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yields by 5.2 % in India between 1981 and 2009, while regional
anomalies like high rainfall or droughts have caused massive fluctua-
tions in yields in areas such as East Africa, the US, and Australia (Gupta
et al., 2017; Huntington et al., 2017). The United States is the largest
maize producer, accounting for about 30 % of global output. Since 1980,
however, the United States has suffered a considerable rise in heat,
drought, and harsh weather, resulting in substantial losses to maize yield
(Asseng et al., 2015; Li and Troy, 2018; Mazdiyasni and AghaKouchak,
2015; Wuebbles, 2021; Yarveysi et al., 2023; Zipper et al., 2018).

Drought was the leading cause of maize crop losses in the United
States from 1989 to 2016, totaling $18 billion (Baharanyi et al., 2012; Li
et al., 2019). Zipper et al. (2016) evaluated the sensitivity of U.S. maize
output to drought from 1958 to 2007 and found that drought was
responsible for 13 % of the fluctuation in crop yield, with the Southeast
area being the most vulnerable. As the frequency and intensity of severe
weather events are projected to rise in the future, the security of maize
production is evidently under threat (Elahi et al., 2021; Praveen and
Sharma, 2019; Prein et al., 2020; Wuebbles et al., 2014; Zipper et al.,
2018). The southeastern United States has experienced intense and
frequent droughts in recent decades (Gavahi et al., 2020). Since drought
has a significant negative impact on maize yields in the United States,
particularly during crop development, the southern states aim to
improve irrigation facilities and other measures in the future to prevent
crop yield losses (Du et al., 2018; Yang et al., 2020). In addition, climate
forecast studies show that the southeastern United States will experience
scarcity of clean water (Boretti and Rosa, 2019; Griffith and Gobler,
2020). As a result, wise choice of adaptation measures is critical for
achieving potential crop yields and regional food security, especially in
the face of climate change (Cao et al., 2018; Kadiresan and Khanal,
2018; Karthikeyan et al., 2020).

To increase crop resilience in response to the detrimental effects of
climate change on crops, appropriate adaptation methods must be
developed (Ahmad and Afzal, 2020; Boonwichai et al., 2018; Gul et al.,
2022; Mirfenderski et al., 2022; Xu et al., 2020). In recent years, a
popular research topic has been how agriculture responds to climate
change. A large number of studies have used crop models to examine the
effect of climate change on crops and adaptation measures (Challinor
et al., 2018; Muller et al., 2021; Peng et al., 2020; Sultan et al., 2019;
Xiao et al., 2021). The combined impacts of climate, soil, and farm
management methods on crop growth and development can be inves-
tigated through crop model simulations, as these models simulate the
plant-water-soil-atmosphere system holistically (Cochand et al., 2021;
Ding et al., 2021; Mainuddin et al., 2021). Consequently, crop models
not only can anticipate the impact of future changes in climatic patterns
on crop yields, but also can be used to evaluate effective adaptation
measures to mitigate the impacts of climate change (Pakmehr et al.,
2021; Zobeidi et al., 2022). Multiple studies have shown the effects of
climate change on corn output in the United States, but few have pro-
posed adaptive strategies to counteract these effects. Consequently, it is
of great theoretical and practical importance to accurately assess the
impact of climate change on maize production in the Mobile River Basin
(MRB) and to formulate corresponding adaptive measures to mitigate
the impact of climate change and ensure the sustainable development of
local agriculture.

DSSAT is renowned for its multipurpose applications, from simu-
lating crop development facets like phenology, biomass, and yield pro-
duction to predicting yield responses under various irrigation scenarios
and climate change impacts. The CERES-Maize model within DSSAT has
been recognized for its accuracy in diverse climatic conditions, from
monsoonal to semiarid and continental (Ben Nouna et al., 2000; Soler
et al., 2007; Wang et al., 2011). Numerous studies have successfully
validated DSSAT models, especially in the context of climate change
impacts on growth (Ines et al., 2013; Jiang et al., 2021; Shrestha et al.,
2017; Soler et al., 2007). Given this extensive validation and its modular
structure encompassing weather, soil, and management modules,
DSSAT emerges as an invaluable tool for developing strategies to

mitigate the repercussions of climate change on crop yields. Addition-
ally, existing research has conducted in-depth sensitivity analyses of the
DSSAT model, highlighting that factors such as water stress, P5 (grain
filling duration under optimal conditions), G3 (kernel filling rate under
optimal conditions), and P2 (thermal time from silking to physiological
maturity) significantly affect yield (Corbeels et al., 2016; Wang et al.,
2021). This is particularly the case in the United States, due to more
extensive data availability and better validation of the models for crops
and conditions prevalent in this region (Akumaga et al., 2023; Valli,
2019).

In the face of climate change’s influence onmaize output, developing
realistic adaptation measures is an important means of mitigating and
coping with climate change (Ahmad and Afzal, 2020; Deb et al., 2015;
Mirhosseini and Srivastava, 2016; Zhao et al., 2017). Crops can achieve
the optimum yield with precipitation, temperature, and solar radiation
during the growth period by altering the planting and fertilization dates
(Jiang et al., 2021; Ojeda et al., 2021; Price et al., 2022). Supplemental
irrigation and fertilization at important periods, in addition to altering
sowing and fertilization dates, can be a very efficient adaptive approach
(Ahmad et al., 2022; Bondesan et al., 2023; Xia et al., 2021). DSSAT
model is implemented here to develop the optimal climate change
adaptation plan for the four adaptation measures including, changing
planting dates, fertilization dates, fertilization doses and irrigation
water supply, ensuring the long-term growth of local agriculture.

Four climate models provided by the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) were adopted in this study to assess the
impact of climate change on maize production over the next three pe-
riods (2030s:2026–2050, 2060s:2051–2075 and 2090s:2076–2100)
under SSP245 (intermediate stable state) and SSP585 (maximum
greenhouse gas emission state) scenarios. Four potential adaptation
were evaluated in the MRB using the DSSAT crop simulation model for
efficient adaptation under climate change conditions. The results of this
study can potentially help policymakers and researchers plan future
management practices in the field.

2. Materials and methods

2.1. Study area

The MRB, located in the southeast portion of the U.S., is the sixth-
largest basin in the U.S. (Iwanowicz et al., 2016). There are four states
in its catchment region, which is around 115,200 square miles. The
Upper Appalachian Plateau generates flow to the north, which flows into
Mobile Bay to the south. Some of the most important crops are corn,
soybeans, cotton, and hay. Pioneer 1319 is MRB’s most popular maize
cultivar/variety (Deb et al., 2022). More than 65 % of the annual pre-
cipitation is received during the corn-growing season, which averages
between 1270 mm and 1524 mm. Mean temperature varies from 15 to
21 degrees Celsius from north to south (Jimenez et al., 2021). In this
study, four catchments in the MRBwere selected for simulation to reflect
the growth status of maize in the study area (Fig. 1). The four catch-
ments were meticulously selected to represent the diverse agro-
climatological conditions prevalent in the basin. These catchments
exhibit varying characteristics in terms of soil type, precipitation, tem-
perature, and growing conditions which significantly influence maize
cultivation. In addition, there are corresponding agricultural experiment
sites for each of the four catchments including Tennessee Valley Res. and
Ext. Ctr., Sand Mountain Res. and Ext. Ctr., Prattville Experiment Field
and Brewton Experiment Field. By focusing on these specific catch-
ments, this study aims to capture a comprehensive understanding of
maize growth across different environmental conditions in the MRB.

2.2. Climate data

Several datasets were used comprising meteorological data, maize
information, and its agronomic treatment for the current study.
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exhibits increased vulnerability to climate change, particularly under
the SSP585 scenario. In dry and semi-arid locations, the key limiting
factor of rainfed maize yield is precipitation. Future climate change is
not favorable to the growth and development of rainfed maize, owing to
increased variability in temperature and precipitation, causing maize
production to be unstable, especially under the SSP585 scenario
(Arunrat et al., 2022; Dang et al., 2022). Additionally, in the critical
period of maize growth (the filling stage), higher temperatures and less
precipitation caused by climate change considerably affect corn yield.

Similar to other rainfed contexts (Jain et al., 2015), changing the
planting date in the MRB is a simple and practical strategy to address
future climate change. The shift of sowing date primarily influences the
precipitation, temperature, and solar radiation received throughout the
growing period, influencing maize growth and development. Choosing
the optimal sowing date at different times might help maize yield the
optimal use of water, heat, and light resources based on changes in
future climatic components. Meanwhile, the ideal sowing date defines
the best time for biomass increase, blooming, and filling.

According to the simulation results, supplemental watering at the
Tasseling and grain filling stages was the most effective supplementary
irrigation method. Tassel is a vital step in maize development. Male and
female ears cannot grow normally if water is scarce during this period. If
supplementary irrigation at this stage can significantly increase the
number of grains per ear of maize, improving maize biomass after
silking will lead to yield increase (Gao et al., 2017). To ensure sustain-
able irrigation, water sources in the region, such as rivers, ponds, and
groundwater, should also be considered when determining the amount
of irrigation water. Excessive irrigation instead has a more negative
impact on the local ecosystem.

Increasing the frequency of fertilization, distinct from the timing and
dosage, has been shown to mitigate the impact of climate change on
maize production (Han et al., 2023). However, the Length of fertilizer
intervals is mostly determined by local circumstances and crop types.
Yields may only be increased by increasing fertilizer application if
nutrient insufficiency is one of the primary limiting factors affecting
crop growth (Guo et al., 2022). Therefore, it is crucial to balance the
increased frequency with the crop’s actual nutrient needs and to account
for soil conditions and potential long-term buildup of fertilizers.

Planting dates are adjusted to simulate the impact of different sowing
times on crop exposure to climatic variables like water, temperature,
and solar radiation, affecting the entire growth cycle. Fertilization time
is varied to explore how changes in nutrient application timing influence
crop development, particularly under shifting precipitation and tem-
perature patterns. Irrigation schedules are modeled by setting soil
moisture thresholds that trigger irrigation, assessing the impact of water
supplementation during critical growth stages such as tasseling and
grain filling. Finally, fertilizer dosages are manipulated to study the
yield sensitivity to different nutrient levels, providing insights into how
nutrient optimization can counteract climate-related stressors.
Together, these adjustments in the DSSAT model offer a comprehensive
view of how strategic changes in farming practices can mitigate the
adverse effects of climate change on maize production. Sensitivity
analysis is essential for identifying which model parameters are most
influential under varying climatic and management conditions. Our
study integrates a sensitivity analysis, referencing established research
that pinpoints water stress, P5 (grain filling duration under optimal
conditions), G3 (kernel filling rate under optimal conditions), and P2
(thermal time from silking to physiological maturity) as critical factors
affecting maize yield. Particularly, our analysis focuses on how varia-
tions in these parameters under different scenarios of water availability
and nutrient supply influence crop growth outputs and yield predictions
(Wang et al., 2021). This approach helps in understanding the relative
importance of each parameter and their interactions under climate stress
conditions.

The findings of this study, while indicating potential avenues for
enhancing maize yield through adjusted planting and fertilization

strategies, must be contextualized within the practical realities of
farming in the MRB. The limitations of the current study include
assumption of homogeneity of agricultural management, fertilization,
soil qualities, and initial maize types. The impacts of extreme weather,
such as hurricanes and floods, extreme heat and prolonged drought,
pests and diseases on maize were also not considered here. A critical
factor influencing the feasibility of these strategies is the region’s cli-
matic patterns, particularly its early spring precipitation. In the MRB,
high precipitation levels often result in saturated or even flooded fields,
which can significantly hinder the ability of farmers to adhere to the
identified optimal sowing dates. This challenge underscores the impor-
tance of developing flexible adaptation strategies that can accommodate
the variability and unpredictability of field conditions (Price et al.,
2022). Additionally, the increasing frequency of temperature extremes
presents a dual challenge: not only are the high temperatures of concern,
but also the shift in frost dates. For instance, a late frost event in March
(2023) significantly impacted Alabama’s harvest this year, highlighting
the need for strategies that can mitigate risks associated with both ends
of the temperature spectrum. Beyond agronomic considerations, there
are also socioeconomic factors at play. While certain strategies such as
increased irrigation might be theoretically effective, their practical
implementation faces significant barriers in the MRB. Issues like
restrictive riparian rights laws, deep groundwater sources in areas like
the Black Belt, limited existing irrigation infrastructure, and overall
financial constraints among farmers severely limit the widespread
adoption of such measures (Pathak and Magliocca, 2022).

The study’s findings highlight the need for comprehensive policy
strategies that integrate multiple adaptation measures to mitigate the
impacts of climate change on maize production. Specifically, advancing
planting and fertilization dates could optimize crop yield, suggesting
that policymakers should promote agricultural practices that are
adaptable to climatic predictions. Additionally, the positive role of
irrigation in enhancing yield underscores the importance of supporting
robust irrigation infrastructure and efficient water management pol-
icies. However, the limited impact of varying fertilizer doses indicates
that other factors may be more critical, pointing to the necessity for
ongoing research and development in crop management and fertiliza-
tion techniques. Collectively, these insights can guide policymakers in
crafting effective climate adaptation strategies and agricultural policies
to ensure sustainable food production.

5. Conclusion

The analysis of the four different adaptation measures led to the
following conclusions:

a) The findings suggest that it will be challenging for a single adaptation
mechanism to fully compensate for the adverse effects of climate
change on irrigated maize.

b) In the SSP245 and SSP585 scenarios, advancing the planting date by
one week and advancing the fertilization date by two weeks would
maximize the benefits.

c) The availability of irrigation water can help increase corn
production.

d) The amount of fertilizer dose did not have a significant effect on corn
yield under any conditions.

This opens opportunities for future research to look into the effect of
these factors on corn yield and devise adaptation measures accordingly.
Overall, the results of this study show that corn yields can be affected by
climate change, and also highlights the importance of carefully consid-
ering adaptation measures. The results of this study can be used as a
reference for maize adaptation to climate change and sustainable agri-
cultural growth in the MRB.
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Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha, K., Wang, E.,
Wallach, D., Wolf, J., Zhao, Z., Zhu, Y., 2015. Rising temperatures reduce global
wheat production. Nat. Clim. Chang. 5, 143–147. https://doi.org/10.1038/
nclimate2470.

Baharanyi, N., Boateng, Anima, Tackie, M., Zabawa, R, N.O., 2012. Assessing the status
of farmers markets in the black belt counties. Ala. J. Food Distrib. Res. 43, 74–84.

Ben Nouna, B., Katerji, N., Mastrorilli, M., 2000. Using the CERES-Maize model in a semi-
arid Mediterranean environment. Evaluation of model performance. Eur. J. Agron.
13, 309–322. https://doi.org/10.1016/S1161-0301(00)00063-0.

Bondesan, L., Ortiz, B.V., Morlin, F., Morata, G., Duzy, L., van Santen, E., Lena, B.P.,
Vellidis, G., 2023. A comparison of precision and conventional irrigation in corn
production in Southeast Alabama. Precis. Agric. 24, 40–67. https://doi.org/
10.1007/s11119-022-09930-2.

Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S., Datta, A., 2018. Climate change
impacts on irrigation water requirement, crop water productivity and rice yield in
the Songkhram River Basin, Thailand. J. Clean. Prod. 198, 1157–1164. https://doi.
org/10.1016/j.jclepro.2018.07.146.

Boretti, A., Rosa, L., 2019. Reassessing the projections of the World Water Development
Report. npj Clean. Water 2. https://doi.org/10.1038/s41545-019-0039-9.

Cao, X., Wu, M., Zheng, Y., Guo, X., Chen, D., Wang, W., 2018. Can China achieve food
security through the development of irrigation? Reg. Environ. Chang. 18, 465–475.
https://doi.org/10.1007/s10113-017-1214-5.

Challinor, A.J., Müller, C., Asseng, S., Deva, C., Nicklin, K.J., Wallach, D.,
Vanuytrecht, E., Whitfield, S., Ramirez-Villegas, J., Koehler, A.K., 2018. Improving
the use of crop models for risk assessment and climate change adaptation. Agric.
Syst. 159, 296–306. https://doi.org/10.1016/j.agsy.2017.07.010.
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Stehfest, E., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F.,
Thorburn, P., Waha, K., Wall, G.W., Wang, E., White, J.W., Wolf, J., Zhao, Z.,
Zhu, Y., 2016. Similar estimates of temperature impacts on global wheat yield by
three independent methods. Nat. Clim. Chang. 6, 1130–1136. https://doi.org/
10.1038/nclimate3115.

Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., Brockmann, P.,
Cadule, P., Contoux, C., Cozic, A., Cugnet, D., Dufresne, J.L., Éthé, C., Foujols, M.A.,
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