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Invariable warming trends of global climate and increase in uncertainties in seasonal precipitation are major
threats to crop production and subsequently, to food security. Simulation is needed to understand the suitability
of potential adaptation strategies to mitigate the impacts of uncertain climate change scenarios on agricultural
production. This study investigates the influence of climate change on maize yield in the Mobile River Basin
(MRB) in the southeastern United States using the Decision Support System for Agrotechnology Transfer (DSSAT)
crop model. We use four climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6) under
two Shared Socio-economic Pathways (SSPs) of SSP245 and SSP585 to represent future changes in solar radi-
ation, precipitation and temperature. In this study, we simulate crop yields using climate data from the past
(1985-2010), the experimental period (2011-2017), and future projections (2026-2050, 2050-2075, and
2076-2100). The simulated crop yields are compared to historical yields to evaluate the adaptation measures
selected to mitigate the impact of future climate scenarios, assuming no effective adaptation measures or changes
in farming practices. The findings indicated that by end of the 21st century, maize yield will fall by 8.2 %
(-842 kg-ha 1) and 16.4 % (-1684 kg-ha™ 1) under the SSP245 and SSP585 scenarios, respectively. Future climate
change will have a significant impact on maize production in MRB, and will require optimal adaptation measures
to manage agricultural production loss. We evaluate several adaptation strategies including optimization of
planting date, fertilizer application date, implementing supplemental irrigation and modification of fertilizer
doses. The study concludes that significant improvement in corn yield under the changed climatic patterns
assumed as per the SSPs considered, is possible by planting one week ahead, fertilizing two weeks ahead, and
using suitable supplementary irrigation during the cropping season. The findings of this study can be utilized in
adapting to climate change and advancing sustainable agricultural development in the MRB.

1. Introduction

Food security is an essential component of sustainable development,
and a range of threatening factors including population growth and
climate change are proven to affect food security. With rising trend of
temperature and increased incidence of extreme weather, crop yield is
expected to face more challenges in the future (Hameed et al., 2019;
Arunrat et al., 2020). Since climatic factors significantly impact agri-
cultural productivity, any change in climate variables such as temper-
ature and precipitation might jeopardize nations’ food security
objectives. Various forecasting methods confirm that the global climate
change will negatively impact yield of major food grains, such as corn,
wheat, soybean, and rice (Abbaszadeh et al., 2022; Gavahi et al., 2021;
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Wang et al., 2018).

Climate change has far-reaching implications for agricultural pro-
duction. Global temperature increases can significantly reduce wheat
and maize yields, with predictions of up to 6 % yield reductions for every
degree of temperature rise (Liu et al., 2016). Concurrently, optimal lo-
cations for planting various crops will shift due to climate changes,
necessitating adjustments in crop management and cultivar selection
(Pugh et al., 2016). Elevated CO2 concentrations, while beneficial in
some respects by enhancing yield and drought resilience in plants, can
compromise the nutritional quality of C3 crops (Myers et al., 2014;
Uddling et al., 2018). Extreme climatic events, such as floods and
heatwaves, have historically slashed global cereal yields by up to 10 %
(Lesk et al., 2016). For instance, warmer temperatures reduced wheat

E-mail addresses: xhan29@crimson.ua.edu (X. Han), hmoradkhani@ua.edu (H. Moradkhani).

https://doi.org/10.1016/j.agee.2024.109230

Received 28 November 2023; Received in revised form 30 July 2024; Accepted 4 August 2024

Available online 9 August 2024

0167-8809/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:xhan29@crimson.ua.edu
mailto:hmoradkhani@ua.edu
www.sciencedirect.com/science/journal/01678809
https://www.elsevier.com/locate/agee
https://doi.org/10.1016/j.agee.2024.109230
https://doi.org/10.1016/j.agee.2024.109230
https://doi.org/10.1016/j.agee.2024.109230
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agee.2024.109230&domain=pdf

X. Han et al.

yields by 5.2 % in India between 1981 and 2009, while regional
anomalies like high rainfall or droughts have caused massive fluctua-
tions in yields in areas such as East Africa, the US, and Australia (Gupta
et al., 2017; Huntington et al., 2017). The United States is the largest
maize producer, accounting for about 30 % of global output. Since 1980,
however, the United States has suffered a considerable rise in heat,
drought, and harsh weather, resulting in substantial losses to maize yield
(Asseng et al., 2015; Li and Troy, 2018; Mazdiyasni and AghaKouchak,
2015; Wuebbles, 2021; Yarveysi et al., 2023; Zipper et al., 2018).

Drought was the leading cause of maize crop losses in the United
States from 1989 to 2016, totaling $18 billion (Baharanyi et al., 2012; Li
et al., 2019). Zipper et al. (2016) evaluated the sensitivity of U.S. maize
output to drought from 1958 to 2007 and found that drought was
responsible for 13 % of the fluctuation in crop yield, with the Southeast
area being the most vulnerable. As the frequency and intensity of severe
weather events are projected to rise in the future, the security of maize
production is evidently under threat (Elahi et al., 2021; Praveen and
Sharma, 2019; Prein et al., 2020; Wuebbles et al., 2014; Zipper et al.,
2018). The southeastern United States has experienced intense and
frequent droughts in recent decades (Gavahi et al., 2020). Since drought
has a significant negative impact on maize yields in the United States,
particularly during crop development, the southern states aim to
improve irrigation facilities and other measures in the future to prevent
crop yield losses (Du et al., 2018; Yang et al., 2020). In addition, climate
forecast studies show that the southeastern United States will experience
scarcity of clean water (Boretti and Rosa, 2019; Griffith and Gobler,
2020). As a result, wise choice of adaptation measures is critical for
achieving potential crop yields and regional food security, especially in
the face of climate change (Cao et al., 2018; Kadiresan and Khanal,
2018; Karthikeyan et al., 2020).

To increase crop resilience in response to the detrimental effects of
climate change on crops, appropriate adaptation methods must be
developed (Ahmad and Afzal, 2020; Boonwichai et al., 2018; Gul et al.,
2022; Mirfenderski et al., 2022; Xu et al., 2020). In recent years, a
popular research topic has been how agriculture responds to climate
change. A large number of studies have used crop models to examine the
effect of climate change on crops and adaptation measures (Challinor
et al., 2018; Muller et al., 2021; Peng et al., 2020; Sultan et al., 2019;
Xiao et al., 2021). The combined impacts of climate, soil, and farm
management methods on crop growth and development can be inves-
tigated through crop model simulations, as these models simulate the
plant-water-soil-atmosphere system holistically (Cochand et al., 2021;
Ding et al., 2021; Mainuddin et al., 2021). Consequently, crop models
not only can anticipate the impact of future changes in climatic patterns
on crop yields, but also can be used to evaluate effective adaptation
measures to mitigate the impacts of climate change (Pakmehr et al.,
2021; Zobeidi et al., 2022). Multiple studies have shown the effects of
climate change on corn output in the United States, but few have pro-
posed adaptive strategies to counteract these effects. Consequently, it is
of great theoretical and practical importance to accurately assess the
impact of climate change on maize production in the Mobile River Basin
(MRB) and to formulate corresponding adaptive measures to mitigate
the impact of climate change and ensure the sustainable development of
local agriculture.

DSSAT is renowned for its multipurpose applications, from simu-
lating crop development facets like phenology, biomass, and yield pro-
duction to predicting yield responses under various irrigation scenarios
and climate change impacts. The CERES-Maize model within DSSAT has
been recognized for its accuracy in diverse climatic conditions, from
monsoonal to semiarid and continental (Ben Nouna et al., 2000; Soler
et al.,, 2007; Wang et al., 2011). Numerous studies have successfully
validated DSSAT models, especially in the context of climate change
impacts on growth (Ines et al., 2013; Jiang et al., 2021; Shrestha et al.,
2017; Soler et al., 2007). Given this extensive validation and its modular
structure encompassing weather, soil, and management modules,
DSSAT emerges as an invaluable tool for developing strategies to
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mitigate the repercussions of climate change on crop yields. Addition-
ally, existing research has conducted in-depth sensitivity analyses of the
DSSAT model, highlighting that factors such as water stress, P5 (grain
filling duration under optimal conditions), G3 (kernel filling rate under
optimal conditions), and P2 (thermal time from silking to physiological
maturity) significantly affect yield (Corbeels et al., 2016; Wang et al.,
2021). This is particularly the case in the United States, due to more
extensive data availability and better validation of the models for crops
and conditions prevalent in this region (Akumaga et al., 2023; Valli,
2019).

In the face of climate change’s influence on maize output, developing
realistic adaptation measures is an important means of mitigating and
coping with climate change (Ahmad and Afzal, 2020; Deb et al., 2015;
Mirhosseini and Srivastava, 2016; Zhao et al., 2017). Crops can achieve
the optimum yield with precipitation, temperature, and solar radiation
during the growth period by altering the planting and fertilization dates
(Jiang et al., 2021; Ojeda et al., 2021; Price et al., 2022). Supplemental
irrigation and fertilization at important periods, in addition to altering
sowing and fertilization dates, can be a very efficient adaptive approach
(Ahmad et al., 2022; Bondesan et al., 2023; Xia et al., 2021). DSSAT
model is implemented here to develop the optimal climate change
adaptation plan for the four adaptation measures including, changing
planting dates, fertilization dates, fertilization doses and irrigation
water supply, ensuring the long-term growth of local agriculture.

Four climate models provided by the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) were adopted in this study to assess the
impact of climate change on maize production over the next three pe-
riods (2030s:2026-2050, 2060s:2051-2075 and 2090s:2076-2100)
under SSP245 (intermediate stable state) and SSP585 (maximum
greenhouse gas emission state) scenarios. Four potential adaptation
were evaluated in the MRB using the DSSAT crop simulation model for
efficient adaptation under climate change conditions. The results of this
study can potentially help policymakers and researchers plan future
management practices in the field.

2. Materials and methods
2.1. Study area

The MRB, located in the southeast portion of the U.S., is the sixth-
largest basin in the U.S. (Iwanowicz et al., 2016). There are four states
in its catchment region, which is around 115,200 square miles. The
Upper Appalachian Plateau generates flow to the north, which flows into
Mobile Bay to the south. Some of the most important crops are corn,
soybeans, cotton, and hay. Pioneer 1319 is MRB’s most popular maize
cultivar/variety (Deb et al., 2022). More than 65 % of the annual pre-
cipitation is received during the corn-growing season, which averages
between 1270 mm and 1524 mm. Mean temperature varies from 15 to
21 degrees Celsius from north to south (Jimenez et al., 2021). In this
study, four catchments in the MRB were selected for simulation to reflect
the growth status of maize in the study area (Fig. 1). The four catch-
ments were meticulously selected to represent the diverse agro-
climatological conditions prevalent in the basin. These catchments
exhibit varying characteristics in terms of soil type, precipitation, tem-
perature, and growing conditions which significantly influence maize
cultivation. In addition, there are corresponding agricultural experiment
sites for each of the four catchments including Tennessee Valley Res. and
Ext. Ctr., Sand Mountain Res. and Ext. Ctr., Prattville Experiment Field
and Brewton Experiment Field. By focusing on these specific catch-
ments, this study aims to capture a comprehensive understanding of
maize growth across different environmental conditions in the MRB.

2.2. Climate data

Several datasets were used comprising meteorological data, maize
information, and its agronomic treatment for the current study.
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Fig. 1. Location of Mobile River Basin and four study catchments.

Parameter-elevation Relationships on Independent Slopes Model
(PRISM) was used to obtain meteorological data, including precipitation
data, minimum and maximum temperature, and solar radiation, at a
daily timescale. Parameter-elevation Relationships on Independent
Slopes Model (PRISM), which interpolates observations from a network
of weather stations to estimate climate variables such as precipitation,
minimum and maximum temperatures, and solar radiation at a daily
resolution, adjusts for factors like elevation and topographic exposure to
provide detailed climate estimates at specific area (Daly et al., 2008).
The historical weather data from 1986 to 2010 were used to project the
future climate conditions. Trend examination was conducted via linear
regression, enabling the identification of increasing trends. Statistical
significance, determined through methods such as t-tests, was recog-
nized at a p-value less than 0.05.

The four chosen GCMs are CNRM, HAD, IPSL, and UKES (Lurton
et al., 2020; Yang et al., 2020; Zhu and Yang, 2020). According to a
previous study analyzing 31 GCMs over the CONUS, these four models
were determined to be best represent the southeast region of the CONUS
(Almazroui et al., 2021). Although in the absence of this information one
can use an objective approach for GCM selection (Ahmadalipour et al.,
2017). Bias correction was applied to the raw GCM data using a quantile
mapping approach, which is a statistical technique that adjusts the
distribution of simulated data to match that of observed data, where
precipitation data were obtained from the observed historical data from
PRISM (Huang et al.,, 2021; Patel et al., 2022). GCM results are
bias-corrected at a 4 km resolution before being spatially aggregated to
reflect the socio-economic pathway (SSP) 245 and 585 scenarios. This

dataset is regarded superior to the Representative Concentration Path-
ways (RCP) scenarios (Shrestha and Roachanakanan, 2021). Tempera-
ture, solar radiation, and precipitation for three future periods under
two sample concentration pathways were compared to the observed
data for the period 1986-2010. To simulate grain yield, the research
utilized historical (1986-2010), experimental (2011-2017), and future
(2030 s, 2060 s and 2090 s) climate data.

2.3. Crop and management data

DSSAT was calibrated and validated using meteorological data from
1986 to 2017 from PRISM (Jones et al., 2003).Information on corn
growing season and its agronomic management practices (Table 1), such
as corn varieties, planting methods, planting dates, harvest dates, fer-
tilizer application dates and dosages, and corn yield data, were obtained
from two state agricultural research centers, namely the Auburn Uni-
versity Alabama Agricultural Experiment Station and the University of
Georgia Cooperative Extension on Crop and Soil Sciences (Georgia)(Da
Cunha Leme Filho et al., 2020; Jenda and Weisbrod, 2013; Pearson and
Atucha, 2015). These research centers publish annual crop yield datasets
for their research stations under rain-fed conditions.

Specifically, the corn-growing season typically stretches from April
to September, with planting usually beginning in early April and har-
vests commencing by early September. Fertilization, predominantly
using nitrogen fertilizer, is synchronized with the sowing time to opti-
mize growth and yield. Agronomic management practices are consistent
across four catchments. Corn’s growth begins with the Seedling Stage,
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Table 1
Information of corn growing season and its agronomic management practices.
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Corn -growing season fertilizer fertilizer dates

Nitrogen Rate (Ibs/ac)

Plant pop. (seeds/ac) Herbicides used

April to September nitrogen April 120-160 25000-30000 Atrazine/Dual
Table 2 KGE=1-1/(r—17 + (- 1) + (y— 1)’ €)
Calibrated genetic coefficients for maize in 4 catchments.

Catchment P1 P2 P5 G2 G3 PHINT Where y; is the observed value, y; is the predicted value, y the mean of

1 253 0.9 957 812 10.6 50.8 the observed data and n is the number of observations. r is the corre-
2 255 0.85 951 884 10.4 53.5 lation coefficient between observed and simulated data, f is the ratio of
3 278 0.8 976 761 89 538 the mean simulated value to the mean observed value and y is the ratio
4 237 0.75 938 957 11.2 51.1

where young plants emerge and establish foundational leaves. This
progresses to the Ear Stage, marked by the critical tasseling phase, where
pollen-producing structures appear, ensuring kernel formation. Finally,
in the Kernel Stage, kernels mature on the cob, with the grain-filling
period playing a pivotal role in determining yield as kernels accumu-
late starches and nutrients. Both tasseling and grain-filling are crucial
junctures in corn’s development cycle, greatly influencing final yield
outcomes.

2.4. Simulation scenarios

The DSSAT was used to determine the optimal adaptation measures
for maize to future climate change. Developed by the United States
Department of Agriculture, the DSSAT model is adept at simulating
vegetative and reproductive growth, as well as physiological, ecological
processes, and daily soil water balance. The model’s input data en-
compasses four fundamental categories: meteorological data, crop-
specific data, soil properties, and agricultural management practices
(Jones et al., 2003).

The DSSAT model was calibrated and validated using maize yield
experiment data gathered from agricultural stations. The model is cali-
brated for the period of 1986-2010 and then validated during the years
2011-2017. As used in crop models, crop genetic coefficients are
mathematical constructs designed to mimic the phenotypic outcome of
genes under different environments to influence. Six crop genetic coef-
ficient factors were used to calibrate the DSSAT model for maize,
focusing on both phenological aspects and yield potential. The co-
efficients include: P1, which measures photoperiod sensitivity affecting
the timing of flowering based on day length; P2, the thermal time
required from silking to maturity, impacting the grain-filling period; and
P5, which determines the duration of grain filling under optimal con-
ditions, influencing kernel weight. Additionally, G2 represents the po-
tential kernel number per plant, a key determinant of yield capacity; G3
assesses the kernel filling rate under optimal conditions, affecting the
speed and efficiency of grain filling; and PHINT, the phyllochron in-
terval, or the time between the emergence of successive leaves, which
influences overall plant development and canopy structure. These six
parameters were examined for sensitivity using the t-stat and p-values.
The effectiveness of model calibration was assessed using the coefficient
of determination (Rz), root mean square error (RMSE), and Kling-Gupta
Efficiency (KGE) (Esmaeili-Gisavandani et al., 2021).

> i3
R=1-5—— b}
_9\2
L 0i-Y)
2

of the coefficient of variation of the simulated data to that of the
observed data.

The DSSAT 4.8 crop model forecasted maize production under
climate change scenarios for the following three time periods (2030 s,
2060 s and 2090 s). The model was used to estimate the impact of four
distinct adaptation measures on crop yield, including, changing planting
dates, fertilization dates, fertilization doses and irrigation water supply.
The effects of the chosen adaptation measures were then determined by
comparing the simulated crop yields with and without adaptation
measures. In the study, the DSSAT model demonstrated the impacts of
various adaptation measures on maize production, providing a theo-
retical foundation for maize adaptation to climate change and sustain-
able development in the region.

3. Results
3.1. DSSAT model calibration and validation

Corn yield was used to compute the genetic coefficient with the help
of the Genotype coefficient calculator (GENCALC) tool of the DSSAT
model. We performed a calibration and validation of the DSSAT model
over the four catchment, following the methods (GENCALC) described
in previous studies (Gunawat et al., 2022; Tooley et al., 2021). For
calibration, 25 years of field yield data (1986-2010) were used in this
work. Then, the next seven years of data were utilized for model vali-
dation (2011-2017). Fig. 2 depicts all the statistical measures obtained
throughout the calibration and validation. As shown in Fig. 2, the RMSE
ranges for calibration and validation are 1282-2399 (kg/ha) and
883-1726 (kg/ha), respectively. The R? and KGE ranges for calibration
are 0.71-0.80 and 0.69-0.87 followed by 0.79-0.85 and 0.64-0.88, for
validation, respectively. The better performance statistics for the vali-
dation as compared to the calibration is most possibly due to the
enhanced performance of the input climatic dataset in the recent years.
Given the reasonable range of statistical measures, we found the model
ready for forecasting corn yield in the MRB under climate change
scenarios.

3.2. Future climate change trends

The climatological (1986-2010) average annual precipitation in the
study area is 1306.5 mm. As shown in Fig. 3, the trend of precipitation
may not be obvious in the future under the two scenarios considered,
and there is no significant difference between the two precipitation
scenarios. The future period is divided into three phases (early or 2030 s:
2026-2050), middle or 2060s: 2051-2075), and late or 2090 s:
2076-2100) to quantitatively analyze its changing trend. Under the
SSP245 scenario, precipitation in the early and middle 21st century rises
by 0.6 % and 2.4 %, respectively. Compared with the baseline, precip-
itation decreases near the end of the 21st century. The average trend rate
was —6.1 millimeters per decade (mm/10a). However, the precipitation
in the early and middle periods showed an upward trend, and the trend
rates were 6.1 mm/10a and 2.7 mm/10a, respectively. Under the
SSP585 scenario, early and late 21st-century precipitation drops by
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Fig. 2. Calibration and validation of the DSSAT model. (a) catchmentl calibration; (b) catchment2 calibration; (c) catchment3 calibration; (d) catchment4 cali-
bration; e) catchmentl validation; (f) catchment2 validation; (g) catchment3 validation; (h) catchment4 validation.
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Fig. 3. Historical and projected annual rainfall under SSP245 and SSP585 scenarios.

3.7 % and 1.8 %, respectively, which corresponds to trend rates of
—0.4 mm/10a and —4.02 mm/10a. In contrast, precipitation in the
middle 21st century is projected to rise by 6.3 %. The rate of increase is
6.1 mm/10a and it is determined that the two scenarios would increase
or decrease in the future but the changing trend in each stage is not
statistically significant. However, future precipitation is shown to be
more variable, ranging from 845 mm to 2287 mm, especially in the
SSP585 scenarios.

In this study, all historical weather data the study area from 1985 to
2010 were selected as the historic trend. Figure S1-S2 in Supplementary
information showed the future weather data projected by the CMIP6
multi-model ensemble through 2100 and the interannual variations in
maximum and minimum temperature. In the MRB, the interannual
average maximum and minimum temperature (1986-2017) are 23.8 °C
and 10.37 °C, respectively. Both the maximum and minimum temper-
atures will increase in the future, with the warming being more pro-
nounced under the SSP585 scenario. Under the SSP245 scenario, the
maximum temperature increases by 1.22 °C, 1.92 °C, and 3.17 °C in the
early, middle, and late 21st century, respectively. Similarly, the corre-
sponding minimum temperature will be 0.94 °C, 1.85 °C, and 2.13 °C for
the three horizons, respectively. While significant warming is projected
under this scenario, the rate of warming appears to decrease over time,
as indicated by the lower increment in the late 21st century compared to
the middle period. Under the SSP585 scenario, the maximum and
minimum temperature variation ranges are higher than those under the
SSP245 scenario. In the early, middle, and late 21st century, the
maximum temperature increases by 1.87 °C, 3.52 °C, and 5.67 °C, while
the minimum temperature climbs by 1.38 °C, 2.97 °C, and 5.12 °C,
respectively. Under the two scenarios, the maximum temperature is
projected to increase by 13.4 % and 23.8 % by the end of the 21st
century, respectively.

In order to study the impact of climate change on the corn-growing
season (April-September), monthly statistical analysis was conducted
on different meteorological elements in four catchments. Figure S3 in
Supplementary Information shows the changes in monthly maximum
and minimum temperatures, precipitation, and solar radiation in the
study region predicted by the CMIP6 multi-model combination for two
SSP scenarios in the early, mid, and late 21st century. The monthly
maximum temperature in all future periods is higher than the baseline.
The monthly maximum temperature shows a slightly increasing trend,
but the increase is more obvious in the second half of the year. During
the corn growing season, the temperature increase range in May, June
and July was relatively gentle, while the temperature increase range in
August and September was most obvious. By the end of the 21st century,
the baseline’s monthly maximum temperature changes from July to
August. The trend of monthly minimum temperature and maximum
temperature is consistent in the future, and the temperature increase
from July to December is still greater than that of January to June, but
the minimum temperature increase is greater than that of the maximum
temperature. During the corn growing season, the temperature rise was
most significant from July to September.

Monthly precipitation in the future is shown in Figure S3, with a
large overall variation observed in range of precipitation. Under all
scenarios, monthly precipitation is projected to increase as compared to
that in baseline, for months from January to June and from September to
December, in all situations, but it falls from July to August. Precipitation
is projected to increase overall during the corn growing season, with
more significant increases in May, August, and September; but rainfall in
June and July is projected to reduce.

Future solar radiation exhibits a decreasing trend from January to
May and a rising trend from June to December when compared to the
baseline. Except for May, when it is below the baseline, solar radiation
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generally increases over the corn growing season. In summary, the
projected maximum and minimum temperature, and solar radiation will
rise during the corn growing season, while precipitation and solar ra-
diation will decrease from June to July and May, respectively.

3.3. Future maize yield trends

An ensemble simulation of future maize yield was conducted, uti-
lizing projections from four CMIP6 models, to investigate the impact of
climate change on maize yield across four catchments within the MRB.
Other field management measures, such as planting density, tillage, crop
rotation, and residue management, were consistently applied, with
existing management practices maintained unaltered throughout the
study. Averaging yields over each decade rather than one year helps
minimize short-term fluctuations and clarifies longer-term trends. Fig. 4
shows the simulation results of corn yield in various future periods
under two different climate scenarios.

The baseline maize yields in the four catchments are 10274 kg per
hectare (kg-ha™1), 10179 kg-ha™!, 10087 kg-ha ' and 10543 kg-ha !,
respectively. According to the simulation results, future climate change
will constrain the rainfed maize yield. Compared with the baseline,
under the SSP245 scenario, the average maize yields in catchments 1, 2
and 3 changes by 6.7 %(688 kg~ha’1), —4.7 %(-482 kg-ha’l), and
—8.2 %(-842 kg-ha_l), in the 2030 s, 2060 s and 2090 s, respectively.
However, rainfed maize yields will increase by 3.9 %(411 kg-ha™!), in
catchment 4. Under the SSP585 scenario, the average maize yield of the
4 catchments in 2030s, 2060s and 2090s changes to 3.7 %
(482 kg-ha ), —6.9 %(-708 kg-ha™!) and —16.4 %(-1684 kg-ha™1),
respectively. Excluding catchment 4, future climate change will cause a
slight increase in rainfed maize yield in the early twenty-first century
but has varying degrees of negative effects on the following two periods
with a significant difference (P-value <0.01), with the trend of pro-
duction reduction being particularly pronounced under SSP585 sce-
nario. The overall reduction in maize yield can be attributed to increased
evapotranspiration rates caused by rising temperatures (resulting in
increased crop water requirements). In addition, this reduction might
partly be attributed to shortened growing periods, a consequence of
increased stomatal closure in response to higher temperatures.

3.4. Adaptation measures for improving corn yield

3.4.1. Effect of planting date on yield

This study, based on the traditional sowing time of the agricultural
experimental station (BO) and spanning one week, establishes a total of
eight sowing periods ranging from four weeks earlier to four weeks later.
The effects of different sowing dates on maize yield in different catch-
ments, different scenarios and different periods were evaluated. Fig. 5
shows the simulated results of maize production at various planting
dates throughout the three periods in 21st century under the SSP245 and
SSP585 scenarios. For rainfed corn, the best sowing date under the two
scenarios is found consistent with the traditional sowing date in 2030 s.
For the 2060 s and 2090 s, optimal sowing dates are anticipated to shift
earlier, likely within the first week of the traditional planting season.
High temperature periods are expected to increase in the future.
Therefore, an earlier sowing date can avoid increased evapotranspira-
tion due to high temperatures, especially during the grain filling stage - a
critical phase in the crop’s lifecycle where the grain accumulates car-
bohydrates, proteins, and other essential nutrients post-pollination,
directly influencing final grain yield and quality. Compared with the
local traditional sowing date, the optimal sowing date could increase
rainfed maize yield in MRB in 2060 s and 2090 s by 8.5 %, 16.8 % and
7.5 %, 20.5 % reference to the baseline yield under SSP245 and SSP585
scenarios, respectively. production, and the improvement under SSP585
is greater than that of the SSP245.
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3.4.2. Effect of irrigation water on yield

Water is an important factor limiting the yield of crop. Therefore,
supplementary irrigation is considered another effective adaptive mea-
sure for sustaining corn yield under climate change in the MRB. In this
study, five different irrigation volumes are considered, namely 5 mm
(I1), 10 mm (I2), 20 mm (I3), 30 mm (I4) and 40 mm (I5). These vol-
umes represent the total amount of water applied. They were adminis-
tered to simulate varying levels of deficit irrigation, where each volume
was applied whenever the soil moisture content reached a pre-
determined threshold level. This approach was designed to closely
mimic real-world irrigation practices where water application is often
adjusted based on the crop’s water needs and prevailing weather con-
ditions. Fig. 6 shows that maize yield can be significantly improved by
supplementary irrigation. Under SSP245 and SSP585 scenarios, maize
yield can be increased by 13 % - 16 % when the water supply is 20 mm
and 40 mm, respectively, in the next three periods.

3.4.3. Effect of fertilizer application date on yield

The timing of fertilizer application significantly affects maize yield.
This study was based on the standard fertilizer application period (BO) at
the agricultural experiment station with one week of fertilizer applica-
tion. Six fertilizer application periods were selected: one week earlier
(F1), two weeks earlier (F2), three weeks earlier (F3), one week later
(B1), two weeks later (B2), three weeks later (B3), and three weeks later
(B4). Fig. 7 shows the simulated results of maize yield under the SSP245
and SSP585 scenarios with different fertilizer application times in the
three future periods. For rainfed corn, the best fertilization time is found
as two weeks in advance under both scenarios, closely aligned with the
planting date findings. This synchronization between planting and
fertilization dates is crucial for enhancing fertilizer efficiency, particu-
larly as changes in rainfall and temperature impact soil moisture. These
results suggest that an early and well-coordinated application of fertil-
izer, in tandem with strategic planting dates, is an effective adaptation
strategy to mitigate climate change’s effects on maize yield.

3.4.4. Effect of fertilizer application dose on yield

Fertilizer application dose is critical for crop development and yield.
In this study, four different fertilizer application doses were set up for
comparison experiments. 5 kg N/ha (F1), 10 kg N/ha (F2), 15 kg N/ha
(F3), and 20 kg N/ha (F4). As seen in Fig. 8, fertilizer application did not
contribute substantially to maize yield. At SSP245 and SSP585, fertilizer
applications of 10 kg N/ha and 15 kg N/ha only increased maize yield
by 2.3-6.8 %. Maize yield is found to increase only slightly with the
increase in fertilizer use. Excessive fertilizer use can cause toxicity and
reduce crop development, threaten the ecosystem, pollute drinking
water, and become dangerous to human health. Therefore, the real
circumstances of each farm should be considered to determine the
precise quantity of fertilizer application.

4. Discussion

In this study, the DSSAT model is applied to the southeastern United
States to suggest adaptation strategies to negate the adverse impacts of
climate change on the yield of corn. The model was calibrated and
validated based on field test data from state agricultural research cen-
ters. CMIP6 was utilized to quantitatively examine the influence of
climate change on the MRB maize yield. Simultaneously, a multi-point
simulation, which refers to the process of conducting simulations at
multiple locations within the MRB, was performed to ensure that the
findings were representative of the entire MRB. Given the negative ef-
fects of future climate change, this study developed four optimal mea-
sures to adapt to climate change. The effects of different adaptation
measures on reducing maize yield were investigated and the optimal
measures to adapt to climate change were proposed.

Temperature is a significant meteorological component that in-
fluences maize growth and development. The maize production in MRB



X. Han et al. Agriculture, Ecosystems and Environment 376 (2024) 109230

11565 catchmentl (ssp245) catchmentl (ssp585)
Bl ssp245 T Bl ssp585
—=- Baseline 11000 4 T —=- Baseline
11000 A
10500
T ©
2 10500 A £ oot
o o
= O ms o= "= N B R B . =
T 10000 A T ]
o © 9500
> >
9500 4 9000
8500
9000 A
2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year Year
catchment2 (ssp245) catchment2 (ssp585)
11250 7
11000
BN ssp245 T B ssp585
11000 4 —=-- Baseline -=-- Baseline
10750 10500
@ 10500 ©
< <
> S 10000
X 10250 4 ~
= =
o =" e
@ 10000 4 o
= > 9500 1
9750 A
9500 A
9000
9250 A B -
2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year Year
catchment3 (ssp245) catchment3 (ssp585)
11500 4
11500 B ss5p245 B ssp585
=-== Baseline === Baseline
11000
11000 A
© © 10500
£ 10500 1 £
o o
< =< B e SN DN BN DN N I S N -
L--——E—a - BN BN __B.__ SN BN ____ 10000
o ©
o 10000 T
= =
9500 |
9500
9000
9000 A L
2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year Year
catchment4 (ssp245) catchment4 (ssp585)
12000
B ssp245 T Bl sspS85
11500 4 === Baseline === Baseline
11500
_ 11000 A —~ 11000 4
© ©
K <
b ~
o o i
£ 10500 -~ --4 2 10500 =~~~ —~F— BT
kel o
2 2
> 3= 10000
10000 A
9500
9500
9000 -
2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year Year

Fig. 4. Simulation of corn yield during 2020s-2100 s for four catchments under SSP245 and SSP585 scenarios; the black line within the box represents the average of
historical yield and dots represent mean. The red lines represent the estimated yield trends.
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Fig. 7. Rain-fed corn yield for adaptation measures of change in fertilizer application date (shift earlier 1, 2, 3 weeks, baseline, and shift later 1, 2, 3 weeks) under
SSP245 and SSP585 scenarios for 2030 s, 2060 s and 2090 s. (a) catchment 1 SSP245; (b) catchment 1 SSP585; (¢) catchment 2 SSP245; (d) catchment 2 SSP585; (e)
catchment 3 SSP245; (f) catchment 3 SSP585; (g) catchment 4 SSP245; (h) catchment 4 SSP585.
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exhibits increased vulnerability to climate change, particularly under
the SSP585 scenario. In dry and semi-arid locations, the key limiting
factor of rainfed maize yield is precipitation. Future climate change is
not favorable to the growth and development of rainfed maize, owing to
increased variability in temperature and precipitation, causing maize
production to be unstable, especially under the SSP585 scenario
(Arunrat et al., 2022; Dang et al., 2022). Additionally, in the critical
period of maize growth (the filling stage), higher temperatures and less
precipitation caused by climate change considerably affect corn yield.

Similar to other rainfed contexts (Jain et al., 2015), changing the
planting date in the MRB is a simple and practical strategy to address
future climate change. The shift of sowing date primarily influences the
precipitation, temperature, and solar radiation received throughout the
growing period, influencing maize growth and development. Choosing
the optimal sowing date at different times might help maize yield the
optimal use of water, heat, and light resources based on changes in
future climatic components. Meanwhile, the ideal sowing date defines
the best time for biomass increase, blooming, and filling.

According to the simulation results, supplemental watering at the
Tasseling and grain filling stages was the most effective supplementary
irrigation method. Tassel is a vital step in maize development. Male and
female ears cannot grow normally if water is scarce during this period. If
supplementary irrigation at this stage can significantly increase the
number of grains per ear of maize, improving maize biomass after
silking will lead to yield increase (Gao et al., 2017). To ensure sustain-
able irrigation, water sources in the region, such as rivers, ponds, and
groundwater, should also be considered when determining the amount
of irrigation water. Excessive irrigation instead has a more negative
impact on the local ecosystem.

Increasing the frequency of fertilization, distinct from the timing and
dosage, has been shown to mitigate the impact of climate change on
maize production (Han et al., 2023). However, the Length of fertilizer
intervals is mostly determined by local circumstances and crop types.
Yields may only be increased by increasing fertilizer application if
nutrient insufficiency is one of the primary limiting factors affecting
crop growth (Guo et al., 2022). Therefore, it is crucial to balance the
increased frequency with the crop’s actual nutrient needs and to account
for soil conditions and potential long-term buildup of fertilizers.

Planting dates are adjusted to simulate the impact of different sowing
times on crop exposure to climatic variables like water, temperature,
and solar radiation, affecting the entire growth cycle. Fertilization time
is varied to explore how changes in nutrient application timing influence
crop development, particularly under shifting precipitation and tem-
perature patterns. Irrigation schedules are modeled by setting soil
moisture thresholds that trigger irrigation, assessing the impact of water
supplementation during critical growth stages such as tasseling and
grain filling. Finally, fertilizer dosages are manipulated to study the
yield sensitivity to different nutrient levels, providing insights into how
nutrient optimization can counteract climate-related stressors.
Together, these adjustments in the DSSAT model offer a comprehensive
view of how strategic changes in farming practices can mitigate the
adverse effects of climate change on maize production. Sensitivity
analysis is essential for identifying which model parameters are most
influential under varying climatic and management conditions. Our
study integrates a sensitivity analysis, referencing established research
that pinpoints water stress, P5 (grain filling duration under optimal
conditions), G3 (kernel filling rate under optimal conditions), and P2
(thermal time from silking to physiological maturity) as critical factors
affecting maize yield. Particularly, our analysis focuses on how varia-
tions in these parameters under different scenarios of water availability
and nutrient supply influence crop growth outputs and yield predictions
(Wang et al., 2021). This approach helps in understanding the relative
importance of each parameter and their interactions under climate stress
conditions.

The findings of this study, while indicating potential avenues for
enhancing maize yield through adjusted planting and fertilization
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strategies, must be contextualized within the practical realities of
farming in the MRB. The limitations of the current study include
assumption of homogeneity of agricultural management, fertilization,
soil qualities, and initial maize types. The impacts of extreme weather,
such as hurricanes and floods, extreme heat and prolonged drought,
pests and diseases on maize were also not considered here. A critical
factor influencing the feasibility of these strategies is the region’s cli-
matic patterns, particularly its early spring precipitation. In the MRB,
high precipitation levels often result in saturated or even flooded fields,
which can significantly hinder the ability of farmers to adhere to the
identified optimal sowing dates. This challenge underscores the impor-
tance of developing flexible adaptation strategies that can accommodate
the variability and unpredictability of field conditions (Price et al.,
2022). Additionally, the increasing frequency of temperature extremes
presents a dual challenge: not only are the high temperatures of concern,
but also the shift in frost dates. For instance, a late frost event in March
(2023) significantly impacted Alabama’s harvest this year, highlighting
the need for strategies that can mitigate risks associated with both ends
of the temperature spectrum. Beyond agronomic considerations, there
are also socioeconomic factors at play. While certain strategies such as
increased irrigation might be theoretically effective, their practical
implementation faces significant barriers in the MRB. Issues like
restrictive riparian rights laws, deep groundwater sources in areas like
the Black Belt, limited existing irrigation infrastructure, and overall
financial constraints among farmers severely limit the widespread
adoption of such measures (Pathak and Magliocca, 2022).

The study’s findings highlight the need for comprehensive policy
strategies that integrate multiple adaptation measures to mitigate the
impacts of climate change on maize production. Specifically, advancing
planting and fertilization dates could optimize crop yield, suggesting
that policymakers should promote agricultural practices that are
adaptable to climatic predictions. Additionally, the positive role of
irrigation in enhancing yield underscores the importance of supporting
robust irrigation infrastructure and efficient water management pol-
icies. However, the limited impact of varying fertilizer doses indicates
that other factors may be more critical, pointing to the necessity for
ongoing research and development in crop management and fertiliza-
tion techniques. Collectively, these insights can guide policymakers in
crafting effective climate adaptation strategies and agricultural policies
to ensure sustainable food production.

5. Conclusion

The analysis of the four different adaptation measures led to the
following conclusions:

a) The findings suggest that it will be challenging for a single adaptation
mechanism to fully compensate for the adverse effects of climate
change on irrigated maize.

b) In the SSP245 and SSP585 scenarios, advancing the planting date by
one week and advancing the fertilization date by two weeks would
maximize the benefits.

c) The availability of irrigation water can help increase corn
production.

d) The amount of fertilizer dose did not have a significant effect on corn
yield under any conditions.

This opens opportunities for future research to look into the effect of
these factors on corn yield and devise adaptation measures accordingly.
Overall, the results of this study show that corn yields can be affected by
climate change, and also highlights the importance of carefully consid-
ering adaptation measures. The results of this study can be used as a
reference for maize adaptation to climate change and sustainable agri-
cultural growth in the MRB.
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