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Abstract Droughts are among the most devastating natural hazards, occurring in all regions with different
climate conditions. The impacts of droughts result in significant damages annually around the world. While
drought is generally described as a slow‐developing hazardous event, a rapidly developing type of drought, the
so‐called flash drought has been revealed by recent studies. The rapid onset and strong intensity of flash
droughts require accurate real‐time monitoring. Addressing this issue, a Generative Adversarial Network
(GAN) is developed in this study to monitor flash droughts over the Contiguous United States (CONUS). GAN
contains two models: (a) discriminator and (b) generator. The developed architecture in this study employs a
Markovian discriminator, which emphasizes the spatial dependencies, with a modified U‐Net generator, tuned
for optimal performance. To determine the best loss function for the generator, four different networks are
developed with different loss functions, including Mean Absolute Error (MAE), adversarial loss, a combination
of adversarial loss with Mean Square Error (MSE), and a combination of adversarial loss with MAE. Utilizing
daily datasets collected from NLDAS‐2 and Standardized Soil Moisture Index (SSI) maps, the network is
trained for real‐time daily SSI monitoring. Comparative assessments reveal the proposed GAN's superior ability
to replicate SSI values over U‐Net and Naïve models. Evaluation metrics further underscore that the developed
GAN successfully identifies both fine‐ and coarse‐scale spatial drought patterns and abrupt changes in the SSI
temporal patterns that is important for flash drought identification.

1. Introduction
Droughts are among the most harmful and pervasive environmental disasters that affect various natural processes
and anthropogenic activities. Drought is a multifaceted phenomenon that can be categorized as agricultural,
hydrological, meteorological, and socioeconomic droughts. Recent studies have illustrated that the frequency and
intensity of droughts are increasing around the world, which has coincided with population growth and agri-
cultural expansion, increasing the water demand manifold (Foroumandi et al., 2021, 2022a; Gavahi et al., 2020;
Hammond et al., 2022; Madadgar & Moradkhani, 2014; Nourani et al., 2022; Xu et al., 2020; Zarekarizi
et al., 2021). While drought is generally described as a slow‐developing hazardous event (Wilhite et al., 2007),
recent studies have revealed a rapidly developing type of drought, the so‐called flash drought. Flash droughts
usually begin with meteorological droughts and then transfer to agricultural droughts as the situation continues to
deteriorate (Christian, Basara, Otkin, & Hunt, 2019; Otkin et al., 2018). Although precipitation deficit is the basic
requirement for drought development, the rate of development and the ultimate severity are influenced by other
variables (Edris et al., 2023; Madadgar &Moradkhani, 2013a). For example, when below‐normal precipitation is
combined with above‐normal temperature, evaporation, winds, and so on, drought severity can rapidly increase.

Flash drought detection and monitoring are critically important because drought intensification may occur
regardless of past or current moisture conditions. This dramatic situation has happened several times across the
CONUS in recent years. For example, according to the U.S. Drought Monitor (USDM) in 2012, precipitation
deficits were accompanied by abundant sunshine and above‐normal temperature records across the central
CONUS. In almost 2 months, different regions in this area experienced a three‐to five‐category increase in
drought severity (Christian, Basara, Otkin, & Hunt, 2019). The southeastern CONUS encountered a similar
condition in 2016 when during the fall, a large portion of the region experienced up to four category drought
severity increments. Both flash droughts in 2012 and 2016 induced harmful impacts on the agricultural sector,
with losses estimated at over $30 billion (Otkin et al., 2019). In 2017, the northern Great Plains flash drought,
which is identified as the most destructive drought in decades, started in spring and evolved rapidly over the
summer. Agricultural losses related to this drought were more than $2.6 billion in the US alone. Therefore,
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developing models that are sensitive to abrupt changes in spatiotemporal drought patterns and can provide real‐
time drought maps will be of great use.

Flash droughts rapidly intensify drought conditions within a short time frame. To characterize the dynamics of
flash droughts, various indices have been suggested and employed in prior studies. For example, the QuickDRI
(Quick Drought Response Index), which was introduced by the National Drought Mitigation Center and the
Center for Advanced Land Management Information Technologies at the University of Nebraska, is a machine
learning‐driven model proposed to identify rapidly fluctuating drought conditions (Chen et al., 2019). Ford and
Labosier (2017) offered a perspective, defining flash drought based on the quick transition into agricultural
drought conditions using the Soil Moisture Percentiles Drop methodology. Furthermore, Anderson et al. (2016)
used the Evaporative Stress Index (ESI)—a metric for agricultural drought—to study flash droughts in Brazil. A
novel index, called the Soil Moisture Volatility Index, was also proposed, demonstrating its efficacy in capturing
the onset of flash droughts across both humid and semi‐arid landscapes in comparison to some alternate ap-
proaches (Osman et al., 2021). Pertinently, previous studies have underscored the robustness of indices rooted in
soil moisture when studying flash drought events (Sehgal et al., 2021; Tyagi et al., 2022).

The primary emphasis in drought monitoring is on various classifications determined by indicators calculated
through either physically‐based or statistical models (Ahmadalipour et al., 2017; Madadgar & Moradkhani,
2013b). These indicators serve as the basis for various studies that seek to predict drought severity and patterns.
Additionally, other studies have attempted to overcome the drawbacks of traditional drought monitoring ap-
proaches. For example, Ahmadalipour and Moradkhani (2017) conducted a study that analyzed the uncertainties
in observation data by employing hydrological modeling, with a particular focus on addressing the uncertainties
associated with drought monitoring. Yan et al. (2018) presented a land data assimilation (DA) system to improve
drought monitoring skills by merging remotely sensed soil moisture products. Xu et al. (2020) used an evolu-
tionary particle filter approach to assimilate soil moisture data into a hydrologic model to study agricultural
drought over the CONUS. Gavahi et al. (2022) employed two precipitation datasets provided by the North
American Land Data Assimilation System (NLDAS) and Integrated Multi‐satellite Retrievals for GPM (IMERG)
to generate a more accurate Standardized Soil Moisture Index (SSI) product using a multivariate DA system.
While physically‐based models provide reliable results, certain limitations may impede their applicability in
drought monitoring, especially in flash drought identification. Many of these techniques require significant
computational power and suffer from higher latencies (in some cases exceeding a month) stemming from the
input data lag. Furthermore, assimilating observational data into the models imposes a significant computational
load (De Lannoy et al., 2022; Gavahi et al., 2022). Yet, for flash drought identification, real‐time monitoring is
crucial given the rapid shifts in its patterns.

Machine learning models have also been used in drought monitoring owing to their specific features including fast
development time, and high generalization ability (Karamouz et al., 2022; Mokhtar et al., 2021; Sharghi
et al., 2022). Different machine learning methods such as Artificial Neural Networks (ANN) (Foroumandi,
Nourani, & Kantoush, 2022), Support Vector Regression (SVR) (Khan et al., 2020), and Random Forest (RF)
(Zarei et al., 2022) have been used for drought‐related research. Deep Learning (DL) models have also been used
for drought monitoring due to their ability to handle large datasets and provide more accurate results. For
example, Xiao et al. (2019) combined the Long Short‐Term Memory (LSTM) and AdaBoost ensemble learning
model to predict short and mid‐term sea surface temperature for drought analysis. Kaur and Sood (2020) showed
that a deep neural network model outperformed an optimized version of an SVR and an ANN that used a genetic
algorithm in predicting drought conditions in different climates and time frames. Liu et al. (2021) used a U‐Net
model to segment a drought area and distinguish the severity of drought by using remote sensing images. For-
oumandi et al. (2023) used DL techniques for pre‐processing the GRACE‐derived gridded data and then
compared the performances of ANN, RF, and ConvLSTM models in downscaling the data for drought moni-
toring. While DL techniques have revolutionized various fields, they have been rarely employed in the domain of
flash drought monitoring which suggests a possible avenue for research where DL can be introduced to improve
prediction and understanding of these rapid onsets of drought events (Tyagi et al., 2022).

Generative Adversarial Network (GAN) proposed by Goodfellow et al. (2014) is a robust generative network that
uses a flexible machine learning‐based architecture. GAN is introduced to automatically learn patterns in the input
domain and use those patterns to generate outputs. In other words, the network replicates the data distribution and
generates target data. However, in other machine learning models, the model aims to learn a function that converts
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the input to the target. GAN offers a distinct advantage over traditional DL models. Notably, GANs possess a
mechanism that adaptively modifies its loss function in response to target data, facilitating the distinction between
real and synthetic outcomes. Simultaneously, within this network, a secondary model is trained to produce results.
This dual‐model structure is a pivotal feature that underscores the uniqueness and efficacy of GANs in various
applications. The GANs have been used in different fields over the years, such as audio enhancement (Su
et al., 2021), medical imaging (Iqbal & Ali, 2018), hydrogeology (Chen et al., 2022), energy data generation (Li
et al., 2022), and image manipulation (Minh Ngô et al., 2022).

In this study, using remotely sensed images, we develop the first GAN for flash drought monitoring. The network
contains two deep learning models as the generator and discriminator of the network. One of the main advantages
of the developed network, distinguishing it from conventional DL models, is its adaptive loss function that
changes with respect to the network's efficacy. This eliminates the necessity for crafting specialized loss functions
unique to distinct problems or regions, optimizing overall network performance. Additionally, the loss function is
a combination of adversarial loss with other prevalent loss functions. Such inclusion of adversarial loss nudges the
network to account for interdependencies among adjacent regions during the modeling phase. The adversarial
training process in GANs serves as a form of implicit regularization, a particularly important process when
dealing with limited or noisy datasets. Such a regularization contributes to improved generalization of the model
to unseen data, vital for flash drought monitoring. The proposed network is trained and tested based on SSI over
the CONUS for real‐time flash drought monitoring. The model's efficiency is then compared with a U‐Net model
and a Naïve model.

2. Data
2.1. Datasets

The first phase of NLDAS forcing data (NLDAS‐1) was initiated to couple atmosphere‐land‐ocean models to
improve weather and seasonal climate predictions (Mitchell et al., 2004). The NLDAS produces Land Surface
Model (LSM) forcing data, including meteorology reanalysis, gauge‐based precipitation, and shortwave radia-
tion. The second phase of the NLDASmodel (NLDAS‐2) applies some corrections to the gauge precipitation data
and contains several enhancements to the equations and calibration of LSM (Peters‐Lidard et al., 2011). The
NLDAS‐2 forcing data provides hourly maps at 0.125‐degree spatial resolution from 1979 to the present. This
study uses daily Evapotranspiration (ET), Soil Moisture (SM), Temperature (T), and Leaf Area Index (LAI)
products of NLDAS‐2‐Noah from 2016 to 2020 as inputs to the model. These inputs are selected after performing
feature selection on all NLDAS‐2‐Noah components. The feature selection is performed using a subset selection
method with a forward stepwise approach. In this method, the goal is to find the best input data that contains the
least dimension that most contributes to the model accuracy (Hastie et al., 2020). Data is downloaded from
NASA's website providing LDAS datasets (https://ldas.gsfc.nasa.gov/nldas/nldas‐2‐model‐data).

Recently, Gavahi et al. (2022) used the DA technique to produce daily SSI maps over the CONUS, which have
been shown to have more reliable drought characterization compared to their counterparts. However, the product
experiences a delay of 21 days, and the method requires significant computational resources. Consequently, this
data collection is not appropriate for immediate decision‐making or rapid analysis of flash drought occurrences. In
this research, the daily SSI maps from 2016 to 2020 serve as both the targets and inputs. The selection of 2016–
2020 as the timeframe for this study is due to the availability of the SSI maps exclusively for these years.
Consequently, employing a GAN would be advantageous in managing the limited size of the data.

2.2. Data Preprocessing

In this study, daily ETt, SMt, Tt, and LAIt, maps are used as inputs. On the other hand, the targets of the network
are SSIt maps. The following approach is employed for this purpose:

SSIt = GAN(SSIt− 21, ETt, SMt, Tt, LAIt) (1)

The decision to use “21” in SSIt‐21 is based on the 21‐day latency observed in the target data collection, as
mentioned earlier. By incorporating this lag period into the network, the resulting outputs will account for and
cover the delay in the target data collection.
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In total, about 7,312 daily NLDAS‐2 maps and 1,828 daily SSI maps from 2016 to 2020 are collected and masked
over the CONUS. The maps are randomly selected for training, validation, and testing procedures. The maps are
normalized by subtracting the mean and dividing by the standard deviation. The mean and standard deviation are
scalars calculated for the training dataset and used to normalize training, validation, and testing data. Zero
padding, the process of adding zeros to the rows and columns of maps to preserve the spatial dimensions of the
maps before applying the following operations, is applied to the maps and the final map size for both inputs and
targets is 512×512.

3. Materials and Methods
3.1. GAN

The primary objective of this study is to develop a GAN for daily flash drought monitoring using the SSI index
across the CONUS in real time. GANs work based on a game between two models, one called the “generator”,
and the other player is the “discriminator”. The generator model is responsible for producing synthetic data, while
the discriminator model assesses the accuracy of the generated outputs. By continually evaluating the discrim-
inator's feedback, the generator model improves its ability to generate more realistic and accurate synthetic data.
In the GAN framework, the discriminator model acts as a classifier with the objective of distinguishing between
the synthetic data generated by the generator and real data. The outputs produced by the discriminator serve as a
component of the loss function for the generator. This adversarial training process forms a minimax game, where
both models strive to minimize their cost functions. Over time, the generator becomes better at producing realistic
data, while the discriminator becomes better at identifying synthetic data.

Following the success of GANs in generating realistic data distributions, researchers aimed to have a more
controlled generation process (Antipov et al., 2017). Conventional GANs lacked the ability to condition the
generated output on certain desired attributes. To address this, Conditional GANs (CGANs) were proposed. The
main idea behind CGANs is to provide both the generator and the discriminator with additional conditional
information, usually in the form of a label or some other kind of auxiliary data (Elaraby et al., 2022). Figure 1
presents a general architecture for a GAN and a CGAN.

In this study, a CGAN is developed for flash drought monitoring; hereafter, it will be referred to as Drought GAN
(DroGAN). The discriminator and generator architectures of DroGAN are adapted from Isola et al. (2017) and

Figure 1. This figure presents a general architecture of (a) GAN, and (b) CGAN. Unlike a conventional GAN, in CGAN, both
the generator and discriminator observe the target data. Latent Space is a lower‐dimensional representation of high‐
dimensional data.
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Radford et al. (2015). DroGAN employs a modified version of the U‐Net
model as its generator. Additionally, a Markovian discriminator is used as
the discriminator component.

To generate flash drought maps using DroGAN, the outputs, which are SSI
maps, are then categorized according to the specifications outlined in Table 1.

3.2. Generator (U‐Net)

In this study, a modified version of the U‐Net model is employed as the
generator in the network. The purpose of this modified U‐Net is to process
maps as inputs and generate output maps as well. The utilized U‐Net model
in this study contains skip connections added between the nth layer and the

(N‐n)th layer, where N is the total number of layers in the U‐Net (Xu et al., 2021). Figure 2 presents the ar-
chitecture of a U‐Net model which allows low‐level (highly local features) information to shortcut across the
model.

U‐Net is a neural network model consisting of two paths. The first path, known as the analysis path or the
contracting path, is similar to a convolutional neural network (CNN) layer and extracts information from the input
maps. The second path which is known as the synthesis path or the expansion path consists of up‐convolutions,
allowing the network to learn the localized information. The skip connections allow concatenation between the
maps in a step of the contracting path and a similar step of the synthesis path, helping to avoid the gradient
vanishing problem (Siddique et al., 2021). The modified U‐Net model consists of standardized single 2D
convolution and 2D transpose‐convolution blocks with batch normalization, dropout, and activation functions
installed on them. Srivastava et al. (2014) showed that the dropout method considerably improves the perfor-
mance of the network compared to other regularization techniques. In addition, in the modified version of the U‐
Net model, the input image goes down to the bottleneck until it reaches a one‐by‐one feature map and then, the
upsampling process starts. This modification helps the model fully extract the features in the input domain. The
textual summary of the generator model is tabulated in Table S1 in Supporting Information S2.

3.3. Markovian Discriminator (PatchGAN)

The Markovian discriminator (PatchGAN) is used as the discriminator model to penalize at the scale of patches.
The PatchGAN operates convolutions across the images, aggregating the patch responses to produce the dis-
criminator's final output, which is commonly referred to as adversarial loss. The PatchGAN discriminator cat-
egorizes sections of maps as "real" or "synthetic". Such a discriminator is often referred to as a Markovian
discriminator, given its approach of representing the image as a Markov random field (MRF), where there is an
assumption of independence for pixels distanced more than a patch's diameter from one another (Li &
Wand, 2016). The PatchGAN discriminator is essentially a convolutional neural network designed to receive an

Table 1
The SSI‐Based Drought Classification Based on USDM Drought Categories

SSI values Drought category Notation

SSI ≥ − 0.49 Normal or wet conditions None

− 0.79 ≤ SSI ≤ − 0.5 Abnormally dry D0

− 1.29 ≤ SSI ≤ − 0.8 Moderate drought D1

− 1.59 ≤ SSI ≤ − 1.3 Severe drought D2

− 1.99 ≤ SSI ≤ − 1.6 Extreme drought D3

− 2.0 ≥ SSI Exceptional drought D4

Figure 2. The architecture of a U‐Net model. The input shape to the generator has the dimension of (5 × 512 × 512). This
figure is plotted using the PlotNeuralNet code (Iqbal, 2018).
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image segment and produce a singular value signifying if the segment is real or synthetic. This approach places
additional constraints that promote clear, high‐frequency details.

In the architecture of the DroGAN network, a PatchGAN is utilized as the discriminator. The discriminator
contains modules in the form of Convolution‐BatchNorm‐LeakyReLu. All LeakyReLu functions have a slope of
0.2. A convolutional layer is applied after the last layer, followed by a sigmoid activation function to output a one‐
dimensional image. Figure 3 presents the general architecture of the Markovian discriminator used in DroGAN.

By incorporating PatchGAN, DroGAN is able to generate output maps with improved accuracy in terms of
capturing the spatial structure of drought within specific regions. The textual summary of the discriminator model
is tabulated in Table S2 in Supporting Information S2.

3.4. Batch Normalization

One of the complications of training DL models is the dynamic distribution of input to each layer, which changes
during the training phase. Modifying the parameters of the preceding layer in this process can hinder the training
speed since it necessitates using a lower learning rate. To address the issue of internal covariance shift and
mitigate the problems related to vanishing gradient descent, batch normalization is employed in both the generator
and discriminator blocks of DroGAN (Ioffe & Szegedy, 2015). Internal covariance shift refers to the changing
distribution of input to layers in deep networks during the training phase, which can lead to the vanishing gradient
descent problem and hinder the training process. The vanishing gradient descent problem becomes significant in
deep neural networks as adding more layers can cause the weights to diminish, resulting in computations that
yield nearly constant values.

3.5. Activation Function

The activation function plays a crucial role in a neural network by transforming the summed inputs of a neuron
into its output. Typically, this function is nonlinear and applies mathematical equations to determine whether the
neuron should be activated or not. Additionally, it introduces nonlinearity to the neuron's outputs, enabling more
complex representations and behaviors in the network (Vijayakumar et al., 2021). In this study, the LeakyReLU
activation function is used in the contracting path of the generator, and ReLU activation function is used in the
expansion path, and at the end, the hyperbolic tangent (Tanh) function is used(Varshney & Singh, 2021).

3.6. Loss Function

In DroGAN, we need to define two distinct loss functions for the discriminator and the generator. The objective of
the discriminator's loss function is to minimize the negative log‐likelihood of correctly identifying observed and
simulated SSI maps while considering the SSI observed maps as conditioning information. To achieve this, the
Binary Cross Entropy (BCE) loss function is employed in the discriminator (Ho & Wookey, 2020). To identify
the optimal loss function for the generator, four different models are constructed, each employing a distinct loss
function. In the first model, the loss function solely consists of Mean Absolute Error (MAE). The second model
only uses adversarial loss as the loss function. The third model combines the adversarial loss, as provided by the

Figure 3. The general architecture of a Markovian discriminator. The dark blue part that is shown to be extracted from the
map is a patch (window).
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discriminator, with MAE (L1). Lastly, the fourth model incorporates a combination of the adversarial loss and
Mean Square Error (MSE) (L2) in its loss function.

The adversarial loss assists the generator in determining whether the generated SSI maps resemble the observed
maps in terms of their spatial drought structure. Conversely, the L loss function guides the generator to produce
SSI maps that are pixel‐wise consistent with the target domain. The combination of the loss functions is
calculated as:

Generator loss = Adverserial loss + (λ × L) (2)

where λ is the hyperparameter that regulates the significance of the L loss relative to the adversarial loss during the
training process of the generator.

3.7. DroGAN

As mentioned previously, DroGAN, same as other GANs, contains a generator and a discriminator model. The
modified version of the U‐Net model is employed to serve as the generator and PatchGAN is used as the
discriminator of DroGAN. In each block of the generator and discriminator, the 2D convolutional layers are used
to extract the information embedded in the input data to develop the network.

During the network training process, an Adam solver with a learning rate of 10− 4 was set, and the padding mode
was configured as “reflect”, a method that adjusts the image size by creating a reflected boundary around the
image, aiming to reduce edge effects (Liu et al., 2018). To mitigate the risk of overfitting, three dropout regu-
larization techniques are implemented in the first three layers of the generator's expansion path, employing a
dropout rate of 50%.

The U‐Net architecture is similar to Figure 2, except that it contains more layers and in the expansion path, the
skip connections double the number of channels. The batch size is set to 1, 16, 32, 64, and 128 to study the impacts
of batch size on the runtime.

3.8. Accelerating With GPU

DroGAN is coded in a way that takes advantage of both CPU and GPU simultaneously. The datasets are itera-
tively processed in parallel by multiple CPUs and then transferred to the GPU to train the network. Additionally,
Compute Unified Device Architecture (CUDA) is used to optimize the calculations over GPU, which helps
improve the training process. CUDA is a novel programming architecture for running computations on GPU,
released by NVIDIA (Luebke (2008)). The CUDA toolkit helps to develop and deploy methods on GPU‐
accelerated systems. In this study, Pytorch in conjunction with CUDA is used to run DroGAN on GPU.

To run DroGAN, we used GPU: NVIDIA A100 80 GB PCIe, installed on the High‐Performance Computing
(HPC) system in the Center for Complex Hydrosystems Research (CCHR) at The University of Alabama.

3.9. Model Comparison

Inspired by the CNNs, the well‐known U‐Net, initially conceptualized by Ronneberger et al. (2015) for
biomedical imagery segmentation, has shown promising results in climatic studies. These include refining
weather forecasts as observed in works by Gronquist et al. (2021) and Hess and Boers (2022), downscaling
application as noted in Adewoyin et al. (2021), and precipitation forecasting, as mentioned in Trebing
et al. (2021). Additionally, Larraondo et al. (2019) explored multiple encoder‐decoder designs and identified U‐
Net‐based structures as optimal for predicting overall rainfall using geopotential height. Meanwhile, Weyn
et al. (2020) employed a U‐Net design, transforming input grid values into a cubed‐sphere. Based on the success
of U‐Net across varied applications, we trained a U‐Net with the same architecture as the generator to compare the
results with DroGAN. The inputs to the U‐Net model are the same as the inputs to DroGAN. These inputs are
divided into training, validation, and testing datasets in the same manner as for DroGAN. The U‐Net model is
trained on the same GPU, and an early stopping strategy is utilized to mitigate overfitting issues.

As another model, a Naïve approach is implemented, taking the SSI value at time t‐21 to directly represent the
prediction. Hence, SSI at time t is equated to SSI at time t‐21.
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3.10. Evaluation Metrics

The accuracy evaluation of the modeling is performed using MSE, coefficient of determination (R2), and Nash‐
Sutcliffe Efficiency (NSE) coefficient between the simulated and observed SSI maps as follows:

MSE =
∑
N

t=1
(SSIt

pred − SSIt
obs)

2

N
(3)

R2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
N

t=1
(SSIt

obs − SSIobs)(SSIt
pred − SSIpred)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

t=1
(SSIt

obs − SSIobs)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

t=1
(SSIt

pred − SSIpred)
2

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

(4)

NSE = 1 −
∑
N

t=1
(SSIt

pred − SSIt
obs)

2

∑
N

t=1
(SSIt

obs − SSIobs)
2

(5)

where SSIt
pred and SSIt

obs are the model predicted and observed SSI maps in t time step, respectively. SSIobs and
SSIpred are the average map of the model's predicted and observed SSI maps, respectively and N is the total
number of the SSI maps.

4. Results and Discussion
The current study develops a GAN for real‐time flash drought monitoring based on the SSI index across the
CONUS. First, the maps are preprocessed as mentioned in Section 3, and the architecture of DroGAN is designed.
In this section, we present the results and discussion of the study.

A key strength of DroGAN is in identifying complex, nonlinear relationships that are the characteristics of the
climate systems. Traditional methods, often constrained by predefined equations or assumptions, may over-
simplify these relationships. DL models such as DroGAN, however, can autonomously learn from the data,
creating models that more accurately reflect the intricate realities of climate change processes. Additionally, the
adaptability of DL models is particularly beneficial in the context of climate change. As our planet undergoes
continuous environmental shifts, these models can learn and evolve with new data, providing insights that are
current and relevant (e.g., training the models using the new datasets that are affected by climate change). This
contrasts with traditional models, which may become less accurate or obsolete as environmental conditions
change due to the physical relationships that govern the models.

4.1. Loss Function

Choosing an appropriate loss function is an essential aspect when creating a GAN model consisting of two deep
learning models operating together in a competitive manner (Elaraby et al., 2022). We compare the performance
of the networks with different loss functions to identify the most effective loss function. The evaluation of the
models is conducted using R2, employing a batch size of 64 and 600 epochs. We have set the lambda value for the
composite loss functions at 100. The outcomes of this evaluation for the testing phase are presented in Figure 4.

In the comparative analysis of models, we opted to use R2 as our evaluative metric. This decision is guided by the
interpretability of R2 in quantifying the proportion of the variance in the dependent variable that is predictable
from the independent variables.

In our study, we employ both MSE and MAE as the most widely used loss functions in training DL‐based models
to train DroGAN. This approach is chosen to explore and capture diverse error characteristics: MSE, known for its
sensitivity to larger errors, emphasizes error variance, while MAE provides a more balanced focus on the average
magnitude of errors. In this study, R2 is not used as a loss function since it does not provide a directly actionable
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gradient for optimization in the same way as MSE or MAE. Particularly in scenarios with non‐linear or complex
relationships in data, R2 can be less effective as a training criterion (Nie et al., 2018).

The results of this study (Figure 4) indicate that using the combination of adversarial loss and MAE in DroGAN
leads to better performance than the combination of adversarial loss and MSE. In the combination that includes
MAE, as the absolute value of an error is calculated, all the errors will be considered on one linear scale.
Therefore, the loss function focuses more on how well the model is generally working. Both combined loss
functions resulted in better R2 than utilizing only MAE as the loss function of the generator. These results are in
alignment with previous studies that reported using only one of the common loss functions for the generator
model leads to blurry output images and using the adversarial loss alone (λ = 0 in Equation 1) outputs sharper
images (Isola et al., 2017). Integrating MAE with adversarial loss (Figure 4c) offers enhanced performance in
comparison to employing adversarial loss in isolation (Figure 4a). While the primary objective of the adversarial
loss is to calculate the probability that the generated image is a real one, it falls short of guaranteeing pixel‐to‐pixel
similarity with the desired target. Incorporating the L1 loss (MAE) ensures a pixel‐level structural resemblance
between the generated and target images.

The above‐mentioned loss function is designed that produces a structured loss function and penalizes the
difference between the spatial dependencies of output and target maps. In DroGAN, there is no need for hand‐
engineering the loss function because it is performed inherently in the network as it not only learns to simulate
the SSI maps but also learns the loss function in the discriminator section. Combining the L error with
adversarial loss also promotes the adherence of the GAN model to the input maps; otherwise, the model only
aims to synthesize the maps that look realistic, without considering the input maps. Since the loss functions
provided by the discriminator model dynamically change with respect to the growth of the generator model, the
performance of the generator model improves during the training process. This finding is in agreement with a
study stating that training a machine learning model with a dynamic loss function leads to more accurate results
(Wu et al., 2018).

Figure 4. Evaluation results (R2) of DroGAN using four distinct loss functions, (a) adversarial loss, (b) MAE, (c) combination
of adversarial loss and MAE, and (d) combination of adversarial loss and MSE.
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4.2. Optimum Learning Rate

The learning rate determines the magnitude of steps the optimizer takes while adjusting the weights of both the
generator and discriminator networks throughout the training process. A higher learning rate might expedite the
learning process, but there is a risk that it might lead to a sub‐optimal final weight configuration (Zeiler, 2012). In
this section, we delve into the effects of varying learning rates on the efficacy of DroGAN in the testing phase, as
depicted in Figure 5.

The results (Figure 5) indicate that selecting the learning rate is crucial in training the model as it has a significant
impact on the performance of the model. Upon training the model with various learning rates including 10− 2,
10− 3, 10− 4, and 10− 5, the distinct patterns in convergence are observed. As shown in Figure 5, training with a high
learning rate (e.g., 10− 2) leads to erratic R2 maps, suggesting that the model might be overshooting the minima in
the loss landscape. In contrast, an extremely low learning rate (e.g., 10− 5) results in a very slow convergence,
affecting the computational efficiency. Here, we trained the model with a 10− 5 learning rate for 2,000 epochs;
however, the performance of the model is not as efficient as when the model is trained with a 10− 4 learning rate for
600 epochs.

4.3. Determining the Optimum Epoch Number

The inherent complexity of the dataset is the main factor in determining the optimum number of epochs, which is
the number of times the learning algorithm performs on the training dataset. The overfitting problem is a sig-
nificant issue in training a DL model. One of the causes for this problem is setting the wrong number of epochs in
the training phase. To determine the optimum epoch number, the performance of the network is evaluated using
the R2 metric in different epochs from 10 to 1,000 over the validation set. Figure 6 presents the R2 results for
different epoch numbers in the validation phase.

The results indicate that 600 is the optimum epoch number to train the DroGAN model. According to the results
(Figure 6), starting from 400 epochs, the performance of the model becomes stable and some improvements in R2

are seen up to 600. Training the model with less than 400 epochs leads to an abundant amount of noise in the
simulated SSI maps. When the epoch number is increased from 600 to 1,000, it potentially results in a decline in

Figure 5. The performance of DroGAN with (a) 10− 2, (b) 10− 3, (c) 10− 4, and (d) 10− 5 learning rate according to the R2

metric.
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the network's performance. This decrease in performance may indicate the presence of an overtraining problem.
In most of the studies, GANs need a large epoch number (>100) to reach the best performance (Bird et al., 2022;
Robic‐Butez &Win, 2019; Sarp, Kuzlu, Pipattanasomporn, & Guler, 2021; Sarp, Kuzlu, Wilson, & Guler, 2021);
while there are a few studies that reported lower epoch numbers to train their proposed GAN or use an already
existing GAN for an application (Laloy et al., 2018; Li et al., 2020). Generally, there is no universal agreement on
the optimal epoch number for training a GAN network. The number depends on the type, size, and application.

4.4. Optimum Batch Size on GPU

To determine the optimum batch size and compare the execution times, multiple iterations of DroGAN are
conducted using different batch sizes and a maximum of 600 epochs. The batch size refers to the number of
training samples processed before modifying the model's internal parameters. After each epoch in each setup, the
timing data is recorded, and the cumulative results are displayed in Figure S1 in Supporting Information S1.

The initial epoch in each configuration takes longer to run compared to subsequent epochs. The variation in
timing between the first epoch and subsequent epochs can be attributed to the generation and loading of data into
memory, which occurs at the beginning of the first epoch. Furthermore, during the coding process, the CUDA
auto‐tuner is activated to evaluate different algorithm variations in the first epoch. This selection process iden-
tifies the fastest algorithm for the specific configuration and utilizes it to train the model in the subsequent epochs.
While this initialization process takes more time in the first epoch, it optimizes the training procedure in the
following epochs and reduces the overall cumulative training time consumption.

The results (Figure S1 in Supporting Information S1) indicate that increasing the batch size to a larger number (up
to 64) helps to decrease the run time due to the multi‐threading and matrix multiplication abilities of GPUs. The
optimum batch size in this study for training DroGAN on the GPU is 64. Increasing the batch size from 64 to 128
increases the run time which is due to the finite capabilities of the GPU.

4.5. Model Performance

The performance of DroGAN is evaluated using the performance measures discussed in Section 3.10, including
R2, NSE, andMSE, the results of which are presented in Figure 7 for the testing phase. The results suggest that the
model effectively estimates SSI in various regions of CONUS. However, the degraded model performance is seen
in the upper Midwest, Mideastern, Northeastern, and Western states of CONUS (shown by gray rectangles in
Figure 7a). These states, characterized by mountainous terrain and high snowfall, exhibit lower performance for
DroGAN. This observation aligns with previous research findings, where several studies have also reported

Figure 6. The performance of DroGAN in different epoch numbers according to the R2 metric. The results show that the
performance of the network increased up to 600 epochs and after that, the network encountered an overfitting problem.
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decreased model performance in snow‐dominant and mountainous regions (e.g., Cai et al., 2014; Markstrom
et al., 2016; Mazrooei & Sankarasubramanian, 2019; Wrzesien et al., 2019).

The diminished performance of DroGAN in mountainous and snow‐dominant regions may stem from a scarcity
of data representative of these areas. Given the limited geographical spread of such climates compared to others,
the available datasets may not sufficiently capture the unique environmental dynamics present. In mountainous
regions, the interaction between hydrological processes and snow cover bears significant importance, similar to
other snow‐dominant areas. Temperature plays a crucial role in influencing streamflow in these snow‐rich en-
vironments. Furthermore, the interaction of temperature with elevation can lead to varying effects on drought
onset, particularly due to the presence of snow. Soil characteristics are another vital aspect, influencing infil-
tration, water capacity, and rooting depth, which in turn, affect subsurface water flow, discharge rates, and soil
moisture in mountain regions (Bennie et al., 2008; Moeslund et al., 2013; Strachan & Daly, 2017). Baseflow,
shaped by region‐specific natural factors, also exerts a direct and indirect influence on drought dynamics in these
areas (Konapala & Mishra, 2020). The slow movement of groundwater in mountainous areas results in extended
baseflow periods, subsequently impacting soil moisture. Moreover, certain climatic variables that significantly
influence soil moisture and agricultural drought in other regions may manifest differently in mountainous
landscapes. For instance, the limited time for rainfall storage at higher altitudes impacts the primary sources of
soil moisture in these regions. There are notable disparities in NSE values across different snow‐dominant re-
gions. For example, DroGAN exhibits lower performance in Northern Michigan compared to areas like Cal-
ifornia's Sierra Nevada. This variability is likely due to differences in snow density and water content, which are
shaped by regional temperature, precipitation types, and other climatic factors, thus influencing soil moisture
dynamics. Consequently, the model struggles to accurately capture these dynamics in certain regions compared to
others. The primary reason for this reduced efficacy may be the limitations within the training dataset, particularly
in representing conditions prevalent in snow‐dominated regions. Inadequate representation of data from similar
climatic areas in the training set can hinder the model's ability to generalize effectively to such environments.

NLDAS‐2 could also contribute to the model's suboptimal performance in certain areas. Data provided by
NLDAS‐1 in mountainous regions tends to have a significant negative bias (Pan et al., 2003). To mitigate this bias
in NLDAS‐2, parameter‐elevation regressions are incorporated into the Independent Slopes Model climatology,
which helps reduce the negative bias. However, the precipitation data has not yet been bias‐corrected, leading to
biases in the evapotranspiration (ET) simulations (Xia et al., 2015). Furthermore, studies have shown that the ET
product of NLDAS exhibits poor accuracy when compared to observation data in forested regions (Xia

Figure 7. The evaluation results of DroGAN using (a) R2, (b) NSE, and (c) MSE.
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et al., 2012, 2014). The presence of biased input data in mountainous and forested areas could be one of the
reasons for the lower performance of DroGAN in these regions. It is crucial to address the bias in the input data
because it is likely that the model retains this biased information during the training process, as highlighted by
Kim et al., in 2019.

This reduced performance could also be attributed to the use of MAE in the loss function, as it introduces
blurriness to the synthesized image when the model is uncertain about the exact location of an edge.

4.6. Comparative Performance Analysis

In this section, we compare the performance of our proposed model, DroGAN, against the U‐Net architecture and
a Naïve model for predicting SSI. The hyperparameter tuning results for the U‐Net model is provided in Figures
S2–S3 in Supporting Information S1. The U‐Net model is trained with the MSE loss function and learning rate
10− 4. The comparison of the models is conducted using R2 and the outcomes of this evaluation are presented in
Figure 8 for the testing phase.

In our comparative analysis, we observe that the DroGAN model outperformed the U‐Net model in predicting
SSI. While both models have performed considerably better than the Naïve model, the specific nuances of SSI
prediction seem to be more amenable to the structure and mechanics of the DroGAN model. Table S3 in Sup-
porting Information S2 presents the training phase run times for both DroGAN and U‐Net using the same
computational resources. Although U‐Net's training is faster than DroGAN, it results in lower accuracy. Our
comparative study between the DroGAN and U‐Net models (Figure 8) demonstrates that while DroGAN requires
a longer training duration, this investment is justified by its superior accuracy and robustness. The DroGAN
model excels in capturing complex patterns in data, which results in enhanced performance metrics. Furthermore,
the adversarial training mechanism of DroGAN contributes to higher accuracy and its generalization capabilities.
One possible explanation for DroGAN's enhanced performance is its adaptive loss function, which adjusts ac-
cording to the network's performance. This function optimizes the network to have a better performance during
both training and testing phases. While U‐Net is undoubtedly a powerful architecture, DroGAN, by integrating

Figure 8. Evaluation results based on R2 of (a) DroGAN, (b) U‐Net, and (c) Naïve models.
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the U‐Net model with a discriminator, shows to be more adept at capturing both local and global features.
Furthermore, the adversarial loss encourages the network to account for spatial dependencies between neigh-
boring regions during the modeling stage. Additionally, the adversarial training approach used by DroGAN
ensures the model is optimized such that its generated maps (predictions) closely mirror observed SSI maps and
increases the generalizability of the model.

4.7. Examples of Spatial and Temporal Distribution

The simulated SSI maps for random days are compared to the observed SSI maps across the CONUS in Figure 9.
In addition, the outputs of the network are categorized into drought intensity maps using Table 1 and compared
with the relevant drought intensity maps provided by USDM over the CONUS in Figure 10.

The results presented in Figure 9 demonstrate that the simulations align with the observed maps, indicating that
the network is capable of capturing the patterns and values of SSI. Overall, the network successfully replicates the
large‐scale patterns observed in SSI. However, Figure 9 exemplifies that the SSI values in the upper Midwest,
Midwestern, Northeastern, and Western states of CONUS exhibit somewhat erratic spatial patterns, which can
explain the lower accuracy of DroGAN in these regions. On the other hand, the network effectively captures the
detailed patterns of SSI spatial distribution in other areas. Nevertheless, in a few regions such as the Northeastern,
Southeastern, and east‐central regions, the network tends to display a white color (SSI = 0), indicating

Figure 9. The outputs of DroGAN and target images on randomly selected days. Comparing the maps indicates that the
network successfully estimates SSI.
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non‐drought conditions. This behavior may be related to the MAE component of the loss function, which en-
courages an average value (in this case, 0) when the model is unsure about the appropriate SSI value for a specific
pixel (Cheng et al., 2022).

Investigating Figure 10, the random drought maps from the testing dataset illustrate the success of DroGAN in
flash drought monitoring. In general, the network effectively captured both general drought patterns across
almost all regions. Although both the USDM and DroGAN drought maps are categorized based on Table 1, there
are some differences between the provided maps. For instance, according to the USDM drought map on 14
January 2020, the D0, and D1 drought conditions were observed in the northwestern, west‐central, and south‐
central regions, and only a small area in Texas experienced drought with category D3. However, the DroGAN
map indicates that the majority of these regions experienced D2 and D3 drought conditions, and some regions
were in category D4. Similarly, on 25 February 2020, the DroGAN drought map displayed D0, D1, and D2
drought conditions in the northwestern areas, whereas the USDM map indicates D0 and D1 conditions in these
regions. Another example can be explained for 15 December 2020, where the USDM characterized D0 and D1

Figure 10. Comparison of USDM drought maps and flash drought maps obtained by DroGAN over the CONUS for three
randomly selected days.
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drought conditions in the northeastern CONUS, while DroGAN shows a wider range of drought conditions,
including D0–D4, in these areas. The primary reason for these discrepancies between the maps may be that the
USDM maps consider various variables, including groundwater data, for mapping drought. In contrast, Dro-
GAN's simulations are solely based on SSI maps, and the model generates drought maps exclusively using soil
moisture information.

One of the main proposed approaches to investigate flash drought is studying soil moisture variations because
they are important drivers of vegetation stress during drought situations particularly when soil moisture reaches
the wilting point. Plants respond to soil moisture conditions by regulating their water consumption and balancing
evaporative demand with the availability of moisture. Therefore, soil moisture is an important indicator of early
vegetation drought stress. It has been shown that soil moisture rapidly decreases during the early stages of a flash
drought due to increasing ET (Ford & Labosier, 2017).

Due to the escalating effects of climate change and human activities, the need for drought risk management
policies has increased, necessitating the examination of spatial and temporal drought patterns in various regions
(J. Li et al., 2021; P. Li et al., 2021). Moreover, it is essential to analyze the patterns of SSI time series to assess the
efficacy of using DroGAN for studying flash droughts, which are characterized by rapid intensification within a
short period. To address this, DroGAN was employed to estimate daily SSI maps across the CONUS in 2020.
Subsequently, specific locations were randomly selected in different regions, and the corresponding time series
were plotted to evaluate the model's performance. The outcomes of this analysis are depicted in Figure 11.

The results (Figure 11) indicate that the model effectively captured the temporal patterns of SSI in various lo-
cations. Overall, the model demonstrates excellent performance, with coefficient of determination (R2 ≥ 0.85) in
the time series, reproducing the temporal patterns of SSI. However, there are instances of lower model perfor-
mance observed in NewYork andMontana states, corresponding to points located in the northeastern and western
regions of the CONUS. The reasons for this reduced performance in these regions were previously discussed in
the preceding sections. According to Figure 11, the model proves to be reliable for studying flash droughts, as it
effectively captures sudden changes in SSI temporal patterns in different locations.

Figure 11. The simulated and observed time series in 2020 for SSI in (a) New York, (b) Nevada, (c) Montana, and
(d) Alabama states.
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4.8. Evolution of 2020 Flash Drought in the CONUS

Since the early 2000s, extensive portions of the western U.S. have suffered a prolonged “megadrought”, influ-
enced by both natural climate conditions and human activity (Williams et al., 2020). A temporary improvement
occurred in 2019, but the drought worsened again in the mid‐2020s due to a La Niña event, which led to reduced
rainfall and extended heatwaves (Sehgal et al., 2021). To assess the effectiveness of DroGAN in generating the
drought maps, we compared DroGAN‐generated drought maps with that of the USDM and the flash drought
detection by ESI. Previously, the ESI maps were demonstrated to provide reliable assessments of flash drought
evolution (Anderson et al., 2016; Otkin et al., 2013). This section demonstrates how well DroGAN‐generated
drought maps perform in an actual flash drought situation.

The temporal evolution of drought severity in the western U.S. during July–September 2020 (Figure 12) reveals a
strong spatial correlation between ESI and SSI (DroGAN outputs) indices. Drought maps based on ESI and SSI
methods reveal an escalation of drought conditions in August 2020 across several states including Utah, western
Colorado, southern Nevada, western Texas, Arizona, and New Mexico. These indices indicate a temporary
decline in drought levels by late September 2020, which can be attributed to winter rainfall in the central plains

Figure 12. Comparison of DroGAN, USDM, and ESI drought maps for July‐September 2020 for a reported flash drought in
the western U.S.
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(NOAA/NIDIS, 2021). While the USDM drought maps are generally in line with other drought maps, they seem
to be less effective in identifying the onset of flash droughts in August. Moreover, because USDMmaps consider
a variety of factors, the winter rainfall does not result in a reduction of drought levels according to these maps.

The USDM drought maps are provided based on multivariable inputs which is a robust aspect of these maps for
prolonged drought monitoring. However, the validation of the drought maps provided by USDM for flash drought
identification has shown that the maps can successfully determine the spatial extent of a developed flash drought
event, while it contains lags in showing the rapid onset. The delay in capturing the flash drought features and
intensities is related to the multivariable characteristics of the USDM drought maps (Otkin et al., 2013, 2018).
While the ESI maps are suitable for flash drought monitoring, they are provided on a weekly basis. However,
DroGAN is able to provide daily SSI maps for flash drought monitoring.

5. Summary and Conclusion
Flash drought monitoring holds significant importance in various domains, particularly in agricultural and water
resources management. Recent studies have identified numerous regions that have witnessed occurrences of flash
droughts in recent years. Consequently, the current study focuses on the development of a deep learning model for
real‐time flash drought monitoring using remotely sensed images. The study utilizes daily data on ET, SM, T, and
LAI from the NLDAS‐2 dataset, and daily SSI maps from a new collection spanning the CONUS between 2016
and 2020. While the current model utilizes the exogenous variables at time t for predicting SSI, an interesting
avenue for future research would be to explore the potential benefits of incorporating the temporal evolution of
these variables into the model. Furthermore, incorporating additional input variables such as snow water
equivalent (SWE) into the model could enhance its performance in snow‐dominant regions or mountainous areas.
Additionally, considering the uncertainty of each variable in predicting the flash drought indices can be a new
avenue of research. Over 9,000 images (including 7,312 input images and 1,828 target images) are preprocessed,
normalized, and transformed into appropriate tensors for use as input and target images in the model. Several
configurations are executed to determine the optimal number of epochs for the model, with the results indicating
that 600 epochs yield the best performance. It is concluded that there is no universal guideline for determining the
optimal epoch number in a GAN model, as it is highly dependent on the dataset. Furthermore, different con-
figurations of DroGAN are tested to identify the optimal batch size, considering both CPU and GPU computa-
tions. Additionally, running the model on GPU and leveraging CUDA optimization significantly reduces the

execution time compared to using CPU alone ( Run time (CPU)
Run time (GPU and CUDA) = 696) . It is worth mentioning that the

GAN‐based models are highly sensitive to the values of hyperparameters and training a GAN model is chal-
lenging due to the minmax game between the networks. Therefore, for each study, a separate GAN model should
be optimized.

The developed GAN has some significant advantages compared to conventional DL models. These advantages
include an adaptive loss function and the ability of the network to detect spatial patterns and dependencies of
drought in different regions. The generator model of DroGAN utilizes a modified version of U‐Net, and a
PatchGAN to model SSI maps. After the original U‐Net was proposed, several advancements have been made,
including but not limited to U‐Next and Res‐UNet. Incorporating the upgraded U‐Nets as the generator of
DroGAN may improve the accuracy of the model in future studies. The output of the discriminator, referred to as
adversarial loss, is integrated into the generator's loss function to design a loss function for the generator.
Comparing the DroGAN model's efficacy with that of the U‐Net and Naïve models indicates that DroGAN was a
more robust architecture.

Selecting an appropriate loss function is a crucial aspect when developing a GANmodel. In this research, the BCE
loss function is employed for the discriminator, while a hybrid loss function comprising adversarial loss, MSE,
andMAE is devised for the generator. The findings demonstrate that integrating adversarial loss with MAE yields
more precise and accurate maps compared to solely employing MAE or only adversarial loss or combining
adversarial loss withMSE.While we account for several key factors influencing the performance of DroGAN, we
rely on prior studies for certain factors and hyperparameters, including lambda (for the combined loss function).
Exploring these aspects further in future research could enhance the model's performance. The evaluation of
DroGAN's performance in modeling SSI reveals that the model network is generally accurate in most areas.
However, it exhibits lower performance in mountainous regions and areas with snow cover. This can be attributed
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to the distinct hydrological characteristics of mountainous and snow‐dominant areas, which pose challenges for
the model. Another contributing factor is the biased input data provided by NLDAS in these regions. To address
this issue, it is recommended to employ alternative remote sensing datasets in future studies to assess the model's
performance and investigate the impact of input images on the network. Furthermore, the utilization of blur
induction and incentivizing averaged values through MAE in the loss function for regions with chaotic changes
can also contribute to the problem. Therefore, the development of new loss functions is suggested to prevent such
issues in future projects, thereby enhancing the applicability of GAN models in hydrology and water resources.

Additionally, a comparison between the DroGAN drought maps and the USDM agricultural drought maps reveals
some discrepancies. This could be attributed to the fact that the USDM drought maps are generated by considering
multiple variables such as groundwater and soil moisture, whereas DroGAN outputs only SSI maps, which have
shown greater accuracy in studying the onset of flash droughts. In order to assess the performance of DroGAN in
detecting flash droughts, the SSI time series for random points in the CONUS are plotted, and the results
demonstrate that the network is reliable in capturing sudden changes in SSI temporal patterns, thus making it
suitable for flash drought detection. The SSI is determined based on a 30‐year data span, and its values may vary
depending on the specific 30‐year period under consideration; therefore, different 30‐year periods may yield
varied SSI values (Yuan et al., 2023). It is recommended that future studies delve deeper into this issue and utilize
models to forecast other flash drought indicators or soil moisture values.

Every year, droughts have significant financial consequences for both human activities and the environment
worldwide, amounting to millions of dollars. Consequently, the creation of innovative models and techniques to
monitor droughts in real time is essential for various decision‐makers, such as water resource and agricultural
managers. Nowadays, progress in image processing and deep learning methodologies, along with the develop-
ment of novel approaches to training more complex models at a lower computational cost and in less time, aid
researchers in achieving greater accuracy during the modeling process.

Data Availability Statement
The NLDAS dataset used in this study was downloaded from NASA's website (https://ldas.gsfc.nasa.gov/nldas/
nldas‐2‐model‐data). The SSI maps and the codes are available in the following repository (https://github.com/
hmoradkhani/DroGAN/tree/main).
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