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A B S T R A C T

Nonreciprocal thermal emitters that break Kirchhoff’s law of thermal radiation promise exciting applications
for thermal and energy applications. The design of the bandwidth and angular range of the nonreciprocal
effect, which directly affects the performance of nonreciprocal emitters, typically relies on physical intuition.
In this study, we present a general numerical approach to maximize the nonreciprocal effect. We choose
doped magneto-optic materials and magnetic Weyl semimetal materials as model materials and focus on
pattern-free multilayer structures. The optimization randomly starts from a less effective structure and
incrementally improves the broadband nonreciprocity through the combination of Bayesian optimization
and reparameterization. Optimization results show that the proposed approach can discover structures that
can achieve broadband nonreciprocal emission at wavelengths from 5 to 40 εm using only a fewer layers,
significantly outperforming current state-of-the-art designs based on intuition in terms of both performance
and simplicity.

1. Introduction

Over the past two decades, the control of thermal radiation transfer
has gained significant interest due to its vital applications in spacecraft,
manufacturing, thermal management, and energy conversion [1–4].
Typically, the design and simulation of these systems assume reci-
procity. According to Kirchhoff’s law [5,6], for reciprocal thermal
emitters, emissivity (𝜔) and absorptivity (𝜀) are equal for a given
direction, frequency, and polarization. This reciprocal relationship be-
tween emission and absorption represents a significant constraint on
controlling the radiative heat flow [7,8], and prevents radiative energy
harvesting technologies from reaching their thermodynamic limits [9–
14].

Recent research advances [2,15–17] have suggested that reciprocity
is not a requirement of thermodynamics, and it breaks down for non-
reciprocal thermal emitters which allow 𝜔 and 𝜀 to be separately
controlled. Nonreciprocal thermal emission provides the pathway to
record-breaking high-efficiency radiative energy harvesting techniques
[9,13,14,18–20], thermal regulation systems [21–24], and mechanical
propulsion with radiative heat flow [25,26]. Importantly, to achieve the
ultimate performance in these applications, especially for far-field sce-
narios, nonreciprocal thermal radiative properties should be achieved
over a broad wavelength and angular range. Designing nonreciprocal
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structures with desired properties is a new challenge compared to
designing reciprocal emitters [27,28], since one needs to codesign
emissivity and absorptivity simultaneously.

Early work has demonstrated that enhanced nonreciprocal proper-
ties [16,29] could be obtained in semiconductors and semimetals at the
excitation of resonances in the wavelength range where the dielectric
function crosses zero (i.e., epsilon-near-zero or ENZ range). Based on
this principle, current approaches to achieving broadband nonreciproc-
ity rely on multilayered structures in which each layer exhibits strong
nonreciprocity at a different ENZ wavelength. Combined, the structure
can trigger a number of these resonances simultaneously and yield
broadband nonreciprocity. For example, Liu et al. [22] demonstrated
broadband nonreciprocal emission at wavelengths from 20 to 40 εm
using a gradient-doped multilayer InAs structure, where each layer
shows strong nonreciprocity at a specific resonance wavelength under
an external magnetic field. Similarly, Zhang and Zhu [30] proposed
broadband nonreciprocity at wavelengths from 10 to 20 εm using a
multilayer magnetic Weyl semimetal structure with a gradient chemical
potential. However, since the material and the associated parameters,
like carrier concentration and geometric parameters, can all be free
to choose, designing high-performance structures of this kind is quite
challenging and typically relies on physical intuition. As a result, the
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Fig. 1. (a) Illustration of radiative heat exchange between two blackbodies (A and B) and an emitter (E) under thermal equilibrium. (b) Illustration of a multilayer structure
consisting of InAs layers on top of Weyl semimetal layers on a reflective substrate.

final designs are oftentimes suboptimal; for example, requiring a high
number of layers that are challenging to fabricate. Additionally, current
studies usually focus on optimizing the absolute value of the contrast
between emissivity and absorptivity [31]. We make sure the sign of
the contrast is respected in the design algorithm since it is crucial to
the direction of photon transport [32] and can be important in various
applications where the net photon flow direction is significant [13,33].
Despite the effectiveness of multilayer structures in achieving broad-
band nonreciprocal thermal emission, an effective approach to optimize
the performance is lacking.

Here we propose a numerical method based on Bayesian optimiza-
tion (BO) [34–39] and reparameterization to optimize thermal emitters
with a large number of design parameters. BO is used because it can
address the high computational demand presented by repeated calcu-
lations of absorptivity and emissivity during the optimization process,
which hinders the use of any population-based optimizers (e.g., genetic
algorithm or particle swarm optimization) [27,40], gradient-based op-
timizers (e.g., gradient descent) [41], or deep learning approaches that
require a large dataset [28,42]. The reparameterization imposes user-
defined constraints on the structures’ profiles and further reduces the
number of optimization parameters, thereby reinforcing the efficiency
of BO which is well-suited for small to medium optimization prob-
lems [38]. Our optimization approach is applicable to both reciprocal
and nonreciprocal emitters. In this work, we focus on demonstrating its
application in achieving enhanced broadband nonreciprocal radiative
properties with the sign of the contrast being maintained. We aim
to find structures with a much fewer number of layers and yet can
achieve nonreciprocity in an even broader wavelength range than
current designs.

2. Absorptivity and emissivity of nonreciprocal emitters

For opaque structures, the emissivity and absorptivity can be com-
puted from the reflectivity, as discussed in previous studies [43,44].
Here, we briefly review the rationale behind the approach to facilitate
our later discussion. Consider a system in thermal equilibrium that
consists of an opaque thermal emitter (E) exchanging energy with two
blackbodies, A and B, (Fig. 1(a)). The emission from blackbody A is
either absorbed by the thermal emitter E (𝜀A), or reflected and absorbed
by blackbody B (𝜗AB), leading to the following relationship:

𝜀A + 𝜗AB = 1, (1)

where 𝜀A represents the absorptivity in direction A at a specific wave-
length, and 𝜗AB is the reflectivity from A to B at that wavelength.

Moreover, each blackbody absorbs and emits an equal amount of
energy at thermal equilibrium, resulting in:

𝜔A + 𝜗BA = 1. (2)

Combining Eqs. (1) and (2), we have:

𝜀A ϑ 𝜔A = 𝜗BA ϑ 𝜗AB. (3)

For reciprocal emitters with 𝜗AB = 𝜗BA [45], it follows that 𝜀A =
𝜔A, which is consistent with Kirchhoff’s law of radiation [46]. However,
for nonreciprocal emitters, we have 𝜗AB ∱ 𝜗BA [43] and thus 𝜀A ∱
𝜔A, which violates Kirchhoff’s law of radiation. The absorptivity and
emissivity are given as:

𝜀A = 1 ϑ 𝜗AB, 𝜔A = 1 ϑ 𝜗BA. (4)

For linear and static thermal emitters we consider here [47,48],
one needs to start with a material that breaks the reciprocity to obtain
nonreciprocal thermal radiation. Magneto-optical material InAs [22,29,
43,49] and magnetic Weyl semimetals [16,50–52] have been used for
this purpose. As shown from their dielectric functions discussed later,
the former works more effectively in the longer wavelength in the
mid-infrared range, whereas the latter can provide nonreciprocity for
shorter wavelengths. We note that, though each material has been used
individually for nonreciprocal emitter design, it is not clear whether
and how these materials can be combined to achieve even broader band
of nonreciprocal thermal emission. Therefore, we choose these materi-
als as our model nonreciprocal materials and focus on structures shown
in Fig. 1(b) that have InAs layers on top of Weyl semimetal layers on
a reflective substrate, where we use silver as substrate in this study.
The Weyl semimetals provide an ENZ effect in the shorter wavelength
range. They have strong metallic behavior in the longer wavelength
range that could result in strong reflection and thus are not suitable for
top layers. With this structure, we rule out the type of structures that
possess alternating InAs and Weyl semimetal layers since they can be
very challenging to fabricate in practice. Regardless of the challenges
in fabrication, alternating layers may bring additional benefits. For
example, one may form a photonic crystal structure by alternating InAs
and Weyl semimetal layers that supports other nonreciprocal modes
for engineering radiative properties. We will also seek to optimize
the structures containing InAs only, so that we can compare with the
state-of-the-art design [22] and showcase the significant improvement
through using our approach.

We consider transverse magnetic (TM) waves with a magnetic field
along the ϑ𝜛 direction, and consider the Voigt configurations [29]. In
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this way, we trigger the nonreciprocity for the radiative properties at
different polar angle 𝜚 in the 𝜍–𝜑 plane. For InAs, we apply an external
magnetic field (𝛻 field) along the ϑ𝜛 direction [53,54]. In this case, the
permittivity tensor of each InAs layer reads [15]:

𝝎 =
⌋
⌈
⌈⌉

𝜔𝜍𝜍 𝜔𝜍𝜑 0
𝜔𝜑𝜍 𝜔𝜑𝜑 0
0 0 𝜔𝜛𝜛

{
}
}⦃
. (5)

The components of the permittivity tensor for InAs can be expressed
as:

𝜔𝜍𝜍 = +𝜔𝜑𝜑 = 𝜔ϖ ϑ
𝜕2
ℵ(𝜕 + ℶℷ )

𝜕
⦄
(𝜕 + ℶℷ )2 ϑ 𝜕2

ℸ
⟨ ,

𝜔𝜍𝜑 = ϑ𝜔𝜑𝜍 =
ℶ𝜕2

ℵ𝜕ℸ

𝜕
⦄
(𝜕 + ℶℷ )2 ϑ 𝜕2

ℸ
⟨ , (6)

𝜔𝜛𝜛 = 𝜔ϖ ϑ
𝜕2
ℵ

𝜕(𝜕 + ℶℷ ) ,

where 𝜕 is the angular frequency, 𝜔ϖ is the high-frequency permittivity,
ℷ is the damping rate, 𝜕ℵ =

⟩
⊳⊲⊲2ϱ(0ω𝜔0) is the plasma frequency,

and 𝜕ℸ = ⊲𝛻ϱ0ω is the cyclotron frequency. Here, ⊳⊲ is the carrier
concentration, ⊲ is the elementary charge, 0ω is the effective electron
mass, and 𝜔0 is the vacuum permittivity. We focus on the ENZ point
where the real part of 𝜔𝜍𝜍 crosses zero [15,55–58] and brings a sig-
nificant enhancement to 𝜔𝜍𝜑ϱRe(𝜔𝜍𝜍) and the nonreciprocal effect [29].
By adjusting the carrier concentration ⊳⊲, which we can experimentally
control while fabricating InAs among other parameters in Eq. (6), the
ENZ point shifts, allowing us to control the wavelength at which the
ENZ region occurs.

The nonreciprocal effect in magnetic Weyl semimetal layers is in-
trinsic and does not require an external magnetic field [16]. The
momentum separation of the Weyl cones, 2𝛚, acts similarly to an ap-
plied magnetic field in magneto-optical systems. We set 𝛚 = ϑ1𝛆𝜛 to be
also along the ϑ𝜛 direction (Fig. 1(b)) following the Voigt configuration
and, in this case, the permittivity tensor of Weyl semimetal has the
same format as Eq. (5) [16]. Similar to InAs, the nonreciprocal effect
for Weyl is significantly enhanced when the diagonal element 𝝎 crosses
zero at ENZ point.

The diagonal elements of the permittivity of each Weyl semimetal
layer read 𝜔𝜍𝜍 = 𝜔𝜑𝜑 = 𝜔𝜛𝜛 = 𝜔1 + ℶ2

𝜕𝜔0
, where 𝜔1 is the background

permittivity, 𝜕 is the radiation frequency, and 2 is the bulk conductivity
obtained from [16]:

2 =
𝜔0𝜗34 56

67 8 9
⟪
568
2

⟫
+ ℶ

𝜔0𝜗34 56
6. 7

❲
❳
/
❳\

4
8

(
1 + .2

3

⟪
,𝛻<
56

⟫2)

+88 ∲
ℏℸ

0

9(56 ℏ) ϑ 9
⦅
568
2

⦆

82 ϑ 4ℏ2 ℏ > ℏ
[
❳
]
❳⟦
. (7)

Here, 𝜗3 = ⊲2ϱ(4. 𝜔07⋆6 ) is the effective fine structure constant, 7 is
the reduced Planck constant, and ⋆6 is the Fermi velocity. 8 = 7(𝜕 +
ℶ≨ϑ1)ϱ56 is the normalized complex frequency, ≨ϑ1 is the scattering
rate, 56 is the Fermi level, and < is the temperature, which we assume
is 300 K for this study. 9(5) = ⊳(ϑ5) ϑ ⊳(5), where ⊳(5) is the Fermi-
Dirac distribution function, 4 is the number of Weyl points, and ,𝛻 is
the Boltzmann constant. ℏℸ = 5𝐴ϱ56 is the normalized cutoff energy,
where 5𝐴 is the cutoff energy beyond which the band dispersion is no
longer linear. In addition, the off-diagonal element of the permittivity
tensor of each Weyl semimetal layer is calculated as:

𝜔𝜍𝜑 = ϑ𝜔𝜑𝜍 = ℶ 1⊲2

2.27𝜕
. (8)

By tuning the Fermi level 56 — a parameter similar to ⊳⊲ for InAs that
can be adjusted in experiments — the ENZ point of the Weyl semimetal
can be modified, which shifts the wavelength at which the associated
resonance occurs.

3. Optimization problem

For the structure shown in Fig. 1(b), each layer exhibits a dis-
tinct ENZ point, resulting in enhanced nonreciprocity across different
wavelengths. Due to the multilayer design, with each layer having a
unique ENZ point, broadband nonreciprocity can be achieved over a
wide wavelength range. To optimize the contrast between absorptivity
and emissivity across this broad bandwidth, it is necessary to solve
an optimization problem to determine the optimal values of design
parameters: the carrier concentrations for InAs layers, the Fermi levels
for Weyl semimetal layers, and the thickness of each layer in the mul-
tilayer structure. In this study, we only try to optimize the mentioned
design parameters, while assuming other parameters of the dielectric
functions of InAs and Weyl semimetals are fixed. For the InAs, the
high-frequency permittivity and the effective electron mass of InAs
are 𝜔ϖ = 12.37 and 0𝐵 = 0.0330⊲ [59], respectively, where 0⊲ is
the electron mass. The damping rate of InAs is set as ℷ = 5.9 ς 1012
rad/s [22]. The background permittivity, the number of Weyl points,
the Fermi velocity, the relaxation time, and the cutoff energy of Weyl
semimetals are 𝜔1 = 6.2, 4 = 2, ≨ = 10ϑ12 s, ⋆6 = 0.83 ς 105 mϱs, and
5𝐴 = 0.45 eV, respectively [16].

Our optimization starts by defining an objective function. Denote
wavelength 𝐶 φ R+, angle of incidence 𝜚 φ R+, and emitter design
parameters 𝛝 φ Rℵ

+, where R+ = (0,ϖ) and ℵ is the number of
design parameters. Let 𝜀(𝛝, 𝐶, 𝜚) and 𝜔(𝛝, 𝐶, 𝜚) be the local functions for
the absorptivity and emissivity of this emitter, respectively. The local
function for the contrast between the absorptivity and emissivity is
defined as:

𝐷(𝛝, 𝐶, 𝜚) = 𝜀(𝛝, 𝐶, 𝜚) ϑ 𝜔(𝛝, 𝐶, 𝜚), (9)

where 𝐷 φ [ϑ1, 1]. Achieving maximum and minimum contrast is
equivalent, as the sign of the contrast can be flipped by reversing the
magnetic field. Fig. 2 shows the design parameters 𝛝 for a nonreciprocal
thermal emitter that is the combination of ⊳1 doped InAs layers on top
of ⊳2 Weyl semimetal layers. For this structure, 𝛝 has ⊳1 distinct carrier
concentrations ⊳⊲,ℶ (ℶ = 1,… , ⊳1) for the InAs layers, the thickness 𝐸1
of each InAs layer, ⊳2 distinct Fermi levels 56 ,𝐹 (𝐹 = 1,… , ⊳2) for the
Weyl semimetal layers, and the thickness 𝐸2 of each Weyl semimetal
layer. Here we simplify the optimization problem by using the same
thickness for layers of each type of material.

Maintaining the sign of the contrast, we formulate the following
optimization problem for the nonreciprocal emitter, aimed at find-
ing an optimal structure that achieves negative contrast over broad
wavelength and angular ranges:

minimize
𝛝φ∳ 𝐺𝐷(𝛝), (10)

where 𝐺𝐷 φ [ϑ1, 1] represents the normalized contrast, which serves
as the figure of merit for the broadband nonreciprocity, and ∳ 𝐻 Rℵ

+
is the feasible domain of 𝛝. The normalized contrast 𝐺𝐷 represents the
contrast averaged across the considered ranges of wavelengths and
angles, which is defined as:

𝐺𝐷(𝛝) =
⨋ 𝐶U
𝐶L

⨋ .ϱ2
0 𝐷(𝛝, 𝐶, 𝜚) sin 𝜚 cos 𝜚 d𝜚 d𝐶
⨋ 𝐶U
𝐶L

⨋ .ϱ2
0 sin 𝜚 cos 𝜚 d𝜚 d𝐶

, (11)

where 𝐶L and 𝐶U are the lower and upper values of the considered
wavelength range, respectively. A numerical quadrature method for
efficiently computing the integrals in the numerator of 𝐺𝐷(𝛝) is given
in the Supplementary Material.

We further apply a reparameterization strategy to the objective
function 𝐺𝐷(𝛝) to enforce desired design constraints on the emitter
structure and/or other constraints on the optimization problem. The
design constraints allow for experimental control over the profiles
(e.g., linear or nonlinear) of carrier concentrations and Fermi levels
inside the multilayer structures which profoundly affect the contrast
value [60]. Meanwhile, the reparameterization ensures that the number
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Fig. 2. Design parameters 𝛝 for a nonreciprocal emitter of interest and their reparameterization into 𝛡. The structure consists of ⊳1 InAs layers with carrier concentrations 𝛠 and
thickness 𝐸1, and ⊳2 Weyl semimetal layers with Fermi levels 𝛓 and thickness 𝐸2. After reparameterizing 𝛠 and 𝛓, the number of parameters reduces from ⊳1 + ⊳2 + 2 to ℵ1 + ℵ2 + 2,
where ℵ1 ⨌ ⊳1 and ℵ2 ⨌ ⊳2 are the numbers of columns of 𝛗 and 𝛁, respectively.

of optimization parameters remains manageable for the optimizer,
which is crucial when there are many design parameters.

The reparameterization strategy transforms 𝐺𝐷(𝛝) over the design
parameter space 𝛝 φ ∳ into 𝐷(𝛡) over the space of optimization pa-
rameters 𝛡 = 𝐼(𝛝) φ R> , with the reparameterization map 𝐼(⋛) ∇ Rℵ

+ 
R> encapsulating all desired constraints. As a result, the optimization
problem after reparameterization reads:

minimize
𝛡φ⨍ 𝐷(𝛡), (12)

where ⨍ = {𝛡 φ R> ∇ 𝐼ϑ1(𝛡) φ ∳} and 𝐷(𝛡) = 𝐺𝐷(𝐼ϑ1(𝛡)). Thus, instead
of solving problem (10) directly, we solve problem (12) and recover an
optimal set of 𝛝 from the resulting optimal set of 𝛡.

Given a specific value of the optimization parameters 𝛡 and the
reparameterization map 𝐼(⋛), computing 𝐷(𝛡) is straightforward. We
first recover the design parameter 𝛝 = 𝐼ϑ1(𝛡). We then compute 𝐺𝐷(𝛝)
and set 𝐷(𝛡) as 𝐺𝐷(𝛝).

Fig. 2 details the reparameterization technique used in this study.
This technique transforms the carrier concentrations 𝛠 =⟧
⊳⊲,1,… , ⊳⊲,⊳1

⌊<
φ R⊳1 for the InAs layers and Fermi levels 𝛓 =

⟧
56 ,1,… , 56 ,⊳2

⌊<
φ R⊳2 for the Weyl semimetal layers into optimiza-

tion parameters 𝛛 φ Rℵ1 and − φ Rℵ2 , respectively, using two linear
maps 𝛗 φ R⊳1ςℵ1 and 𝛁 φ R⊳2ςℵ2 where ℵ1 ⨌ ⊳1 and ℵ2 ⨌ ⊳2. By
carefully designing the column spaces of 𝛗 and 𝛁, we can reduce the
number of parameters for our optimization problem, which is now
formulated for 𝛛 and −. This reduction is crucial when ⊳1 or ⊳2 is large,
as the performance of the optimization algorithm strongly depends on
the problem’s input dimension. Bayesian optimization, for example,
is most effective for problems of less than 20 dimensions [38]. By
further designing the entries of each column of 𝛗 or 𝛁, we are able
to impose specific geometrical properties on the emitter, for example,
linear profiles of carrier concentrations or quadratic profiles of Fermi
levels (see Fig. 2). The detailed computations for 𝛗 and 𝛁 are provided
in the Supplementary Material.

4. Optimization algorithm

Bayesian optimization (BO) [34–39] is a successful approach to
optimizing functions that are costly to evaluate, cannot be evaluated
exactly, have no analytical expressions, or offer no efficient way to
compute their derivatives [39]. It finds applications in diverse domains
of science and engineering, including photonic curing processes [61],
adaptive experimental design [62,63], accelerator physics [64], and
material design [65–67], to name a few. BO also enables the inte-
gration of physical and mathematical insights into the optimization
process [68–70].

In this study, we use BO to solve problem (12). This is justified
because the objective function 𝐷(𝛡) lacks a useful analytical expression
and is computationally expensive. In the following, we provide an
overview of BO and explain how it can be used to incrementally im-
prove the broadband nonreciprocity of nonreciprocal emitters starting
from ineffective ones.

Given a few observations for a specific optimization problem, BO
solves the problem by repeatedly: (1) constructing a probabilistic model
for the objective function to represent our prior knowledge and the
observations; (2) formulating an acquisition function to define what
we value in the current dataset given the probabilistic model; and (3)
maximizing the acquisition function to guide the optimization process.
This iterative process typically terminates as it reaches a prespeci-
fied number of observations, which reflects our computational budget.
Fig. 3 illustrates three consecutive iterations of BO for minimizing a
univariate objective function 𝐽 (𝜍). BO starts with six observations of
𝐽 (𝜍) and locates the true global minimizer of 𝐽 (𝜍) after only three
iterations (bottom panel of Fig. 3(c)).

A Gaussian process (GP) [71] model often serves as the probabilistic
model for BO due to its flexibility and tractability. Typically, the GP
prior is specified simply by a zero mean function and a covariance
function with a closed form and a few hyperparameters. Given a
dataset of the objective function observations, the posterior can be
derived by conditioning the prior on the dataset. This GP posterior then
serves as the probabilistic model that represents our beliefs about the
structure of the costly objective function. The reader is referred to the
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Fig. 3. Schematic illustration of three consecutive iterations of BO for optimizing a univariate function 𝐽 (𝜍). In each iteration, BO constructs a probabilistic model for the objective
function 𝐽 (𝜍) using the current data, formulates an acquisition function 𝐾(𝜍) from the model, and maximizes 𝐾(𝜍) to identify a new location to query the objective function.

Supplementary Material for the mathematical foundation of GP and the
analytical formula of the posterior.

Once the posterior model has been constructed, we formulate an
acquisition function to define an optimization policy representing what
we wish to exploit from this model. The acquisition function maps each
point in the design variable space to a score on its ability to benefit
the optimization process, considering our imperfect knowledge of the
objective function [34,72]. By maximizing this acquisition function, we
thus maximize the potential to obtain a better new design. We do so
numerically by using, for example, a global optimization algorithm,
and the resulting solution is used in the next iteration of BO for a

new evaluation of the objective function. Maximizing the acquisition
function is typically simpler and less computationally expensive than
optimizing the costly objective function directly.

In Algorithm 1, we outline the use of BO for optimizing a non-
reciprocal thermal emitter of interest. We begin with specifying the
design parameter domain ∳ , the number 𝐿 of initial observations of
the normalized contrast 𝐷(𝛡), and the threshold 𝑀 for the number of
BO iterations, followed by defining the reparameterization map 𝐼(⋛)
(Line 1). To construct an initial dataset ⨎0 (Line 6), which is necessary
for initializing BO, we randomly generate a set of 𝐿 samples for the
optimization parameters 𝛡 using Latin hypercube sampling [73] (Line
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Algorithm 1 Bayesian optimization with noiseless observations
1: input: domain ∳ of design parameters 𝛝, number of initial ob-

servations 𝐿 , threshold for the number of BO iterations 𝑀,
reparameterization map 𝐼(⋛)

2: Generate 𝐿 initial observations of optimization parameters 𝛡
3: for ℶ = 1 ∇ 𝐿 do 𝑁 Generate initial observations of the normalized

contrast
4: 𝜑ℶ  𝐷(𝛡ℶ)
5: end for
6: ⨎0  {𝛡ℶ, 𝜑ℶ}𝐿ℶ=1 𝑁 Dataset of initial observations
7: {𝛡min, 𝜑min}  min{𝜑ℶ, ℶ = 1,… , 𝐿} 𝑁 The best observation found

so far
8: for ℶ = 𝐿 + 1 ∇ 𝐿 +𝑀 do
9: ,  ℶ ϑ𝐿

10: Build a GP posterior 𝑂𝐷,(𝛡)⌋⨎,ϑ1
11: Formulate an acquisition function 𝐾(𝛡⌋⨎,ϑ1) from 𝑂𝐷,(𝛡)⌋⨎,ϑ1
12: 𝛡,  ar g max

𝛡
𝐾(𝛡⌋⨎,ϑ1) s.t. 𝐼ϑ1(𝛡) φ ∳ ; 𝛡 ∂ ⨎,ϑ1 𝑁 Maximize

the acquisition function
13: 𝜑,  𝐷(𝛡,) 𝑁 Obtain a new observation of the normalized

contrast
14: ⨎,  ⨎,ϑ1 − {𝛡,, 𝜑,} 𝑁 Update the dataset of observations
15: {𝛡min, 𝜑min}  min{𝜑min, 𝜑,} 𝑁 The best observation found so far
16: end for
17: return {𝛡min, 𝜑min} and 𝛝min  𝐼(𝛡min)

2), and subsequently evaluate 𝐷(𝛡) at the generated samples using
rigorous coupled-wave analyses [74,75] (Line 4). Here, we assume
that the evaluated values of 𝐷(𝛡) are noiseless, which means that the
numerical results perfectly capture the distribution of nonreciprocal
thermal radiation in the emitter without introducing any numerical
errors.

The for-loop of BO (Line 8 to Line 16) commences with constructing
a GP posterior 𝑂𝐷,(𝛡) for 𝐷(𝛡) from the current dataset ⨎,ϑ1 (Line 10),
where , = 1,… , 𝑀 represents the index variable for the loop. It then
formulates an acquisition function 𝐾(𝛡) based on 𝑂𝐷,(𝛡) (Line 11) and
maximizes 𝐾(𝛡) for a new observation 𝛡, of the optimization parameters
(Line 12). To avoid reselecting points already seen in the current
dataset ⨎,ϑ1, the constraint 𝛡 ∂ ⨎,ϑ1 is imposed to the maximization of
𝐾(𝛡) (Line 12). Finally, the algorithm evaluates the normalized contrast
𝜑, = 𝐷(𝛡,) at the new point 𝛡,, and updates the dataset with 𝛡, and
𝜑, for use in the next iteration (Lines 13 and 14). The final optimal
solution is the best observation found among points of the dataset
recommended by the algorithm (Lines 15 and 17).

5. Results and discussion

We present the optimization results for two multilayer structures of
nonreciprocal thermal emitters: a 3-layer InAs structure and a 6-layer
3InAs+3Weyl structure (i.e., three layers of InAs on top of three layers
of Weyl semimetal). By considering these structures, we aim to inves-
tigate how a combination of InAs and Weyl semimetal can improve
broadband nonreciprocity. For this purpose, we also optimize other two
structures, namely a 5-layer InAs structure and an 8-layer 5InAs+3Weyl
structure. The optimization results for these structures are provided
in the Supplementary Material. To evaluate the performance of the
obtained optimal structures, we compare the contrast between absorp-
tivity and emissivity of them with that of the state-of-the-art 10-layer
InAs structure proposed by Liu et al. [22]

5.1. Experiment setup
We consider wavelengths 𝐶 ranging from 5 to 40 εm, which covers

the thermal infrared range and is much broader than that in existing

Table 1
Carrier concentrations of InAs and layer thickness for the best 3-layer InAs structures
from LCB and PI.

Parameter LCB PI

⊳⊲,1 (ς1017 at omsϱcm3) 3.353 3.367
⊳⊲,2 (ς1017 at omsϱcm3) 5.212 5.181
⊳⊲,3 (ς1017 at omsϱcm3) 7.353 7.367
𝐸1 (nm) 1243 1247

works. We analyze TM waves under an applied magnetic field of
𝛻 = 1.5 T. The reparameterization is carefully designed for each
structure to ensure that the carrier concentrations of InAs and the
Weyl Fermi levels across the layers conform to a polynomial of up
to second order. As a result, there are four optimization parameters
for 3-layer and 5-layer InAs structures, and eight parameters for 6-
layer 3InAs+3Weyl and 8-layer 5InAs+3Weyl structures. For 5-layer
InAs and 8-layer 5InAs+3Weyl structures, the number of optimization
parameters is less than the number of design parameters. Further details
on the reparameterization scheme are provided in the Supplementary
Material.

There are several settings for BO and the optimizer used for max-
imizing the acquisition function at each BO iteration. The GP prior
is determined by a zero-mean function and the squared exponential
covariance function (see Eq. (S2) of the Supplementary Material).
The carrier concentrations of InAs layers, the Fermi levels of Weyl
semimetal layers, and the layer thicknesses are selected such that
⊳⊲,ℶ φ [1, 10] ς 1017 atoms/cm3, 56 ,𝐹 φ [10ϑ3, 0.5] eV, and 𝐸1, 𝐸2 φ
[100, 5000] nm. The number of initial observations of the normalized
contrast is 𝐿 = 5>, where > is the number of optimization parameters
𝛡. The threshold for the number of BO iterations is set as 𝑀 = 150 for 3-
layer InAs structure, and 𝑀 = 1000 for 6-layer 3InAs+3Weyl structure.
We use two canonical improvement-based acquisition functions for BO:
lower confidence bound (LCB) and probability of improvement (PI).
Their analytical formulas are provided in the Supplementary Material.
To maximize each of these acquisition functions, we use a multi-start
local optimization algorithm with 500 random starting points over the
space of 𝛡. The tolerance for the first-order optimality measure and the
upper bound on the magnitude of any constraint functions are set at
10ϑ16. The algorithm is implemented in MATLAB and executed on the
Carya Cluster at the University of Houston.

5.2. Optimized 3-layer InAs structure

Fig. 4 show the optimization results for the 3-layer InAs structure
obtained from five different BO trials of LCB and five different trials
of PI, with each set of trials utilizing distinct initial datasets. Despite
starting from different initial values, all BO trials converge to a unique
normalized contrast value of 𝐷 = ϑ16.9% after 100 iterations for LCB
and 125 iterations for PI, see Fig. 4(a). Thus, each LCB trial requires
20 + 100 objective function calls to reach the optimal design, while each
PI trial needs about 20 + 125 calls. Fig. 4(b) compares the contrast values
of 3-layer InAs structures associated with the first and last iterations of
the first BO trial of LCB with that from the state-of-the-art 10-layer InAs
structure, which has 𝐷 = ϑ15.4%. We see that, although BO starts from
a less effective initial structure (left panel), it can provide an optimal
structure (middle panel) with negative contrast better than that of the
state-of-the-art structure (right panel), confirming its crucial role in
enhancing the nonreciprocity of the 3-layer InAs structure. Moreover, it
shows that we can achieve substantial nonreciprocal effects with only
a few layers.

Table 1 lists the optimal parameters for the best 3-layer InAs struc-
tures obtained from LCB and PI. The optimal structures from these
acquisition functions are almost identical. Notably, the carrier concen-
trations of these optimal structures exhibit a linear increase from the
top to the bottom layers.
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Fig. 4. Optimization results for 3-layer InAs structure in comparison with the state-of-the-art 10-layer InAs structure (reference) [22]. (a) Optimization histories from LCB and PI.
(b) Comparison of contrast values of the initial and final structures from the first and last iterations of the first LCB trial, and the state-of-the-art 10-layer InAs structure.

Fig. 5. Absorptivity (𝜀) and emissivity (𝜔) of the initial and final 3-layer InAs structures
from the first and last iterations of the first LCB trial, and the state-of-the-art 10-layer
InAs structure (reference) [22].

Fig. 5 shows the absorptivity and emissivity over the considered
range of incidence angles for the 3-layer InAs structures from the first
and last iterations of the first BO trial using LCB, as well as those of the
state-of-the-art structure. We see that BO enhances the nonreciprocity
of the 3-layer InAs structure by increasing the absorptivity at wave-
length values from 25 to 40 εm, which correspond to the upper region
of the considered spectrum.

5.3. Optimized 6-layer 3InAs+3Weyl structure

Fig. 6 presents the optimization results for the 6-layer 3InAs+3Weyl
structure. Although different BO trials for this structure using LCB and
PI do not converge to a single contrast value after 1000 iterations, they

Table 2
Carrier concentrations of InAs, Weyl Fermi levels, and layer thicknesses for the best
6-layer 3InAs+3Weyl structures from LCB and PI.

Parameter LCB PI

⊳⊲,1 (ς1017 at omsϱcm3) 3.416 3.308
⊳⊲,2 (ς1017 at omsϱcm3) 5.454 4.861
⊳⊲,3 (ς1017 at omsϱcm3) 7.416 6.777
𝐸1 (nm) 1203 1066
56 ,1 (eV) 0.097 0.061
56 ,2 (eV) 0.148 0.103
56 ,3 (eV) 0.097 0.132
𝐸2 (nm) 100 100

demonstrate significant improvements in the nonreciprocity. The best
trial of both LCB and PI requires 500 BO iterations to provide the best
structures, which correspond to 40 + 500 objective function calls. The
best structures recommended by LCB and PI achieve the same negative
contrast value of 𝐷 = ϑ24.4%, which is notably superior to that of
the optimal 3-layer InAs structure with 𝐷 = ϑ16.9% and that of the
state-of-the-art 10-layer InAs structure with 𝐷 = ϑ15.4%.

As shown in Figs. 6(b) and 7, the use of three InAs layers atop three
Weyl semimetal layers enhances the nonreciprocity at wavelengths in
both the lower and upper regions of the considered spectrum. Specifi-
cally, the top InAs layers improve the absorptivity at wavelength values
from 25 to 40 εm, while the bottom Weyl semimetal layers focus on
improving the absorptivity at wavelengths from 5 to 15 εm.

Table 2 lists the optimal parameters for the best 6-layer
3InAs+3Weyl structures obtained from LCB and PI. While the two ac-
quisition functions yield the same optimal contrast value (𝐷 = ϑ24.4%),
they provide two different sets of optimal parameters. Nevertheless, the
carrier concentrations of the InAs layers of these optimal structures still
increase linearly from the top to the bottom. Additionally, the thickness
of the Weyl semimetal layers reaches the lower bound of its defined
domain, indicating that further improvement may be possible with even
thinner layers.
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Fig. 6. Optimization results for 6-layer 3InAs+3Weyl structure in comparison with the state-of-the-art 10-layer InAs structure (reference) [22]. (a) Optimization histories from LCB
and PI. (b) Comparison of contrast values of the best structures from LCB and PI, and the state-of-the-art 10-layer InAs structure.

Fig. 7. Absorptivity (𝜀) and emissivity (𝜔) of the best 6-layer 3InAs+3Weyl structures
from LCB and PI, and the state-of-the-art 10-layer InAs structure (reference) [22].

5.4. Discussion

While we choose two common acquisition policies for BO — i.e., LCB
and PI — it is beyond the scope of this work to provide a com-
prehensive performance comparison of different BO algorithms or
alternative methods. Other BO acquisition policies, such as Thompson
sampling [76–78], may have a better balance between exploitation and
exploration and may be less sensitive to the initial dataset.

Alternative optimization methods have been used in photonics de-
sign as well, but each has its own limitations. Gradient-based optimizers
(e.g., gradient descent) search for a local minimum instead of the global
minimum, and they require computing the gradient of the objective
function, which is not available for most solvers and is expensive to es-
timate numerically. Evolutionary algorithms (e.g., genetic algorithm),
population-based metaheuristics (e.g., particle swarm optimization),

and other metaheuristic optimizers (e.g., simulated annealing) can find
good solutions to global optimization problems, but they usually re-
quire significantly more objective function evaluations than BO, which
is computationally prohibitive. Some of these can work well on discrete
or combinatorial domains, which can be challenging for BO.

Comparing the performance of BO algorithms with these alterna-
tives would help gain deeper insights into the strengths and limitations
of each method. To ensure fair comparisons, gradient-based algorithms
should start at the best-found solution from the initial dataset of each
BO method and expend the same number of objective function calls
as required by each BO method, which include those for evaluating
the derivatives of the objective function. Population-based algorithms
should start at a population that includes the samples from the initial
dataset of each BO method and should also use the same number of
objective function evaluations as that of each BO method.

6. Conclusion

We present an optimization approach combining BO and reparame-
terization that demonstrates optimal broadband nonreciprocal thermal
emitter performance, surpassing state-of-the-art broadband nonrecip-
rocal effects in the infrared range of thermal radiation using doped
InAs and Weyl semimetal materials. Starting from a less effective struc-
ture, the proposed approach incrementally improves the broadband
nonreciprocity of the structure by repeatedly reparameterizing the nor-
malized contrast, constructing a probabilistic surrogate model for the
reparameterized contrast, maximizing a cheap-to-compute acquisition
function formulated from the constructed surrogate model to identify
a promising new structure, and updating the surrogate model with
the new structure. The optimal structure is the best structure among
those recommended by the optimization algorithm upon its termina-
tion. Optimization results indicate that our approach can propose an
optimal structure of only three InAs layers that outperforms the current
state-of-the-art 10-layer InAs structure [22]. Additionally, the broad-
band nonreciprocal effect considerably increases when using InAs and
Weyl semimetals, which shows the feasibility of combining different
nonreciprocal materials for enhanced nonreciprocity. The significant
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improvements in the designed emitters highlight the role of numeri-
cal optimization in advancing practical nonreciprocal thermal emitter
development. Our approach can also be adapted to optimize more
general structures containing patterns. In an ongoing study, we conduct
experiments to validate the performance of the optimized structures.
We then combine the experimental and numerical observations within
the framework of multi-fidelity BO [69,70,79–81] to further enhance
our design approach.
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Supporting Information

Gaussian process

A Gaussian process (GP) model1 is a non-parametric, probabilistic model that enables the

prediction of an unknown function of interest f(x) for any x ∈ Rd and quantifies the un-

certainty in that prediction. In this work, f(x) represents the normalized contrast function

η(x), see problem (12) in Optimization problem. The GP model can also be viewed as

a distribution over functions, extending the concept of finite-dimensional Gaussians to an

infinite-dimensional space. It assumes that the function values f = {f(xi)}
N
i=1 evaluated

at any finite set X = {xi}
N
i=1 of input variables are distributed according to a multivariate

Gaussian. This assumption is encoded in the following GP prior:

f(x) ∼ GP (m(x),κ(x,x′|θ)) , (S1)

where m(x) and κ(x,x′|θ) are the mean and covariance functions, respectively. The mean

function m(x) determines the expected value of f(x) at any location x and is often set as

m(x) = 0. The covariance function κ(x,x′|θ) defines the covariance between f(x) and f(x′)

and is characterized by a set of parameters θ, known as hyperparameters. Hereafter, we

omit the dependence of κ on θ for clarity.

The covariance function profoundly impacts important properties of a GP model such

as continuity and differentiability of its sample paths.2 These properties, in turn, affect the

uniqueness and existence of a global solution. A popular choice is the squared exponential

(SE) covariance function, which reads

κ(x,x′) = σ2
f exp

(

−
1

2

d∑

k=1

(xk − x′

k)
2

l2j

)

, (S2)

where σf is the scaling standard deviation and lj are the characteristic length scales. The

hyperparameters for the SE covariance function is θ = [σf, l1, . . . , ld]T .
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We now wish to find a most-likely set for the hyperparameters θ given the observations

y = {y(xi)}
N
i=1 for the function values f = {f(xi)}

N
i=1. We let p(f |X) = N (0,K(X,X))

represent the zero-mean GP prior from Eq. (S3), where p(·) represents a probability density

function, N (·) denotes a Gaussian, and the (i, j)th entry of K is K[ij] = κ(xi,xj) (i, j =

1, . . . , N). We further assume that y are generated from an observation model p(y|f ,X) =

N (f , σ2
nI) known as the likelihood, where σ2

n and I represent the observation variance and

the identity matrix, respectively. Therefore, we can derive the marginal likelihood (for

a zero-mean function) p(y|X) =
∫
p(f |X)p(y|f ,X)df = N (0,C(X,X)) and compute the

associated log-marginal likelihood log p(y|X), where C(X,X) = K(X,X) + σ2
nI. We then

maximize log p(y|X) for a set of most-likely hyperparameters θ given the observations, which

is called the maximum likelihood estimate of the hyperparameters.

Once the hyperparameters have been chosen, the posterior p (f |X,y) can be obtained

from Bayes’ rule, such that

p (f |X,y) =
p(f |X)p(y|f ,X)

p(y|X)
. (S3)

In this case, the posterior p (f |X,y) is a Gaussian because p(f |X) and p(y|f ,X) are Gaus-

sians. Thus, the posterior is also a GP, which reads1

f̂(x) ∼ GP (m̂(x), κ̂(x,x′)) , (S4)

where the conditional mean m̂(x) = KT
x
C−1y and the condictional covariance κ̂(x,x′) =

κ(x,x′)−KT
x
C−1Kx

′ withKx = [κ(x,x1), . . . ,κ(x,xN)]
T andKx

′ = [κ(x′,x1), . . . ,κ(x′,xN)]
T .

The prediction f! at a new point x! can be calculated from the GP posterior as p(f!|f̂ ,x!) =

N (µ̂(x!), σ̂2(x!)), where µ̂(x!) = m̂(x!) and σ̂2(x!) = κ̂(x!,x!) are the predictive mean and

variance, respectively.
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Lower confidence bound and probability of improvement

In this section, we describe the lower confidence bound (LCB) and probability of improve-

ment (PI) acquisition functions BO uses for optimizing the normalized contrast η(x) in

Initialization.

The LCB acquisition function balances greedy optimization introduced by minimizing the

predictive mean function µ̂(x) (i.e., maximizing −µ̂(x)) with uncertainty reduction employed

by maximizing the predictive standard deviation function σ̂(x). It is a variant of the GP-

lower confidence bound,3 which has been proposed for maximization problems. The LCB

acquisition function reads

q(x) = − (µ̂(x)− βσ̂(x)) , (S5)

where β ≥ 0 is a tuning parameter trading off between greedy optimization and uncertainty

reduction.

The PI acquisition function4 measures the probability that the one-step lookahead ob-

servation of the objective function f(x) recommended by BO is better than the best value

fmin it has observed so far. This is equivalent to measuring the chance of having a solution

improvement in the next iteration of BO. Conditioning PI on the current GP posterior f̂(x),

it can be analytically written as

q(x) = P [f(x) < fmin| f̂(x)] = Φ

(
fmin − µ̂(x)

σ̂(x)

)
, (S6)

where Φ(·) represents the standard normal cumulative distribution function.
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Quadrature for computing contrast values

We describe here the numerical quadrature method used to compute the contrast η(p) for a

specific value of design parameters p. Recall that

η(p) =

∫ λU

λL

∫ π/2

0

η(p,λ, θ) sin θ cos θ dθ dλ

=

∫ λU

λL

∫ π/2

0

(α(p,λ, θ)− ε(p,λ, θ)) sin θ cos θ dθ dλ,

(S7)

where α(p,λ, θ) and ε(p,λ, θ) represent the local functions for the absorptivity and emissiv-

ity. Hereafter, we omit the dependence of η, α, and ε on p for clarity.

Computing the integrals in Eq. (S7) requires evaluations of α and ε at many different

(λ, θ) locations, which is costly. To improve computational efficiency and accuracy, we apply

a numerical quadrature scheme for the integrals. A quadrature scheme approximates an

integral I =
∫ b

a f(x)dx with a numerical formula In =
∑n

k=1 wkf(xk), where x1, . . . , xn are

the nodes at which the integrand is evaluated and w1, . . . , wn are the quadrature weights.

First we separate the integrals of α(λ, θ) and ε(λ, θ), because these two functions are

less fluctuating than η(λ, θ) and thus easier to integrate. Our quadrature method applies

identically to both α and ε, so we only present the calculation for α below. Starting with

the inner integral of Eq. (S7) with respect to the angle of incidence θ, we define

α(λ) =

∫ π/2

0

α(λ, θ) sin θ cos θ dθ. (S8)

To approximate this integral, we use Gauss quadrature with nθ nodes and the corresponding

weights. For the details of Gauss quadrature, see Chapter 19 in this textbook.5

To simplify the computation of the outer integral, we transform wavelength λ to wavenum-

ber ν. This is because α(ν) and η(ν) are smoother than α(λ) and η(λ), respectively. Define

αλ =

∫ λU

λL

α(λ) dλ. (S9)
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Let λ1 = sλλ and ν1 = λ−1
1 , where the scaling factor sλ = 105 for λ in meters. This trans-

formation maps the wavelength λ ∈ [λL,λU] m to λ1 ∈ [λ1L,λ1U]× 10−5m, and subsequently

to the wavenumber ν1 ∈ [ν1L, ν1U]. Thus, we have

αλ =

∫ λU

λL

α(λ) dλ = s−1
λ αλ1

, (S10)

where

αλ1
=

∫ λ1U

λ1L

α(λ1) dλ1 =

∫ ν1U

ν1L

α(g(ν1))g
′(ν1) dν1. (S11)

Here, g(ν1) = 1/ν1 and g′(ν1) = −1/ν2
1 .

We compute the integral in Eq. (S11) with a transformed Gauss quadrature.6 It starts

with a linear change of variables from ν1 ∈ [ν1L, ν1U] to x ∈ [−1, 1]. This allows us to utilize

the following relationship between the integrals of a function k(s) over [−1, 1] and over a

strip map l(x) with x ∈ [−1, 1] to compute αλ1
:

I(k) =

∫ 1

−1

k(s)ds =

∫ 1

−1

k(l(x))l′(x)dx, (S12)

where k and l play the same roles as α and g in Eq. (S11), respectively. The transformed

integral is computed using Gauss quadrature with ns nodes and the corresponding weights.

All optimization results presented in this study are generated by nθ = 24 and ns = 140.

The significantly higher value of ns compared to nθ is due to the substantial fluctuations in

contrast along the wavelength direction. Based on numerical results, this quadrature scheme

achieves a relative error of O(10−5).

Details of the reparameterization scheme

This section details the reparameterization strategy we propose for optimizing the nonrecip-

rocal emitters presented in this work. In Optimization problem, we transform the design

parameters governing the carrier concentrations N = [ne,1, . . . , ne,n1
]T of n1 InAs layers and
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Fermi levels E = [EF,1, . . . , EF,n2
]T of n2 Weyl layers into optimization parameters v and w

using two linear maps D and F, respectively. Specifically, we have (see Figure 2)

N = Dv =
p1−1∑

i=0

viD[i],

E = Fw =
p2−1∑

j=0

wjF[j],

(S13)

where N ∈ Rn1 , E ∈ Rn2 , D ∈ Rn1×p1 , v ∈ Rp1 , F ∈ Rn2×p2 , w ∈ Rp2 , D[i] ∈ Rn1 is the

(i + 1)th column of D (i = 0, . . . , p1 − 1), and F[j] ∈ Rn2 is the (j + 1)th column of F

(j = 0, . . . , p2 − 1). To increase the efficiency of BO when optimizing structures of a large

number of layers, we set p1 < n1 and p2 < n2.

To further control the profiles of the InAs carrier concentrations and the Weyl Fermi

levels inside the multilayer structure, we define the kth entry of vector D[i] and the lth entry

of vector F[j] using layer-wise integration of Chebyshev polynomials of the first kind, as

D[ik] =

∫ uk

uk−1

Ti(u)du, i = 0, . . . , p1 − 1, k = 1, . . . , n1,

F[jl] =

∫ ul

ul−1

Tl(u)du, j = 0, . . . , p2 − 1, l = 1, . . . , n2,
(S14)

where Ti(u) represents the ith order Chebyshev polynomial of the first kind evaluated at any

u ∈ [−1, 1], uk = 2k/n1 − 1 for k = 1, . . . , n1, and ul = 2l/n2 − 1 for l = 1, . . . , n2. The first

three Chebyshev polynomials of the first kind are T0 = 1, T1(u) = u, and T2(u) = 2u2 − 1.

Higher order polynomials can be obtained from the recurrence relation Ti+1(u) = 2uTi(u)−

Ti−1(u) for i ≥ 2.

We set p1 = 3 for optimizing the 3-layer InAs structure, and p1 = p2 = 3 for the 6-layer

3InAs+3Weyl structure presented in Results and discussion. For the 5-layer InAs and

8-layer 5InAs+3Weyl structures presented in Additional results below, we also set p1 = 3

and p1 = p2 = 3, respectively. These settings allow the InAs carrier concentrations and Weyl

Fermi levels over the layers to conform to a polynomial of up to second order, see Fig. S1.
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Additional results

This section provides optimization results for 5-layer InAs and 8-layer 5InAs+3Weyl struc-

tures. Figure S2 shows the results for the 5-layer InAs structures obtained from five different

trials of LCB and those of PI. Figure S3 plots the absorptivity and emissivity values over

the considered range of incidence angles for the initial and final 5-layer InAs structures from

the first and last iterations of the first LCB trial, as well as those for the state-of-the-art 10-

layer InAs structure.7 Figure S4 shows the optimization results for the 8-layer 5InAs+3Weyl

structures. The absorptivity and emissivity values over the considered range of incidence

angles for the best 8-layer 5InAs+3Weyl structures from LCB and PI are provided in Fig. S5.
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Figure S1: Profiles of InAs carrier concentrations and Weyl Fermi levels inside the optimal
structures by LCB and PI.
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Figure S2: Optimization results for 5-layer InAs structure in comparison with the state-of-
the-art 10-layer InAs structure (reference).7 (a) Optimization histories from LCB and PI.
(b) Comparison of contrast values of the initial and final structures from the first and last
iterations of the first LCB trial, and the state-of-the-art 10-layer InAs structure.

Figure S3: Absorptivity (α) and emissivity (ε) of the initial and final 5-layer InAs structures
from the first and last iterations of the first LCB trial, and the state-of-the-art 10-layer InAs
structure (reference).7
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Figure S4: Optimization results for 8-layer 5InAs+3Weyl structure in comparison with the
state-of-the-art 10-layer InAs structure (reference).7 (a) Optimization histories from LCB
and PI. (b) Comparison of contrast values of the best structures from LCB and PI, and the
state-of-the-art 10-layer InAs structure.

Figure S5: Absorptivity (α) and emissivity (ε) of the best 8-layer 5InAs+3Weyl structures
from LCB and PI, and the state-of-the-art 10-layer InAs structure (reference).7
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