
Rate-Independent Continuous Inhibitory
Chemical Reaction Networks Are

Turing-Universal

Kim Calabrese(B) and David Doty(B)

University of California, Davis, USA
{ebcalabrese,doty}@ucdavis.edu

Abstract. We study the model of continuous chemical reaction net-
works (CRNs), consisting of reactions such as A + B →C + D that can
transform some continuous, nonnegative real-valued quantity (called a
concentration) of chemical species A and B into equal concentrations of
C and D. Such a reaction can occur from any state in which both reac-
tants A and B are present, i.e., have positive concentration. We modify

the model to allow inhibitors, for instance, reaction A+B
I
⊥−→ C +D can

occur only if the reactants A and B are present and the inhibitor I is
absent.

The computational power of non-inhibitory CRNs has been studied.
For instance, the reaction X1 + X2 →Y can be thought to compute the
function f(x1, x2) = min(x1, x2). Under an “adversarial” model in which
reaction rates can vary arbitrarily over time, it was found that exactly the
continuous, piecewise linear functions can be computed, ruling out even
simple functions such as f(x) = x2. In contrast, in this paper we show
that inhibitory CRNs can compute any computable function f : N → N.

Keywords: Chemical Reaction Networks · Mass-Action · Analog
Computation · Turing Universal

1 Introduction

The model of continuous chemical reaction networks (CRNs) consists of reac-
tions such as A + B → C + D that can transform some continuous, nonnegative
real-valued quantity (called a concentration) of chemical species A and B (the
reactants) into equal concentrations of C and D (the products). This model has
long held an important role in modeling naturally occurring chemical systems
and predicting their evolution over time. Recently, the model has been investi-
gated, not as a modeling language, but as a programming language for describing
desired behavior of engineered chemicals. For example, the reaction X1+X2 → Y
can be thought to compute the function f(x1, x2) = min(x1, x2), in the sense
that if we start in configuration {x1X1, x2X2}, i.e., concentration x1 of species
X1 and concentration x2 of species X2, as long as the reaction keeps happening,
it will eventually produce concentration min(x1, x2) of species Y .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D.-J. Cho and J. Kim (Eds.): UCNC 2024, LNCS 14776, pp. 104–118, 2024.
https://doi.org/10.1007/978-3-031-63742-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63742-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-63742-1_8

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 105

The computational power depends greatly on how reaction rates are defined.
The most common rate model is mass-action, which says that the rate of a reac-
tion like A + B

k→ C + D, with positive rate constant k > 0, proceeds at rate
k · [A] · [B], where [S] represents the concentration of species S. The rates of
all reactions affecting a species S determines its derivative d[S]

dt (adding rates of
reactions where S is a product, and subtracting rates where it is a reactant),
so the concentrations evolve according to a system of polynomial ODEs. It was
recently shown that mass-action CRNs are capable of Turing universal com-
putation [5], a very complex construction resulting from a long and deep line
of research that culminated in showing the surprising computational power of
polynomial ODEs [2].

What if reaction rates are not so predictable over time? One could imagine
a solution does not remain well-mixed, so that some reactions go faster in a
certain part of the volume where some species are more concentrated. It is also
the case that it is difficult experimentally to engineer precise rate constants [8].
To address these issues, Chen, Doty, Reeves, and Soloveichik [3] defined a model
of adversarial reaction rates and asked what functions can be computed when
the rates can vary arbitrarily over time. They found that this model, called stable
computation, is much more computationally limited than with mass-action rates:
exactly the continuous, piecewise linear functions f : R

d → R can be stably
computed.1 An open question from [3] concerns a natural modification of the
CRN model, inspired by similar models of gene regulatory networks, in which
the presence of a species can inhibit a reaction from occurring. For example, the

reaction A+B
I⊥−→ C+D can occur only if its reactants are present ([A], [B] > 0)

and its inhibitor is absent ([I] = 0). We call such a network an inhibitory chemical
reaction network (iCRN).2

The negative results of [3], showing computation is limited to continuous
piecewise linear functions, heavily use the fact that the reachability relation �
(defined in Sect. 2) on CRN configurations is additive: if x � y for configurations
x,y (nonnegative vectors representing concentrations of each species), then for
all nonnegative c, we have x + c � y + c; in other words the presence of extra
molecules (represented by c) cannot prevent reactions from occurring. However,

1 Technically this is using the so-called dual-rail encoding, which represents a single
real value x as the difference of two species concentrations [X+]−[X−]. If one encodes
inputs and output directly as nonnegative concentrations, then some discontinuities
can occur, but only when some input xi goes from 0 to positive.

2 Note that our notation A + B
I
⊥−→ C + D puts inhibitors above the reaction arrow

where a rate constant would normally be written, but since we consider rate-
independent computation, we will have no rate constants. We also note that in
gene regulatory networks, typically a species (called transcription factor in that lit-
erature) inhibits another species, which is assumed to be produced at some otherwise
constant rate by a single reaction, whereas our model is more general in allowing
inhibitors of arbitrary reactions (so I could inhibit production of C via one reaction

A
I
⊥−→ C but not via another reaction B →C.).

106 K. Calabrese and D. Doty

with inhibitors reachability is no longer additive (if c contains inhibitors that are
absent in x), so it is natural to wonder if inhibitors increase the computational
power of the model.

It is well-known “folklore” that in the discrete model of iCRNs, where the
amount of a species is modeled as a nonnegative integer count, in which reactions
discretely increment or decrement species counts, then inhibitors give the model
Turing-universal power. It is worth seeing why this is true, to understand the
novel contribution of this paper (and why it is not trivially solved in the continu-
ous model by the discrete iCRN we describe next). It is well-known that register
machines—finite-state machines equipped with a fixed number of nonnegative
integer registers, each of which can be incremented, decremented, or tested for
0—are Turing universal [6]. An example register machine is:

1 dec r1 ,5
2 inc r2
3 inc r2
4 goto 1
5 halt

Line (a.k.a., state) 1 has the interpretation: decrement register r1 and then go
to line 2, unless r1 is 0, in which case go to line 5. Increment instructions always
increment the specified register and go to the next line. The goto 1 statement
on line 4 is syntactic sugar for dec r3,1 for some register r3 that is always 0.
The above register machine, interpreted as taking an input x in register r1 and
halting with an output value in register r2, computes the function f(x) = 2x.

For a register machine consisting of such increment and decrement instruc-
tions, the following is a straightforward transformation of the instruction for
line/state i to iCRN reactions:

inc r j Li →Li+1 + Rj

dec r j,k Li + Rj →Li+1

Li

Rj
⊥−−→ Lk

It is clear that at any time exactly one reaction is applicable, and it simulates
the next instruction of the register machine. In particular, when on a decrement
instruction, the power of inhibition is used to ensure that if Rj has positive
count, then only the first of the two decrement reactions is applicable (and as in
the non-inhibitory CRN model, when Rj is absent, only the second decrement
reaction is applicable). Note that a halt instruction on line i is not explicitly
implemented as any reaction; the simple lack of any reaction with Li as a reactant
means that the CRN will terminate when the register machine does.

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 107

Our main construction in Sect. 3 follows this basic strategy of simulating reg-
ister machines, using inhibition to detect when a register is 0. However, our main
novel contribution is a way to “discretize” the behavior of the continuous CRN,
so that the discrete steps of the register machine can be simulated faithfully.
This is primarily done by introducing a stable oscillator, shown in Sect. 3.1.

2 Preliminaries

These definitions largely follow those of [3], the only exception being the defini-
tion of applicable reaction, which is modified to account for inhibitors.

For any set A, let P(A) denote the power set of A (set of all subsets of A).
Let N denote the nonnegative integers and R denote the real numbers. Given a
finite set F and a set S, let SF denote the set of functions c : F → S. In the case
of S = R (resp. N), we view c equivalently as a real-valued (resp. integer-valued)
vector indexed by elements of F . Given x ∈ F , we write c(x), to denote the real
number indexed by x. The notation R

F
≥0 is defined similarly for nonnegative real

vectors. Throughout this paper, let Λ be a finite set of chemical species. Given
S ∈ Λ and c ∈ R

Λ
≥0, we refer to c(S) as the concentration of S in c. When the

configuration c is understood from context, we write [S] to denote c(S). For any
c ∈ R

Λ
≥0, let [c] = {S ∈ Λ | c(S) > 0}, the set of species present in c (a.k.a., the

support of c). We write c ≤ c′ to denote that c(S) ≤ c′(S) for all S ∈ Λ. Given
c, c′ ∈ R

Λ
≥0, we define the vector component-wise operations of addition c + c′,

subtraction c − c′, and scalar multiplication xc for x ∈ R.
A reaction over Λ is a triple α = (r,Δ,p) ∈ N

Λ×P(Λ)×N
Λ, such that r �= p,

specifying the stoichiometry of the reactants, products, as well as the inhibitors
of the reaction respectively.3 We say a reaction α is inhibited by species I if

I ∈ Δ. For instance, given Λ = {A,B,C, I}, the reaction A + 2B
I⊥−→ A + 3C is

the triple ((1, 2, 0), {I}, (1, 0, 3)).
An inhibitory chemical reaction network (iCRN) is a pair C = (Λ,R), where

Λ is a finite set of chemical species, and R is a finite set of reactions over Λ. A
configuration of a iCRN C = (Λ,R) is a vector c ∈ R

Λ
≥0. Given a configuration

c and reaction α = (r,Δ,p), we say that α is applicable in c if [r] ⊆ [c] (i.e.,
c contains positive concentration of all of the reactants) and [c] ∩ Δ = ∅ (no
inhibitor is present in c). If no reaction is applicable in configuration c, we say
c is static.

Fix an iCRN C = (Λ,R). We define the |Λ|×|R| stoichiometry matrix M such
that, for species S ∈ Λ and reaction α = (r,Δ,p) ∈ R, M(S, α) = p(S)−r(S) is
the net amount of S produced by α (negative if S is consumed).4 For example,
3 It is customary to define, for each reaction, a rate constant k ∈ R>0 specifying a

constant multiplier on the mass-action rate (i.e., the product of the reactant concen-
trations), but as we are studying CRNs whose output is independent of the reaction
rates, we leave the rate constants out of the definition.

4 M does not fully specify C, since catalysts and inhibitors are not modeled: reactions

A + B
C
⊥−→ A + D and B →D both correspond to the column vector (0,−1, 0, 1)�.

108 K. Calabrese and D. Doty

if we have the reactions X → Y and X + A → 2X + 3Y , and if the three rows
correspond to A, X, and Y , in that order, then

M =

⎛
⎝

0 −1
−1 1
1 3

⎞
⎠

Definition 2.1. Configuration d is straight-line reachable (aka 1-segment
reachable) from configuration c, written c →1 d, if (∃u ∈ R

R
≥0) c + Mu = d

and u(α) > 0 only if reaction α is applicable at c. In this case write c →1
u d.

Intuitively, by a single segment we mean running the reactions applicable at c at
a constant (possibly 0) rate to get from c to d. In the definition, u(α) represents
the flux of reaction α ∈ R.

Definition 2.2. Let k ∈ N. Configuration d is k-segment reachable from config-
uration c, written c �k d, if (∃b0, . . . ,bk) c = b0 →1 b1 →1 b2 →1 . . . →1 bk,
with bk = d.

Definition 2.3. Configuration d is segment-reachable (or simply reachable)
from configuration c, written c � d, if (∃k ∈ N) c �k d.

Often Definition 2.3 is used implicitly, when we make statements such as, “Run
reaction 1 until X is gone, then run reaction 2 until Y is gone”, which implicitly
defines two straight lines in concentration space. Although we make no attempt
to ascribe an “execution time” to any path followed by segments in Definition 2.3,
it is sometimes useful to refer to such paths over time. In this case we suppose
that each segment takes one unit of time, so that if x �k y, we associate this to
a trajectory ρ : [0, k] → R

Λ
≥0, where ρ(t) represents the concentrations of species

after t units of time have elapsed, i.e., following the first
t� segments, then a
fraction of the t’th segment if t �∈ N (so that for integer t, ρ(t) is the configuration
bt in Definition 2.2). In this case we write x �ρ y.

Given configurations x,y, z such that x �ρ1 y and y �ρ2 z, we denote the
concatenation of trajectories ρ1 and ρ2 to be the trajectory ρ1 : ρ2 such that
x �ρ1:ρ2 z.

We now formalize what it means for an iCRN to “rate-independently”
compute a function f . Since our main result is about simulating register
machines that process natural numbers, we define stable computation for func-
tions f : N → N.5 An inhibitory chemical reaction computer (iCRC) is a tuple
C = (Λ,R, s,X, Y), where (Λ,R) is an iCRN, s ∈ N

Λ is the initial context
(species other than the input that are initially present with some constant con-
centration; in our case, s(A1) = 1 for a single species A1 ∈ Λ and 0 for all other
5 Since iCRNs operate on real-valued concentrations, a very similar definition for func-

tions f : R≥0 → R≥0 makes sense (and was formally defined for non-inhibitory CRNs
in [3]); Sect. 4 discusses this issue further. We could also extend the definition to take
multiple inputs for a function f : Nd → N, but since register machines are Turing
universal, we could encode multiple input integers via a pairing function into a single
integer, so it is no loss of generality to consider single-input functions.

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 109

species), X ∈ Λ is the input species, and Y ∈ Λ is the output species. We say a
configuration o ∈ R

Λ
≥0 is stable if, for all o′ such that o � o′, o(Y) = o′(Y), i.e.,

the concentration of Y cannot change once o has been reached. Let f : N → N.
We say C stably computes f if, for all n ∈ N, starting from initial configuration
i = s + {nX} (i.e., starting with initial context, plus the desired input amount
of X), for all configurations c such that i � c, there is o such that c � o, such
that o is stable and o(Y) = f(n).

3 Main Results

Our goal is to design an iCRN that simulates the behavior of a register machine,
similar to simulations by discrete CRNs [1,7]. The inclusion of inhibitors to our
model allows us to enforce deterministic state transitions in chemical reaction
networks, but to emulate the sequential power of discrete computation, we need
a mechanism to manage control flow. First, we describe a simpler “stably oscil-
lating” iCRN that is, in a sense, the main conceptual contribution of this paper.

3.1 Stable Oscillation

The following definition captures the behavior of a system of chemical reactions
that execute sequentially, and eventually repeat their execution. A similar defini-
tion for the discrete model of population protocols appears in [4].6 In particular,
we have species A1, . . . , Ak that all start at 0. A1 monotonically goes up to 1,
then monotonically down to 0, then A2 goes up and down similarly, etc. After
Ak does this, the whole thing repeats.

Definition 3.1. Let A = {A1, A2, . . . , Ak} be a set of species in an iCRN, and
let ρ be a trajectory. We say ρ([t1, t2]) is a wave of Ai if for some t1 < t < t2

– ρ(t1)(Ai) = ρ(t2)(Ai) = 0,
– ρ(t)(Ai) = 1,
– ρ([t1, t])(Ai) is nondecreasing, and
– ρ([t, t2])(Ai) is nonincreasing.

ρ([T1, T2]) is a period of oscillation of A if there exists T1 = t1, t2, . . . , tk = T2

such that for all 0 ≤ i < k,

– ρ([ti, ti+1]) is a wave of Ai, and
– for all j �= i and all ti ≤ t ≤ ti+1, ρ(t)(Aj) = 0.

Definition 3.2. We say an iCRN C stably oscillates on A from configuration
i if for all c such that i �ρ1 c, we have c �ρ2 i such that letting ρ = ρ1 : ρ2,
ρ([0, t]) is one or more periods of oscillation of A.
6 However, Definition 3.2 is distinct from the that of [4], both by being defined in a

continuous-state rather than a discrete-state model, and in that we do not require
“self-stabilizing” behavior (which dictates that the behavior should occur from any
possible initial state).

110 K. Calabrese and D. Doty

The next lemma demonstrates an iCRN that stably oscillates. We note that
Lemma 3.3 is not used directly in the rest of the paper. Instead, the proof of
Lemma 3.3 is intended to serve as a “warmup” to illustrate some of the key ideas
used in the more complex iCRN defined in Sect. 3.2.

Lemma 3.3. Let n ≥ 3 and C be the iCRN with species Λ = {X0,X1, . . . , Xn−1}

and for each 0 ≤ i < n, reaction Xi

Xi−1
⊥−−−→ Xi+1, where i − 1 and i + 1 are both

taken modulo n. If i = {1X0} is the starting configuration, then C stably oscillates
on O = {Xi | 0 ≤ i ≤ n ,i is odd}.

Proof. For each 0 ≤ i < n, let αi be the reaction Xi

Xi−1
⊥−−−→ Xi+1. First, observe

that for any configuration c in which the species Xi and Xi+1 are present, the

only applicable reaction is αi, since the reaction Xi+1

Xi⊥−−→ Xi+2 is inhibited by
Xi, and all other reactions have a reactant absent. Thus every sufficiently long
path from c just executes αi until Xi is absent. Once Xi is absent, αi+1 becomes
applicable. At this point, we have only Xi+1 present, so by similar reasoning,
only αi+1 is applicable and every sufficiently long path runs only αi+1 until Xi+1

is absent.
Iterating this reasoning over all i, for each 0 ≤ i < n, let ui denote the flux

vector with ui(αi) = 1 and ui(αj) = 0 for j �= i (i.e., execute only reaction αi,
for one unit of flux). Then starting from initial configuration i = {1X0}, we see
that every path starting from i is of the form

{1X0} →1
u0

{1X1} →1
u1

{1X2} →1
u2

. . .

{1Xn−1} →1
un−1

{1X0} →1
u0

{1X1} →1
u1

. . . {aXi, (1 − a)Xi+1},

for some 0 ≤ a ≤ 1, or, assuming the path does not get to configuration {1X0}
above, {1X0} →1

u0
{1X1} →1

u1
{1X2} →1

u2
. . . {aXi, (1 − a)Xi+1}.

In either case, by continuing to apply αi with flux a, then unit fluxes of
αi+1, αi+2, etc. until we reach configuration {1X0}, this does some positive inte-
ger number of periods of oscillation. Let i = {1X0}, c = {aXi, (1−a)Xi+1}, this
satisfies the definition of oscillation for the species in O.
�

3.2 Construction of iCRN Simulating a Register Machine

In this section we describe how to construct an iCRN C to simulate an arbitrary
register machine R.

Let the set of states (or lines) of R be Q = {1, 2, . . . ,m}, supposing it starts
in state 1 with initial input register value n ∈ N. Suppose R’s input register is
r_in and its output register is r_out. To simulate R, C has input species Rin

and output species Rout, and starts with configuration {1A1, nRin} (i.e., with
initial context s = {1A1}).

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 111

Consider these reactions, which implement the stable oscillator of Lemma 3.3
with 3 species (where X0 = A,X1 = B,X2 = C).

A
C⊥−→ B

B
A⊥−→ C

C
B⊥−→ A

Although we do not use those exact reactions, it is helpful to see that iCRN as
an introduction to how we implement the oscillator component of C. C has m
variants of each of those species {A1, B1, C1, . . . , Am, Bm, Cm}, each subscript
representing a state of R. We will additionally have a species R1, R2, . . . to
represent the various registers of R as well as designated input and output species
Rin, Rout. For ease of exposition, we use the convention that R has exactly one
input and output register, but this is easily extendable.

Intuitively, the variants of the last reaction C
B⊥−→ A will perform all the logic

of the register machine: incrementing, decrementing, and changing states. The

other two (variants of) reactions A
C⊥−→ B and B

A⊥−→ C are simply to make the
oscillator work while remembering the current state. However, since the stateful
oscillator will change states in the last reaction, and the last reaction’s reactant
is an inhibitor for the first reaction, we need to be careful in selecting the correct
inhibitors for the first reaction to acknowledge the states are different, and that
multiple stateful variants of C could be inhibitors of a single variant of A.

Formally, for all 1 ≤ i ≤ m, C has the reaction

Bi

Ai⊥−→ Ci.

For all 1 ≤ i ≤ m, let {j1, j2, . . . , jl} be the set of states that are potential
predecessors of state i. This includes j = i− 1 if i > 1 and state j is not a goto,
as well as all j such that a decrement test for 0 can cause a jump from j to i.
For all 1 ≤ i ≤ m, C also has the reaction

Ai

Cj1 ,Cj2 ,...,Cjl⊥−−−−−−−−−→ Bi.

Finally, for all 1 ≤ i ≤ m, C has the following reactions to simulate register
machine instructions.

– if state i is inc r_j (increment register j and move from state i to i + 1):

Ci

Bi⊥−−→ Ai+1 + Rj

Note the dual role of Ci: it helps the “clock” to oscillate, but its maximum
concentration also defines one “unit” of concentration to help us use real-
valued concentrations to represent discrete integer counts in registers of R. In

112 K. Calabrese and D. Doty

other words, the initial amount of A1 (which sets the maximum concentration
achieved by any Ci) is also the amount by which [Rj] increases (and the
amount it decreases in a decrement instruction).

– if state i is dec r_j,k (decrement register j and move from state i to i + 1,
unless it is 0, in which case go to state k):

Ci + Rj

Bi⊥−−→ Ai+1

Ci

Bi,Rj

⊥−−−−→ Ak

As in the case for the discrete iCRN described in Sect. 1, no reactions are asso-
ciated to Ci if state i is a halt instruction.

3.3 Proof of Correctness

In this section, we prove that the iCRN C described in Sect. 3.2 correctly simu-
lates the register machine R.

In the definition of �, it is technically allowed for two consecutive segments
to “point the same direction”, i.e., x →1

u1
y →1

u2
z such that u1 and u2 are

multiples of each other. The next observation says that we can assume without
loss of generality this does not happen, since any two such consecutive segments
u1 and u2 can always be concatenated into a single segment u1 + u2.

Observation 3.4. In any iCRN, if x � y, we may assume without loss of
generality that each pair of consecutive segments are not multiples of each other.
In particular, if exactly one reaction is applicable at any time, then any two
consecutive segments use different reactions.

We also note that there is a distinction between the function of species that
“oscillate” (i.e. species A1, B1, C1, . . . , An, Bn, Cn) and species that represent
the value stored in a register (R1, R2 . . .). We call the former oscillator species
and the latter register species. Since the control flow of our construction is driven
primarily by the so-called oscillator species, it suffices to focus on their behavior
when discussing the properties of the iCRN induced by our construction.

We develop machinery to talk about specific configurations of C that contain
oscillator species at concentration 1.

Definition 3.5. Let A ∈ Λ be an oscillator species. We say configuration x ∈
R

Λ
≥0 is a transition point of A if x(A) = 1 and x(B) = 0 for all other oscillator

species B.

Intuitively, a transition point marks the peak of a species’ oscillation, repre-
senting a configuration where a previously present oscillator species depletes,
allowing a new reaction to become applicable. Definition 3.5 implicitly charac-
terizes the configurations in C: a configuration is either a transition point or lies

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 113

“between” two transition points. Furthermore, if a configuration is not a tran-
sition point, then the applicable reaction is exactly that applicable in the last
reached transition point.

For example, the 3-species oscillator described at the start of Sect. 3.2 has
A,B, and C as oscillator species. Consider the transition point {1A}. In this

configuration, the only applicable reaction is the reaction α = A
C⊥−→ B, since A

is the only species present. Running α with flux 1
2 , we reach the configuration

{ 1
2A, 1

2B}. Notice that even though we have some amount of B present in this
reaction, α is still the only applicable reaction, since A inhibits the reaction

β = B
A⊥−→ C. β only becomes applicable once we reach the configuration {1B},

but this is a transition point. This behavior can be generalized as follows:

Observation 3.6. Let x, y be configurations of the iCRN C described in
Sect. 3.2. If x is a transition point of A, y is not a transition point, and x →1 y,
then the reactions applicable in y are exactly the reactions applicable in x.

This observation indicates that the applicable reactions of C changes only upon
reaching a new transition point. Therefore, instead of reasoning about arbitrary
configurations in concentration space, we can just consider the reachability of
transition points. Additionally, observation 3.4 implies that we can assume tran-
sition points are reached in a single flux 1 line segment, enabling discrete argu-
ments about the behavior of our construction.

Theorem 1. Suppose that R computes a function f : N → N in the sense that,
starting with input register having value n, it halts with output register having
value f(n). Then the iCRN C described above stably computes f from the initial
configuration i = {1A1, nRin}.
Proof. A complete example of this construction is given in Sect. 3.4.

Let Rin be the input species and Rout be the output species. For C to stably
compute f , we need that for any valid initial configuration i = {1A1, nRin}, and
any configuration c such that i � c, there exists a configuration o such that
c � o, o(Rout) = f(n) and for all o′ such that o � o′, o′(Rout) = o(Rout).

It suffices to show that for any integer initial concentration of Rin, there exists
exactly one trajectory, ending in a static configuration h such that h(Rout) =
f(n).

We first prove that the following invariants hold at every reachable transition
point x.

(a) For every register species Rj , x(Rj) ∈ N.
(b) Exactly one reaction is applicable in x (unless x(Ai) = 1 for a halting state

i, in which case no reactions are applicable).

We proceed by induction on the number of flux one-line segments connecting
transition points i and c. (By Observation 3.4 we may assume each segment is
not a multiple of the previous.)

114 K. Calabrese and D. Doty

For the base case, we show these invariants hold at i. Invariant (b) is estab-
lished for all transition points below, including i. By construction, the only reg-
ister species present in i is Rin, with concentration n ∈ N, so invariant (a) is
satisfied.

Now, we show the inductive case that if the invariants hold at a transition
point x, then we can execute the one applicable reaction (guaranteed to exist
by invariant (b) unless we have halted) with flux 1, and that this will reach the
next transition point y, such that the invariants still hold.

First, we claim that at any transition point, x with oscillator species Oi

having x(Oi) = 1, at most one reaction is possible, exactly 1 if i is a non-
halting state, and 0 if i is a halting state and Oi = Ai. If Oi is Bi or Ci, this
is evident by the fact that each of those is a reactant in exactly one reaction in
the network, and at transition points all other oscillator species are absent. In
the case Oi = Ai, this is again evident if i represents an increment instruction,

since the Ci

Bi⊥−−→ Ai+1 + Rj reaction is the only one with Ci as a reactant. If

i is a decrement, then Ci is a reactant in two reactions Ci + Rj

Bi⊥−−→ Ai+1 and

Ci

Bi,Rj

⊥−−−−→ Ak, but one has Rj as a reactant, and the other has Rj as an inhibitor,
so exactly one of those two reactions is applicable. This establishes that invariant
(b) holds at the next transition point reached, when the applicable reaction is
executed for one unit of flux. By Observation 3.4 we assume a single segment
applies this reaction until it is inapplicable, reaching the next transition point.

It remains to argue that invariant (a) also holds at the next transition
point. Let Oi ∈ {A1, B1, C1, . . . , Am, Bm, Cm} be an oscillator species and let
x = {1Oi,m1R1,m2R2 . . . mnRn}, be a transition point that is reached from i.
Assume the induction hypothesis that invariants (a) and (b) hold at x. Then
each mi ∈ N by invariant (a). By (b) x has exactly one applicable reaction. If x is
a transition point of Ci, and state i of the register machine R is inc r_j, then

the applicable reaction in x is α = Ci

Bi⊥−−→ Ai+1+Rj . By construction, there is no

other reaction with Ci as a reactant, and the reaction Ai+1

Cj1 ,...,Ci,...Cjl⊥−−−−−−−−−−→ Bi+1

(where each Cjx is a potential predecessor state of i + 1) is inhibited by Ci, so
every sufficiently long path from x just executes α until we reach the transition
point y = {1Ai+1,m1R1, . . . , (mj + 1)Rj , . . . ,mnRn}. So (a) holds.

If line i of R is instead dec r_j,k then there are reactions

β1 =Ci + Rj

Bi⊥−−→ Ai+1

β2 =Ci

Bi,Rj

⊥−−−−→ Ak

When Rj is present in x, the only applicable reaction is β1. By a similar argu-

ment to the previous case, the reaction Ai+1

Ci⊥−→ Bi+1 is inhibited, so every
sufficiently long path from i executes β1 until we reach {1Bi+1, m1R1, . . . ,

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 115

(mj − 1)Rj , . . . ,mnRn}. If Rj is not present then the only applicable reaction
is now β2. Then every sufficiently long path from i reaches the transition point
{1Bk,m1R1, . . . mnRn}. In either case, invariant (a) holds. This establishes the
claim that invariants (a) and (b) hold at each reachable transition point.

We now show that the sequence of states for oscillator species aligns with
the execution order of lines in R and results in a correct simulation of R. By
construction of C, for each line i of R of the form inc r_j, C has corresponding

reaction Ci

Bi⊥−−→ Ai+1 + Rj . By invariant (b), this reaction will be applicable
when transition point c has a Ci species present, so the next transition point
will contain species Ai+1. Thus when R goes from line i to i + 1, the present
oscillator species in C simulates this transition in the sense that the subscript i is
updated to i + 1, and the concentration of Rj increases by 1. Similarly, for each

line i of R of the form dec r_j,k, there are reactions Ci + Rj

Bi⊥−−→ Ai+1 and

Ci

Bi,Rj

⊥−−−−→ Ak. When Rj is present, species Ai+1 is 1, and Rj decreases by 1 at
the next transition point, and when Rj is not present, Ak is 1. Thus decrement
reactions are also properly simulated by C.

Since R halts with its output register having value f(n), and C simulates
R, by (b) any sufficiently long sequence of reactions will eventually reach some
static configuration h representing R’s halting configuration. Furthermore, by
(a) the values of the register species at the halting point are equal to the values
of the registers in R when it halts. Thus the configuration contains the correct
concentration of Rout. Since this is a static (thus stable) configuration, this shows
that C stably computes f .
�

3.4 Example of Construction of iCRN from Register Machine

We demonstrate an example of our construction by translating a register machine
R that computes the function f(n) = 2n to an iCRN C. The machine R that
computes f requires only input and output registers rin, rout.

Figure 1 shows a plot of this iCRN’s trajectory, under the mass-action rate
model for reactants, and where each inhibitor I contributes a term 1/(1+105 ·[I])
to the rate of the reaction, as an approximation of “absolute” inhibition.7

7 The long wave seen in the middle is because the reaction C1 +Rin

B1⊥−−→ A2, when Rin

starts at 1, has a much slower rate of convergence (linear, compared to exponential
convergence when Rin starts 2 or higher). Consequently, C1 from time ≈ 300 to time
≈ 800, despite being “close” to 0, is decaying to 0 much more slowly than in previous

oscillations. Thus C1 much more strongly inhibits the reaction A2

C1⊥−−→ B2 than in
previous oscillations. A2 and B2 are the two species “swapping” very slowly between
time 300 and 900.

116 K. Calabrese and D. Doty

Instructions Reactions

1: dec r in,5

A1

C4⊥−−→ B1

B1

A1⊥−−→ C1

C1 + Rin

B1⊥−−→ A2

C1

B1,Rin⊥−−−−→ A5

2: inc r out

A2

C1⊥−−→ B2

B2

A2⊥−−→ C2

C2

B2⊥−−→ A3 + Rout

3: inc r out

A3

C2⊥−−→ B3

B3

A3⊥−−→ C3

C3

B3⊥−−→ A4 + Rout

4: goto 1

A4

C3⊥−−→ B4

B4

A4⊥−−→ C4

C4

B4⊥−−→ A1

5: halt no reactions

Fig. 1. Plot of iCRN simulating “multiply-by-2” register machine, with input register
r in having initial value 3. Note the species r in decrements from 3 down to 0, and
the species r out increments from 0 up to 6, while other species oscillate.

Rate-Independent Continuous Inhibitory CRNs Are Turing-Universal 117

4 Conclusion

There are some interesting questions for future research.

Relaxing Absolute Inhibition. The most glaring shortcoming of the inhibitory
CRN model is the notion of “absolute” inhibition: any positive concentration
of an inhibitor completely disables the reaction. This is clearly unrealistic when
taken to extremes: with an enormous amount of reactant R, a tiny amount of I

cannot be expected to stop all R from reacting via R
I⊥−→ A more realistic

model might say that the rate of a reaction is an increasing function of the
concentration of its reactants and a decreasing function of the concentration of
its inhibitors, for example using a Hill function such as [R]

1+[I] for the rate of the
reaction. However, any way of doing this seems to talk about rates, and it is
not clear how to meaningfully ask what tasks can be done in a rate-independent
way in such a model. One possible way to study this question meaningfully is
similar to an approach suggested in the Conclusions of [3] (for studying rate-
independence in mass-action CRNs): define a mass-action-like rate law in which
a reaction’s rate is a decreasing function of its inhibitors’ concentrations, and
allow the adversary to set constant parameters in the rate law, but not to change
the rate law itself.

Characterizing Real-Valued Functions. We have demonstrated that the iCRN
model is Turing universal in the sense that it can compute any computable
function f : N → N. However, the natural data type for continuous iCRNs to
process is real numbers. It remains to characterize what functions f : R≥0 → R≥0

(or f : R
d
≥0 → R≥0) can be stably computed by continuous iCRNs. Using a

dual-rail encoding to encode a value x as the difference of two concentrations
[X+] − [X−], one can also meaningfully investigate computation of functions
f : Rd → R with negative inputs and outputs, similar to the characterization
of continuous piecewise linear functions stably computable by continuous (non-
inhibitory) CRNs using dual-rail encoding [3].

Acknowledgements. DD and KC were supported by NSF awards 2211793, 1900931,
1844976, and DoE EXPRESS award SC0024467.

References

1. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008). Preliminary version appeared
in DISC 2006

2. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of
polynomial ordinary differential equations of polynomial length. J. ACM 64(6)
(2017). https://doi.org/10.1145/3127496

3. Chen, H.L., Doty, D., Reeves, W., Soloveichik, D.: Rate-independent computation
in continuous chemical reaction networks. J. ACM 70(3) (2023). https://doi.org/
10.1145/3590776

https://doi.org/10.1145/3127496
https://doi.org/10.1145/3590776
https://doi.org/10.1145/3590776

118 K. Calabrese and D. Doty

4. Cooper, C., Lamani, A., Viglietta, G., Yamashita, M., Yamauchi, Y.: Constructing
self-stabilizing oscillators in population protocols. Inf. Comput. 255, 336–351 (2017)

5. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness of
continuous chemical reaction networks and compilation of mixed analog-digital pro-
grams. In: International Conference on Computational Methods in Systems Biology,
pp. 108–127. Springer (2017)

6. Minsky, M.L.: Computation. Prentice-Hall Englewood Cliffs (1967)
7. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic

chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008). http://dx.doi.org/
10.1007/s11047-008-9067-y

8. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic
acid dynamical systems. Science 358(6369) (2017)

http://dx.doi.org/10.1007/s11047-008-9067-y
http://dx.doi.org/10.1007/s11047-008-9067-y

	Rate-Independent Continuous Inhibitory Chemical Reaction Networks Are Turing-Universal
	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Stable Oscillation
	3.2 Construction of iCRN Simulating a Register Machine
	3.3 Proof of Correctness
	3.4 Example of Construction of iCRN from Register Machine

	4 Conclusion
	References

