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1. Introduction

Global food security is a major concern due to population growth, 
changing climatic patterns, and alterations in cropping patterns. In 
2022, 9 % of the global population was undernourished, while 
approximately 29.6 % experienced moderate to severe food insecurity 
(FAO et al., 2023). Projected changes in global climatic patterns 
potentially will affect conditions for crop growth influencing food se
curity2. The global challenge lies in meeting the increasing food demand 
in a manner that is both environmentally sustainable and socially just 
(Foley et al., 2011a). With rising mean temperatures and unpredictable 
seasonal precipitation, crop production is expected to decrease (Araya 
et al., 2020; Prasad et al., 2006). Studies show that major cereal crops 
like wheat, maize, and paddy rice could see substantial decreases in 
yield (Challinor et al., 2014; Farooq et al., 2023; Rezaei et al., 2023; 
Sharma et al., 2022). Food insecurity is a multi-dimensional concept 
(FAO et al., 2021; Hameed et al., 2019a; Hameed et al., 2019b) and the 
ability of crop production to meet growing caloric demands is a key 
dimension particularly sensitive to climate change impacts. Crop pro
ductivity exhibits substantial variation worldwide, even in regions with 
similar climates (Ejike-Alieji and Ekpoh, 2021; Iizumi et al., 2017; Han 
et al., 2023; Han et al., 2024), due to genetic variability, agricultural and 
management practices, soil quality, etc. The difference between the 
actual and the maximum potential yield is the Yield Gap (YG) that is a 
critical parameter for assessing food security (Gerber et al., 2024; 
Godfray et al., 2010; Van Ittersum et al., 2013). Cereals are a major part 
of our diet, and their YG is influenced by agricultural practices, tech
nology, and climate (Becker Pickson et al., 2023; Fatima et al., 2020). By 
2050, the world will need to increase cereal supply by 70–100 % to 
adequately feed the projected global population of 9.8 billion people 
(FAO, 2009; Ranganathan et al., 2018; UN, 2013). Studies suggest that 
such an increase will translate to an additional cereal production of 1 
billion metric tons per year (Alexandratos and Bruinsma, 2012; Tilman 
et al., 2011a). All else equal, closing YG could meet this demand by 
increasing crop calories by about 24 % and 80 % in the current irrigated 
and rainfed areas, respectively(Rosa et al., 2018).

A significant portion of the worldwide agricultural sector is irrigated 
(about 20 %), which produces a major fraction (40 %) of the total 
agricultural yield (FAO, 2021; Siebert and Döll, 2010a). Irrigation 
development must continue to be a top priority if food production is to 
be sustained against the impacts of climate change in the future (Burney 
et al., 2013; FAO, 2017). Intensification of agricultural inputs causes 
increased utilization of available resources and threatens sustainability. 
The Sustainable Development Goals (SDGs), particularly SDG 2 (Zero 
Hunger) and SDG 12 (Responsible Consumption and Production), 
emphasize the need for sustainable agricultural practices that increase 
productivity and food security while reducing environmental impact 49. 
Studies have shown that there will be a significant mismatch between 
water demand (and subsequent withdrawal) and supply, in the future 
(Brown et al., 2013; Kirby and Mainuddin, 2022; Zhai et al., 2022). The 
agricultural sector is a substantial consumer, accounting for roughly 70 
% of global water withdrawal (Molden, 2013; Pointet, 2022). Globally, 
approximately 24 % of cultivated land (around 310 million hectares) is 
irrigated, contributing to about 33 % of the total global crop production 
(Portmann et al., 2010). There is an evident need for addressing future 
food production demand and closing the yield gaps on a regional scale, 
with minimal impact on water security as a key dimension of environ
mental sustainability. It is found that additionally, 1.2 million square 
kilometers of land will be necessary to be converted by 2030 and 
another 5 % by 2050 with vast transformation in South America and 
Sub-Saharan Africa (Alexandratos and Bruinsma, 2012). Some studies 
predicted a 10–25 % increase in cropland by 2050 compared to 2005 for 
climate scenarios (Schmitz et al., 2014).

Here, we analyze the YG patterns for grain crops such as Maize, 
Wheat, and Rice, across various AEZs worldwide at sub-national level 
units (Level 1 administrative boundaries from the Global Administrative 

Areas (GADM) version 3.6). Impacts of climate change on YG will be 
uneven, with expectations of widening gaps in the most vulnerable 
AEZs, underscoring the importance of irrigation in such locations for 
closing the YG. The correlation of agroecology with YG and food safety 
has been evaluated and established qualitatively in few studies (Bezner 
Kerr et al., 2021; Ejike-Alieji and Ekpoh, 2021; Hatfield and Dold, 2018; 
O’Brien et al., 2021). This study quantifies the current and projected YGs 
for major cereal crops regionally and investigates the potential for two 
common strategies - increased irrigation or expanded cultivation areas - 
to meet future production needs. We aim to analyze food security of 
different AEZs under current and future climatic scenarios, an aspect not 
covered in earlier studies. GAEZ-based top-down gridded framework is 
found to be more reliable with less uncertainty, in foreseeing the global 
outlook of cereal self-sufficiency (Rattalino Edreira et al., 2021). We 
analyze some broad strategies to enhance crop production and estimate 
the impacts on water stress. We also analyze the risks in the multidi
mensional context of food security, water stress, and import de
pendency. The paper is arranged to answer the following questions: 

• What is the existing YG for major cereal crops?
• How is food security projected to change in 2050 for different AEZs?
• How much additional yield is required for individual level 1 

administrative units worldwide to ensure desired food safety in 
2050?

• How will the crop yield improve if we use freshwater resources in the 
region to enhance agricultural productivity?

• What will be the projected additional “blue water” contribution to
wards the Crop Water Use (CWU), if the additional crop yield is 
required to achieve food security?

This study employs global agroecological classification based on 
temperature regimes, moisture regimes, soil quality, and terrain condi
tions as predictors of food security. A flowchart for the methodology 
adopted for the current analyses is shown in Fig. 1. The study considers 
AEZ classification, and other predictors such as population, cereal 
import dependency, calorific requirement met by cereals, and food se
curity indicators to project YG at subnational level. Implications of these 
projections on zonal water and food security are assessed using relevant 
indicators.

We here did not analyze strategies like improving existing Water Use 
Efficiency (WUE) with proper land and water management, adopting 
high-yielding cultivars, or shifting dietary preferences. The study only 
considers major changes like expansion of agricultural land and con
version of rainfed to irrigated agriculture, to conceptualize the food 
security status in 2050. However, it is unequivocal that these are the 
choices that the policymakers need to act on as the intensification of 
agriculture will cause significant increase in GHG emissions. Studies 
show that it will be critically challenging to feed the world in the future 
with minimal impact on biodiversity(Delzeit et al., 2017; Foley et al., 
2011b; Tilman et al., 2011b; Zabel et al., 2019). Database is developed 
identifying potentially cultivable land for future timespans until 2100, 
using a land suitability model with crop-specific characteristics linked 
with climate, soil, and topographic conditions(Schneider et al., 2022; 
Zabel et al., 2019). Potentially available cropland extent usually ex
cludes impervious areas, strictly prohibited areas, forests, and wetlands, 
and we used datasets on the potential availability of land and Land 
Cover information to identify the justifiable thresholds in the present 
study.

In Fig. S1 (supplementary information or SI), we show the percent
age of the population suffering from moderate to severe food insecurity 
at a country scale, the distribution of agroecological zones based on 
climatology and the average length of the growing period, and Water 
Stress Score (WSS) report by AQUEDUCT. The data on food security 
indicators unequivocally demonstrate that SSA countries are the most 
affected, followed by Latin America and Western Asia. Looking from 
climatological perspective, such regions are mostly in tropical humid 
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the food security status based on the current AEZ classification (year 
2020) and predicted the AEZ classification for the year 2050, under 
three different RCPs: RCP2.6, RCP4.5, and RCP8.5. A description on the 
classification system of GAEZ dataset is given in Text S2 in the SI. The 
purpose of this analysis is to understand various scenarios ranging from 
‘significant efforts to mitigate climate change and limit warming’ to 
‘continued high emissions causing significant warming’. The estimates 
of YG circa 2050 ultimately generated the estimates of Actual Yield (AY) 
under the RCPs considered, considering the Potential Yield remaining 
the same.

2.3. Threshold for food security

To achieve the desired level of food security, adjustments are 
required for various indicators including Global Food Security Index 
(GFSI), the population affected by moderate to severe food insecurity 
(%) or FIperc, and the malnourished population (%) or MNperc, average 
dietary energy supply adequacy (%) or Calperc, the share of dietary en
ergy supply derived from cereals (%) or Cerperc and import dependency 
(%) or IDperc. We assumed 90th percentiles for the values of GFSI, Calperc 

and 10th percentile values for MNperc and FIperc. These thresholds are not 
standardized and are ascertained to aim for high standards in food se
curity and nutritional availability. Meanwhile, the values for IDperc and 
Cerperc are kept the same. Using these adjusted values, we project the 
maximum allowable YG to achieve food security for cereal crops in 2050 
under different RCPs. Subsequently, we obtain a set of adjusted AY 
values required in 2050, which correspond to the modified indicators. 
The estimated values of cereal crop yields, predicted under targeted food 
security indices are assumed to be optimal. To ascertain the cumulative 
cereal production required to achieve the hypothetical food security 
goal, it is necessary to multiply the optimal crop yield with the current 
area under cultivation and sum up the resulting estimates. The total 
required cereal crop production (in tons) for each state is used for 
comparison with the existing production (in 2020), and also with the 
projected actual cereal production, simulated using a crop simulation 
model (discussed in the next subsection).

2.4. Crop yield simulation

After we have the estimates of the desired amount of cereal pro
duction to achieve food security individually at each state, we now move 
to examine the actual projected cereal production values in 2050, 
without any alteration in the existing agricultural pattern. We used the 
AquaCrop model to obtain the yield and Crop Water Use (CWU). 
AquaCrop is a crop growth model by FAO that simulates the yield 
response of herbaceous crops to water, we selected AquaCrop due to its 
simplicity in terms of explicit parameter requirements. To simplify the 
process, we considered each state as a single entity and gathered 
meteorological and soil data. We also collected information on the area 
under each cereal crop (such as Maize, Wheat, and Paddy) for each unit, 
both for rainfed and irrigated conditions. The actual production of each 
crop type was calculated by multiplying the area under the crop with the 
simulated yield. To enable parallel execution of the simulations, an 
open-source version of the FAO AquaCrop model, is used in the present 
analysis (Foster et al., 2017).

2.5. Assumptions

The food security indicators used here are based on conditions and 
behaviors reported by adults through the Food Insecurity Experience 
Scale (FIES) survey module. These indicators are given as percentages, 
determined to ensure adherence to Development Goals (SDGs), in 
particular Goal 2 on eradicating hunger and all forms of malnutrition. 
Ideally, to completely eradicate food insecurity, 100th percentiles for 
the values for Global Food Security Index (GFSI) and average dietary 

energy supply adequacy (%), and 10th percentiles for by moderate to 
severe food insecurity (%) and the malnourished population (%), should 
be considered. Here, we assume that 90th and 10th percentiles for these 
will be ‘sufficient enough’.

In our study, we did not apply bias correction to the CMIP6 model 
outputs. The application of bias correction on a global scale presents 
significant challenges due to the diverse climatic conditions across 
different regions. Instead, we addressed the potential biases by using an 
ensemble approach, where inputs from five different CMIP6 models 
were selected for each region based on data availability. The models 
used include CESM2, BCC-CSM2-MR, MPI-ESM1–2-LR, CNRM-CM6–1, 
GFDL-ESM4, CanESM5, MIROC6, HadGEM3-GC31-LL, and ACCESS- 
CM2. By averaging the outputs (Crop Water Requirement and Yield) 
of the AquaCrop model from these five different climate projections, we 
aim to reduce the impact of any individual model’s biases and provide a 
more robust projection of future climate conditions. This ensemble mean 
approach helps to mitigate the uncertainties associated with using a 
single model.

It is worth mentioning that the AquaCROP model is rather uncali
brated and for the individual unit (or the administrative level 2); we 
focused on comparative analyses between the present and the future. 
With the logical assumption of transpiration being proportional to the 
crop yield, we calculated the actual transpiration from the actual yield 
(AY) estimates we already obtained from GAEZ data portal. The multi
plication factors for obtaining AY from the simulated yield with present 
climatic data are obtained. The same factors are applied to obtain the AY 
from the yield estimates simulated for future climate projections. This 
ensemble mean approach helps to mitigate the uncertainties associated 
with using a single model. However, future studies can benefit from 
postprocessing or bias correction (Khajehei and Moradkhani, 2017; 
Khajehei et al., 2017) or using a Bayesian model averaging of different 
climate models to more formally address the model uncertainty 
(Madadgar and Moradkhani, 2014; Abbaszadeh et al., 2022).

The AquaCrop model, which we employed to simulate crop yields 
and water use, explicitly accounts for both rainfed and irrigated agri
cultural conditions. In our model, irrigation management is governed by 
a soil moisture-based approach, designed to optimize water use while 
ensuring crop water requirements are met throughout the growing 
season. The model dynamically monitors soil moisture levels within the 
root zone, and irrigation is triggered when soil moisture falls below a 
predefined threshold, expressed as a percentage of Total Available 
Water (TAW). Specifically, the threshold is set at 60 % of TAW for each 
growth stage of the crop, ensuring that irrigation is applied when soil 
moisture depletion indicates a significant need for water. Once the need 
for irrigation is identified, the model calculates the required irrigation 
depth to restore soil moisture to the target level. This calculation con
siders the irrigation application efficiency, set at 70 %, which adjusts for 
potential water losses due to factors such as evaporation and runoff. The 
irrigation depth is further constrained by a maximum allowable limit of 
25 mm per day to prevent over-irrigation.

The most recent BWU data for irrigated Maize, Wheat, and Rice for 
the year 2002, the latest available data from the Global Crop Water 
Model (GCWM), has been procured and serves as a benchmark for 
comparison against simulated irrigation amounts generated by Aqua
Crop. This data enables the assessment of simulated irrigation amounts. 
By applying multiplication factors to future simulation results, specific 
to each state, and derived from the comparison between actual and 
simulated irrigation amounts, adjustments are made. These adjustments 
ensure that future irrigation estimates from the simulations are more 
precise and closely aligned with observed patterns, providing accurate 
projections.

2.6. Hypothetical strategies for balancing cereal production gaps

Once the estimates of individual crop yield in the present (year 2020) 
and future (year 2050) scenarios are obtained from the crop growth 
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simulations, we move into estimating the gaps in cereal production. The 
areas under rainfed and irrigated cereal crops are extracted from GAEZ 
v4 data. The total production for each of the 6 types of crops (rainfed 
maize, rainfed wheat, rainfed rice, irrigated maize, irrigated wheat, and 
irrigated rice) is computed by multiplying the area under that crop with 
the estimated yield. Finally, we obtain the deficit in the production of 
cereal crops by subtracting the actual crop production (sum of individ
ual crop production) from the optimal cereal production. In total, four 
sets of comparisons are made, each for 3 SSPs considered in 2050 
(SSP126, SSP245, SSP585) and for the present condition (in 2020). The 
analyses for these comparisons are discussed in the Results section. The 
areas for conversion from rainfed to irrigated cropland in Strategy 1, and 
non-cropped to agricultural land in Strategy 2, are increased sequen
tially, starting from 10 % to 50 %. The increase in rainfed and irrigated 
areas are capped by a threshold of a maximum of 25 % of total poten
tially available cropland, available at the sub-national level. The spatial 
dataset of the “potentially available cropland” is obtained from the 
dataset generated by Schneider et al. (2022). A brief explanation of the 
“potentially available cropland” in the future as per the dataset is given 
in Text S1 in the SI. We again cross-checked the possible maximum in
crease in harvested area, as in strategy 2, with an upper limit based on 
the land cover distribution of the state. We used Consensus 1-km land 
cover data (Tuanmu and Jetz, 2014a) and took 10 % of the total land 
under shrubs, fallow, herbaceous, and flooded vegetation to be the other 
upper limit to expand the harvested area. The increase in the percentage 
of the irrigated area (Strategy 1) was not increased failing to produce 
much improvement in mitigating the production gap. The deficit in 
production in 2050 for the existing trend and with the incremental 
adaptation in both the proposed strategies are shown in Figs. S1, S2, and 
S3 (SI) for SSP126, SSP245, and SSP585 respectively. In these figures 
(Fig. S1, S2, and S3), total 5 hypothetical adaptation cases are 

represented: 25 % and 50 % rainfed to irrigated area conversion 
(Strategy 1), and 10 %, 25 % and 50 % increment in total harvested area 
(Strategy 2). For the subsequent analyses, we only report Strategy 1 with 
up to 50 % of the rainfed area being converted to irrigated and up to 50 
% increase in the overall area harvested.

The Results section also elaborates on the strategies and findings 
from our investigation into agricultural pattern modifications aimed at 
mitigating food insecurity. To assess cereal production gaps to action
able strategies, we explored two distinct methodologies aimed at 
addressing the deficiencies in agricultural patterns. The initial strategy, 
termed as Strategy 1, involves a phased enhancement of the irrigated 
areas, facilitating the adoption of irrigation practices within regions 
predominantly reliant on rainfed agriculture, up to 50 % at maximum. 
The alternative strategy proposes a simultaneous expansion of both 
irrigated and rainfed agricultural areas, maintaining their existing pro
portional distribution. This strategy is termed as Strategy 2 in the Results 
and Discussions. The fundamental distinction between these approaches 
lies in the changes in the total harvested area. The first approach 
maintains the current extent of harvested land, while the second advo
cates for an overall increase in the land area dedicated to crop cultiva
tion. These strategies are critically analyzed for their potential to address 
the pressing challenge of food insecurity, exacerbated by climate change 
and other socio-economic factors. The analysis considers the impact of 
these strategies on the total harvested area, crop yield, and the broader 
implications for water security and sustainability for the specific 
regions.

2.7. Data

The datasets used have been described in the following sections. A 
table showing the sources and description of the datasets are given in 

Table 1 
The datasets used in the study: Sources, Parameters and Description.

Category Indicator/parameter Source Description

Food Security 
Indicators

Global Food Security Index Economist Impact (https://impact.economist.com/sustainability/ 
project/food-security-index)

Assesses the food security status of 113 countries 
based on affordability, availability, quality and 
safety, and sustainability and adaptation.

Population affected by food 
insecurity

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS) Percentage of population affected by moderate to 
severe food insecurity.

Malnourished population FAOSTAT (https://www.fao.org/faostat/en/ - data/FS) Percentage of population that is malnourished.
Average dietary energy 
supply adequacy

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS) Percentage of average dietary energy supply 
adequacy.

Share of dietary energy from 
cereals

FAOSTAT (https://www.fao.org/faostat/en/ - data/FS) Percentage of dietary energy supply derived from 
cereals.

Import dependency FAOSTAT (https://www.fao.org/faostat/en/ - data/FS) Percentage of import dependency for food.
Yield Gap (YG) YG data for rice, maize, wheat Global Agroecological Zones v4 (GAEZ v4) (http://www.fao.or 

g/nr/gaez/en/)
Used to identify the correlation with food security, 
based on data from 2010.

Agroecologic 
Characteristics

Agroecological Zoning (AEZ) Global Agroecological Zones v4 (GAEZ v4) (http://www.fao.or 
g/nr/gaez/en/)

Framework assessing natural resources for 
agricultural purposes, categorizing land based on 
climate, soil, and terrain.

Population 
Information

Present and estimated 
population in 2050

World Population Projection, United Nations (http://population. 
un.org/wpp/)

Data on current and projected population by country 
and state, using medium variant estimation for 2050.

Potentially available 
cropland

Gridded Potentially available 
cropland data at 30 
arcseconds

Global inventory of potentially cultivable land and potentially 
available cropland under different scenarios and policies (2022)) 
(doi:https://doi.org/10.5281/zenodo.5993934)

Data on Potentially available cropland for future time 
periods under RCP2.6 and RCP8.5, under rainfed and 
irrigated conditions

Land Use Land 
Cover Data

12 classes of lad cover Consensus 1-km LULC data (https://www.earthenv.org/ 
landcover)

Data on possible extension of cropland from Fallow, 
Shrubland and Herbaceous vegetation cover 
information

Datasets in 
AquaCrop 
Simulation

Historical Climate Data Precipitation, minimum and maximum temperatures: AgMERRA 
PET data: ERA-5 Land (https://data.bris.ac.uk/data/dataset 
/qb8ujazzda0s2aykkv0oq0ctp)

Daily data of climate variables, such as precipitation, 
temperatures, and solar radiation, are used for 
AquaCrop simulation inputs.

Future Climate Projections CMIP6 (https://esgf.llnl.gov/)
Soil Information Harmonized World Soil Database v2.0 (https://data.apps.fao. 

org/catalog/dataset/ff5c613c-75bb-46a9-a162-bc728059b465) 
Curve Number: GCN250

Provides soil texture and depth information for 
AquaCrop simulation.

Crop Parameters Default in AquaCrop model Includes planting data, harvesting date, plant density, 
etc., for crop growth simulation.

Blue and Green Water Use for 
Crops

Global Crop Water Model Data https://springernature.figshare. 
com/collections/Global_Gridded_Dataset_of_Crop-specific_Gr 
een_and_Blue_Water_Requirements/4893084

Information on Crop Water Use (CWU) for different 
crops at the state level, derived from spatial average 
values of water use data.
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Table 1.

2.8. Data for production deficit projection

(i) Food Security Indicators

Selecting relevant indicators is critical for projecting the required 
yield and ensuring food security. The indicators that have been selected 
for this purpose include the Global Food Security Index (GFSI), the 
population affected by moderate to severe food insecurity (%) or FIperc, 
and the malnourished population (%) or MNperc, average dietary energy 
supply adequacy (%) or Calperc, the share of dietary energy supply 
derived from cereals (%) or Cerperc and import dependency (%) or IDperc. 
These are fundamental indicators that provide crucial information 
regarding the food security situation in each region or country. There
fore, it is imperative to carefully analyze and interpret the data provided 
by these indicators to make informed decisions regarding food security. 
The data from the GFSI index is widely considered to be the most reliable 
source for understanding the factors that impact global food security. 
Economist Impact created the index, which received support from Cor
teva Agriscience. The GFSI index assesses the food security status of 113 
countries based on four main criteria: affordability, availability, quality 
and safety, and sustainability and adaptation. The remaining indicators 
are sourced from FAOSTAT. 

(ii) Yield Gap

Information on YG is obtained from Global Agroecological Zones v4 
(GAEZ v4), developed by the collaborative effort of the Food and Agri
culture Organization of the United Nations (FAO) and the International 
Institute for Applied Systems Analysis (IIASA) (Fischer et al., 2021). The 
YG data for rice, maize, and wheat from 2010 was utilized as a repre
sentative sample of the extant YG. State-level data was extracted and 
analyzed to identify its correlation with food security. 

(iii) Agro-climatological Classification

Agro-climatological characteristics of the states are derived from 
GAEZ v4 data. Agroecological Zoning (AEZ) is an exceptional frame
work for assessing natural resources for agricultural purposes (Fischer 
et al., 2021; Wing et al., 2021). By considering established principles of 
land evaluation, plant characteristics, climate, and soil requirements, 
AEZ evaluates the suitability of each crop type individually. The GAEZ 
v4 employs a uniform structure to categorize land based on the combi
nation of climate, soil, and terrain features. This system is a useful 
resource for evaluating the agricultural capacity of land and providing 
guidance for land use planning, policy formulation, and food security 
initiatives (Van Wart et al., 2013; Wing et al., 2021). The data portal 
provides access to the required AEZ classifications such as moisture 
regime classification, simplified AEZ classification, LGP classification, 
and climate data for historical and future scenarios.

To draw conceivable analyses at a regional level, we selected a few 
groups of countries (most of these are defined by SDG Country groups). 
Apart from that, the 57 AEZ classes are also aggregated in terms of 
climatology (considering thermal climate, temperature regimes, and 
moisture regimes), and average length of growing period (LGP) in days. 
The country groups considered are: USA, Northern America excluding 
USA, Central and South Asia, Europe, North Africa and Western Asia, 
Latin America and Caribbean region, Sub-Saharan Africa, Oceania and 
Eastern and Southeast Asia. On the other hand, the climatic zones 
defined here, are: Subtropical Cool Arid, Subtropical Cool Humid, 
Subtropic Moderate Arid, Subtropic Moderate Humid, Subtropic Warm 
Arid, Subtropic Warm Humid, Tropical Arid, Tropical Humid, 
Temperate Cool Arid, Temperate Cool Humid, Temperate Moderate Arid 
and Temperate Moderate Humid. 

(iv) Population Information

The data on the present and estimated population in 2050 has been 
procured from the United Nations Population Division at the country 
level. To derive the projection, we have used the medium variant esti
mation from the same source. Moreover, subnational-level disintegra
tion was performed by assuming uniform population density for both 
present and future scenarios, ensuring accurate results.

2.9. Datasets used in aquacrop simulation

(i) Historical Climate Data

A consistent, daily time series over the 1980–2010 period is obtained 
using the Agricultural Model Intercomparison and Improvement Project 
(AgMIP) climate forcing dataset, AgMERRA, which provides global 
coverage of climate variables required for agricultural models 
(Rosenzweig et al., 2013; Ruane et al., 2015); we used precipitation, 
minimum and maximum temperatures to create inputs to the AquaCrop 
model. AgMERRA incorporates MERRA-Land product for improved 
daily precipitation distribution and precipitation extremes, utilizing 
NASA/GEWEX Solar Radiation Budget data for better solar radiation 
values (Ruane et al., 2015). Potential ET data is obtained from daily-PET 
or dPET dataset, derived using 7 variables from ERA-5 Land. This 
dataset encompasses the world’s entire land area at a 0.1◦ spatial reso
lution, spanning from 1981 through 2022 (Singer et al., 2020). 

(ii) Future Climate Projection

The same climatic variables for the year 2050 are obtained from the 
outputs of Phase 6 of the Climate Model Intercomparison Project 
(CMIP6). Inputs from five models are selected for each state from CMIP6 
(Any 5 from CESM2, BCC-CSM2-MR, MPI-ESM1–2-LR, CNRM-CM6–1, 
GFDL-ESM4, CanESM5, MIROC6, HadGEM3-GC31-LL and ACCESS- 
CM2) for generating yield simulations individually. The mean of the 
five individual simulations is taken for deriving yield, evaporation, 
transpiration, and irrigation, at each unit. The selection of 5 models was 
based on data availability for that region. 

(iii) Soil Information

Soil texture and depth information required for AquaCrop simulation 
was obtained from the Harmonized World Soil Database version 2.0 or 
HWSD v2.0. We assume 2 soil layers in the crop model, and the volu
metric percentage of sand, clay, organic matter, and depth of each soil 
layer are extracted as the spatial average values for the mentioned 
variables for each state. Apart from that, AquaCrop needs Curve Number 
data for each unit, which was obtained from GCN250, global curve 
number datasets for hydrologic modeling and design (Jaafar et al., 
2019). 

(iv) Crop Parameters

AquaCrop model has an in-built set of parameters for parameters 
required for simulation of the final crop yield in the four steps: (i) 
Simulation of green canopy cover, (ii) Simulation of crop transpiration 
and root water uptake, (iii) Simulation of above-ground biomass pro
duction, (iv) Simulation of final crop yield. These default sets of crop 
parameters in AquaCrop model were used. Some required adjustments 
were made on parameters like planting data, harvesting date, plant 
density, maximum canopy cover, time to crop emergence, flowering, 
start of canopy senescence and to maturity, and maximum effective root 
depth, for enabling the crop growth simulation.
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arc-minutes spatial resolution and has been aggregated at the country 
level (Schneider et al., 2022).

2.12. Land cover data

We use Consensus 1-km Land Use Land Cover (LULC) data with 12 
classes of land cover, to cross-check the threshold for possible extension 
of harvested area, as per the strategy 2 (Tuanmu and Jetz, 2014b).

3. Results

3.1. Projections of cereal production deficits in 2050

Fig. 2 gives an estimate of the cereal production shortages projected 
by 2050, based on different Shared Socioeconomic Pathways (SSPs) such 
as SSP126, SSP245, and SSP585, among different climatic zones (left 
panels) and country groups (right panels). Subplots (a) and (b) illustrate 
the potential future cereal deficits that could happen without any 
intervention, highlighting the differences in production shortages across 
climatic zones and country groups. Some regions are consistently pro
jected to have higher deficits for all SSPs, indicating a potential 
vulnerability to future food insecurity. Country groups with high import 
dependency and significant food insecure populations could face com
pounded risks due to their projected production deficits, as they may 
have less capacity to buffer against global cereal shortages. The differ
ence in deficit percentages across the SSP126, SSP245, and SSP585 for 
the same country groups suggests that socioeconomic factors will have a 
significant influence on future cereal production. SSP585, which is often 
associated with high greenhouse gas emissions and limited adoption of 
environmental policies, shows greater deficits in some country groups, 
hinting at a correlation between less sustainable practices and increased 
food production challenges.

A negative value of the mean of the cereal production deficit sym
bolizes surplus production while a positive value denotes deficit in 
production. SSP585 shows substantial crop production deficits across all 
regions except subtropical cool arid. Significant vulnerability to cereal 
production gaps can be observed in subtropical warm arid, tropical arid 
and humid, temperate cool, and moderately humid regions. Certain 
regions, such as central-south Asia and SSA, show significant projected 
deficits. Developed regions, like the USA and Europe, display relatively 
lower deficits, which reflect better adaptive capacities, technological 
advancements, and more resilient agricultural infrastructures. There is 
considerable uncertainty in the projections, arising from reasons that are 
difficult to predict.

3.2. Possible mitigation of cereal production deficits

We examine two strategies to address the gaps in cereal production. 
Strategy 1 focuses on increasing irrigated areas, promoting irrigation 
practices in rainfed regions, up to a maximum of 50 %. Strategy 2 sug
gests expanding irrigated and rainfed agricultural areas while main
taining their current proportional distribution. Investigating spatial 
patterns of future expansion of cropland is essential in determining the 
trade-offs between food security, climate protection, and biodiversity 
(Delzeit et al., 2017; Hosonuma et al., 2012; Kehoe et al., 2017; Zabel 
et al., 2019). Minimum of two estimates, one the 1/4th of the estimated 
land potential to be suitable, cultivable, and available for agricultural 
use(Schneider et al., 2022), extracted from 30 arc-seconds spatial res
olution global dataset, and the other from 10 % of the total land under 
shrubs, fallow, herbaceous, and flooded vegetation, has been used to 
threshold the expansion of cropland in the current study.

In Fig. 2, subplots (c) and (d), the impact of Strategy 1 is shown for 
different climatic regions and country groups. The production deficit is 
not mitigated under this strategy, and maximum improvement is seen in 
tropical and subtropical arid regions, essentially because of the lower 
seasonal rainfall and suitable soil and climatic condition. In most classes, 

both in country groups and climatic zones, the average reduction in 
deficit is limited to 3–5 %. Alternatively, with strategy 2, significant 
decrease in production deficits is observed (~ 30 %) for all regions 
(Fig. 2 (e) and (f)). The sample data for all the boxplots exclude the 
regions with surplus of 100 % or more. The highest improvement in crop 
production is observed in the SSP245 projection. It is possible that the 
positive changes in the temperature and increased CO2 concentration 
can lead to better conditions for agriculture(Shanker et al., 2022; Xu 
et al., 2016). A high-emission scenario could have a detrimental effect 
on agriculture, which cannot be rectified by implementing irrigation 
methods(Asseng et al., 2014; Iizumi et al., 2017). Thus, minimal 
improvement in SSP585 scenario is observed except for higher threshold 
for expansion of cropland. In Europe and Central-southern Asia, 
comparatively lower production deficit is projected by 2050.

We show the prevalence of food insecurity, the caloric contribution 
from the cereals, and import dependency in Fig. 2 for each class. The 
graphs indicate that most country groups with high import dependency 
are facing larger cereal production deficits (except for Canada). This 
underscores the potential risk of increased cereal prices and highlights 
the importance of developing domestic agricultural capabilities and 
diversifying import sources. East and Southeast Asia have potential to 
mitigate food insecurity with enabling irrigation in the rainfed lands, 
conforming to the observation from Fig. 2(c), lying in tropical and 
subtropical regions. Countries with a higher percentage of food-insecure 
populations and a greater reliance on cereals for calorie intake are 
projected to have larger deficits. This emphasizes the urgency for tar
geted interventions to enhance food security through improved agri
cultural yields and food distribution policies.

3.3. Changes in CWU

The regions with higher Water Stress Score (WSS) and significant 
production deficits are of particular concern. In these regions, the 
additional water required for crop production could lead to over- 
extraction of water resources, affecting not only the environment but 
also other sectors. Fig. 3 illustrates changes in CWU with the expansion 
of irrigated areas and increased harvested areas, per the suggested hy
pothetical strategies. The presence of WSS alongside the CWU changes 
indicates that such increases in CWU could exacerbate existing water 
stress conditions. The current study has noted that the CWU increase 
varies significantly across different regions. For instance, in subplot (a), 
Central and Southern Asia, as well as North America and Europe, exhibit 
a higher increase in CWU under SSP585. Additionally, different climatic 
zones demonstrate distinct responses to the adaptation strategies. For 
example, in subplot (b), subtropical regions exhibit a more substantial 
increase in CWU than temperate regions under SSP585. SSP126, a more 
sustainable pathway, displays a lower increase in CWU, indicating that 
sustainable development can result in more efficient water use in agri
culture. The adaptation strategies considered in the current study can 
lead to an increase in CWU. However, analyzing only the modifications 
in CWU cannot identify water stress for the regions. To have a better 
understanding of the impacts of such aggressive strategies to ensure food 
self-sufficiency at the subnational level, the changes in available 
renewable Blue Water (BW) resources.

3.4. Impact on water security

To draw focused analyses on water security, we estimate the avail
able renewable freshwater resources, considering the implementation of 
two mitigation strategies, Strategies 1 and 2. The comparison of these 
strategies in terms of remaining freshwater availability (in 109 cu.m.) by 
changes in irrigation intensity is presented in Fig. 4. Subplots (a) – (f) 
show the distribution of residual availability of freshwater after imple
mentation of both the strategies with three different SSPs ((a) and (b) for 
SSP126, (c) and (d) for SSP245, and (e) and (f) for SSP585). The paired 
box plots for different groups of countries ((a), (c) and (e)), and different 
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deficits and, consequently, the vulnerability of dependent regions. 
However, intensified agriculture, needed to meet food demand, will 
likely lead to biodiversity loss and increased carbon emissions. Despite 
these challenges, cropland expansion is projected to continue globally to 
meet the food demand of a growing population(Ray et al., 2022; Wise, 
2013). Strategic policies are crucial for addressing food production and 
import dependency challenges, especially in the identified vulnerable 
areas. Adopting sustainable agricultural practices, improving water 
management, and increasing investments in agricultural infrastructure 
to achieve higher yields with minimal cropland expansion are necessary 
steps. Diversifying food sources, enhancing agricultural practices, and 
investing in adaptive technologies are key priorities. Switching to less 
water-intensive crops is one among several promising strategies for 
enhancing agricultural sustainability, particularly in regions experi
encing significant water stress. While this study focused on major cereal 
crops due to their pivotal role in global food security, transitioning to 
crops that require less water could significantly reduce agricultural 
water consumption and alleviate the pressures of water scarcity. How
ever, the success of crop switching depends on a range of factors, 
including local agronomic conditions, market demand, and socio- 
economic contexts. Less water-intensive crops may not always match 
the nutritional value or economic return of staple crops, and thus, their 
adoption must be supported by agricultural policies, market infra
structure, and farmer education to prevent unintended negative conse
quences, such as reduced food availability or economic instability.

In addition to crop switching, other sustainable yield-enhancing 
methods deserve attention. For instance, precision agriculture can 
optimize resource use, improve crop management, and increase yields 
while minimizing environmental impact. Conservation agriculture, 
which emphasizes minimal soil disturbance, permanent soil cover, and 
crop rotations, can enhance soil health, reduce erosion, and improve 
water retention, leading to more resilient agricultural systems. Addi
tionally, integrating agroforestry practices, where trees and shrubs are 
grown alongside crops, can provide multiple benefits, including 
enhanced biodiversity, improved soil fertility, and better water man
agement. While these methods offer significant potential, region-specific 
research is essential to fully understand their viability across different 
climates, soils, and cropping systems. Such research is crucial to 
tailoring these approaches to local conditions, ensuring they contribute 
effectively to sustainability goals. Investigating these approaches, 
alongside crop switching, as part of an integrated strategy is essential for 
advancing agricultural sustainability and food security in the face of 
climate change and growing global demands. In regions with high water 
stress levels, it is critical to balance the sustainability of water resources 
with agricultural output to ensure long-term food security. Another 
limitation of our study is the absence of bias-corrected climate model 
datasets, which could have provided more precise projections. Future 
studies can benefit from postprocessing or bias correction (Khajehei and 
Moradkhani, 2017; Khajehei et al., 2017) or using a Bayesian model 
averaging of different climate models to more formally address the 
model uncertainty (Madadgar and Moradkhani, 2014; Abbaszadeh 
et al., 2022).
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