < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = @; k < 2048; ++k)
Cli][]+=var*A[i][k]*B[K][]];

Schedule

Fig. 2. Classes of mutations in MuppET.

follow the LCCSearcH algorithm in [27], where a change set in our
adaptation of the algorithm is defined as the set of mutations that are
applied to the original program, and the outputs are a minimal change
set which causes speedup.

To illustrate how delta debugging is adapted to Mupper, we show
two simple examples in Fig. 3. The change set is initially assigned as
the set of all mutations. Then MuppeT starts testing mutated program
variants with all mutations, with the first half of mutations, and with
the second half of mutations. In (a), the second half of mutations cause
speedup, thus the second half of mutations become the new change
set, and then this new change set is split in two halves and test their
performance speedup respectively. In (b), none of the halves cause
speedup, thus Mupper split the mutations into 4 parts instead of 2 and
test each part and its complement set, respectively, as shown in Round
3. If a single part among these 4 parts causes speedup, then similar
to (a), that part becomes the new change set and is split again in two
for further testing. If a complement set (3 parts in this case) causes
speedup, as shown in the figure, this means that excluding that one
part improves performance, thus the change set becomes the remaining
3 parts for further performance testing, as shown in Round 4. The
algorithm finishes running when every part in the algorithm is a single
mutation and cannot be split further.

The time complexity of delta debugging is O(n - log(n)) where n is
the number of possible mutations in the average case; in the worst case,
the time complexity is O(n?).

3.4.2. Bayesian optimization

Bayesian Optimization (BO) is a common optimization algorithm
that approximates a computationally expensive function, such as the
programs tested in Section 5. In Mupper, Gaussian processes are used
as surrogate models to approximate program time characteristics, an
acquisition function is used to predict the next input to be tested for
performance, and the result of the next input (running time) is then sent
back to improve the surrogate model. BO does not have the assumption
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of the function forms, which makes it an appropriate algorithm to use
in MUPPET.

There is one difficulty in adapting BO to Mupper: BO requires the
function to be in the form of y = f(x) where x is a list of number
inputs, while y is a floating-point output (in our case the run time of
the program). Meanwhile the input parameter of the function to be
optimized, T’ = P(M"), is a subset of mutations. Therefore we optimize
T’ = P(M}') instead where:

Mb' = {mb,, mb,, ..., mb,}

1, if meM
mb; = .
0, otherwise

In this way, we assign 0 or 1 for each element in the set of mutations
according to whether the mutation is in the subset. For example, if
M = {m;,my,my,my}, M' = {m,my}, then Mb = {1,0,1,0}. The
converted list of 0 and 1 can be accepted by BO as input parameters.

The computational complexity of Bayesian optimization is O(n®)
where n is the number of mutations, however, some methods reduce
the computation time, as shown in [28].

3.4.3. Decision tree optimization

Similar to BO, decision tree optimization (FO) also uses a surrogate
model to approximate an expensive function, and an acquisition func-
tion to estimate the next input for running time evaluation, and the
running time output is also sent back to improve the surrogate model.
However, in this case, a decision tree regression model is used instead.
We decide to use random forest [29] as the surrogate model here. Also
similar to BO, FO optimizes T’ = P(Mb') function by assigning 0 or 1
for each mutation in the mutation set.

The computational complexity of decision tree optimization using
random forest is O(n - log(n) - d - k) where n is the number of points in
the training set, d is the number of mutations, and k is the number of
decision trees in the forest.

3.5. Transformer and tester

The Transformer and Tester modules read the list of mutations from
the Optimizer module, mutate the program into a variant, and run the
variant to see if there is any speedup while maintaining the correctness
of the program.

3.5.1. Compilation and conflicts checks

Even though there are already criteria placed in the Mutation
Generator module for each mutation class to ensure that all mutations
generated are syntactically correct, there are still situations where two
mutations, when applied to the same programs at the same time, cause
conflicts between them. If Mupper lets these conflicts pass without
checking during the transformer phase, it would cause a large number
of mutated program variants that do not compile. Thus, to save exe-
cution time, when the Transformer module traverses the program, it
also statically checks and circumvents certain conflicts. These conflict
checks can also be customized in the case where new classes of muta-
tions are implemented or new conflicts are discovered during testing.
Existing conflict checks in Mupper are listed below:

+ An active SIMD directive mutation should not be inside an active
collapse or tiling mutation, and will be discarded.

+ An active tiling directive mutation should not be inside an active
SIMD mutation, and will be discarded.

» Every variable inside an OpenMP parallel region is checked. If
the variable is read-only, and not in a list of existing private
variables, then it will be included in the list of variables in the
firstprivate mutation.
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(2)

(b)

Fig. 3. Two simple examples illustrating the delta debugging algorithm.

4. Implementation details
4.1. Tools used to implement MupPET

Murpet is implemented with a variety of programming languages
and toolsets. The Mutation Generator and the Transformer modules
are implemented via Clang plugins. Given the nature of our work on
source-level OpenMP mutations, Mupper is compatible with programs
compiled with any C/C++ compiler as long as it supports OpenMP 5.0.!
There are a few mechanisms in the Clang compiler architecture that
are capable of performing source-to-source code transformation besides
Clang plugins, such as libtooling and libclang. Sending Clang plugin
calls as compiler parameters to the build system ensures that all source
files are processed by the Mutation Generator and the Transformer
modules. Muppet only requires minimal changes to the build scripts for
it to work on new programs, which is described in Section 4.3.

The Optimizer and Tester modules, and the overarching framework
managing the communication between modules, on the other hand, are
implemented in Python 3.10. This is done to leverage the existence of a
mature set of Python optimization modules such as scikit-optimize [30].

4.2. Modular extension

Since Mupper uses a modular approach, each of the four modules
shown in Fig. 1 can be replaced to implement an analogous func-
tionality. Optimization algorithms can be replaced, as mentioned in
Section 3.4. Even language support can be extended; while currently
MuppeT targets C/C++ programs with OpenMP language constructs, it
is possible to target FORTRAN programs by rewriting the Mutation
Generator and Transformer modules with a source-to-source FORTRAN
compiler such as ROSE [31].

4.3. Making MuppeT work with your own program

For better management of programs, Mupper calls a customized
version of the FAROS build system [32]. Mupper accepts a YAML config
file that contains program entries, with commands for a variety of
functionalities such as analyzing, transforming, building and running
the specified program. With FAROS, it is easy to add new programs to
perform OpenMP mutation testing for speedup by simply adding new
entries into the YAML config file.

1 By disabling certain classes of mutations such as tiling, Mupper is compat-
ible with programs built with compilers that only support lower versions of
OpenMP such as 4.5, although the speedup discovered would potentially be
lower.

4.3.1. Entries and correctness

An example entry for a locally stored simple matrix multiplication
program is shown in Listing 2. It sets up commands for each step used
in MuppeT, such as building, calling plugins for mutations, running the
program, extracting running time statistics from program output, and
cleaning. Note that the call_plugin part of the YAML file was not
originally a part of FAROS and is an addition of Mupper to FAROS
to analyze and transform program source code. In addition to the
YAML file, the only changes required for the matmul source code is
(a) modify the build scripts (Makefile targets func_analysis and
trans_mutations in this case) so that it accepts parameters for
calling the Clang plugins, and (b) add correctness check code that
parses program output and determines if the mutated program variant
still runs correctly.

Listing 2: YAML config file for matmul.

1 matmul: fetch: ’cp -r ../../../extra/matmul
)

2 build_dir: ’matmul’

3 build: {

4 omp: [’make CC=clang++ OPT_LEVEL=3 0OMP=1

’])

5 }

6 call_plugin: {

7 analysis: [’make func_analysis 0OMP=1’],

8 mutate: [’make trans_mutations OMP=1’],

9 }

10 copy: [’matmul’ ]

11 bin: ’matmul’

12 run: ’./matmul’

13 input: ’’

14 measure: ’Work consumed (\d+\.\d+) seconds
)

15 clean: ’rm -r *.*; cp ../../../../extra/

matmul /*.* .’

4.4. Customizing MUuPPET runtime parameters

User can select between delta debugging, Bayesian optimization and
decision tree optimization when using Mupper. Bayesian optimization
and decision tree optimization are implemented with gp_minimize
and forest_minimize functions in scikit-optimize, while delta de-
bugging is implemented from scratch, adapting the algorithm described
in Precimonious [27], since it has no publicly available Python imple-
mentations.
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Table 1
Problem size and running time for evaluated programs.
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(a) Benchmarks (Rodinia, NPB-CPP, HPCGs)

Program Parameters Min. Time (s) Avg. Time (s)
backprop 16777216 13.270 13.506
cfd fvcorr.domn.193K 18.527 18.535
b+tree file mil.txt 1.536 1.539
command command.txt
heartwall test.avi 20 14 2.259 2.266
hotspot 1024 1024 16384 14 3.896 3.921
temp_1024 power_1024
hotspot3D 512 8 1000 power 512 x 8 2.726 2.737
temp_512 x 8
kmeans kdd_cup 1.727 1.752
lavaMD -cores 14 -boxesld 32 4.177 4.191
leukocyte 5 14 testfile.avi 1.481 1.549
lud -n 14 -s 3200 5.638 5.847
myocyte 1000 500 1 14 5.186 5.221
nn filelist.txt 10000 30 90 1.825 1.835
nw 32000 10 14 1.332 1.346
particlefilter -x 512 -y 512 -z 100 2.936 2.991
-np 10000
pathfinder 1000000 100 2.992 3.066
srad 1024 1024 0 127 0 127 1 0.5 3.443 3.476
100
streamcluster 10 20 256 65536 65536 10.780 11.066
1000 none output.txt 14
FT CLASS=A 1.257 1.262
LU CLASS=A 4.933 4.956
MG CLASS=A 3.617 3.704
SP CLASS=A 31.526 31.675
BT CLASS=A 42.574 42.590
CG CLASS=B 22.512 22.735
EP CLASS=B 6.244 6.248
HPCG 96 96 96 15.548 15.620
(b) Scientific applications
Program Parameters Min. Time (s) Avg. Time (s)
LULESH -i 1500 -s 35 11.346 11.740
CoMD e-i1-1-k1x20-y20-z20 2.304 2.418
CoSP2 —hmatName hmatrix.1024.mtx-N 12288 -M 16384 4.266 4.312
CLOUDSC 14 100 4 (500 iterations) 8.160 8.187

Since the running time for each program run may have variabil-
ity that should not be counted as speedup, to reduce the impact of
such variability affecting the reported speedup, users can customize
Mupper parameters to change how it measures running time. The times
parameter instructs Mupper to run a specified number of repetitions
for each variant, and collect running times for each run; the shuffle
switch, only available for delta debugging, randomly shuffle the order
of mutations so that the delta debugging algorithm partitions these
mutations differently each time (users can still specify the same random
number generator seed for the same shuffle result). Lastly, users can
choose between using the minimum running time in all repetitions,
or using the average running time, as the fitness function for all
optimization algorithms. Our evaluation of Mupper uses some of these
parameters which are discussed later in Section 5.1.1.

5. Experimental evaluation

This evaluation answers the following research questions:

RQ1 Does Murrer discover source code mutations that induce speedup
for OpenMP programs, and how does it perform with different

algorithms?

RQ2 How does Murper compare when using different optimization
algorithms, with limited time budget/tryouts?

RQ3 What kind of mutations does Muppet discover that cause signif-

icant speedup?

5.1. Evaluation setup

5.1.1. Benchmarks

We use a variety of C/C++ OpenMP programs to evaluate MuppET.
These programs are from different fields of scientific computing, utilize
a variety of computational kernels, and have different levels of OpenMP
parallel optimizations: some are reference implementations with the
purpose of maintaining the correctness of the program, while others are
manually optimized code. The programs tested include benchmark pro-
grams like Rodinia benchmarks [19], NPB-CPP [20], HPCG [21], and
scientific applications such as LULESH [22], CoMD [23], CoSP2 [24],
and the CLOUDSC cloud physics mini-app [25].

Among the benchmarks tested, Rodinia is a benchmark suite de-
signed to test heterogeneous accelerators, but it also contains OpenMP
version of their benchmarks for evaluation on the CPU side. In our
evaluation, we choose 17 OpenMP benchmarks which run for a long
enough time for performance measurement to be possible. They cover
a wide range of topics, from medical imaging, fluid dynamics, data
mining, to linear algebra. NPB-CPP is the C++ version of NAS Paral-
lel Benchmarks [33] and supports various programming frameworks
on shared-memory architectures including OpenMP. These benchmark
programs focus on computational fluid dynamics (CFD). HPCG is a
benchmark program that performs multigrid preconditioned conjugate
gradient iterations, and it is a standard program to measure the per-
formance of HPC systems. The problem sizes and original running time
for these benchmark programs tested are shown in Table 1(a). We use
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Table 2

Parallel Computing 121 (2024) 103097

Mutation speedup discovered by delta debugging (DD), Bayesian optimization (BO), and decision tree optimization (FO). Results that are not considered as having speedup are

highlighted in red.

Program Min. Time improvement Avg. Time improvement No. of mutations (collapse/simd/firstprivate/tile/schedule)

DD BO FO DD BO FO Original DD BO FO
backprop 3.39% 3.60% 4.07% 5.09% 5.31% 5.67% 1/28/1/6/4 1/0/0/1/0 1/16/0/1/1 1/10/0/1/2
cfd 2.84% 2.84% 3.64% 2.60% 2.39% 3.20% 1/16/5/39/10 0/0/0/1/1 1/10/1/11/3 0/8/3/11/4
b+tree 0.38% 0.43% 0.47% 0.41% 0.47% 0.55% 0/30/2/6/4 0/2/0/0/0 1/13/1/0/1 0/11/2/2/2
heartwall 4.76% 4.97% 5.00% 4.70% 5.02% 5.04% 0/50/1/3/2 0/2/0/0/0 0/27/1/1/1 0/25/1/1/0
hotspot 9.34% 9.42% 9.42% 8.84% 9.53% 9.52% 0/5/0/0/0 0/3/0/0/0 0/5/0/0/0 0/4/0/0/0
hotspot3D 254.58% 257.59% 255.60% 254.64% 256.71% 255.26% 0/7/1/3/2 0/3/1/1/1 0/4/1/1/1 0/4/1/0/1
kmeans 2.13% 3.55% 1.00% 2.79% 3.03% 1.15% 0/22/0/3/2 0/16/0/0/0 0/12/0/0/0 0/10/0/1/1
lavaMD 0.58% 0.90% 0.78% 0.55% 0.83% 0.82% 0/12/1/18/2 0/6/0/3/0 0/7/1/6/1 0/5/0/3/1
leukocyte 2.63% 3.04% 3.47% 6.40% 6.37% 6.45% 0/135/3/54/4 0/9/0/0/0 0/53/1/17/2 0/67/1/16/1
lud 36.48% 38.33% 26.01% 27.80% 35.12% 22.02% 0/34/2/33/4 0/4/1/4/0 0/21/1/9/2 0/14/1/8/2
myocyte 3.67% 3.64% 4.38% 2.99% 3.10% 3.21% 0/41/2/66/2 0/40/2/22/1 0/20/0/16/0 0/24/1/19/1
nn 16.65% 17.03% 16.90% 16.52% 16.85% 16.66% 0/4/1/3/2 0/2/1/1/0 0/2/0/1/1 0/2/1/1/0
nw 0.39% 0.27% 1.56% —0.52% 0.02% 1.72% 0/19/0/33/2 0/0/0/0/1 0/13/0/9/0 0/6/0/10/0
particlefilter 0.31% 0.15% 0.01% 1.73% 1.60% 1.51% 0/35/10/30/20 0/32/10/10/10 0/17/7/7/9 0/16/7/10/9
pathfinder 0.38% 0.40% 0.35% 2.58% 2.53% 2.38% 0/7/1/3/2 0/7/1/1/1 0/4/1/1/1 0/3/1/1/1
srad 1.74% 1.26% 1.26% 1.62% 1.62% 1.70% 2/9/2/6/4 0/1/0/0/1 0/7/0/2/2 0/6/2/2/1
streamcluster  2.30% 4.59% 3.12% 4.73% 4.85% 4.53% 0/25/2/0/0 0/2/0/0/0 0/15/0/0/0 0/13/1/0/0
BT 0.24% —-1.86% -1.38% 0.14% -1.84% —-1.40% 44/218/2/381/108  13/118/2/66/23  24/111/1/111/40  22/103/2/109/40
CG 1.28% 5.86% 5.02% 1.57% 2.92% 2.41% 0/18/11/27/14 0/18/9/9/7 0/9/5/9/7 0/9/8/9/5
EP 0.12% 0.11% 0.10% 0.11% 0.10% 0.10% 0/9/1/24/2 0/5/1/4/0 0/7/0/8/1 0/1/0/6/1
FT 1.80% 1.88% 1.25% 1.91% 1.88% 1.43% 1/42/5/45/12 0/6/1/1/1 0/27/3/11/3 1/23/4/10/3
LU 1.55% 2.62% 2.96% 1.43% 2.96% 2.88% 3/100/6/186/20 1/23/1/15/2 0/54/4/58/7 0/51/5/59/9
MG 15.30% 15.28% 15.67% 17.85% 17.90% 18.23% 7/66/8/39/20 3/28/4/6/3 5/34/5/12/7 4/32/6/10/9
SP 5.86% -1.71% —0.34% 5.89% -1.65% -0.81% 64/267/3/396/140  0/1/0/2/1 30/143/3/115/56  23/135/1/114/59
HPCG 4.19% 13.91% 13.21% 2.34% 8.09% 7.73% 0/63/13/81/26 0/4/0/5/0 0/36/7/25/12 0/36/7/25/12
LULESH 3.87% 2.32% 2.49% 6.29% 5.36% 5.66% 0/95/0/222/76 0/13/0/12/8 0/42/0/60/28 0/49/0/62/32
CoMD 3.34% 3.91% 4.36% 7.37% 7.86% 9.03% 0/78/13/132/30 0/24/3/10/4 0/32/8/36/12 0/47/6/36/12
CoSP2 3.80% 4.55% 6.27% 4.22% 5.10% 5.46% 0/67/9/117/22 0/17/0/12/1 0/32/5/34/10 0/44/4/36/8
CLOUDSC 1.07% 1.07% 1.20% 1.16% 3.46% 1.28% 0/58/0/111/0 0/28/0/19/0 0/34/0/34/0 0/33/0/33/0

a combination of existing and customized result verification routines to
determine the correctness of the results from mutated program variants.

Among the scientific applications tested, LULESH is a proxy appli-
cation simulating the Shock Hydrodynamics Challenge Problem. CoMD
is a proxy application implementing classical molecular dynamics al-
gorithms and workloads as used in materials science. CoSP2 is a ref-
erence implementation for quantum molecular dynamics (QMD) elec-
tronic structure code. Lastly, CLOUDSC is a standalone mini-app of
the ECMWF cloud microphysics parameterization for its Integrated
Forecasting System (IFS). Evaluating these programs may show the
efficacy of Mupper in helping software developers in scientific comput-
ing optimize the parallel performance of their programs. Again, the
problem sizes and original running time for these applications tested
are shown in Table 1(b). As for correctness checks, for both LULESH
and CoMD, we use the approach presented in [34] to determine the
correctness of the program. For LULESH, we consider iteration count,
final origin energy, and TotalAbsDiff as the output; for CoMD, we
use the final energy as output. For CoSP2, we consider the AAN and
fraction values to determine whether the mutated program variant runs
correctly. And lastly, for CLOUDSC, we use its internal verification
routine for this purpose.

5.1.2. Algorithm parameters

We use delta debugging, Bayesian optimization, and decision tree
optimization in our evaluation. Given the fact that program running
time varies across the programs being evaluated, we put a tryout
limit of 100 for all programs tested across all three algorithms, in-
stead of using a total time limit. Algorithms may finish before the
tryout limit. Parameters for Bayesian optimization are n_calls=100,
n_initial_points=10,and noise=‘‘Gaussian’’, and param-
eters for decision tree optimization are n_calls=100,n_initial_
points=10, acq_func= ‘‘LCB’’, kappa=1.6, base_
estimator=°‘RF’’.

5.1.3. Evaluation environment

We use a workstation computer with two 14-core Intel Xeon E5-
2694v3 CPUs and 32GiB of RAM, running Ubuntu 22.04. We use Clang
16.0.6 with OpenMP 5.1 support as the compiler for both source-to-
source code transformation. We use both gcc (Rodinia, CLOUDSC) and
clang (others) to compile the original programs and their mutated
variants, to demonstrate the adaptability of our tool to different com-
pilers. Using OpenMP 5.1 enables us to build programs with tiling
clauses as well.

We also ensure that performance variation is minimized between
program runs. We avoid CPU context switching by limiting the pro-
grams to run on hardware threads on the second CPU by forcing the
taskset -c 14-27 command in FAROS. Hardware quiescing, as
defined by [35], is also performed to reduce performance fluctuations,
such as turning off both simultaneous multithreading and dynamic
frequency scaling.

As for running time statistic collection, each mutated variant is run
3 times and use the minimum running time as the program running
time T'. As a comparison, we also record the average running time for
each tryout and evaluate if there is any possible discrepancy between
average and minimum running time, but this statistic is not used as
the fitness function output for optimization algorithms. We use the
minimum running time as the output of the fitness function because as
stated in [35] it is best at rejecting noise introduced by the evaluation
environment, since any running time higher than the minimum must
be due to such noise. However, we still measure speedup for average
running time to evaluate how performance variability affects running
time across all programs.

5.2. Speedup discovered by MuppET

Even though we take various measures to reduce performance vari-
ability in our evaluation system, it is still not completely removed.
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Fig. 4. The number of tryouts used by each algorithm in Mupper to terminate the optimization algorithm (maximum is 100).

Therefore, to determine if a mutated program variant shows speedup,
we use the 1% threshold. If among the 3 runs, the time improvement
between the minimum running time or between the average running
time is less than 1%, we do not consider the current subset of mutations
as speedup-inducing.

The time improvement discovered by all three algorithms with Mup-
pET is shown in Table 2, where columns 2—-4 show the time improvement
when comparing the minimum running time of the best variant against
the original, and columns 5-7 show the time improvement for the
average running time. Our evaluation shows that there are 75.9% of
programs (22 out of 29 programs; in which there are 18 out of 25
benchmark programs and 4 out of 4 scientific applications) in which
delta debugging can find a subset of mutations that, when applied, can
cause speedup while maintaining the correctness of the program. The
other 7 programs show negligible (<1.01x) or no speedup, as shown in
red background in Table 2. The largest speedup observed is from the
hotspot benchmark in Rodinia, with a 257.59% time improvement
or 3.57x speedup. Three other benchmark programs have over 1.1x
speedup (lud and nn in Rodinia, and MG in NPB-CPP).

On the other hand, both Bayesian optimization and decision tree
optimization find the same number of programs—72.4% (21 out of 29
programs) in which a subset of mutations is found to induce speedup.
They also find one more program, HPCG, with > 1.1x speedup, com-
pared to delta debugging. The programs with discovered speedup are
the same across three algorithms, except in SP where delta debugging
finds a subset of mutations that cause speedup, but the other two
algorithms cannot.

Next, we compare the speedup discovered in individual programs
by the three algorithms. Even though the speedup discovered by these
algorithms looks roughly the same for a majority of programs, after
comparing speedup for all programs, we find that in the 21 programs
in which all algorithms find speedup in average running time, delta de-
bugging can only find the maximum speedup among three algorithms in
2 programs, while Bayesian optimization and decision tree optimization
finds the maximum speedup in 10 and 9 programs respectively. This
shows that Bayesian optimization and decision tree optimization are
slightly superior in finding the maximum speedup (when they can find
any speedup at all). Also interesting to note, in some programs, such as
backprop and LULESH, the speedup discovered for average running
time is higher than the speedup discovered for minimum running time,

which may suggest a reduction in performance variability in mutated
program variants.

Results: Of all 29 programs tested, delta debugging can discover
a subset of mutations that cause speedup in 22 (75.9%) of
them; Bayesian optimization and decision tree optimization can
discover speedup in 21 (69%) of them. The highest speedup
discovered is 3.57x in hotspot. Bayesian optimization and de-
cision tree optimization are slightly better than delta debugging
in finding the highest speedups.

5.3. Time comparison between different algorithms

The time complexity of all algorithms in Mupeer is defined in Sec-
tion 3.4.1 but they are all subject to performance variability in the
fitness function which in Mupeer is the measured running time. There-
fore it is preferable to look into the actual performance of these
algorithms in programs tested.

We collect information on the number of total tryouts attempted
for each program by each algorithm with the 100 tryout limit, and the
statistics are shown in Fig. 4. For programs with a smaller amount of
possible mutations, such as most benchmarks in Rodinia except my-
ocyte and particlefilter, delta debugging can terminate before
100 tryouts. Even for NAS Parallel Benchmarks, there are still programs
like FT and SP that terminate early. Meanwhile, for the other two
algorithms, only 2 (hotspot and nn in Rodinia benchmarks) out of 29
programs terminated before 100 tryouts. This shows delta debugging is
better than the other two algorithms in total time used when all three
algorithms can find mutations that cause speedup in a program. In total,
in 21 out of 29 programs, delta debugging uses fewer tryouts to finish
its algorithm. In the remaining 8 programs, all algorithms terminate at
the 100 tryout limit.

Our observation of logs shows that even when speedups can be
discovered in relatively few tryouts for both BO and FO, the algorithms
do not terminate and they continue to look for the next input that
causes greater speedup. This is likely because of the noisy nature of the
fitness function introduced by software and hardware environments.

Next, we evaluate how many tryouts it takes for different algorithms
to first discover a subset of mutations that cause a non-negligible
speedup. Fig. 5 shows the maximum speedup discovered by each algo-
rithm for 6 programs over time. For the two programs in the top row,
hotspot3D and MG, all three algorithms find a subset of mutations
that cause roughly the same amount of high speedup, even though
it takes decision tree optimization more tryouts to achieve that. For
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Fig. 5. Time lapse graphs showing the speedup discovered for

the two programs in the middle row, CoMD, and LU, delta debugging
uses fewer tryouts to find a subset of mutations that cause relatively
high speedup, but eventually, Bayesian optimization and decision tree
optimization catch up and find a subset of mutations that has an even
higher speedup. For HPCG, Bayesian optimization and decision tree
optimization find much higher speedup than delta debugging almost
immediately and even improved their highest speedup throughout the
process. The findings for these three programs are consistent with
Section 5.2. Lastly, we look into an example SP where only delta
debugging finds speedup. It takes delta debugging almost 20 tryouts
to find the first subset that contains the speedup-inducing mutations.
Before that, delta debugging can only find subsets of mutations that
slow down the program.

Results: In 21 out of 29 programs, delta debugging can finish
its search algorithm faster than both Bayesian optimization and
decision tree optimization. For the other 8 programs, MuppET
terminates at the 100 tryout limit. However, the other two
algorithms, after more tryouts, can usually find the same or even
higher speedup, except for SP.

5.4. Analysis of mutations found by different algorithms

Next, we look at the subset of mutations that cause the highest
speedup found by each algorithm. The number of possible mutations
for each program, and the number of remaining mutations in those
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selected programs by Mupper, using different algorithms.

subsets are shown in columns 8-11 in Table 2. Note that except in
programs like hotspot or hotspot3D where the number of possible
mutations itself is small, the number of remaining mutations in the
subset of mutations found by delta debugging is always much smaller
than both Bayesian optimization and decision tree optimization. Since
we know from Section 5.2 that delta debugging is slightly inferior when
finding a subset of mutations that cause maximum speedup, it is likely
that the mutations not included in the subset found by delta debugging
causes minor speedup that contributes to the maximum.

Since the number of mutations found by delta debugging is small,
next we look into them for some individual programs with the highest
speedups discovered to find out what kind of mutations we can find
that cause significant speedup. We achieve this by looking into the
runtime logs of delta debugging. In hotspot3D, the mutations that
cause speedup consist of a firstprivate clause at the omp parallel
directive in the computeTempOMP function, and some SIMD directives
in the multiple-dimension loop. In MG, two tiling mutations, when
applied to the parallelized loops in functions psinv() and resid()
induce 1.03x and 1.08x speedup, while some other mutations cause
minor speedup.

Lastly, we also look into SP, a program where only delta debugging
finds speedup. The runtime log of both Bayesian optimization and
decision tree optimization shows that a lot of subsets of mutations these
algorithms generate slow down the program, sometimes the running
time is longer by as much as 25%. These two algorithms would likely
take significantly more than 100 tryouts to eliminate all mutations with
negative speedup, while delta debugging quickly isolates the 4 out of
870 mutations that cause speedup with only 60 tryouts. These few
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mutations are from SIMD and tiling mutations in the first two parallel
loops in the 1hsz() function. This shows that delta debugging is
superior when there are many mutations that slow down the program.

Results: Among three algorithms, delta debugging isolates muta-
tions causing significant speedup most quickly. Investigation into
mutations that cause the highest speedups in programs evaluated
shows that tiling mutations cause some of the most significant
speedups discovered, while other mutations also contribute.

5.5. Discussion of results and limitations

Our evaluation shows that delta debugging is the fastest among all
algorithms while discovering speedups in more programs tested. How-
ever, Bayesian optimization and decision tree optimization discover the
highest speedups. Therefore, the choice between algorithms depends on
the intended purpose of the end user. In a time-limited situation, it is
preferable to use delta debugging to discover mutations that result in
speedup; the other two algorithms are more suitable in situations where
finding a speedup as high as possible is a priority.

The experimental evaluations in this paper are performed with
programs that are compiled with a fixed compiler and optimization
flags, both for the original program and its mutated variants. We also
use fixed problem sizes and input files for all programs. Even though
we use different compilers to evaluate the performance of evaluated
programs and the problem sizes for our programs are varied, we cannot
ensure that the mutations discovered with Mupper would also induce
the same amount of speedup when either the compiler, optimization
flags or runtime parameters are changed; the speedup may become
larger or smaller. It is also possible that under different environments,
a new performance hotspot may emerge so that running Muppet in such
an environment would return different mutations to achieve speedup.
Furthermore, our evaluation is performed on a workstation with a lim-
ited number of CPUs and cores. Using different hardware (CPU, RAM,
etc.) or using OpenMP offload may also change the speedup and/or the
mutations discovered. Nonetheless, our approach is compatible with
any C/C++ compiler in any hardware and software environment, and
the mutations discovered are portable across compilers.

Murepet is a dynamic tool that relies on mutation testing and it does
not perform static performance modeling, nor does it perform instru-
mentation. The Mutation Generator, Translator, and the optimization
algorithm take up negligible time during the running of Mupper, thus
the running time of Mupper can be approximated as T - I where T is the
running time of the original program and I is the number of tryouts,
differed by algorithms. Thus the running time of Mupper is linearly
correlated with 7', and would be much longer when T is larger, such
as when the program has more possible OpenMP mutations, mutations
that significantly slow down the mutated variant such as those in SP
described in Section 5.4, and/or when the program is run with larger
problem sizes. Even with HPCG, it takes Murpper 5.5 h to complete
running with Bayesian optimization (4 h with delta debugging) on the
reference computer; while its original program only runs for 15.6 s. A
combination of mutation testing and heuristics from program analysis
may be needed to improve the search performance of MuppET.

The efficacy of Mupper also varies due to factors in program source
code. MuppET is a source-level approach; this means that some mutations
may already be applied manually by software developers and are no
longer possible mutations as seen by Mupper. The amount of parallelism
involved in the mutations may impact its efficacy as well, according
to Amdah!l’s Law [36]. However, our experimental evaluation shows
that MuppeT can still assist developers in finding previously unknown
optimization opportunities, even in widely used, long-established per-
formance benchmark programs such as HPCG. Murper can also be
useful at finding optimization opportunities when migrating programs
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to newer OpenMP versions, as shown in examples like MG where tiling
mutations that improve performance are discovered.

Lastly, due to time limitation, and given the fact that IR-level com-
piler optimizations are possibly already integrated into the compilers
available, a comprehensive comparison between Mupper and IR-level
compiler optimizations is not performed. As stated in Section 1, since
Mupeer is a portable, source-level approach, it can and should be used in
addition to compiler optimizations. Software developers can use MuppET
to discover and apply mutations into their source code to speed up their
programs and avoid leaving optimization opportunities on the table,
regardless of the utilized compilers and their optimizations, which may
be specific to a compiler and thus not portable.

6. Related work

In the previous paper [26], we proposed an initial version of the
approach of using mutation testing to optimize OpenMP program per-
formance. In this paper, we expand on the initial version in that
we introduce more mutations, one more optimization algorithm with
decision tree optimization, and evaluate the efficacy of the approach
in a more comprehensive methodology.

Mutation Testing. mutation testing has already been proposed to
identify correctness defects [14]. The assumption in mutation testing
is that a syntactic change (a mutant) can help discover programs’
defects. Mutation testing, however, has not been applied deeply in HPC
programs and on performance defects. Some attempts to build mutation
testing for cloud systems have been reported [37]. Mutation operators
(i.e., syntactic changes) have been proposed to reveal faults in small-
size MPI programs [38]. With the increased use of LLVM, researchers
are exploring the support of mutation testing in LLVM [39]. To the best
of our knowledge, the only work that considers mutation testing for
performance is [15]. However, this work does not consider parallelism
and mutations in numerical (floating-point) code—these two aspects
are critical to HPC applications. To the best of our knowledge, we are
the first to explore using mutation testing for performance in OpenMP
scientific codes.

General Auto-tuning. There are many past works on auto-tuning
techniques. Typical examples include ATLAS [40], Active Harmony
[41], FFTW [42], POET [43], CHILL [44], GEIST [45], OpenTuner [46],
CLTune [47], Apollo [48,49], and Dutta et al. [50,51]. Their common
theme is that they tune compile-time, such as tiling, or runtime pa-
rameters, such as the number of threads, presupposing a given source
code representation of a program. Typical search algorithms for tuning
they propose include random, grid, or Bayesian search, or various
machine learning-based search models. By contrast, Mupper mutates the
source code of the program, which exposes a large, combined set of
both source code modifications as compile-time parameters and their
possible configurations as runtime parameters to tune for. Furthermore,
Murrer automates the generation of tuned source code variants without
user intervention and it is the first to propose the delta debugging
search algorithm for tuning. Integrating machine-learning techniques
for fast searching in Muppet is an interesting future extension.

A number of papers research domain-specific tuning using code
generation, alternate data layouts, or algorithmic parameters, such
as [52-56] for linear algebra kernels and [57-60] for stencils. Those ap-
proaches require users to express the programs in specialized domain-
specific languages amenable to tuning, which limits their generality.
Muprper tunes unaltered, user-provided, general OpenMP code to gener-
ate tuning source code variants and optimizing runtime parameters.

Auto-tuning OpenMP. Specifically on OpenMP, Adaptive OpenMP
[61,62], Sreenivasan et al. [63] propose OpenMP language extensions
to support auto-tuning on OpenMP regions, such as scheduling policies
of parallel loops, number of threads or teams. Those approaches re-
quire significant refactoring of the code and domain-specific knowledge
from the programmer to successfully integrate tuning extensions and
their possible configuration parameters in their OpenMP code. Instead,
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Mupeer treats source code modifications as a tunable parameter and
independently explores the runtime configuration space.

Bliss [64] proposes probabilistic Bayesian optimization to tune hard-
ware (core frequency, hyperthreading) and software execution pa-
rameters (OpenMP threads, algorithmic alternatives) for the whole
application, specified by the user. Bliss does not modify the program’s
source code and tunes all regions in unison, by contrast, Mupper both en-
ables source code modifications and specializes tuning to each region,
since mutations are region-specific.

Scalable Record-Replay [65] is a mechanism that extracts the LLVM
IR of OpenMP GPU target region kernels to tune for each kernel
in parallel the GPU launch bounds as compile-time parameters, by
modifying the IR to re-compile, and the number of threads/teams as
runtime parameters. Performing the kind of mutations in MuppET on
LLVM IR is challenging compared to source code, which motivates
our choice of a source code mutation tool. Nevertheless, the idea of
extracting OpenMP regions and tuning them independently is a possible
extension to MuppeT to speed up search time.

7. Conclusion

We presented MuppeT, a novel application of mutation testing aimed
at improving the performance of OpenMP programs. Mupper uses dif-
ferent search algorithms to apply and compose program mutations to
reduce application execution time. Because program transformations
are performed at the source level, Mupper’s mutations are transferable
across different OpenMP implementations and compilers. We demon-
strate that Mupper is capable of identifying mutations that improve
performance in 75.9% of the evaluated programs achieving a maximum
speedup of 3.57x.

In the future, we plan to extend MuppEr to automatically update
OpenMP code bases with the latest OpenMP features that improve
performance while maintaining correctness. Currently, it is the respon-
sibility of the code maintainer to manually update their code base to
use newly available OpenMP features, which require significant manual
efforts. The source code and data of Mupper are publicly available at
https://github.com/LLNL/MUPPET/.
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