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1. Introduction

Global food security is a major concern due to population growth,
changing climatic patterns, and alterations in cropping patterns. In
2022, 9 % of the global population was undernourished, while
approximately 29.6 % experienced moderate to severe food insecurity
(FAO et al.,, 2023). Projected changes in global climatic patterns
potentially will affect conditions for crop growth influencing food se-
curity?. The global challenge lies in meeting the increasing food demand
in a manner that is both environmentally sustainable and socially just
(Foley et al., 2011a). With rising mean temperatures and unpredictable
seasonal precipitation, crop production is expected to decrease (Araya
et al., 2020; Prasad et al., 2006). Studies show that major cereal crops
like wheat, maize, and paddy rice could see substantial decreases in
yield (Challinor et al., 2014; Farooq et al., 2023; Rezaei et al., 2023;
Sharma et al., 2022). Food insecurity is a multi-dimensional concept
(FAO et al., 2021; Hameed et al., 2019a; Hameed et al., 2019b) and the
ability of crop production to meet growing caloric demands is a key
dimension particularly sensitive to climate change impacts. Crop pro-
ductivity exhibits substantial variation worldwide, even in regions with
similar climates (Ejike-Alieji and Ekpoh, 2021; lizumi et al., 2017; Han
etal., 2023; Han et al., 2024), due to genetic variability, agricultural and
management practices, soil quality, etc. The difference between the
actual and the maximum potential yield is the Yield Gap (YG) that is a
critical parameter for assessing food security (Gerber et al., 2024;
Godfray et al., 2010; Van Ittersum et al., 2013). Cereals are a major part
of our diet, and their YG is influenced by agricultural practices, tech-
nology, and climate (Becker Pickson et al., 2023; Fatima et al., 2020). By
2050, the world will need to increase cereal supply by 70-100 % to
adequately feed the projected global population of 9.8 billion people
(FAO, 2009; Ranganathan et al., 2018; UN, 2013). Studies suggest that
such an increase will translate to an additional cereal production of 1
billion metric tons per year (Alexandratos and Bruinsma, 2012; Tilman
et al., 2011a). All else equal, closing YG could meet this demand by
increasing crop calories by about 24 % and 80 % in the current irrigated
and rainfed areas, respectively(Rosa et al., 2018).

A significant portion of the worldwide agricultural sector is irrigated
(about 20 %), which produces a major fraction (40 %) of the total
agricultural yield (FAO, 2021; Siebert and Doll, 2010a). Irrigation
development must continue to be a top priority if food production is to
be sustained against the impacts of climate change in the future (Burney
et al., 2013; FAO, 2017). Intensification of agricultural inputs causes
increased utilization of available resources and threatens sustainability.
The Sustainable Development Goals (SDGs), particularly SDG 2 (Zero
Hunger) and SDG 12 (Responsible Consumption and Production),
emphasize the need for sustainable agricultural practices that increase
productivity and food security while reducing environmental impact *°.
Studies have shown that there will be a significant mismatch between
water demand (and subsequent withdrawal) and supply, in the future
(Brown et al., 2013; Kirby and Mainuddin, 2022; Zhai et al., 2022). The
agricultural sector is a substantial consumer, accounting for roughly 70
% of global water withdrawal (Molden, 2013; Pointet, 2022). Globally,
approximately 24 % of cultivated land (around 310 million hectares) is
irrigated, contributing to about 33 % of the total global crop production
(Portmann et al., 2010). There is an evident need for addressing future
food production demand and closing the yield gaps on a regional scale,
with minimal impact on water security as a key dimension of environ-
mental sustainability. It is found that additionally, 1.2 million square
kilometers of land will be necessary to be converted by 2030 and
another 5 % by 2050 with vast transformation in South America and
Sub-Saharan Africa (Alexandratos and Bruinsma, 2012). Some studies
predicted a 10-25 % increase in cropland by 2050 compared to 2005 for
climate scenarios (Schmitz et al., 2014).

Here, we analyze the YG patterns for grain crops such as Maize,
Wheat, and Rice, across various AEZs worldwide at sub-national level
units (Level 1 administrative boundaries from the Global Administrative
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Areas (GADM) version 3.6). Impacts of climate change on YG will be
uneven, with expectations of widening gaps in the most vulnerable
AEZs, underscoring the importance of irrigation in such locations for
closing the YG. The correlation of agroecology with YG and food safety
has been evaluated and established qualitatively in few studies (Bezner
Kerr et al., 2021; Ejike-Alieji and Ekpoh, 2021; Hatfield and Dold, 2018;
O’Brien et al., 2021). This study quantifies the current and projected YGs
for major cereal crops regionally and investigates the potential for two
common strategies - increased irrigation or expanded cultivation areas -
to meet future production needs. We aim to analyze food security of
different AEZs under current and future climatic scenarios, an aspect not
covered in earlier studies. GAEZ-based top-down gridded framework is
found to be more reliable with less uncertainty, in foreseeing the global
outlook of cereal self-sufficiency (Rattalino Edreira et al., 2021). We
analyze some broad strategies to enhance crop production and estimate
the impacts on water stress. We also analyze the risks in the multidi-
mensional context of food security, water stress, and import de-
pendency. The paper is arranged to answer the following questions:

e What is the existing YG for major cereal crops?

o How is food security projected to change in 2050 for different AEZs?
e How much additional yield is required for individual level 1
administrative units worldwide to ensure desired food safety in
2050?

How will the crop yield improve if we use freshwater resources in the
region to enhance agricultural productivity?

What will be the projected additional “blue water” contribution to-
wards the Crop Water Use (CWU), if the additional crop yield is
required to achieve food security?

This study employs global agroecological classification based on
temperature regimes, moisture regimes, soil quality, and terrain condi-
tions as predictors of food security. A flowchart for the methodology
adopted for the current analyses is shown in Fig. 1. The study considers
AEZ classification, and other predictors such as population, cereal
import dependency, calorific requirement met by cereals, and food se-
curity indicators to project YG at subnational level. Implications of these
projections on zonal water and food security are assessed using relevant
indicators.

We here did not analyze strategies like improving existing Water Use
Efficiency (WUE) with proper land and water management, adopting
high-yielding cultivars, or shifting dietary preferences. The study only
considers major changes like expansion of agricultural land and con-
version of rainfed to irrigated agriculture, to conceptualize the food
security status in 2050. However, it is unequivocal that these are the
choices that the policymakers need to act on as the intensification of
agriculture will cause significant increase in GHG emissions. Studies
show that it will be critically challenging to feed the world in the future
with minimal impact on biodiversity(Delzeit et al., 2017; Foley et al.,
2011b; Tilman et al., 2011b; Zabel et al., 2019). Database is developed
identifying potentially cultivable land for future timespans until 2100,
using a land suitability model with crop-specific characteristics linked
with climate, soil, and topographic conditions(Schneider et al., 2022;
Zabel et al., 2019). Potentially available cropland extent usually ex-
cludes impervious areas, strictly prohibited areas, forests, and wetlands,
and we used datasets on the potential availability of land and Land
Cover information to identify the justifiable thresholds in the present
study.

In Fig. S1 (supplementary information or SI), we show the percent-
age of the population suffering from moderate to severe food insecurity
at a country scale, the distribution of agroecological zones based on
climatology and the average length of the growing period, and Water
Stress Score (WSS) report by AQUEDUCT. The data on food security
indicators unequivocally demonstrate that SSA countries are the most
affected, followed by Latin America and Western Asia. Looking from
climatological perspective, such regions are mostly in tropical humid
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Fig. 1. Flowchart describing the process adopted to analyze the cereal production deficits under current situation and with mitigation strategies.

and sub-humid regions and arid desert. WSS indicates that the water
stress is prevalent mostly in central-south Asia, northern Africa, and
western Asia, specifically western Australia, and the west coasts of North
and South America. The solution to improve cereal yields in food-
insecure regions with less water stress is crucial, especially in Latin
American countries (excluding Chile) and SSA regions (excluding
Angola, Namibia, and Botswana).

2. Methods

2.1. Relationship between YG and food security

We aim to establish a relationship between subnational-level food
insecurity and crop yield, more specifically, examining the yield gap
(YG) for cereal crops across different countries. To determine the addi-
tional production of cereals required to mitigate food insecurity or attain
a desired level of food safety, the calorific contribution of cereals was
considered. According to the Food and Agriculture Organization (FAO),
approximately 75 % of the food consumed by humans worldwide comes
from only 12 plant and 5 animal sources (FAO, 2004). Out of these, three
crops, namely wheat, rice, and corn, make up 51 % of the total calories
included in the human diet (FAO, 2004). We focused on these three
cereal crops intending to establish their current and projected produc-
tion and contribution towards fulfilling dietary requirements.

2.2. Yield projection in 2050

Food security depends on various socioeconomic parameters, such as
population density, population growth, Gross Domestic Product (GDP)
of the region, crop potential yield achievement ratio, and Yield Gap
(YG), and agroecological parameters such as climatic condition, soil
condition, terrain limitation and length of growing period (LGP).
Regression predictive modeling with the Extreme Gradient Boosting
algorithm is found effective in crop yield simulation in past studies
(Maheswari and Ramani, 2023; Mariadass et al., 2022; Pradeep et al.,
2023), is used to ascertain the relationship or coefficients for each factor
in defining the YG of Maize, Wheat, and Rice. The model is configured
aiming to minimize squared errors. It builds 800 regression trees to
make predictions and the maximum depth for each decision tree is set to
10. A subsampling rate of 0.6 for training each tree is used, to reduce
overfitting. The learning rate is set to 0.01, indicating a slower, more
careful approach to gradient descent, likely to improve model general-
ization by making more nuanced adjustments to the model weights
during training. We employ a cross-validation strategy utilizing
Repeated K-Fold with 5 splits and 3 repetitions to evaluate the model’s
performance, ensuring the robustness and reliability of the results. The
Mean Squared Error, Mean Absolute Error, and R? values for the pre-
diction of YG from the model are obtained as 0.33 t/ha, 0.24 t/ha, and
0.94, respectively.

YG of the cereal crops in 2050 under different Representative Con-
centration Pathways (RCPs) are subsequently predicted. We analyzed
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the food security status based on the current AEZ classification (year
2020) and predicted the AEZ classification for the year 2050, under
three different RCPs: RCP2.6, RCP4.5, and RCP8.5. A description on the
classification system of GAEZ dataset is given in Text S2 in the SI. The
purpose of this analysis is to understand various scenarios ranging from
‘significant efforts to mitigate climate change and limit warming’ to
‘continued high emissions causing significant warming’. The estimates
of YG circa 2050 ultimately generated the estimates of Actual Yield (AY)
under the RCPs considered, considering the Potential Yield remaining
the same.

2.3. Threshold for food security

To achieve the desired level of food security, adjustments are
required for various indicators including Global Food Security Index
(GFSI), the population affected by moderate to severe food insecurity
(%) or Flyer, and the malnourished population (%) or MNp, average
dietary energy supply adequacy (%) or Calyr, the share of dietary en-
ergy supply derived from cereals (%) or Cerper. and import dependency
(%) or IDpr.. We assumed 90th percentiles for the values of GFSI, Calperc
and 10th percentile values for MN- and Flpr.. These thresholds are not
standardized and are ascertained to aim for high standards in food se-
curity and nutritional availability. Meanwhile, the values for IDp. and
Ceryere are kept the same. Using these adjusted values, we project the
maximum allowable YG to achieve food security for cereal crops in 2050
under different RCPs. Subsequently, we obtain a set of adjusted AY
values required in 2050, which correspond to the modified indicators.
The estimated values of cereal crop yields, predicted under targeted food
security indices are assumed to be optimal. To ascertain the cumulative
cereal production required to achieve the hypothetical food security
goal, it is necessary to multiply the optimal crop yield with the current
area under cultivation and sum up the resulting estimates. The total
required cereal crop production (in tons) for each state is used for
comparison with the existing production (in 2020), and also with the
projected actual cereal production, simulated using a crop simulation
model (discussed in the next subsection).

2.4. Crop yield simulation

After we have the estimates of the desired amount of cereal pro-
duction to achieve food security individually at each state, we now move
to examine the actual projected cereal production values in 2050,
without any alteration in the existing agricultural pattern. We used the
AquaCrop model to obtain the yield and Crop Water Use (CWU).
AquaCrop is a crop growth model by FAO that simulates the yield
response of herbaceous crops to water, we selected AquaCrop due to its
simplicity in terms of explicit parameter requirements. To simplify the
process, we considered each state as a single entity and gathered
meteorological and soil data. We also collected information on the area
under each cereal crop (such as Maize, Wheat, and Paddy) for each unit,
both for rainfed and irrigated conditions. The actual production of each
crop type was calculated by multiplying the area under the crop with the
simulated yield. To enable parallel execution of the simulations, an
open-source version of the FAO AquaCrop model, is used in the present
analysis (Foster et al., 2017).

2.5. Assumptions

The food security indicators used here are based on conditions and
behaviors reported by adults through the Food Insecurity Experience
Scale (FIES) survey module. These indicators are given as percentages,
determined to ensure adherence to Development Goals (SDGs), in
particular Goal 2 on eradicating hunger and all forms of malnutrition.
Ideally, to completely eradicate food insecurity, 100th percentiles for
the values for Global Food Security Index (GFSI) and average dietary
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energy supply adequacy (%), and 10th percentiles for by moderate to
severe food insecurity (%) and the malnourished population (%), should
be considered. Here, we assume that 90th and 10th percentiles for these
will be ‘sufficient enough’.

In our study, we did not apply bias correction to the CMIP6 model
outputs. The application of bias correction on a global scale presents
significant challenges due to the diverse climatic conditions across
different regions. Instead, we addressed the potential biases by using an
ensemble approach, where inputs from five different CMIP6 models
were selected for each region based on data availability. The models
used include CESM2, BCC-CSM2-MR, MPI-ESM1-2-LR, CNRM-CM6-1,
GFDL-ESM4, CanESM5, MIROC6, HadGEM3-GC31-LL, and ACCESS-
CM2. By averaging the outputs (Crop Water Requirement and Yield)
of the AquaCrop model from these five different climate projections, we
aim to reduce the impact of any individual model’s biases and provide a
more robust projection of future climate conditions. This ensemble mean
approach helps to mitigate the uncertainties associated with using a
single model.

It is worth mentioning that the AquaCROP model is rather uncali-
brated and for the individual unit (or the administrative level 2); we
focused on comparative analyses between the present and the future.
With the logical assumption of transpiration being proportional to the
crop yield, we calculated the actual transpiration from the actual yield
(AY) estimates we already obtained from GAEZ data portal. The multi-
plication factors for obtaining AY from the simulated yield with present
climatic data are obtained. The same factors are applied to obtain the AY
from the yield estimates simulated for future climate projections. This
ensemble mean approach helps to mitigate the uncertainties associated
with using a single model. However, future studies can benefit from
postprocessing or bias correction (Khajehei and Moradkhani, 2017;
Khajehei et al., 2017) or using a Bayesian model averaging of different
climate models to more formally address the model uncertainty
(Madadgar and Moradkhani, 2014; Abbaszadeh et al., 2022).

The AquaCrop model, which we employed to simulate crop yields
and water use, explicitly accounts for both rainfed and irrigated agri-
cultural conditions. In our model, irrigation management is governed by
a soil moisture-based approach, designed to optimize water use while
ensuring crop water requirements are met throughout the growing
season. The model dynamically monitors soil moisture levels within the
root zone, and irrigation is triggered when soil moisture falls below a
predefined threshold, expressed as a percentage of Total Available
Water (TAW). Specifically, the threshold is set at 60 % of TAW for each
growth stage of the crop, ensuring that irrigation is applied when soil
moisture depletion indicates a significant need for water. Once the need
for irrigation is identified, the model calculates the required irrigation
depth to restore soil moisture to the target level. This calculation con-
siders the irrigation application efficiency, set at 70 %, which adjusts for
potential water losses due to factors such as evaporation and runoff. The
irrigation depth is further constrained by a maximum allowable limit of
25 mm per day to prevent over-irrigation.

The most recent BWU data for irrigated Maize, Wheat, and Rice for
the year 2002, the latest available data from the Global Crop Water
Model (GCWM), has been procured and serves as a benchmark for
comparison against simulated irrigation amounts generated by Aqua-
Crop. This data enables the assessment of simulated irrigation amounts.
By applying multiplication factors to future simulation results, specific
to each state, and derived from the comparison between actual and
simulated irrigation amounts, adjustments are made. These adjustments
ensure that future irrigation estimates from the simulations are more
precise and closely aligned with observed patterns, providing accurate
projections.

2.6. Hypothetical strategies for balancing cereal production gaps

Once the estimates of individual crop yield in the present (year 2020)
and future (year 2050) scenarios are obtained from the crop growth
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simulations, we move into estimating the gaps in cereal production. The
areas under rainfed and irrigated cereal crops are extracted from GAEZ
v4 data. The total production for each of the 6 types of crops (rainfed
maize, rainfed wheat, rainfed rice, irrigated maize, irrigated wheat, and
irrigated rice) is computed by multiplying the area under that crop with
the estimated yield. Finally, we obtain the deficit in the production of
cereal crops by subtracting the actual crop production (sum of individ-
ual crop production) from the optimal cereal production. In total, four
sets of comparisons are made, each for 3 SSPs considered in 2050
(SSP126, SSP245, SSP585) and for the present condition (in 2020). The
analyses for these comparisons are discussed in the Results section. The
areas for conversion from rainfed to irrigated cropland in Strategy 1, and
non-cropped to agricultural land in Strategy 2, are increased sequen-
tially, starting from 10 % to 50 %. The increase in rainfed and irrigated
areas are capped by a threshold of a maximum of 25 % of total poten-
tially available cropland, available at the sub-national level. The spatial
dataset of the “potentially available cropland” is obtained from the
dataset generated by Schneider et al. (2022). A brief explanation of the
“potentially available cropland” in the future as per the dataset is given
in Text S1 in the SI. We again cross-checked the possible maximum in-
crease in harvested area, as in strategy 2, with an upper limit based on
the land cover distribution of the state. We used Consensus 1-km land
cover data (Tuanmu and Jetz, 2014a) and took 10 % of the total land
under shrubs, fallow, herbaceous, and flooded vegetation to be the other
upper limit to expand the harvested area. The increase in the percentage
of the irrigated area (Strategy 1) was not increased failing to produce
much improvement in mitigating the production gap. The deficit in
production in 2050 for the existing trend and with the incremental
adaptation in both the proposed strategies are shown in Figs. S1, S2, and
S3 (SI) for SSP126, SSP245, and SSP585 respectively. In these figures
(Fig. S1, S2, and S3), total 5 hypothetical adaptation cases are

Table 1
The datasets used in the study: Sources, Parameters and Description.
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represented: 25 % and 50 % rainfed to irrigated area conversion
(Strategy 1), and 10 %, 25 % and 50 % increment in total harvested area
(Strategy 2). For the subsequent analyses, we only report Strategy 1 with
up to 50 % of the rainfed area being converted to irrigated and up to 50
% increase in the overall area harvested.

The Results section also elaborates on the strategies and findings
from our investigation into agricultural pattern modifications aimed at
mitigating food insecurity. To assess cereal production gaps to action-
able strategies, we explored two distinct methodologies aimed at
addressing the deficiencies in agricultural patterns. The initial strategy,
termed as Strategy 1, involves a phased enhancement of the irrigated
areas, facilitating the adoption of irrigation practices within regions
predominantly reliant on rainfed agriculture, up to 50 % at maximum.
The alternative strategy proposes a simultaneous expansion of both
irrigated and rainfed agricultural areas, maintaining their existing pro-
portional distribution. This strategy is termed as Strategy 2 in the Results
and Discussions. The fundamental distinction between these approaches
lies in the changes in the total harvested area. The first approach
maintains the current extent of harvested land, while the second advo-
cates for an overall increase in the land area dedicated to crop cultiva-
tion. These strategies are critically analyzed for their potential to address
the pressing challenge of food insecurity, exacerbated by climate change
and other socio-economic factors. The analysis considers the impact of
these strategies on the total harvested area, crop yield, and the broader
implications for water security and sustainability for the specific
regions.

2.7. Data

The datasets used have been described in the following sections. A
table showing the sources and description of the datasets are given in

Category Indicator/parameter Source

Description

Food Security
Indicators

Global Food Security Index
project/food-security-index)

Economist Impact (https://impact.economist.com/sustainability/

Assesses the food security status of 113 countries
based on affordability, availability, quality and
safety, and sustainability and adaptation.

Population affected by food
insecurity

Malnourished population
Average dietary energy
supply adequacy

Share of dietary energy from
cereals

Import dependency

Yield Gap (YG) YG data for rice, maize, wheat

Agroecologic Agroecological Zoning (AEZ)
Characteristics

Population Present and estimated
Information population in 2050

Potentially available  Gridded Potentially available
cropland cropland data at 30

arcseconds
Land Use Land 12 classes of lad cover
Cover Data
Datasets in Historical Climate Data
AquaCrop
Simulation
Future Climate Projections
Soil Information

Crop Parameters

Blue and Green Water Use for
Crops

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS)

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS)
FAOSTAT (https://www.fao.org/faostat/en/ - data/FS)

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS)

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS)

Global Agroecological Zones v4 (GAEZ v4) (http://www.fao.or
g/nr/gaez/en/)

Global Agroecological Zones v4 (GAEZ v4) (http://www.fao.or
g/nr/gaez/en/)

World Population Projection, United Nations (http://population.
un.org/wpp/)

Global inventory of potentially cultivable land and potentially
available cropland under different scenarios and policies (2022))
(doi:https://doi.org/10.5281/zenodo.5993934)

Consensus 1-km LULC data (https://www.earthenv.org/
landcover)

Precipitation, minimum and maximum temperatures: AGQMERRA
PET data: ERA-5 Land (https://data.bris.ac.uk/data/dataset
/qb8ujazzda0s2aykkv0oqOctp)

CMIP6 (https://esgf.lInl.gov/)

Harmonized World Soil Database v2.0 (https://data.apps.fao.
org/catalog/dataset/ff5¢613c-75bb-46a9-a162-bc728059b465)
Curve Number: GCN250

Default in AquaCrop model

Global Crop Water Model Data https://springernature.figshare.
com/collections/Global_Gridded_Dataset_of Crop-specific_Gr
een_and_Blue_Water_Requirements/4893084

Percentage of population affected by moderate to
severe food insecurity.

Percentage of population that is malnourished.
Percentage of average dietary energy supply
adequacy.

Percentage of dietary energy supply derived from
cereals.

Percentage of import dependency for food.

Used to identify the correlation with food security,
based on data from 2010.

Framework assessing natural resources for
agricultural purposes, categorizing land based on
climate, soil, and terrain.

Data on current and projected population by country
and state, using medium variant estimation for 2050.
Data on Potentially available cropland for future time
periods under RCP2.6 and RCP8.5, under rainfed and
irrigated conditions

Data on possible extension of cropland from Fallow,
Shrubland and Herbaceous vegetation cover
information

Daily data of climate variables, such as precipitation,
temperatures, and solar radiation, are used for
AquaCrop simulation inputs.

Provides soil texture and depth information for
AquaCrop simulation.

Includes planting data, harvesting date, plant density,
etc., for crop growth simulation.

Information on Crop Water Use (CWU) for different
crops at the state level, derived from spatial average
values of water use data.
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Table 1.

2.8. Data for production deficit projection
(i) Food Security Indicators

Selecting relevant indicators is critical for projecting the required
yield and ensuring food security. The indicators that have been selected
for this purpose include the Global Food Security Index (GFSI), the
population affected by moderate to severe food insecurity (%) or Flper,
and the malnourished population (%) or MN,, average dietary energy
supply adequacy (%) or Calye., the share of dietary energy supply
derived from cereals (%) or Cerpe and import dependency (%) or IDper..
These are fundamental indicators that provide crucial information
regarding the food security situation in each region or country. There-
fore, it is imperative to carefully analyze and interpret the data provided
by these indicators to make informed decisions regarding food security.
The data from the GFSI index is widely considered to be the most reliable
source for understanding the factors that impact global food security.
Economist Impact created the index, which received support from Cor-
teva Agriscience. The GFSI index assesses the food security status of 113
countries based on four main criteria: affordability, availability, quality
and safety, and sustainability and adaptation. The remaining indicators
are sourced from FAOSTAT.

(ii) Yield Gap

Information on YG is obtained from Global Agroecological Zones v4
(GAEZ v4), developed by the collaborative effort of the Food and Agri-
culture Organization of the United Nations (FAO) and the International
Institute for Applied Systems Analysis (IIASA) (Fischer et al., 2021). The
YG data for rice, maize, and wheat from 2010 was utilized as a repre-
sentative sample of the extant YG. State-level data was extracted and
analyzed to identify its correlation with food security.

(iii) Agro-climatological Classification

Agro-climatological characteristics of the states are derived from
GAEZ v4 data. Agroecological Zoning (AEZ) is an exceptional frame-
work for assessing natural resources for agricultural purposes (Fischer
et al., 2021; Wing et al., 2021). By considering established principles of
land evaluation, plant characteristics, climate, and soil requirements,
AEZ evaluates the suitability of each crop type individually. The GAEZ
v4 employs a uniform structure to categorize land based on the combi-
nation of climate, soil, and terrain features. This system is a useful
resource for evaluating the agricultural capacity of land and providing
guidance for land use planning, policy formulation, and food security
initiatives (Van Wart et al., 2013; Wing et al., 2021). The data portal
provides access to the required AEZ classifications such as moisture
regime classification, simplified AEZ classification, LGP classification,
and climate data for historical and future scenarios.

To draw conceivable analyses at a regional level, we selected a few
groups of countries (most of these are defined by SDG Country groups).
Apart from that, the 57 AEZ classes are also aggregated in terms of
climatology (considering thermal climate, temperature regimes, and
moisture regimes), and average length of growing period (LGP) in days.
The country groups considered are: USA, Northern America excluding
USA, Central and South Asia, Europe, North Africa and Western Asia,
Latin America and Caribbean region, Sub-Saharan Africa, Oceania and
Eastern and Southeast Asia. On the other hand, the climatic zones
defined here, are: Subtropical Cool Arid, Subtropical Cool Humid,
Subtropic Moderate Arid, Subtropic Moderate Humid, Subtropic Warm
Arid, Subtropic Warm Humid, Tropical Arid, Tropical Humid,
Temperate Cool Arid, Temperate Cool Humid, Temperate Moderate Arid
and Temperate Moderate Humid.
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(iv) Population Information

The data on the present and estimated population in 2050 has been
procured from the United Nations Population Division at the country
level. To derive the projection, we have used the medium variant esti-
mation from the same source. Moreover, subnational-level disintegra-
tion was performed by assuming uniform population density for both
present and future scenarios, ensuring accurate results.

2.9. Datasets used in aquacrop simulation
(i) Historical Climate Data

A consistent, daily time series over the 1980-2010 period is obtained
using the Agricultural Model Intercomparison and Improvement Project
(AgMIP) climate forcing dataset, AgMERRA, which provides global
coverage of climate variables required for agricultural models
(Rosenzweig et al., 2013; Ruane et al., 2015); we used precipitation,
minimum and maximum temperatures to create inputs to the AquaCrop
model. AGMERRA incorporates MERRA-Land product for improved
daily precipitation distribution and precipitation extremes, utilizing
NASA/GEWEX Solar Radiation Budget data for better solar radiation
values (Ruane et al., 2015). Potential ET data is obtained from daily-PET
or dPET dataset, derived using 7 variables from ERA-5 Land. This
dataset encompasses the world’s entire land area at a 0.1° spatial reso-
lution, spanning from 1981 through 2022 (Singer et al., 2020).

(ii) Future Climate Projection

The same climatic variables for the year 2050 are obtained from the
outputs of Phase 6 of the Climate Model Intercomparison Project
(CMIP6). Inputs from five models are selected for each state from CMIP6
(Any 5 from CESM2, BCC-CSM2-MR, MPI-ESM1-2-LR, CNRM-CM6-1,
GFDL-ESM4, CanESM5, MIROC6, HadGEM3-GC31-LL and ACCESS-
CM2) for generating yield simulations individually. The mean of the
five individual simulations is taken for deriving yield, evaporation,
transpiration, and irrigation, at each unit. The selection of 5 models was
based on data availability for that region.

(iii) Soil Information

Soil texture and depth information required for AquaCrop simulation
was obtained from the Harmonized World Soil Database version 2.0 or
HWSD v2.0. We assume 2 soil layers in the crop model, and the volu-
metric percentage of sand, clay, organic matter, and depth of each soil
layer are extracted as the spatial average values for the mentioned
variables for each state. Apart from that, AquaCrop needs Curve Number
data for each unit, which was obtained from GCN250, global curve
number datasets for hydrologic modeling and design (Jaafar et al.,
2019).

(iv) Crop Parameters

AquaCrop model has an in-built set of parameters for parameters
required for simulation of the final crop yield in the four steps: (i)
Simulation of green canopy cover, (ii) Simulation of crop transpiration
and root water uptake, (iii) Simulation of above-ground biomass pro-
duction, (iv) Simulation of final crop yield. These default sets of crop
parameters in AquaCrop model were used. Some required adjustments
were made on parameters like planting data, harvesting date, plant
density, maximum canopy cover, time to crop emergence, flowering,
start of canopy senescence and to maturity, and maximum effective root
depth, for enabling the crop growth simulation.
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2.10. Global crop water model data

The Crop Water Use (CWU) information for the crops is obtained
from the Global Crop Water Model (GCWM), designed for 26 different
crop classes for water use (Siebert and Doll, 2010b). We obtained the
actual crop water use (CWU) and irrigation amounts by taking the
spatial average values of Blue Water Use (BWU) and Green Water Use
(GWU) from GCWM for the cereal crops at the state level for the current
situation. (Chiarelli et al., 2020).

Science of the Total Environment 954 (2024) 176811

2.11. Data for potentially cultivable land and potentially available
cropland

A global dataset is available that provides information on potentially
cultivable land (pcl) and potentially available cropland (pac) for both
historic and future periods. The data is presented for two different
climate scenarios, RCP2.6 and RCP8.5, and includes information on
current irrigation patterns as well as rainfed and irrigated conditions
separately. The information is available at both 30 arc-seconds and 30
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Fig. 2. Projected Cereal Production Deficit in 2050 under different Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585)- Classified into SDG Regions and
Climatic Zones. Subplots (a) and (b) show the cereal production deficit in 2050 without any mitigation strategy, classified across Climatic zones and country groups,
respectively. The subplots (c) and (e) show the remaining cereal production deficit with Strategy 1 and 2, respectively, for varied climatic zones. Similarly, the
subplots (d) and (f) show the remaining cereal production deficit with Strategy 1 and 2, respectively, for different country groups. The values in the tables on top of

each chart represent the mean production deficit percentages.
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arc-minutes spatial resolution and has been aggregated at the country
level (Schneider et al., 2022).

2.12. Land cover data

We use Consensus 1-km Land Use Land Cover (LULC) data with 12
classes of land cover, to cross-check the threshold for possible extension
of harvested area, as per the strategy 2 (Tuanmu and Jetz, 2014b).

3. Results
3.1. Projections of cereal production deficits in 2050

Fig. 2 gives an estimate of the cereal production shortages projected
by 2050, based on different Shared Socioeconomic Pathways (SSPs) such
as SSP126, SSP245, and SSP585, among different climatic zones (left
panels) and country groups (right panels). Subplots (a) and (b) illustrate
the potential future cereal deficits that could happen without any
intervention, highlighting the differences in production shortages across
climatic zones and country groups. Some regions are consistently pro-
jected to have higher deficits for all SSPs, indicating a potential
vulnerability to future food insecurity. Country groups with high import
dependency and significant food insecure populations could face com-
pounded risks due to their projected production deficits, as they may
have less capacity to buffer against global cereal shortages. The differ-
ence in deficit percentages across the SSP126, SSP245, and SSP585 for
the same country groups suggests that socioeconomic factors will have a
significant influence on future cereal production. SSP585, which is often
associated with high greenhouse gas emissions and limited adoption of
environmental policies, shows greater deficits in some country groups,
hinting at a correlation between less sustainable practices and increased
food production challenges.

A negative value of the mean of the cereal production deficit sym-
bolizes surplus production while a positive value denotes deficit in
production. SSP585 shows substantial crop production deficits across all
regions except subtropical cool arid. Significant vulnerability to cereal
production gaps can be observed in subtropical warm arid, tropical arid
and humid, temperate cool, and moderately humid regions. Certain
regions, such as central-south Asia and SSA, show significant projected
deficits. Developed regions, like the USA and Europe, display relatively
lower deficits, which reflect better adaptive capacities, technological
advancements, and more resilient agricultural infrastructures. There is
considerable uncertainty in the projections, arising from reasons that are
difficult to predict.

3.2. Possible mitigation of cereal production deficits

We examine two strategies to address the gaps in cereal production.
Strategy 1 focuses on increasing irrigated areas, promoting irrigation
practices in rainfed regions, up to a maximum of 50 %. Strategy 2 sug-
gests expanding irrigated and rainfed agricultural areas while main-
taining their current proportional distribution. Investigating spatial
patterns of future expansion of cropland is essential in determining the
trade-offs between food security, climate protection, and biodiversity
(Delzeit et al., 2017; Hosonuma et al., 2012; Kehoe et al., 2017; Zabel
et al., 2019). Minimum of two estimates, one the 1/4th of the estimated
land potential to be suitable, cultivable, and available for agricultural
use(Schneider et al., 2022), extracted from 30 arc-seconds spatial res-
olution global dataset, and the other from 10 % of the total land under
shrubs, fallow, herbaceous, and flooded vegetation, has been used to
threshold the expansion of cropland in the current study.

In Fig. 2, subplots (c) and (d), the impact of Strategy 1 is shown for
different climatic regions and country groups. The production deficit is
not mitigated under this strategy, and maximum improvement is seen in
tropical and subtropical arid regions, essentially because of the lower
seasonal rainfall and suitable soil and climatic condition. In most classes,
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both in country groups and climatic zones, the average reduction in
deficit is limited to 3-5 %. Alternatively, with strategy 2, significant
decrease in production deficits is observed (~ 30 %) for all regions
(Fig. 2 (e) and (f)). The sample data for all the boxplots exclude the
regions with surplus of 100 % or more. The highest improvement in crop
production is observed in the SSP245 projection. It is possible that the
positive changes in the temperature and increased CO2 concentration
can lead to better conditions for agriculture(Shanker et al., 2022; Xu
et al., 2016). A high-emission scenario could have a detrimental effect
on agriculture, which cannot be rectified by implementing irrigation
methods(Asseng et al., 2014; lizumi et al., 2017). Thus, minimal
improvement in SSP585 scenario is observed except for higher threshold
for expansion of cropland. In Europe and Central-southern Asia,
comparatively lower production deficit is projected by 2050.

We show the prevalence of food insecurity, the caloric contribution
from the cereals, and import dependency in Fig. 2 for each class. The
graphs indicate that most country groups with high import dependency
are facing larger cereal production deficits (except for Canada). This
underscores the potential risk of increased cereal prices and highlights
the importance of developing domestic agricultural capabilities and
diversifying import sources. East and Southeast Asia have potential to
mitigate food insecurity with enabling irrigation in the rainfed lands,
conforming to the observation from Fig. 2(c), lying in tropical and
subtropical regions. Countries with a higher percentage of food-insecure
populations and a greater reliance on cereals for calorie intake are
projected to have larger deficits. This emphasizes the urgency for tar-
geted interventions to enhance food security through improved agri-
cultural yields and food distribution policies.

3.3. Changes in CWU

The regions with higher Water Stress Score (WSS) and significant
production deficits are of particular concern. In these regions, the
additional water required for crop production could lead to over-
extraction of water resources, affecting not only the environment but
also other sectors. Fig. 3 illustrates changes in CWU with the expansion
of irrigated areas and increased harvested areas, per the suggested hy-
pothetical strategies. The presence of WSS alongside the CWU changes
indicates that such increases in CWU could exacerbate existing water
stress conditions. The current study has noted that the CWU increase
varies significantly across different regions. For instance, in subplot (a),
Central and Southern Asia, as well as North America and Europe, exhibit
a higher increase in CWU under SSP585. Additionally, different climatic
zones demonstrate distinct responses to the adaptation strategies. For
example, in subplot (b), subtropical regions exhibit a more substantial
increase in CWU than temperate regions under SSP585. SSP126, a more
sustainable pathway, displays a lower increase in CWU, indicating that
sustainable development can result in more efficient water use in agri-
culture. The adaptation strategies considered in the current study can
lead to an increase in CWU. However, analyzing only the modifications
in CWU cannot identify water stress for the regions. To have a better
understanding of the impacts of such aggressive strategies to ensure food
self-sufficiency at the subnational level, the changes in available
renewable Blue Water (BW) resources.

3.4. Impact on water security

To draw focused analyses on water security, we estimate the avail-
able renewable freshwater resources, considering the implementation of
two mitigation strategies, Strategies 1 and 2. The comparison of these
strategies in terms of remaining freshwater availability (in 10° cu.m.) by
changes in irrigation intensity is presented in Fig. 4. Subplots (a) - (f)
show the distribution of residual availability of freshwater after imple-
mentation of both the strategies with three different SSPs ((a) and (b) for
SSP126, (c) and (d) for SSP245, and (e) and (f) for SSP585). The paired
box plots for different groups of countries ((a), (c) and (e)), and different
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Fig. 3. Projected increase in Crop Water Use (CWU) in 2050 under different Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585)- Classified into SDG

Regions and Climatic Zones.

The subplots (a) and (c) shows the increase in CWU with Strategy 1 and 2 respectively, for different country groups. Similarly, the subplots (b) and (d) shows the

increase in CWU with Strategy 1 and 2 respectively, for varied climatic zones.

climatic regimes ((b), (d) and (f)), are shown. The blue markers in each
class indicate the WSS, which assesses the level of competition for and
depletion of water resources.

Based on the plots (a) — (f) in Fig. 4, there is no significant visible
variability in renewable freshwater availability for different emission
scenarios. The analyses show that USA is in a relatively secure position
concerning water stress. A national overview may not fully represent the
localized challenges in these agriculturally intensive regions as signifi-
cant regional disparities do exist that pose serious challenges to water
sustainability, particularly in major agricultural zones. Regions with
higher water stress, such as SSA and Central and South Asia, may
encounter difficulties enhancing crop production due to the projected
decrease in freshwater availability. Notably, subtropical and humid re-
gions in temperate and tropical zones exhibit higher water stress.
Nevertheless, tropical humid regions are projected to have sufficient
freshwater in both strategies, enabling increased irrigation application
sustainably. Subtropical moderate and cool arid, subtropical and
temperate cool humid and subtropical moderate humid regions may face
pressing challenges from freshwater scarcity. These regions are at risk of
food insecurity by 2050.

4. Discussion

The regions have been classified based on the risk of insufficient
availability of renewable blue water to mitigate cereal production deficit
with altered practices. Subplots (a) and (b) in Fig. 5 show the Low and
High Emission scenarios for the classification based on the percentage of
deficit in cereal production (projected in 2050) and WSS, without any
adaptation. After implementing the strategies, the WSS is projected by
assuming a linear relationship with the remaining available per capita
freshwater. The WSS and production deficit are classified in quantiles
based on SSP126 projection (Table 2), and are also mapped on SSP585
scenario. Classification for the variables are: 0-25 %: ‘low’, 25-50 %:
‘moderate’, 50-75 %: ‘high’, 75-100 %: ‘very high’. The intensity of risk
is color-coded as follows: Red: ‘critical’, Orange: ‘severe’, Yellow: ‘very
high’, Beige: ‘moderate’, Sky blue: ‘low’, Blue: ‘very low’, Dark blue:
negligible. The tables below each subplot represent the area-weighted
average of cereal production deficit for each class.

Algeria, Chad, Niger, Namibia, Sudan, South Sudan, and Somalia will
be at ‘critical’ risk, with both WSS and cereal production deficit ‘very
high’. Apart from that, the western part of the USA (California, Utah),
Western Australia, and Saudi Arabia will also be at ‘critical’ risk. Central
Asian desert regions (Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan)
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Fig. 4. Available renewable freshwater after irrigation enhancement under the hypothetical strategies, S1 and S2. (a) and (b): SSP126, (c) and (d): SSP245, (e) and
(f): SSP585. (a), (c) and (e): classified as per SDG country groups. (b), (d) and (f): classified as per climate regimes.

and Southern Asia will be at ‘severe’ risk. Central India is also under this
category, even in low-emission scenarios. Under SSP585 scenario, more
parts of the world will be under high and very high risks of food inse-
curity (Fig. 5b). However, the proposed mitigation strategy in S2 can
reduce the percentage of regions with ‘critical’ and ‘severe’ risk zones
(Fig. 5c and d). Some regions in SSA, will still be under ‘critical’ risk.
There is a substantial increase in the area with surplus production, even
in SSP585. In SSP126, about 15 % of the world is projected to have
surplus cereal production. Most areas with ‘severe’-‘very high’ risk in
existing situations are transformed into ‘moderate’-‘low’ risk categories.
The classification in the adoption of Strategy 1 is shown in Fig. S5 in SI.

We further extend the analyses on the percentage of area in each
country to be under production deficit, not resolved even with strategic
adaptation implementation. Figs. 6 and 7 display two maps each, that
illustrate the projected area under production deficit and cereal import
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dependency ratios under SSP126 (Figs. 6(a)) and 7(a)) and SSP585
(Figs. 6(b) and 7(b)) for 2050, hypothetically implementing Strategy 1
and 2, respectively. The color coding indicates the percentage of area
under production deficit, while the tables provide the area-weighted
average of production deficit across different classes. The classes in
import dependency and area under deficit are identified based on
quantiles in SSP126 projection, (Table 3). The classification of zones is
based on vulnerability to food insecurity (color-coded similar to Fig. 5).
Regions with higher cereal import dependency and higher fraction of
area under production deficit, tend to be more vulnerable to adverse
impacts of climate change. Policymakers in regions with ‘critical’ or
‘severe’ vulnerability, need to diversify sources, improve agricultural
practices, and invest in technology for adaptation.

Venezuela, South and North Korea, Laos, Vietnam, and Iran are most
vulnerable with a higher percentage of area under production deficit
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Fig. 5. Classification of subnational units based on Percentage of deficit in cereal production (projected in 2050) and Baseline Water Stress Score. The tables below
the plots give the area-weighted average values for the Cereal Production Deficit for each class.

The classification for projection without any adaptation strategy for Low Emission Scenario (SSP126) and High Emission Scenario (SSP585) are shown in (a) and (b)
respectively. Similarly, the same is represented in (c) and (d) plots with the implementation of Strategy 2 for Low Emission Scenario (SSP126) and High Emission

Scenario (SSP585), respectively.

Table 2

Quantile values for classification based on Production Deficit and Water Stress
Score (WSS).

Percentiles Cereal production deficit (%) WSS
0.25 80.55 0.33
0.50 93.65 1.27
0.75 99.22 2.81

and higher import dependency. Saudi Arabia, Bolivia, and parts of SSA
may also face challenges in feeding the population with high import
dependency and deficit in production. In SSP585, the mean production
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deficit in several classes is less, but the percentage of areas with higher
vulnerability is more worldwide. The situation is more severe in SSP585,
with a larger number of countries in Africa and central Asia falling into
‘high’ to ‘very high’ vulnerable categories. In countries with less area
under production deficit, the surplus (negative values in the tables)
production also is reduced in SSP585. Notably, most of Europe and
North America are safe in terms of being vulnerable to food and water
security (even without increasing harvested area: Fig. 6).

5. Conclusion

Conversion to agricultural land (Strategy 2), though beneficial in
solving food insecurity, leads to significantly higher water stress in
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Table 3

Quantile values for classification based on Area under Production Deficit after

implementing S2 and Import Dependency.

certain regions. Regions with already high WSS may not be able to
support further water-intensive practices sustainably. The analyses
indicate that by 2050, regions with high to very high cereal import
dependency ratios are likely to experience significant cereal production

Percentiles  Area with cereal production deficit Import dependency ratio deficits under both low (SSP126) and high emission scenarios (SSP585).

) (%) Implicitly these regions may face increased food insecurity and potential

0.25 2.59 18.68 socioeconomic impacts. Even regions with low import dependency are
g“;g gggg 133'45 not immune to the effects of climate change on cereal production.
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Reducing emissions could mitigate the severity of cereal production
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deficits and, consequently, the vulnerability of dependent regions.
However, intensified agriculture, needed to meet food demand, will
likely lead to biodiversity loss and increased carbon emissions. Despite
these challenges, cropland expansion is projected to continue globally to
meet the food demand of a growing population(Ray et al., 2022; Wise,
2013). Strategic policies are crucial for addressing food production and
import dependency challenges, especially in the identified vulnerable
areas. Adopting sustainable agricultural practices, improving water
management, and increasing investments in agricultural infrastructure
to achieve higher yields with minimal cropland expansion are necessary
steps. Diversifying food sources, enhancing agricultural practices, and
investing in adaptive technologies are key priorities. Switching to less
water-intensive crops is one among several promising strategies for
enhancing agricultural sustainability, particularly in regions experi-
encing significant water stress. While this study focused on major cereal
crops due to their pivotal role in global food security, transitioning to
crops that require less water could significantly reduce agricultural
water consumption and alleviate the pressures of water scarcity. How-
ever, the success of crop switching depends on a range of factors,
including local agronomic conditions, market demand, and socio-
economic contexts. Less water-intensive crops may not always match
the nutritional value or economic return of staple crops, and thus, their
adoption must be supported by agricultural policies, market infra-
structure, and farmer education to prevent unintended negative conse-
quences, such as reduced food availability or economic instability.

In addition to crop switching, other sustainable yield-enhancing
methods deserve attention. For instance, precision agriculture can
optimize resource use, improve crop management, and increase yields
while minimizing environmental impact. Conservation agriculture,
which emphasizes minimal soil disturbance, permanent soil cover, and
crop rotations, can enhance soil health, reduce erosion, and improve
water retention, leading to more resilient agricultural systems. Addi-
tionally, integrating agroforestry practices, where trees and shrubs are
grown alongside crops, can provide multiple benefits, including
enhanced biodiversity, improved soil fertility, and better water man-
agement. While these methods offer significant potential, region-specific
research is essential to fully understand their viability across different
climates, soils, and cropping systems. Such research is crucial to
tailoring these approaches to local conditions, ensuring they contribute
effectively to sustainability goals. Investigating these approaches,
alongside crop switching, as part of an integrated strategy is essential for
advancing agricultural sustainability and food security in the face of
climate change and growing global demands. In regions with high water
stress levels, it is critical to balance the sustainability of water resources
with agricultural output to ensure long-term food security. Another
limitation of our study is the absence of bias-corrected climate model
datasets, which could have provided more precise projections. Future
studies can benefit from postprocessing or bias correction (Khajehei and
Moradkhani, 2017; Khajehei et al., 2017) or using a Bayesian model
averaging of different climate models to more formally address the
model uncertainty (Madadgar and Moradkhani, 2014; Abbaszadeh
et al., 2022).
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