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Numerical flow control studies are conducted on a NACA 0015 airfoil and finite wing of aspect

ratio 4 at a chord based Reynolds number of 200 and high angles of attack (U). Direct Numerical

Simulation (DNS) of laminar separated flows is conducted in the Nek5000 spectral element

code. A time-varying state space model of the fluid flow that is amenable to control design

is identified by using a data-driven modal decomposition. An optimal stabilizing controller

that can (asymptotically) stabilize the flow is obtained by solving a linear quadratic optimal

control problem and is introduced in the form of feedback control in the DNS as a body force

actuation. The performance of the online control based on the time-varying model is compared

to that of the time-invariant one. The ability of this control scheme to adapt to changes of the

system is tested by changing the angle of attack U. The online control approach based on the

time-varying model works well for small changes in U but is unable to fully stabilize the flow

when the increase in U is above 4◦. The time-varying model offers more accurate predictions,

but is more sensitive to modifications of the flow. Further work is required to fully leverage its

advantages for control design.

I. Nomenclature

U, ΔU = angle of attack and change in angle of attack (◦)

2 = wing chord

C = non-dimensional time

XC, ΔC = DNS time step and linear model discrete step

f = vector of body forces

? = pressure

u = velocity vector

*∞ = free-stream velocity

u: = control input vector at step :

 = controller gain

: = discrete time state-space model step

; = control step

^ = oDMDc weighting factor

�: ,�: = state and input matrices of the state-space model at step :

# = time horizon

= = number of states

< = number of control inputs

@ = number of temporal snapshots

'4 = Reynolds number

a = kinematic viscosity

_ = eigenvalue of the state matrix

x: = state vector at step :

- = snapshot matrix
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II. Introduction

A
erodynamic flow control aims to enhance the performance of lifting surfaces often by improving lift and drag

characteristics, delaying separation, and reducing the oscillatory loads due to vortex shedding. Since the goal of

any flow control is to alter the flow dynamics with as little actuation as possible, the approach of many studies is to

leverage the inherent hydrodynamic instabilities. Using the physical knowledge of the flow, small control inputs can be

applied in regions where the instabilities are most receptive to actuation and can greatly affect the flow.

Flow control aimed at mitigating separation over lifting bodies has predominantly relied on exploiting the receptivity

of the separated flow to periodic actuation within a narrow frequency range. A lot of effort has been devoted to studies

of various actuation parameters with the effects on the flow evaluated a posteriori [1–3].

In the past decade, there has been an abundance of studies analyzing the wake dynamics of finite-wing flows at very

low Reynolds number. Many studies focused on analyzing the vortex dynamics during unsteady maneuvers such as

translation and rotation [4, 5], surging and plunging [6, 7], pitching [8–10], and flapping [11, 12]. The flows at these

conditions are massively separated and dominated by unsteady vortex shedding. Large scale vortex structures present

in these unsteady flows, such as leading edge vortices [13, 14], can augment unsteady vortical lift. The use of these

structures for flow control [15] have also been studied.

Despite there being a significant body of work on finite wings, the applications of adaptive active feedback control

for these flows have been rather scarce. Neural networks have been used for adaptive system identification and control

for lift augmentation over an airfoil based on limited surface measurements [16] and for wake stabilization and drag

reduction [17]. While certainly successful, such approaches do not fully account for the flow physics. On the other

hand, data-driven modal decompositions, such as the widely used dynamic mode decomposition (DMD) [18], are

known to capture the physics of the limit cycle oscillations of a separated flow. In particular, DMD can identify various

instabilities as discrete frequency modes. Online DMD with control was used by [19] to iteratively update a dynamic

model and recompute the feedback gains of a linear quadratic regulator (LQR) in experimental control of separation

over a plate. While still data-driven, such an approach relies on a physics based reduced order model of the flow.

This work is motivated by the fact that modern goals for micro-aerial vehicles include flights at stalled conditions

and in unsteady (gusty) environments [20, 21] where active flow control may be necessary for safe operations. So far,

adaptive active feedback control has not been applied for a finite wing at such conditions. Hence, the aim of this work is

to develop an adaptive closed-loop control approach for unsteady separated flow. We conduct numerical flow control

simulations of separated flows over airfoils and finite-aspect-ratio wings at low Reynolds numbers and large angles of

attack. The low Reynolds number conditions serve as a simpler training ground before attempting higher '4 regimes.

To check the ability of the control scheme to cope with variations in conditions, we subject the controlled flow to a

quick increase of the angle of attack. The rest of the paper is organized as follows: the data-driven algorithms used for

system identification and the control approach are explained in the following section. The results section starts with a

comparison of online DMD and classical DMD for prediction of the evolution of the system subjected to a change of

the angle of attack. The online control approach is then applied to two-dimensional airfoil flow and eventually to a

three-dimensional finite wing flow.

III. Methodology

A. Equations of Motion

The flow is governed by nondimensional, incompressible Navier-Stokes and continuity equations:

mCu + u · ∇u = −∇? + '4−1∇2u + f , ∇ · u = 0, (1)

where u = (D, E, F)) is the velocity vector, ? is pressure and f are the external body forces acting on the flow. The

Reynolds number defined as '4 ≡ *∞2/a, where*∞ is the free-stream velocity, 2 is the wing chord, and a the kinematic

viscosity. These governing equations are solved by direct numerical simulation (DNS) using the spectral element code

Nek5000 [22]. The computational domain extends 152 upstream and 202 downstream in G, ±152 in H and 152 past the

wing tip in I for the three-dimensional case. The domain is discretized by a C-type mesh with 2438 (46,000 in the

three-dimensional case) quadrilateral elements. Within each element, the solution variables are represented in terms

tensor-product Lagrange polynomials of order % = 7. A DNS time step XC = 10−3 is used.
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where the superscript + denotes the pseudo-inverse defined as -+
= -T

[
--T

]−1
. Typically, a reduced order problem is

formulated by taking the singular value decomposition (SVD) of the snapshot matrix - = *Σ+T. This results in

�DMD = - ′+Σ−1*T. (6)

The SVD can also be optionally truncated to A, with A < min(<, @ − 1). The DMD matrix can then be projected onto

the space spanned by the first A columns of -

�̃ = *̃T�DMD*̃ = *̃T- ′+̃ Σ̃−1, (7)

where - = *̃Σ̃+̃T is the truncated SVD. The eigenvalue problem (EVP)

�̃,̃ = _8,̃ 8 = 1, 2, ...A, (8)

gives the DMD eigenvalues, _. The matrix ,̃ contains the eigenvectors of the reduced order problem. The corresponding

DMD eigenvectors can be obtained by

, = *̃,̃ . (9)

The (continuous-time) oscillation frequency 5 and the growth rate 6 of a DMDc mode can be determined from the

(discrete-time) eigenvalue _ of matrix � using the following equations:

5 = ∠_/(2cΔC), (10)

6 = log |_ |/ΔC, (11)

where ΔC is the time step of the linear model.

2. Dynamic Mode Decomposition with Control

Dynamic mode decomposition with control (DMDc) [25] is an extension of the widely used dynamic mode

decomposition (DMD) method [18]. The main feature of DMDc is its ability to distinguish the underlying system

dynamics from the effects of actuation, which produces accurate input-output models for an actuated system. The

training snapshots are arranged in three matrices

- = [x1, x2, . . . , x<−1], - ′
= [x2, x3, . . . , x<], * = [u1, u2, . . . , u<−1], (12)

where - is the = × < − 1 snapshot matrix, - ′ is the snapshot matrix shifted by one snapshots and* is the < × @ − 1

control matrix containing the corresponding actuator signals. Here = is the size of the control grid, @ is the total number

of snapshots and < is the number of control actuators. The DMDc input matrix is constructed by appending the training

data control matrix to the snapshot matrix

Ω =

[
-

*

]
. (13)

Next, the SVD of the input matrix is taken

Ω = *ΩΣΩ+
T
Ω
. (14)

The state and input matrices of the reduced order system are then computed as follows:

� = - ′+T
Ω
Σ
−1*T

1 , (15)

� = - ′+T
Ω
Σ
−1*T

2 , (16)

where*1 includes the 1 to = rows of*Ω and*2 includes the = + 1 to @ rows of*Ω. Assuming that � has a set of linearly

independent eigenvectors, the dynamic modes are then obtained by solving the eigenvalue problem

�, = ,Λ, (17)

where Λ is a diagonal matrix of complex DMDc eigenvalues _ and , is a matrix containing the corresponding

eigenvectors in its columns. The � and � matrices obtained with DMDc can be used to construct a discrete-time linear

(control) system:

x:+1 = �x: + �u: , (18)

where x: and x:+1 are the state vectors of the state-space model at the discrete stage : and : + 1, respectively. The

discrete stage : corresponds to time C: and and discrete stage : + 1 corresponds to time C:+1 with C:+1 = C: + ΔC.
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3. Online Dynamic Mode Decomposition with Control

The classical DMD [26] formulation requires access to all prior snapshots to form the data matrix and compute the

singular value decomposition. Therefore, system identification using DMD with control (DMDc) [25] can only be done

once enough state vector measurements are collected as training data. Such a posteriori analysis is not suitable for

situations when a sufficient number of state vector measurements at different time instances is not available or if the

data matrix is too large to store in memory. If the flow in question significantly changes its dynamics, for example

due to external disturbances, these will not be accounted for unless they were present in the original training data.

Once a control strategy is employed, the effect of the control input itself can significantly vary the flow dynamics,

potentially rendering the original model obsolete. Online dynamic mode decomposition (oDMD) [27] provides a way to

continuously update the DMD estimate, representing the flow dynamics as a time-varying linear system. The added

benefit is that the full data matrix does not have to be formed or stored. This makes oDMDc particularly attractive for

problems with low spatial resolution (low dimension of the state space =) but high temporal resolution of measurements.

The extension of oDMD for control based on the approach of [28] is summarized below.

Recall that the classical DMD describes a linear system of the form x:+1 = �DMDx: , which can be written in matrix

form as Eq. 4. The resulting least-squares problem in Eq. 5 can be written as

�DMD = "%, (19)

where " = - ′-T and % =
[
--T

]−1
. At step : , a new state measurement, x: , and the previous state measurement,

x:−1, are available and the matrices " and % can be updated using

": = [- ′ x:] [- x:−1]
T
= ":−1 + x:x

T
:−1, (20)

%: =

(
[- x:−1] [- x:−1]

T
)−1

=
[
%−1
:−1 + x:−1x

T
:−1

]−1
. (21)

DMD can be expanded to include control inputs by simply taking �̃ = [� �] and substituting x: for [x: u:]
T as

demonstrated in [25]. After some algebraic manipulations, the details of which can be found in [27], the following set of

update equations (Eq. (22-24)), which include the effect of control, can be written for step : as follows:

%: =
1

^

©­«
%:−1 + W:%:−1

[
x:−1

u:−1

] [
x:−1

u:−1

]T

%:−1
ª®¬
, (22)

where x: is the new state vector value, x:−1 is the previous state measurement and u:−1 is the previous control input.

Note that that %: in Eq. 22 is (= + <) × (= + <) to account for the fact that the state measurement vectors are of size =

and the control vector is of size <, with = and < being the number of states and actuators, respectively. Here, u:−1 is

the control input applied at : − 1 to get from x:−1 to x: . The scalar W: in Eq. 22 is defined as

W: = 1 +
©­«
1 +

[
x:−1

u:−1

]T

%:−1

[
x:−1

u:−1

]ª®¬
. (23)

Equation 22 has a weighting factor ^ ∈ (0, 1], which affects the contribution of older snapshots to the current system

estimate. Setting a low value (^ → 0) will aggressively attenuate old data, while a value close to unity will result in a

gradual decay of old snapshots. The state-space model can be updated using

[
�: �:

]
=

[
�:−1 �:−1

]
+ W:

(
x: −

[
�:−1 �:−1

] [
x:−1

u:−1

]) [
x:−1

u:−1

]T

%:−1, (24)

which considers the error between the current measured state x: and its prediction using an “old” state-space model

and state at : − 1. This algorithm can be initialized either with normal DMDc or using a random [�0 �0] and setting

%0 = V�, where � is the identity matrix and V is a large positive scalar. This results in a time-varying (discrete-time)

state-space model

x:+1 = �:x: + �:u: , (25)

that is amenable to controller design.
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D. Controller Design

We apply two standard controllers to the discrete-time system defined in Eq. (25). For the purposes of controller

design, the matrices � and � are treated as if they were constant for the whole time horizon over which the controller is

designed (which means that every time � and / or � change, the control design process must be repeated based on the

most recent values of these two matrices). In the following, we use �̂ = �: and �̂ = �: to denote these constant state

and input matrices obtained from the current estimate of the online DMDc. We then apply time-invariant versions

of the controllers on this time-invariant system x:+1 = �̂x: + �̂u: . The resulting gains will not be strictly optimal in

the optimal control sense since the actual system in Eq. (25) to which we will apply the feedback is time-varying and

nonlinear. However, for the current estimate of the oDMDc when the gains are recomputed, they will be in the set of

optimal feedback gains.

1. Linear Quadratic Regulator

We currently employ the classical linear quadratic regulator (LQR) controller [29], which in its infinite horizon

formulation has a performance index defined by

� =

∞∑
:=0

(
xT
:&x: + uT

:'u:

)
, (26)

to be minimized subject to time-invariant dynamics x:+1 = �̂x: + �̂u: . Here, & and ' are positive definite diagonal

weight matrices of sizes =× = and < ×<, respectively. The value of& determines how much weight should be placed on

that state component (how far the state is from the origin). Larger &88 values mean that it is more important to minimize

the error in the component G8 of the state vector. Similarly, the value of ' for a specific actuator penalizes actuator usage,

with lower value of ' 9 9 meaning that one is allowed to use control input vectors whose component D 9 (or more precisely,

the absolute value of the latter) can be larger than the other input components. The LQR controller gain  ̂ is defined as

 ̂ =

(
' + �̂T(�̂

)−1

�̂T(�̂, (27)

where ( is the solution of the discrete algebraic Riccati equation (DARE)

( = �̂T(�̂ − �̂T(�̂
(
' + �̂T(�̂

)−1

�̂T(�̂ +&. (28)

The optimal control input for step : is then applied to the system as closed loop feedback

u: = − ̂x: , (29)

where x: is the current state value.

2. Linear Quadratic Tracker

As time approaches infinity, the LQR controller aims to bring the state vector and the control input vector to zero. If

it is needed to reach an non-zero state, or if the final steady state requires a non-zero steady-state control input, the linear

quadratic tracker (LQT) extension of LQR can be used instead [29]. The LQT performance index is defined as

�8 =
1

2
(x# − x̄# )

T
Π (x# − x̄# ) +

1

2

8+#−1∑
:=8

(
(x: − x̄:)

T& (x: − x̄:) + uT
:'u:

)
, (30)

where {x̄:} is the reference signal that the system’s state trajectory must track and # (positive integer) is the (finite)

time horizon. The weight matrices & and ' have the same meaning as for the LQR problem. The additional symmetric,

positive definite matrix Π weights the steady-state error between the state vector x# and the reference (target) state

vector x̄# . The LQT optimal control input contains a feedback and a feed-forward term

u: = − :x: +  
E
: v:+1. (31)

The feedback gain  : is defined as

 : =

(
�̂T(:+1�̂ + '

)−1

�̂T(:+1 �̂. (32)
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𝒖 = 𝒖

𝒙 = 𝐴𝒙 + 𝐵𝒖

Online System ID

Controller Design

𝒙 = 	𝐴 𝒙 + 𝐵 𝒖

𝒖 = −𝐾 𝒙

𝑘

𝑞

𝒖 = −𝐾𝒙

𝑘

Controller Design

System ID

Training

𝒖

𝑡

Offline

Online

a) b)

Fig. 2 Conceptual overview of the normal, DMDc based a) and the online oDMDc b) control methods.

Here the matrix (:+1 is the solution of the Riccati difference equation, which for the case of full state information is

given by

(: = �̂T(:+1

(
�̂ − �̂ :

)
+&, (33)

and is solved backwards in time. Note that �̂ and �̂ are assumed to be constant for the time horizon # . The feed-forward

gain  E is given by,

 E
: =

(
�̂T(:+1�̂ + '

)−1

�̂T (34)

where

v: =

(
�̂ − �̂ :

)T

v:+1 +&x̄: . (35)

Eqs. (32) and (35) are iterated backwards in time starting at step # with the starting conditions of given by (# = Π and

v# = Πx̄# , respectively. Note that in contrast with the infinite horizon LQR problem, the LQT gains are, in general,

time-varying even for the time-invariant system defined by �̂ and �̂.

E. Summary of the Flow Control Approach

The overall idea of the two control schemes used is shown in Fig. 2. The first step of classical, DMDc-based control

is the system identification process. An arbitrary control input, which we will refer to as the training input, is applied to

the actuator and the evolution of the flow is recorded for @ steps. The frequency of the training input is chosen such as to

excite the most dominant modes of the system that one wishes to infer. We have tested several such inputs including a

one period of a sin wave at the shedding frequency and step inputs of finite duration. A trapezoidal step as shown in

Fig. 2a) was chosen. Experiments with adding Gausian noise of various amplitudes to the step training input did not

show any significant variations in the performance of the system identification process. DMDc is then used to obtain a

time-invariant state-space model (Eq. 18). The controller is then designed and the Riccati equation (Eq. 33) is solved

once to obtain a time independent gain. The feedback control is obtained by multiplying this gain by the current state

vector. In principle, the system identification and controller design can be conducted offline in this case.

In the online control approach shown in Fig. 2b), the oDMDc algorithm is used to update the time-varying state-space

model. In principle, there is no need to apply a training control input and the control can be initiated as soon as the

oDMDc produces the first system estimate. However, we have still applied the same training input as was used for the
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Fig. 5 Comparison of state prediction using different models without control (U0 = 22◦,ΔU = 8◦, '4 = 200, ^ =

0.9).

a)

b)

b)

Fig. 6 Effect of the forgetting factor on oDMDc state prediction. Matrix 2-norm of the � matrix a), average

error in the predicted mean value of the states b), average error in the predicted amplitude of the states c).

(U0 = 22◦,ΔU = 8, '4 = 200).
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Δ𝛼𝒖

! = 120 ! = 200 ! = 300

a)

b)

c)

d)

Fig. 8 Time history of the online control run for U0 = 22◦,ΔU = 2◦,Π = & = 10, ' = 0.1, '4 = 200. a)

Control input and second norms of the LQT gains, b) second norm of �: and �: , c) state vector entries (G) and

corresponding targets (Ḡ), d) flow field at various times (contours of spanwise vorticity, black line denotes the

reversed flow region).

uncontrolled baseline. This was caused by high fluctuations of u: . It should be noted that the final steady state target

provided to the LQT controller was same in both cases. This simplification has not fully utilized the advantage of the

online approach, which allows one to vary the target with time as the tracking problem is reevaluated. It is expected

that if the reference solution was adjusted to account for the pitch up disturbance, the online control would have likely

performed better.

It should be noted that the nonzero mean values of the actuator input contributes to increase of the mean lift in

several ways. The reduction of the separation region, Coandă effect due to blowing accelerating the flow on the suction

side, and direct contribution of the body force vector components to lift and drag forces all can contribute to increased

⟨�!/��⟩. Differentiating the effect of these contributions is not trivial. We are not directly interested in improving the

aerodynamic performance as such but rather in reducing the unsteadiness in the flow.

C. Finite Wing Flow

We extend the same control approaches to a finite wing of aspect ratio 4 at the same (chord based) Reynolds number

of 200. The same pitch up disturbance as described in Fig. 4 is applied to the three-dimensional wing.

The performance of the online control approach is shown in Fig. 10. Two cases are compared, one with training and

one without. In the case with training, a training control signal was first applied to the actuator and the controller was

turned on only after the changes in the �: and �: of the time-varying model have subsided (similar to Fig. 8). In the

case without training, the controller was turned on as soon as the first estimate of �: and �: has been produced. In

this case the oDMDc algorithm was identifying the system as it was being controlled. The long term performance of

these two approaches is nearly identical as shown in Fig. 10. Such ability of the online approach to stabilize the flow

immediately, without having to wait for system identification using a training signal is an advantage.

Fig. 11 shows the instantaneous snapshots of the baseline and controlled flow after the pitch-up disturbance. For ΔU

of 2◦ and 4◦, the online control was able to fully stabilize the flow. At ΔU = 6◦, full attenuation of shedding was not

achieved, however, the amplitude of �!/�� fluctuations is reduced by about 50%. At ΔU = 8◦, the amplitude of lift

fluctuations is unchanged with respect to the baseline as seen in Fig. 10. However, an examination of the controlled
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a) b)

Fig. 9 Comparison of the normal a) and online b) LQT controllers for different ΔU and Π, & values for the

two-dimensional case (' = 0.1, U0 = 22◦, '4 = 200).

flow field shown in Fig. 4 for ΔU = 6◦ and 8◦ shows that there is far less three-dimensionality in the flow compared

to the baseline. The wake vortices consist of predominantly spanwise vorticity and are mostly parallel to the wing.

The vortices with significant streamwise and crossflow vorticity components, which connected spanwise vortices of

opposite sign in the uncontrolled flow are significantly weakened as a result of control. To further illustrate this point,

the frequency content of the �!/�� signal is plotted in Fig. 12 for the uncontrolled baseline and controlled flow. The

power spectral density, obtained by a fast Fourier transform of the �!/�� signal after the pitch up, is plotted with

non-dimensional frequency (C =
5 2

*∞
. The vertical line indicates the shedding frequency of a two-dimensional airfoil

at corresponding conditions. The frequency of the controlled flow at ΔU = 6◦ and 8◦ is closer to the corresponding

two-dimensional case. Hence, the effect of the uniform actuation along the span in these cases is to reduce the spanwise

variation of shedding, which results in frequency closer to the two-dimensional equivalent.

V. Conclusions
An online feedback control method based on the online DMDc and classical LQT controller was implemented

for stabilizing two-dimensional airfoil and three-dimensional finite wing flows subject to a quick change of angle of

attack ΔU. The online control approach based on the time-varying model worked well at low ΔU but failed to fully

stabilize the flow when the increase in U was above 4◦ for both two- and three-dimensional cases. For the finite wing,

the reduction in three-dimensionality of the flow was noticed due to the effects of the control. The wake vortices of

the controlled flow had predominantly spanwise vorticity and the shedding frequency was closer to the corresponding

two-dimensional airfoil flow.

While the time-varying model offers better accuracy of predictions, it is more sensitive to perturbations both in the

form of modifications of the flow (such as the the change of the angle of attack considered here) as well as sudden

changes of the system due to control inputs. More work is required to address these issues. A potential change that

may improve the performance of the online control scheme would be to adapt the target solution when the pitch up
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Fig. 10 Performance of the online control for the three-dimensional wing.

Baseline

Controlled

ΔU = 2◦ ΔU = 4◦ ΔU = 6◦ ΔU = 8◦

Fig. 11 Instantaneous baseline (top) and online controlled (bottom) flow over wings after pitch up disturbance

(' = 0.1,Π = & = 10, U0 = 22◦, '4 = 200). Contours of 0.1 ≤ & ≤ 1 colored by spanwise vorticity.

a) b)

Fig. 12 Frequency spectrum of the �!/�� for the finite wing at ΔU = 6◦ a) and ΔU = 8◦ b) cases.

disturbance is introduced. Future work will also address multiple actuators, for example an array of discrete actuators

along the span of the wing. We also intend to extend these methods to separation control for turbulent flow.
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