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In this work, we consider the problem of learning a
blackuced-order model of a high-dimensional stochastic
nonlinear system with control inputs from noisy data. In
particular, we develop a hybrid parametric/non-parametric
model that learns the “average” linear dynamics in the data
using dynamic mode decomposition with control (DMDc)
and the nonlinearities and model uncertainties using Gaus-
sian process (GP) regression and compare it with total least
squares dynamic mode decomposition, extended here to sys-
tems with control inputs (tlsDMDc). The proposed approach
is also compablack with existing methods, such as DMDc-
only and GP-only models, in two tasks: controlling the
stochastic nonlinear Stuart-Landau equation and pblackict-
ing the flowfield induced by a jet-like body force field in a tur-
bulent boundary layer using data from large-scale numerical
simulations.

1 Introduction

Control of high-dimensional nonlinear dynamical sys-
tems, such as turbulent flows, which are expensive to model
due to their large state spaces, has led to the need for approxi-
mate models that are computationally tractable and amenable
to standard control algorithms. Simulations and experiments
of such complex and uncertain dynamical systems typically
yield large spatiotemporal data that can be used to learn
tractable blackuced-order models suitable for control.

Data-driven model blackuction of systems with high-
dimensional state spaces has typically been performed using
proper orthogonal decomposition (POD) [1]. POD computes
the singular value decomposition (SVD) of snapshots of the
high-dimensional state (e.g. flowfield) and identifies an opti-
mal subspace containing the most energetic modes on which
the high-dimensional state space is projected [2]. For sys-
tems with control inputs, POD variants, such as balanced
proper orthogonal decomposition (BPOD) [3], have also
been proposed, although BPOD requires knowledge of the
underlying equations of the system. Dynamic mode decom-
position (DMD) [4, 5] is an attractive alternative for model-
ing the spatiotemporal evolution of data, such as fluid flows,
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from time-resolved snapshots of the high-dimensional sys-
tem. Extensions of DMD have included systems with con-
trol inputs [6, 7], noise-aware [8, 9], and sparsity-promoting
variants [10], among others.

DMD-based approaches often fail to capture the nonlin-
earities in the underlying dynamics due to the assumption of
linearity of the DMD models. For that reason, Koopman op-
erator theory — which is viewed as a generalization of DMD
— has been extensively exploblack both in the fluid dynam-
ics [11] and the controls community [12, 13], with DMD-
based [14, 15], kernel-based [16], and deep learning-based
[17, 18] approximations of the Koopman operator proposed.
Similar modeling efforts have also led to new methods such
as sparse identification of nonlinear dynamics (SINDy) [19]
and operator inference for model blackuction [20].

Gaussian Process regression [21] is a type of non-
parametric regression model describing distributions over
functions conditioned on the training data. They are ideal for
learning arbitrary nonlinear stochastic dynamics due to their
flexibility and inherent ability to provide uncertainty esti-
mates capturing both process and measurement noise, as well
as model uncertainties. GP regression and its scalable vari-
ants [22,23,24,25] have been successfully used for a num-
ber of dynamical systems modeling [26,27] and control tasks
[28,29,30]. In the context of high-dimensional systems, GP
regression has been used in modeling the POD coefficients
for systems with varying parameters [31, ?, 32, 33] as well
as the blackuced-order dynamics after POD or autoencoder-
based order blackuction [34,35].

In this brief, we propose a hybrid DMDc + GP model
for learning the nonlinearities and model uncertainties in the
blackuced-order data that DMDc alone fails to capture. In
addition, total least squares DMD [9] is extended to systems
with control inputs (tlsDMDc) to fairly compare the pro-
posed method with a noise-aware, linear-only DMD-based
approach that accounts for control inputs.

In Section 2, we first introduce DMDc and extend to-
tal least-squares DMD [9] to systems with control inputs.
Then, we introduce the general framework of Gaussian pro-
cess regression and the process of training a DMDc + GP
blackuced-order model. In Section 3, we demonstrate the
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advantages of the proposed models on two tasks: modeling
and controlling the nonlinear stochastic Stuart-Landau equa-
tion from noisy data and pblackicting the wall-normal veloc-
ity field induced by a jet-like body force field in a turbulent
boundary layer.

2 Method

2.1 Dynamic Mode Decomposition with Control
Assume that the unknown stochastic nonlinear and,

possibly, high-dimensional system we want to model has

discrete-time dynamics of the form

Y(k+l) :f(y(k)7u(k)>w(k))7 (D

where y € R is the state, u € R™ the control input, w € R™
the independent and identically distributed Gaussian white
noise, and f(-) the nonlinear operator that propagates the state
y(k) by one time step.

Our goal is to identify a blackuced-order model of the
underlying dynamics when (1) is unknown and only a limited
number of noisy experimental or numerical data is available,
as is typical in fluid dynamics applications.

In particular, given a set of p training data tuples
{5y, 0@ £y u® w1 where y©), i = 1,...,p, are
not necessarily sequential, the data can be arranged as

Y = [y(l) y(p)] e RW*P, (2a)

Y = [f(y(l)’u(l)’w(l)) f(y(p),u(m’w(p))} e RW*P,
(2b)

U= [u) ... )] e R, (2¢)

2.1.1 Model Order blackuction

A common way to blackuce the dimensionality of the
data when n, > 1 is to project the high-dimensional state
y(k) onto the POD modes given by the SVD of the data ma-
trix Y = UXVT, where the columns of matrix U € R»*P
are the orthonormal eigenvectors of YYT or POD modes ar-
ranged by their energy content, i.e. their singular value, the
columns of V € RP*? are the orthonormal eigenvectors of
Y'Y, and ¥ € RP*? is the diagonal matrix containing the
singular values of Y arranged by their magnitude.

Projecting the high-dimensional snapshots y(k) on the
range space of the matrix Upgp € R™*"x formed by the
first (most energetic) n, POD modes corresponding to the
n, largest singular values of Y is a common choice in model
blackuction methods that focuses the modeling efforts on the
most important modes of the high-dimensional system and
ignores the least energetic (and, typically, noisy) ones. The
high-dimensional state can then be approximated as

y(k) = UPODX(k), 3)

where x(k) € R is the amplitude vector of the POD modes
at time step k. In general, x(k) is approximated in the least-
squares sense as x(k) = Uz,py(k). The snapshot matrices

(2a) - (2b) are also blackuced as
X =UpopY, X =UpppY,

where X, X’ are the POD mode amplitude matrices for the
training data (2a) and (2b).

2.1.2 Dynamic Mode Decomposition with Control

In order to capture the linear part of the controlled dy-
namical system, the POD mode amplitudes x(k) are modeled
as a discrete-time linear state space system of the form

x(k+1) = Ax(k) + Bu(k) +e(x(k),u(k),w(k)), (4)

where A € R™*™ and B € R™*" are the state and control
transition matrices and e(+) is the linearization error from the
unmodeled nonlinear and process noise part of the dynamics.
The linear part of the dynamics can be computed by solving
the following least-squares minimization problem:

in [|X'—AX-BU|?
min | Ull7 ®)
whose minimizer is given by
X7
[A B] =X [U} , ©6)

where § denotes the Moore-Penrose inverse. Now, the lin-
ear part of the dynamics can be modeled by setting e(-) =0
in (4), which is the approach that DMDc follows [6]. The
full-dimensional snapshot y(k) at time step & can then be ap-
proximated from (3).

2.1.3 Total Least Squares Dynamic Mode Decomposi-
tion with Control
In [9], total least squares dynamic mode decomposition
(tIsDMD) was proposed in order to account for the presence
of measurement and process noise in the data. Following [9],
we start by assuming that the snapshots (2a) and (2b) can be
decomposed in a mean and noise part as

Y:Y—l—Ey, Y/:?/—i—Ey/

where Y, Y’ are the mean snapshots and Ey, Ey- are the noise
and modeling errors e(-) stacked similarly to (2a) and (2b).
After projection on the POD modes, we get

X=X+Ey, X =X +Ey.

According to [9], the least-squares minimization approach of
(5) in DMD (and, consequently, DMDc) accounts only for
the noise Ey in the plus-one time step data X', leading to a
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bias in the estimate of the dynamics that depends on Ex. Al-
ternatively, one can use total least-squares DMD to account
for noise in both matrices X and X'. The approximation of
the dynamics can be expressed as

X'+Ey =A(X+Ey) +BU @)

and the error in both components can be minimized simulta-
neously by solving the least-squares minimization problem

. 2
min  [|[Ex Ex]|;. @®
Equation (7) can be reformulated as
X+ Ex
[AB-I]| U |=0 ©
X' +Ej

and the solution to (8) can be computed using the truncated
SVD

X%EX _Us v — Uit Uin]| |21 0] | W
o | T T Uy U | | 0 0f [V
G

where only the first n, + n,, singular values are kept, leading
to an unbiased estimate of A and B

[AB] =Uyn Uy, (10)

The above is an extension of tIsDMD to systems with
control inputs (tlsDMDc).

2.2 Gaussian Process Regression

Once we model the linear dynamics of the unknown sys-
tem with DMDc or tlsDMDc and we obtain matrices A and
B, we can then learn the nonlinear and process noise terms
e(-) of the dynamics (4) that DMDc (and tlsDMDc) fails to
capture. With A and B known, we can estimate the linear
approximation error of each snapshot as

€ =X —-AX-BU. (11)

While DMDc and tIsDMDc assumes that the error term
e(+) in (4) is zero, here we attempt to model the error with GP
regression trained on the data in (11). In particular, we seek
to model the error term e(x(k),u(k),w(k)) in (4) with a non-
parametric Gaussian process regression model as follows.

2.2.1 Exact GP Inference

We start by considering a single component of the vector
function e(-) which, for clarity, we will refer to as e(-). The
input to this function at time step k is the concatenation of

the state x(k) and control input u(k) at that time step, i.e.
z(k) = [x" (k) uT(k)]T € R™, with n, = n, +n,. If we have
noisy observations €; of the unknown scalar-valued function
e() : R"™ — R at known inputs z;, for all Z = {z;}_, we
collect these observations in a vector €.

Let the measurement likelihood p(g; | e(z;)) be zero-
mean Gaussian and let e be the (unknown) vector containing
the values of e(-) at the points Z. We introduce a Gaussian
prior e(z) ~ N (e(z) | m(z),k(z,z)), where m(-) : R" — R is
the mean function (typically chosen to be the zero function)
and k(-,-) : R™ x R™ — R is the kernel function (typically, a
squablack exponential) that measures the closeness between
two input points and specifies the smoothness and continuity
properties of the underlying unknown function e(-).

The prior over the entire vector e can now be written as

p(e|Z) =N (e|m(Z),k(Z,Z)), (12)

with the mean vector defined as [m(Z)]; = m(z;) and the co-
variance [k(Z,Z)];; = k(z;,z;).

The joint density of vectors € (known) and e (unknown)
is

p(e.e|Z)=p(e|eZ)p(e|Z). (13)

With Gaussian likelihood p(e | e,Z) = N (] e,021), the
marginal likelihood

plelz) = [ ple| e 2)p(e| Z)de

=N (¢|m(Z),k(Z,Z)+c3) (14)

is analytically computed and the hyperparameters © =
{Bm,0%,0¢} that define the Gaussian process mean, kernel,
and likelihood functions can be found by minimizing the
negative log-likelihood of the training data,

®opt = arg@r)nin(—log p(S | Z)) . (15)

Pblackiction of €, on a new state-input pair z, is done
by conditioning on the training data,

p(&«| 2,8, Z) :/P(S*,E ‘ Z*7Z)d€:_/\/’(€* | e, 04),
where

pe=m(z,) +k(2,,2) [K(Z,2) + 2] (e~ m(Z)),
6. = k(z.,2.) —k(2.,Z) [K(Z,Z) + 62| k(Z,2.).
2.2.2 Multiple Outputs

So far, the error ¢; € R we have consideblack has been
a scalar. In the general case, the error in (4) will be a vector
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e; € R™. We can train the hyperparameters of an exact GP
using the estimated error snapshots € in (11) and defining the
matrix E as the matrix containing the function values e(z;) at
the i-th row. The latent functions are now e;4(-) : R — R,
for d =1,...,ny, and an independent exact GP is learned
for each component of the error vector e(-) in (4). Alterna-
tively, one could train a multitask GP regression model [36]
to learn similarities in the outputs of the GP or use scalable
variational GP regression [25] to decouple the inference cost
from the size of the training data.

2.3 Dynamic Mode Decomposition with Gaussian Pro-
cess Correction
In the hybrid DMDc+GP method, the error term e(-) in
(4) is modeled with GP regression. The training steps are:

1. Perform model order blackuction using POD (optional).

2. Compute A and B matrices to capture the “average” lin-
ear dynamics in (4) with DMDc.

3. Train an exact GP to learn the nonlinear and noisy terms

e(+) in (4).

One could use either DMDc or tIsDMDc for learning the
linear part of the dynamics. However, as it is demonstrated in
the numerical experiments, both choices perform similarly,
with DMDc + GP having a slight advantage over tisDMDc +
GP. The use of GP regression for correcting the DMDc pblac-
kictions offers a number of advantages, such as flexibility
and uncertainty awareness. In particular, if we evaluate the
dynamics away from the training dataset, the DMDc model
will take over, while the uncertainty of the GP inference will
increase, indicating less confidence in the GP pblackictions.

3 Numerical Experiments
3.1 Stuart-Landau Equation

We start by demonstrating the proposed tlIsDMDc and
DMDcGP methods on the stochastic Stuart-Landau equation
(consideblack to be a proxy for the flow oscillations behind
a cylinder [37]), which is a nonlinear system with discrete-
time dynamics in polar coordinates given by

r(k+1) = r(k) +dt (ur(k) — (k) + u, (k) +wr(k))
O(k+ 1) = 6(k) +dt (y— Br?(k) + ue(k) +wo (k) /r(k))

where r(k) is the radius and 6(k) the angle at time step k,
ur(k) and ug(k) are the control inputs, and w,(k),wg(k) ~
A4(0,0) are independent and identically distributed Gaus-
sian noise terms. The parameters in this experiment are
dt =0.01, u=0.1, B=1, and Y= 1, while ¢ varies from
0to00.1.

3.1.1 Collecting Data

The state space is encoded as x(k) =
[r(k) sin() cos(G)]T € R? in order to capture the pe-
riodic behavior of the angle 8(k). We assume that we have
perfect state measurements and the only noise source is the
process noise. We collect data for 13000 time steps and use
the first 10000 time steps for training and the rest 3000 for

testing. For the training split of the data, the control inputs
are periodic with increasing frequency, in order to excite the
different modes of the system. For the test part, the inputs
are again periodic with increasing, but lower, frequency. The
train/test split is shown in Fig. 1. The GP uses a squablack
exponential kernel and is trained on every Sth data point, in
order to keep the inference cost low.

Train Test
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Fig. 1: Stuart-Landau equation. Train/test data split. Control
input: —, state: —.

3.1.2 Model Evaluation

We train five different models (DMDc, tisDMDc, DMD-
cGP, tIsDMDcGP, and GP-only) on the training split of the
data and evaluate on the test split. In order to test the pblac-
kictive performance of the models on systems with noise,
we evaluate each model on three different noise settings:
6 = 0 (no noise), ¢ = 0.05 (low noise), and ¢ = 0.1 (high
noise). Evaluation is performed as follows: first, we select
64 uniformly distributed states from the test split as initial
conditions; then, we simulate the state dynamics forward for
N =256 time steps; finally, we compute the average L, norm
of the state pblackiction error as a percentage of the actual
state, i.e.

181 28255 ||k (k) — Xexaed(K) |

=—Y) — (16)
64 /=256 Xexact (6|

e L,
k=42t;

The results are shown in Table 1. First, we notice that tIsD-
MDc tends to perform better than DMDc in all noise levels.
Second, we see a big improvement in the pblackiction errors
when a GP is introduced, with DMDcGP performing slightly
better than tIsDMDcGP in all noise levels. Third, a GP-only
model (without a linear DMDc or tlIsDMDc part) has good
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Fig. 2: Stuart-Landau equation. Long-term state pblackic-
tions of 3000 time steps on the test dataset. Exact: —, pblac-
kicted: —.

S QCS
Model | o | O x\@@ @006 \\%9@\0 X
0 |192 66 03 03 52.6
e,% | 005|195 65 25 26 13.5
01 | 198 66 51 70 6.3

Table 1: Stuart-Landau equation. L, error for a pblackiction
horizon of N = 256, averaged over 100 initial conditions.

performance in the presence of noise, with the caveat that
when the GP approaches a location of the state and input
space that is away from the training data, the pblackictions
collapse to zero, pushing the rest of the pblackictions off (as
seen in the zero-noise case, where the error is significantly
large). For demonstration purposes, we also experiment with
a more challenging 3000 time step pblackiction using tlsD-
MDc and DMDcGP, as shown in Fig. 6.

3.1.3 Model Pblackictive Control

We further test the use of the learned models on a model
pblackictive control task, where the mean state is requiblack
to follow a given trajectory {Xges(0),...,Xdes(7T)} under the
presence of process noise. We formulate the following opti-
mal control problem

k+N—1
min -} u(i IR+ %G+ 1) = Xaes (i + DI
k i=k
s.t. Xx(i+1) = (A+AAL)X(i) + (B+ ABy)u(i) + di (i)
—-0.2<u(i)<0.2
x(k) = x¢

where the terms AAy, ABy, and d; result from the lineariza-
tion of the Gaussian process [30] at time step k, the inputs are
constrained to be between —0.2 and 0.2, and the initial con-
dition x; at each solution of the optimal control problem is
an exact measurement of the state (alternatively, it could be
a state estimate derived from Kalman filtering a noisy partial
state measurement). The actuation and state costs are chosen
to be R = 103, and QO = L3, respectively, the receding

2000 §

= AR

02 0.2
oo] i ]JVWWWWW
-02
X N il
o \\‘ N (/ 7y ,l \/ N " ‘\ '

0 500 1000 2000 00

Timestep

1500 1000

Timestep

1500 2000

-0.11 -0.11

-0.31 —0.31

-0.4 041

-0.2 0.0 0.2 0.4
rsin(6)

-0.2 0.0 0.2 0.4
r sin(6)

(a) tIsDMDc (b) DMDcGP

Fig. 3: Stuart-Landau equation. Trajectory tracking model
pblackictive control with noise ¢ = 0.1, using the learned
tlsDMDc and DMDcGP models. Optimal input: —, state
x(k): —, desiblack state Xges: - -

horizon is N = 50, and the optimal control problem is solved
at each time step as a quadratic program with inequality con-
straints [?].

We run the model pblackictive controller for 2000 time
steps, with a desiblack trajectory as shown in Fig. 3. The
control task is executed with high noise (¢ = 0.1) in order to
demonstrate the robustness of the learned DMDcGP model.
Using the tisDMDc model leads to large tracking errors (Fig.
3a), compablack to DMDcGP where, after a few time steps,
the state x(k) ends up close to the desiblack trajectory (Fig.
3b).

3.2 Near-Wall Jet in a Turbulent Boundary Layer
Next, we test the proposed tlsDMDc and DMDcGP
methods on a more challenging model order blackuction task
for a high-dimensional system. In particular, we want to
model the wall-normal velocity field that a jet in a turbulent
boundary layer induces. Such a model is useful for model-
based turbulent flow control tasks, where the cost of simu-
lations is prohibitively large (e.g. 36000 CPU hours to col-
lect the present dataset) for real-time control [38, 39]. We
perform large eddy simulations (LES) of a turbulent bound-
ary layer at a Reynolds number based on the momentum
thickness of about Reg = 2000. The near-wall jet is mod-
eled as a body force with Gaussian distribution in space, a
45° pitch angle toward the wall and in the direction of the
flow, and magnitude that is controlled by a scalar control
input, u(k) € [0,1]. We perform a set of 10 different LES
for pulsed inputs as shown in Fig. 4 and ensemble-average
the data collected from these simulations, in order to mini-
mize the effect of the background turbulence on the data and
focus on the mean effect that the jet has on the flow. The
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Fig. 4: Jet in a turbulent boundary layer. Control input for
generating the training and test dataset.

high-dimensional state is the wall-normal velocity at a grid
of size 61 x 16 x 15 around the force field, yielding a high-
dimensional state y of size n, = 14640.

3.2.1 Training

First, we blackuce the dimensionality of the data by pro-
jecting the high-dimensional states y onto the first n, =5
POD modes, which have been observed to capture the main
flow structures in the data. Then, we model the POD mode
amplitudes using both tisDMDc and DMDcGP, computed on
the train split shown in Fig. 4.

3.2.2 Pblackiction

The task here is to pblackict the flowfield over the next
250 time steps for a pulse input that lasts a different amount
of time (800 time steps) than the pulses that were used in the
training split (400 and 1200 time steps). This problem is par-
ticularly challenging since the dynamics are transient. If we
look at the POD mode amplitudes pblackicted by the tlsD-
MDc model in Fig. 5, we notice that although the pblackicted
amplitude for the first mode (blue solid line) is closely track-
ing the best POD approximation (blue dashed line), the rest
of the modes are not well approximated. The latter leads to
tlIsDMDc underestimating both the downwash (flow toward
the wall) and the upwash (flow away from the wall) down-
stream of the domain (Fig. 6a). On the contrary, DMDcGP
not only approximates the amplitude of these weaker modes
better, but its pblackicted flowfield (Fig. 6b) closely matches
both the closest POD approximation (Fig. 6¢) as well as the
exact (ensemble-averaged) flowfield (Fig. 6d). The mean
state pblackiction errors (in the Ly-norm sense) are given in
Table 2.

Model DMDc tlsDMDc DMDcGP tlsDMDcGP GP

er, % 324 26.7 6.3 8.1 8.5

Table 2: Jet in a turbulent boundary layer. L2 error for a
pblackiction horizon of N = 250 in the test split.

4 Conclusion

We presented an extension of the noise-aware total least
squares dynamic mode decomposition to systems with con-
trol inputs and a hybrid approach combining dynamic mode
decomposition with control and Gaussian process regression
for learning blackuced-order models for high-dimensional
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©
3 s I ‘ I - IExat:t
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Fig. 5: Jet in a turbulent boundary layer. blackuced-order
state pblackictions (—) vs the projection of the exact flow-
field onto the POD modes (- -).
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(b) DMDcGP
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Fig. 6: Jet in a turbulent boundary layer. Wall-normal veloc-
ity field induced by the jet after a pulse input. Isosurfaces of
flow moving toward (blue) and away (black) from the wall.
The DMDcGP approach follows the evolution of the average
jet pulse closer than tisDMDc.

stochastic nonlinear systems. Both approaches were shown
to yield improved results in pblackiction and control tasks
over existing methods. Future work will leverage these hy-
brid models in flow control applications, such as in [38,39].

Acknowledgements

The authors would like to acknowledge support by the
National Science Foundation awards 2129494 and 2052811
and the Texas Advanced Computing Center. Alexandros
Tsolovikos acknowledges support by the A. Onassis Foun-
dation Scholarship.

6 Copyright © by ASME

don_f

.on

_t



References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

Lumey, J. L., 1970. Stochastic Tools in Turbulence.
Elsevier Science.

Sirovich, L., 1987. “Turbulence and the dynamics of
coherent structures. I. Coherent structures”. Quart. of
Appl. Math., 45(3), pp. 561-571.

Willcox, K., and Peraire, J., 2002. “Balanced model
reduction via the proper orthogonal decomposition”.
AIAA J., 40(11), pp. 2323-2330.

Rowley, C. W, Mezi¢, 1., Bagheri, S., Schlatter, P., and
Henningson, D. S., 2009. “Spectral analysis of nonlin-
ear flows”. J. of Fluid Mech., 641, pp. 115-127.
Schmid, P. J., 2010. “Dynamic mode decomposition of
numerical and experimental data”. J. of Fluid Mech.,
656, pp. 5-28.

Proctor, J. L., Brunton, S. L., and Kutz, J. N., 2016.
“Dynamic mode decomposition with control”. SIAM
Journal on Applied Dyn. Sys., 15(1), pp. 142-161.
Tsolovikos, A., Bakolas, E., Suryanarayanan, S., and
Goldstein, D., 2020. “Estimation and control of
fluid flows using sparsity-promoting dynamic mode de-
composition”. [IEEE Control Systems Letters, 5(4),
pp- 1145-1150.

Hemati, M. S., Rowley, C. W., Deem, E. A., and
Cattafesta, L. N., 2017. “De-biasing the dynamic mode
decomposition for applied koopman spectral analysis
of noisy datasets”. Theoretical and Computational
Fluid Dynamics, 31(4), pp. 349-368.

Dawson, S., Hemati, M. S., Williams, M. O., and Row-
ley, C. W., 2016. “Characterizing and correcting for the
effect of sensor noise in the dynamic mode decomposi-
tion”. Exp. in Fluids, 57(3), pp. 1-19.

Jovanovi¢, M. R., Schmid, P. J., and Nichols, J. W.,
2014. “Sparsity-promoting dynamic mode decomposi-
tion”. Physics of Fluids, 26(2), p. 024103.

Mezié, 1., 2013. “Analysis of fluid flows via spectral
properties of the koopman operator”. Annual Review of
Fluid Mech., 45, pp. 357-378.

Korda, M., and Mezié, 1., 2018. “Linear predictors
for nonlinear dynamical systems: Koopman opera-
tor meets model predictive control”. Automatica, 93,
pp. 149-160.

Abraham, 1., and Murphey, T. D., 2019. “Active learn-
ing of dynamics for data-driven control using koop-
man operators”. IEEE Transactions on Robotics, 35(5),
pp- 1071-1083.

Williams, M. O., Hemati, M. S., Dawson, S. T.,
Kevrekidis, 1. G., and Rowley, C. W., 2016. “Extend-
ing data-driven koopman analysis to actuated systems”.
IFAC-PapersOnLine, 49(18), pp. 704-709.

Li, Q., Dietrich, F., Bollt, E. M., and Kevrekidis, 1. G.,
2017. “Extended dynamic mode decomposition with
dictionary learning: A data-driven adaptive spectral de-
composition of the koopman operator”. Chaos: An In-
terdisc. Journ. of Nonlinear Science, 27(10), p. 103111.
Williams, M. O., Rowley, C. W., and Kevrekidis,
I. G, 2014. “A kernel-based approach to data-
driven koopman spectral analysis”. arXiv preprint
arXiv:1411.2260.

Lusch, B., Kutz, J. N., and Brunton, S. L., 2018. “Deep
learning for universal linear embeddings of nonlinear

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

dynamics”. Nature communications, 9(1), pp. 1-10.
Yeung, E., Kundu, S., and Hodas, N., 2019. “Learn-
ing deep neural network representations for koopman
operators of nonlinear dynamical systems”. In 2019
American Control Conference, IEEE, pp. 4832-4839.
Brunton, S. L., Proctor, J. L., and Kutz, J. N., 2016.
“Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. Proc.
of National Academy of Sciences, 113(15), pp. 3932—
3937.

Benner, P, Goyal, P., Kramer, B., Peherstorfer, B.,
and Willcox, K., 2020. “Operator inference for
non-intrusive model reduction of systems with non-
polynomial nonlinear terms”. Computer Methods in
Applied Mechanics and Engineering, 372, p. 113433.
Rasmussen, C. E., 2003. “Gaussian processes in ma-
chine learning”. In Summer School on Machine Learn-
ing, Springer, pp. 63-71.

Quinonero-Candela, J., and Rasmussen, C. E., 2005.
“A unifying view of sparse approximate Gaussian pro-
cess regression”. The Journal of Machine Learning Re-
search, 6, pp. 1939-1959.

Titsias, M., 2009. “Variational learning of inducing
variables in sparse Gaussian processes”. In Artificial
Intel. and Stat., PMLR, pp. 567-574.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.,
2013. “Stochastic variational inference.”. J. of Mach.
Learn. Research, 14(5).

Hensman, J., Fusi, N., and Lawrence, N. D., 2013.
“Gaussian processes for big data”. arXiv preprint
arXiv:1309.6835.

Grimes, D. B., Chalodhorn, R., and Rao, R. P., 2006.
“Dynamic imitation in a humanoid robot through non-
parametric probabilistic inference.”. In Robotics: sci-
ence and systems, Cambridge, MA, pp. 199-206.

Ko, J., Klein, D. J., Fox, D., and Haehnel, D., 2007.
“Gaussian processes and reinforcement learning for
identification and control of an autonomous blimp”. In
ICRA (2007), pp. 742-7417.

Pan, Y., and Theodorou, E. A., 2015. “Data-driven
differential dynamic programming using Gaussian pro-
cesses”. In ACC (2015), pp. 4467-4472.

Hewing, L., Kabzan, J., and Zeilinger, M. N., 2020.
“Cautious model predictive control using Gaussian
process regression”. IEEE Transactions on Control
Systems Technology, 28(6), pp. 2736-2743.
Tsolovikos, A., and Bakolas, E., 2021. “Cautious
nonlinear covariance steering using variational gaus-
sian process predictive models”. IFAC-PapersOnLine,
54(20), pp. 59-64.

Xiao, M., Breitkopf, P., Filomeno Coelho, R., Knopf-
Lenoir, C., Sidorkiewicz, M., and Villon, P., 2010.
“Model reduction by CPOD and Kriging”. Struct. and
Multid. Optim., 41(4), pp. 555-574.

Chang, Y.-H., Zhang, L., Wang, X., Yeh, S.-T., Mak, S.,
Sung, C.-L., Jeff Wu, C., and Yang, V., 2019. “Kernel-
smoothed proper orthogonal decomposition—based em-
ulation for spatiotemporally evolving flow dynamics
prediction”. AIAA journal, 57(12), pp. 5269-5280.
Ortali, G., Demo, N., and Rozza, G., 2022. “A Gaus-
sian Process regression approach within a data-driven

Copyright © by ASME



(34]

(35]

(36]

(37]

(38]

(39]

POD framework for engineering problems in fluid dy-
namics”. Mathematics in Eng., 4(3), pp. 1-16.
Masuda, A., Susuki, Y., Martinez-Ramén, M., Mam-
moli, A., and Ishigame, A., 2019. “Application of
gaussian process regression to koopman mode decom-
position for noisy dynamic data”. arXiv preprint
arXiv:1911.01143.

Maulik, R., Botsas, T., Ramachandra, N., Mason, L. R.,
and Pan, I, 2021. “Latent-space time evolution of non-
intrusive reduced-order models using gaussian process
emulation”. Physica D: Nonlinear Phenomena, 416,
p- 132797.

Bonilla, E. V., Chai, K., and Williams, C., 2007.
“Multi-task gaussian process prediction”. Advances in
neural information processing systems.

Noack, B. R., Afanasiev, K., Morzynski, M., Tad-
mor, G., and Thiele, F., 2003. “A hierarchy of low-
dimensional models for the transient and post-transient
cylinder wake”. J. of Fluid Mech., 497, pp. 335-363.
Tsolovikos, A., Suryanarayanan, S., Bakolas, E., and
Goldstein, D., 2021. “Model predictive control of ma-
terial volumes with application to vortical structures”.
AIAA Journal, 59(10), pp. 4057—4070.

Tsolovikos, A., Jariwala, A., Suryanarayanan, S.,
Bakolas, E., and Goldstein, D., 2023. “Separation delay
in turbulent boundary layers via model predictive con-
trol of large-scale motions”. Physics of Fluids, 35(11),
11, p. 115118.

Copyright © by ASME



	Introduction
	Method
	Dynamic Mode Decomposition with Control
	Model Order blackuction
	Dynamic Mode Decomposition with Control
	Total Least Squares Dynamic Mode Decomposition with Control

	Gaussian Process Regression
	Exact GP Inference
	Multiple Outputs

	Dynamic Mode Decomposition with Gaussian Process Correction

	Numerical Experiments
	Stuart-Landau Equation
	Collecting Data
	Model Evaluation
	Model Pblackictive Control

	Near-Wall Jet in a Turbulent Boundary Layer
	Training
	Pblackiction


	Conclusion

